37181 DISCRETE MATHEMATICS

©Murray Elder, UTS Lecture 7: induction • principle of mathematical induction

HOW TO PROVE

Lemma

For all $n \in \mathbb{N}$, $11^n - 4^n$ is divisible by 7.

?

Lemma

If A is a set of size $n \in \mathbb{N}$, then $\mathscr{P}(A)$ has size 2^n .

?

Axiom (Principle of mathematical induction)

Let P(n) be a statement about natural numbers. Let $s \in \mathbb{N}$, eg. s = 0, 1

Axiom (Principle of mathematical induction)

Let P(n) be a statement about natural numbers. Let $s \in \mathbb{N}$, eg. s = 0, 1

lf

- 1. P(s) is true
- 2. $P(k) \rightarrow P(k+1)$ is true

Axiom (Principle of mathematical induction)

Let P(n) be a statement about natural numbers. Let $s \in \mathbb{N}$, eg. s = 0, 1

lf

- 1. P(s) is true
- 2. $P(k) \rightarrow P(k+1)$ is true

```
then P(n) is true for all n \ge s.
```

(domino picture)

Lemma

For all $n \in \mathbb{N}, n \ge 1$

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Lemma

For all $n \in \mathbb{N}, n \ge 1$

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Proof.

Let P(n) be the statement that $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.

Lemma

For all $n \in \mathbb{N}, n \ge 1$

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Proof.

Let P(n) be the statement that $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$.

Thus by PMI P(n) is true for all $n \ge 1$.

Lecture 7: 37181

Lemma

For all
$$n \in \mathbb{N}, n \ge 1$$

 $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Lemma

For all
$$n \in \mathbb{N}, n \ge 1$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Proof.

Let P(n) be the statement that

Lemma

For all
$$n \in \mathbb{N}, n \ge 1$$

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof.

Let P(n) be the statement that

Thus by PMI P(n) is true for all $n \ge 1$.

For all $n \in \mathbb{N}$, $11^n - 4^n$ is divisible by 7.

For all $n \in \mathbb{N}$, $11^n - 4^n$ is divisible by 7.

Proof.

Let P(n) be the statement that

For all $n \in \mathbb{N}$, $11^n - 4^n$ is divisible by 7.

Proof.

Let P(n) be the statement that

Thus by PMI P(n) is true for all $n \ge 0$.

Lecture 7: 37181

If A is a set of size $n \in \mathbb{N}$, then $\mathscr{P}(A)$ has size 2^n .

Proof.

Let P(n) be the statement that

Thus by PMI P(n) is true for all $n \ge 0$.

TEMPLATE – SEE CANVAS

Lemma		
For all $n \in \mathbb{N}$, if $n \ge \square$ then (so	me statement).	
D (
Proot.		
Let <i>P</i> (<i>n</i>) be the statement		
Then P() is true since		
Assume $P(k)$ for $k \ge \square$. Then		
Thus by PMI <i>P</i> (<i>n</i>) is true for all		
	<i></i>	
Lecture 7: 37181	©Murray Elder, UTS	17

STRONGER VERSION (OR IS IT?)

PMI is equivalent to the following: Let $s \in \mathbb{N}$.

lf

- \cdot *P*(s) is true and
- if for all $s \leq i \leq n P(i)$ is true, then P(n + 1) is true,

STRONGER VERSION (OR IS IT?)

PMI is equivalent to the following: Let $s \in \mathbb{N}$.

lf

- \cdot *P*(s) is true and
- if for all $s \leq i \leq n P(i)$ is true, then P(n + 1) is true,

then P(n) is true for all $n \in \mathbb{Z}, n \ge s$.

For all $n \in \mathbb{N}$, n > 1 if n is not prime then some prime number p divides n.

Proof.

For all $n \in \mathbb{N}$, n > 1 if n is not prime then some prime number p divides n.

Proof.

Let P(n) be the statement that either n is prime or some prime divides n.

For all $n \in \mathbb{N}$, $n! \ge 2^{n-1}$

Proof.

Let P(n) be the statement that

(start at 0)

Consider the statement: For all $n \in \mathbb{N}$, $n! \ge 3^{n-1}$.

Is this true? Is it true for all $n \ge ??$

Proof.

Let P(n) be the statement that

(start at ??)

All horses are black.

All horses are black.

Proof.

Let P(n) be the statement that

NEXT

Next lecture:

- application of induction: correctness of computer code/algorithms
- WOP and PMI

Important to gets lots of practice doing proofs by induction.