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Lecture 4: rational numbers, well ordering principle
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plan

• rational and irrational numbers

• first element

• well ordering principle
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rational numbers

Definition:
A number x is called rational if ∃ a,b ∈ Z,b 6= 0 such that x = a

b .

For example, 0.3333 . . . is rational because it is equal to 1
3 .

The set of all rational numbers is denoted by Q. A real number x ∈ R
is called irrational if it is not rational.

Lemma
√
2 is irrational.
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√
2 is irrational (¬p→f) → p

Proof.
Suppose (for contradiction)

√
2 is rational. So

√
2 = a

b for a,b
integers.

Now we make an extra assumption. Without loss of generality we
can assume gcd(a,b) = 1. (if not, choose a better pair a,b.)

• square both sides
• multiply both sides by b2

• then a2 is even
• so by our Lemma, a is even
• do some more manipulating
• now b2 is even
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rational numbers

Lemma
Between any two distinct rational numbers you can find another
rational number.

Exercise (before proof or counterexample): write in logic notation.

∀x ∈ Q ∀y ∈ Q [(x 6= y) → (∃z ∈ Q ((x < z < y) ∨ (y < z < x)))]

Let the universe of discourse be Q.

∀x ∀y ∃z [(x 6= y) → ((x < z < y) ∨ (y < z < x))]
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rational numbers

Lemma
Between any two distinct rational numbers you can find another
rational number.

Proof.
(Direct) Let p,q be two rational numbers. Without loss of generality
assume p < q.

Then (by hypothesis) p = a
b and q = c

d .

Construct a number in between them:

p = ad
bd and q = cb

db , and we know ad < cb and they are both
integers. What if they were just 1 apart?
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conjecture

A conjecture is a statement whose truth is not yet known.

I will make some conjectures, based on the previous lemma, and you
decide whether or not you think they are true.

Conjecture
Between any two distinct rational numbers you can find an
irrational number.

Conjecture
Between any two distinct irrational numbers you can find a rational
number.

Conjecture
Between any two distinct real numbers you can find both a rational
and an irrational number.
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first element

An element s in a subset S ⊆ N is called a first element in S if s 6 x
for every x ∈ S.

Lemma
First elements are unique. (So we can say “the” first element).

Proof.
Suppose (for contradiction) there was a set S ⊆ N and two
elements s, t ∈ S both obeying the definition of first element of S.

Then since t ∈ S we have s 6 t (thinking of t as “an x” in the
definition) and since s ∈ S we have t 6 s (thinking of s as an x).

Then s = t so there was only one.
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well ordering principle

The following statement is an axiom or fact which does not follow
from other facts.

Axiom (Well ordering principle)
Every non-empty subset of N has a first element.

Eg: {5, 4, 6, 7} has a first element, 4.
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next

Next lecture:

• Set theory notation
• power set
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