37181 DISCRETE MATHEMATICS

©Murray Elder, UTS Lecture 4: rational numbers, well ordering principle

- rational and irrational numbers
- first element
- \cdot well ordering principle

For example, 0.3333... is rational because it is equal to $\frac{1}{3}$.

For example, 0.3333... is rational because it is equal to $\frac{1}{3}$.

The set of all rational numbers is denoted by \mathbb{Q} . A real number $x \in \mathbb{R}$ is called *irrational* if it is not rational.

For example, 0.3333... is rational because it is equal to $\frac{1}{3}$.

The set of all rational numbers is denoted by \mathbb{Q} . A real number $x \in \mathbb{R}$ is called *irrational* if it is not rational.

Lemma $\sqrt{2}$ is irrational.

$\sqrt{2}$ is irrational

$$(\neg p \rightarrow \mathbf{F}) \rightarrow p$$

Proof.

Suppose (for contradiction) $\sqrt{2}$ is rational. So $\sqrt{2} = \frac{a}{b}$ for a, b integers.

$\sqrt{2}$ is irrational

$$(\neg p \rightarrow \mathbf{F}) \rightarrow p$$

Proof.

Suppose (for contradiction) $\sqrt{2}$ is rational. So $\sqrt{2} = \frac{a}{b}$ for a, b integers.

Now we make an *extra* assumption. Without loss of generality we can assume gcd(a, b) = 1. (if not, choose a better pair a, b.)

$\sqrt{2}$ is irrational

$$(\neg p \rightarrow F) \rightarrow p$$

Proof.

Suppose (for contradiction) $\sqrt{2}$ is rational. So $\sqrt{2} = \frac{a}{b}$ for a, b integers.

Now we make an *extra* assumption. Without loss of generality we can assume gcd(a, b) = 1. (if not, choose a better pair a, b.)

- \cdot square both sides
- \cdot multiply both sides by b^2
- then a^2 is even
- so by our Lemma, *a* is even
- do some more manipulating
- \cdot now b^2 is even

Between any two distinct rational numbers you can find another rational number.

Between any two distinct rational numbers you can find another rational number.

Exercise (before proof or counterexample): write in logic notation.

Between any two distinct rational numbers you can find another rational number.

Exercise (before proof or counterexample): write in logic notation.

 $\forall x \in \mathbb{Q} \ \forall y \in \mathbb{Q} \left[(x \neq y) \rightarrow (\exists z \in \mathbb{Q} \left((x < z < y) \lor (y < z < x) \right)) \right]$

Between any two distinct rational numbers you can find another rational number.

Exercise (before proof or counterexample): write in logic notation.

 $\forall x \in \mathbb{Q} \ \forall y \in \mathbb{Q} \left[(x \neq y) \rightarrow (\exists z \in \mathbb{Q} \left((x < z < y) \lor (y < z < x) \right)) \right]$

Let the universe of discourse be \mathbb{Q} .

 $\forall x \; \forall y \; \exists z \, [(x \neq y) \rightarrow ((x < z < y) \lor (y < z < x))]$

Lemma

Between any two distinct rational numbers you can find another rational number.

Proof.

(Direct) Let p, q be two rational numbers. Without loss of generality assume p < q.

Lemma

Between any two distinct rational numbers you can find another rational number.

Proof.

(Direct) Let p, q be two rational numbers. Without loss of generality assume p < q.

Then (by hypothesis) $p = \frac{a}{b}$ and $q = \frac{c}{d}$.

Lemma

Between any two distinct rational numbers you can find another rational number.

Proof.

(Direct) Let p, q be two rational numbers. Without loss of generality assume p < q.

Then (by hypothesis) $p = \frac{a}{b}$ and $q = \frac{c}{d}$.

Construct a number in between them:

Lemma

Between any two distinct rational numbers you can find another rational number.

Proof.

(Direct) Let p, q be two rational numbers. Without loss of generality assume p < q.

Then (by hypothesis)
$$p = \frac{a}{b}$$
 and $q = \frac{c}{d}$.

Construct a number in between them:

 $p = \frac{ad}{bd}$ and $q = \frac{cb}{db}$, and we know ad < cb and they are both integers. What if they were just 1 apart?

CONJECTURE

A conjecture is a statement whose truth is not yet known.

I will make some conjectures, based on the previous lemma, and you decide whether or not you think they are true.

CONJECTURE

A conjecture is a statement whose truth is not yet known.

I will make some conjectures, based on the previous lemma, and you decide whether or not you think they are true.

Conjecture

Between any two distinct rational numbers you can find an irrational number.

A conjecture is a statement whose truth is not yet known.

I will make some conjectures, based on the previous lemma, and you decide whether or not you think they are true.

Conjecture

Between any two distinct rational numbers you can find an irrational number.

Conjecture

Between any two distinct irrational numbers you can find a rational number.

A conjecture is a statement whose truth is not yet known.

I will make some conjectures, based on the previous lemma, and you decide whether or not you think they are true.

Conjecture

Between any two distinct rational numbers you can find an irrational number.

Conjecture

Between any two distinct irrational numbers you can find a rational number.

Conjecture

Between any two distinct real numbers you can find both a rational and an irrational number.

Lecture 4: 37181

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

Lemma

First elements are unique.

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

Lemma

First elements are unique. (So we can say "the" first element).

Proof.

An element *s* in a subset $S \subseteq \mathbb{N}$ is called a *first element* in *S* if $s \leq x$ for every $x \in S$.

Lemma

First elements are unique. (So we can say "the" first element).

Proof.

Suppose (for contradiction) there was a set $S \subseteq \mathbb{N}$ and two elements $s, t \in S$ both obeying the definition of first element of S.

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

Lemma

First elements are unique. (So we can say "the" first element).

Proof.

Suppose (for contradiction) there was a set $S \subseteq \mathbb{N}$ and two elements $s, t \in S$ both obeying the definition of first element of S.

Then since $t \in S$ we have $s \leq t$ (thinking of t as "an x" in the definition) and since $s \in S$ we have $t \leq s$ (thinking of s as an x).

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

Lemma

First elements are unique. (So we can say "the" first element).

Proof.

Suppose (for contradiction) there was a set $S \subseteq \mathbb{N}$ and two elements $s, t \in S$ both obeying the definition of first element of S.

Then since $t \in S$ we have $s \leq t$ (thinking of t as "an x" in the definition) and since $s \in S$ we have $t \leq s$ (thinking of s as an x).

Then s = t so there was only one.

The following statement is an *axiom* or fact which does not follow from other facts.

Axiom (Well ordering principle)

Every non-empty subset of $\mathbb N$ has a first element.

The following statement is an *axiom* or fact which does not follow from other facts.

Axiom (Well ordering principle)

Every non-empty subset of $\mathbb N$ has a first element.

Eg: {5, 4, 6, 7} has a first element, 4.

Next lecture:

- \cdot Set theory notation
- power set