37181 DISCRETE MATHEMATICS

©Murray Elder, UTS

Lecture 6: division and remainder; Euclidean algorithm

- Division and remainder lemma
- Euclidean algorithm

RECALL

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$ is the set of all *natural numbers*. For this subject, it will always contain 0.

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

Eg: $\{5, 4, 6, 7\}$ has a first element, 4.

RECALL

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$ is the set of all *natural numbers*. For this subject, it will always contain 0.

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

Eg: {5, 4, 6, 7} has a first element, 4.

only one. Lemma First elements are unique. Proof: Suppose SCIN, b, CES, both first eler and b, c as a first element CES any element Treating any Lecture 6: 37181 ©Murray Elder, UTS

then $b \leq c$ Now, baking c as first elever and $b \in S$ any elevent then $c \leq b$. But $b \leq c$ and $c \leq b$ implies b = c. Contradiction \square

RECALL

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$ is the set of all *natural numbers*. For this subject, it will always contain 0.

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

Eg: {5, 4, 6, 7} has a first element, 4.

Lemma

First elements are unique. (So we can say "the" first element).

RECALL

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$ is the set of all *natural numbers*. For this subject, it will always contain 0.

An element s in a subset $S \subseteq \mathbb{N}$ is called a *first element* in S if $s \leq x$ for every $x \in S$.

Eg: {5, 4, 6, 7} has a first element, 4.

Lemma

First elements are unique. (So we can say "the" first element).

Axiom (Well ordering principle) Every non-empty subset of \mathbb{N} has a first element.

axiom = fact which does not follow from other facts.

Lecture 6: 37181

Lemma Let $n, d \in \mathbb{Z}$ with d > 0. Then there exist $q, r \in \mathbb{Z}$ with $0 \leq r < d$ such that n = qd + r. * remainder n=50 d=17**Proof:** 5Q=2,17 +16 04 <17 34

Lemma

Let $n, d \in \mathbb{Z}$ with d > 0. Then there exist $q, r \in \mathbb{Z}$ with $0 \leq r < d$ such that n = qd + r.

Proof: Define $M = \{n - qd \mid q \in \mathbb{Z}\}.$

Lemma

Let $n, d \in \mathbb{Z}$ with d > 0. Then there exist $q, r \in \mathbb{Z}$ with $0 \leq r < d$ such that n = qd + r.

Proof: Define $M = \{n - qd \mid q \in \mathbb{Z}\}$. Then $M \cap \mathbb{N}$ is a subset of \mathbb{N} .

Lemma

Let $n, d \in \mathbb{Z}$ with d > 0. Then there exist $q, r \in \mathbb{Z}$ with $0 \leq r < d$ such that n = qd + r.

©Murray Elder, UTS

Lemma

Let $n, d \in \mathbb{Z}$ with d > 0. Then there exist $q, r \in \mathbb{Z}$ with $0 \leq r < d$ such that n = qd + r.

Proof: Define $M = \{n - qd \mid q \in \mathbb{Z}\}$. Then $M \cap \mathbb{N}$ is a subset of \mathbb{N} .

It is non-empty because if $n \ge 0$ you can take q = 0 and if n < 0 take q = 100n (which is a negative number, so -qd is a big positive number).

Therefore by the well ordering principle $M \cap \mathbb{N}$ has a first element, call it r.

Since $r \in M \cap \mathbb{N}$ we have $r \ge 0$ and r = n - qd for some $q \in \mathbb{Z}$.

APPLICATION: DIVISION AND REMAINDER Since $r \in M \cap \mathbb{N}$ we have $r \ge 0$ and r = n - qd for some $q \in \mathbb{Z}$. Need to show r<d. If $r \ge d$ (for contradiction) then $r - d \ge 0$ and r - d = n - (q + 1)d so belongs to $M \cap \mathbb{N}$, and is smaller than r, contradicting our choice of r as first element.

APPLICATION OF DIVISION LEMMA

APPLICATION OF DIVISION LEMMA

Definition

Let $a, b \in \mathbb{Z}$. Then $d \in \mathbb{N}$ is called the *greatest common divisor* of a and b if $d \mid a, d \mid b$, and if $c \mid a, c \mid b$ then $c \mid d$.

Eg: compute

- gcd(3,9)
- gcd(6, 8)

The following algorithm claims to compute gcd. It is called the *Euclidean algorithm*. We should not believe this claim, until we know how to prove algorithms are correct (lecture 8):

1. stops 2. gives the correct output

Lecture 6: 37181

©Murray Elder, UTS

Input 54, 186.

Use the lemma to write $186 = q_1 \cdot 54 + r_1$, $0 \le r_1 < 54$ Use the lemma to write $54 = q_2 \cdot r_1 + r_2$, $0 \le r_2 < r_1$ Repeat until you get $r_i = 0$.

Input 154, 287. Use the lemma to write $287 = q \cdot 154 + r$. |.|57 + |33287 = Repeat until you get r = 0. $|\cdot|33 + 21$ -4.287)=7 6.21 33 2 . TOP

Lemma

Let $n, d \in \mathbb{Z}$ with d > 0. Then there exists unique integers q, r with $0 \leq r < d$ such that n = qd + r.

only one

; = (, 12

Lemma

Let $n, d \in \mathbb{Z}$ with d > 0. Then there exist unique integers q, r with $0 \leq r < d$ such that n = qd + r.

Proof.

We already proved some *q*, *r* values exist. Suppose they are not unique.

Lemma

Let $n, d \in \mathbb{Z}$ with d > 0. Then there exist unique integers q, r with $0 \leq r < d$ such that n = qd + r.

Proof.

We already proved some q, r values exist. Suppose they are not unique.

Then we have q_1, q_2, r_1, r_2 and $n = q_1d + r_1 = q_2d + r_2$ so

Lemma

Let $n, d \in \mathbb{Z}$ with d > 0. Then there exist unique integers q, r with $0 \leq r < d$ such that n = qd + r.

Proof.

We already proved some q, r values exist. Suppose they are not unique.

Then we have q_1, q_2, r_1, r_2 and $n = q_1d + r_1 = q_2d + r_2$ so $r_1 - r_2 = d(q_2 - q_1)$.

This means *d* divides $r_1 - r_2$, but since they are both between 0 and d - 1 we must have $r_1 - r_2 = 0$, so $r_1 = r_2$ and then $q_1 - q_2 = 0$ so $q_1 = q_2$.

Next week:

- induction
- correctness of computer code