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Abstract. These notes cover the basics of discrete mathematics:
logic, mathematical proofs, set theory (mathematical notation),
basic number theory, graph theory, counting, complexity and cor-
rectness of computer programs, and some other topics that might
be useful.

The learning in this course will be driven by doing problems
yourself, by doing the homework sheets, in teams during the (white-
board) workshops, quizzes and midterm test. The lectures and
these notes present the main ideas and theories, which you will
master by doing lots of exercises and solving problems. You are
also learning how to write and communicate mathematics – think
of it as a new language. Set theory gives us a lot of the formalism to
be able to communicate succinctly and accurately, and logic/proof
methods give us a common ground for what is true/false/outside
of our ability to decide.

In progress.
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0. Preamble: sudoku

If you know how to solve sudoku, you already know how to deduce
true statements in mathematics. Prove (to yourself or to a friend)
where the 3 in the middle 3× 3 square should go in this picture:
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The sudoku is a good starting point for how to think mathemati-
cally and algorithmically: what are the extreme cases, for example, a
blank grid is not a very challenging sudoku, so what is the smallest
number of squares that need to be filled to start (so that the solution
is unique=only way way to fill it)? How many different sudoku puzzles
(starting configurations) are there? Its a finite number, so can’t we
get a computer to run through all possibilities and count them? How
much time/TB of memory would that take? How can we quantify how
hard that problem is, without talking about a specific computer?

Part 1. Logic, proof, induction

We will see various proofs of statements in the course, so what makes
a convincing, rigorous argument in mathematics and computer science?

We start by defining truth values for statements, and how to build
up more complex statements from simple ones.

1. Introduction to formal logic and proofs

A statement is a sentence that can (theoretically) be assigned a value
of true or false.

1. Um, like, whatever
2. All positive integers are prime
3. There is a number that is larger than π and smaller than

√
2

4. QUT is in Brisbane
5. In the year 4000BC, at this exact location, it was raining on

the 5th of March at 10am
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1

We can build up more complicated statements out of simpler ones
using logical connectives like and and or.

If p, q are statements, then when is “p and q” true or false?

p q p ∧ q
1 1 1
1 0 0
0 1 0
0 0 0

Here ∧ means and, 1 means true and 0 means false.

Example 1.1. p =“QUT is in Brisbane”, q =“RMIT is in Geelong”.
Then p ∧ q is false because q is false.

Try to follow this idea to complete the truth table for “or” which we
denote by ∨:

p q p ∨ q
1 1
1 0
0 1
0 0

If p is true then “not p” is false, and vice versa. We express this in
a table as

p ¬p
1 0
0 1

We can use truth tables to decide the truth values of more compli-
cated statements, like ¬p ∨ q:

p q ¬p ∨ q
1 1 0 1
1 0 0 0
0 1 1 1
0 0 1 1

(1) (2)

The order in which we compute columns (according to order of logical
operations) is shown by the (1), (2).

12,3,4,5 are all statements, even if we can’t ever know if 5 is true or false, it is
still something that will be either true or false.
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Note that this is different to saying ¬(p ∨ q), since the truth values
are not the same:

p q ¬ (p ∨ q)
1 1
1 0
0 1
0 0

(2) (1)

When two (compound) statements have the same truth values we
say they are logically equivalent.

Exercise 1.2. Check that ¬(p ∨ q) is logically equivalent to ¬p ∧ ¬q
by showing the final column of their truth tables are the same.

p q ¬p ∧ ¬q
1 1
1 0
0 1
0 0

In mathematics and logic we have a very specific meaning for “p
implies q”, or “if p then q”, notation p → q. We define it using the
following table:

p q p→ q
1 1 1
1 0 0
0 1 1
0 0 1

You may think that in English, “if it is raining then I get wet” means
that the rain caused me to get wet. But in mathematics if-then has
the meaning defined above: if “I am wet” is true and “it is raining” is
false, the implication is still true. (I could be at a swimming pool).

Notice that the statement “if p then q” is logically equivalent to
¬p ∨ q “not p, or q”.

Finally, we use the symbol ↔ for “if and only if”:

p q p↔ q
1 1 1
1 0 0
0 1 0
0 0 1

I get wet if and only if it is raining (not when I am swimming,
taking a shower, or otherwise).
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Exercise 1.3. Complete these truth tables:

p q (p→ ¬q) ∨ q

p q r ¬(p→ (q ∧ r))

p q ¬(p ∨ q)

p q ¬p ∧ ¬q

p q ¬q → ¬p

p ¬(¬p)

(I am not (not happy)).
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A statement that is true for all truth value assignments is called a
tautology. For example p ∨ ¬p has a truth table with all 1’s.

Exercise 1.4. Show that these statements are tautologies:

1. ((p→ q) ∧ p)→ q

2. ((p→ q) ∧ ¬q)→ ¬p

3. ¬(p ∧ q)↔ ¬p ∨ ¬q

4. ((p→ q) ∧ (q → r))→ (p→ r)

5. (p→ q)↔ (¬q → ¬p)

Items 1 and 2 of this exercise have Latin names: modus ponens and
modus tollens. Item 3 is one of De Morgan’s laws (the other one was
Exercise 1.2) and item 4 is an argument form is called syllogism. In
item 5, ¬q → ¬p is called the contrapositive of p→ q.

Note that q → p (called the converse) is not logically equivalent to
p→ q. (Check the truth tables).

In Humanities/Law you might see tautological implications written
in this form.

p→ q
p
q

p→ q
¬q
¬p

p→ q
q → r
p→ r

Example 1.5. From Wikipedia[3]:

If I am an axe murderer, then I can use an axe.
I cannot use an axe.
Therefore, I am not an axe murderer.

Which style of argument is this? (Write it in symbols).

Let F be a statement that is always false (has truth table 0, for
example, F = q ∧ ¬q). Then the statement

(¬p→ F )→ p

is a tautology. It says, if not p implies something that is false, then it
must be p (is true). This argument form is known as proof by contra-
diction, see below.
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2. Variables and quantifiers

Statements can contain variables.

Example 2.1. P (x) could be the statement: “the number x is greater
than or equal to 3”. Q(x) could be the statement: “x lives in Queens-
land”.

We refer to the universe of discourse to be the set of objects over
which the statement could be defined, so for P (x) the universe of dis-
course is numbers (maybe R or Z or N, we would need to be told) and
for Q(x) the universe might be all people, or all students at QUT.

We have the symbols ∀ =“for all” and ∃ =“there exists”.

Exercise 2.2. ∀x ∈ Z, x2 > x reads as “for all integers x, x2 is greater
than x. 2

Is this true?
∃x ∈ Z, x2 6 x reads as “there exists (there is) some integer x whose

square is smaller than or equal to itself.
Is this true?

Example 2.3. “All UTS students live in Bondi”. We can rephrase
this in English as: For all students at UTS, the student lives in Bondi.
We let the universe of discourse be the set of all students at UTS. Then

∀x (in the universe of discourse) B(x)

where B(x) is the proposition that x lives in Bondi.
Clearly this is not true, so the negation of this statement is true.

Formally, to negate a quantified statement you switch ∀ and ∃ at the
front, then negate the proposition.

¬ (∀xB(x)) = ∃x¬B(x)

There is (at least one) student at UTS who does not live in Bondi.

Exercise 2.4. Let C(x) be the proposition that x lives in Cabramatta.
Write the following sentence in symbols (as a quantified statement):

“All UTS students either live in Cabramatta or do not live in Bondi.”
Now negate this sentence (in symbols first, then translate into Eng-

lish). Recall that in logic or includes both.

Exercise 2.5. Recall modus ponens/modus tollens: if someone lives in
Bondi then they do not live in Cabramatta. x lives in Bondi. Therefore
. . . y lives in Cabramatta. Therefore . . .

2x ∈ Z is some set theory notation, coming up. The symbol ∈ means “in the
set”.
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Exercise 2.6. Decide which is true or false where the universe of dis-
course is the real numbers:

1. ∀x∃y(xy = 1)

2. ∃y∀x(xy = 1)

3. ∀x∀y(x2 + y2 = x+ y)

4. ∀x∃y(x2 + y2 = x+ y)

3. P=NP

3-SAT is the following problem: on input an expression of the form

(x1 ∨ y1 ∨ z1) ∧ (x2 ∨ y2 ∨ z2) ∧ . . . (xn ∨ yn ∨ zn)

where xi, yi, zi are propositions p or ¬p, answer yes or no: there is
some assignment of truth values to the variables which makes the whole
statement true.

For example

(p ∨ q ∨ ¬r) ∧ (¬p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬p)

If I tell you a particular truth assignment, like p = 0, q = 1, r = 0
etc, you can easily compute (in a number of steps polynomial in n) the
truth value of the statement. If an instance of a solution can be verified
in polynomial time (number of steps), we say a problem is in NP.

If a solution can be found in polynomial time (number of steps),
we say the problem is in P . No-one knows if you can find a truth
assignment, or show there is none, making a general 3-SAT expression
true, in polynomially many steps. If you can, you will get USD1M from
the Clay Institute.

3-SAT is an important problem, even though it may seem abstract
and useless, because Cook and Levin showed that every other candidate
to solve the P=NP problem is related to this one. More details see for
example [2].

4. Proofs

Proofs in mathematics or computer science are based on the argu-
ment forms we have seen above. You need to establish that each simple
statement p, q, r is true, and then you put your statements together us-
ing a formal argument such as (p → q) ∧ (q → r) implies p → r.
The formal logical structure is often hidden when we write out proofs
in English. To start with, the main types of proof styles are: direct,
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contrapositive, contradiction, and induction. If you do more math or
theoretical computer science you will see more styles. 3

4.1. Direct. Sometimes it is easy to show step-by-step that p implies
q (or using syllogism, p→ r and r → s and s→ t and t→ q).

Recall that an integer is even if it can be written as 2d for some
d ∈ Z.

Lemma 4.1. Let n ∈ Z. If n is even then n2 is even.

Proof. By hypothesis, n = 2s for some s ∈ Z. Then n2 = (2s)2 =
4s2 = 2(2s2) is even. �

Lemma 4.2. Let a, b be non-negative real numbers. If
√
a <
√
b then

a < b.

Proof. First note that if x > 0 (i.e. x is non-negative) then
√
x is

defined and is > 0, so we have
√
a,
√
b > 0.

a =
√
a
√
a (by definition of

√
.)

<
√
a
√
b (since

√
a <
√
b and

√
a > 0)

<
√
b
√
b (since

√
a <
√
b and

√
b > 0)

= b (by definition of
√
.).

�

4.2. Contrapositive. Recall that p→ q has the same truth values as
¬q → ¬p.

Lemma 4.3. Let n ∈ Z. If n2 is even then n is even.

Instead of trying to prove this directly, we will prove ¬ (n is even)
implies ¬ (n2 is even). In other words, if n is odd then n2 is odd.

Proof. If n is odd, then n = 2p+1 for some p ∈ Z, so n2 = 4p2+4p+1 =
2(2p2 + 2p) + 1 which is an odd number.

Since the statement we have proved (the contrapositive) is logically
equivalent to the original statement to be shown, we are done. �

In worksheet 2 you are asked to prove/disprove something similar,
≡ 0 mod 3 instead of ≡ 0 mod 2.

Lemma 4.4. Let a, b be non-negative real numbers. If a < b then√
a <
√
b.

Is it true? Draw a plot (eg. in Mathematica) to check. To prove, we

will show the contrapositive: if
√
a >
√
b then b > a.

3Proof by exhaustion (check all possible cases one-by-one), probabilistic (show
that the probability of something happening is positive, therefore it must happen),
proof by authority, proof by intimidation . . . .
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Proof. First note that if x > 0 then
√
x is defined and is > 0, so we

have
√
a,
√
b > 0.

Suppose
√
a >
√
b. Then

a =
√
a
√
a (by definition of

√
.)

>
√
a
√
b (by supposition and since

√
a > 0)

>
√
b
√
b (by supposition and since

√
b > 0)

= b (by definition of
√
.).

The result follows (by contrapositive). �

Putting Lemmas 4.2 and 4.4 together, ie. (p→ q) ∧ (q → p), we get

p↔ q or a < b if and only if
√
a <
√
b.

4.3. Contradiction. Recall that the statement (¬p → F ) → p is a
tautology. (F is a statement whose truth value is always 0 =false).

So, if you want to prove that p is true, you can prove that ¬p implies
something that is always false.

Recall that a prime number is an integer p > 1 whose only positive
divisors are itself and 1. If you start to list them, they seem to appear
less and less often the higher you go. So do they run out eventually?

Theorem 4.5 (Euclid). There are infinitely many different primes.

This time we have a statement p = “there are infinitely many primes”,
and we will prove that ¬p implies a contradiction, ¬p→ F .

Proof. Suppose (for contradiction) this is not true. So here are all the
distinct primes:

p1, p2, . . . , pn.

Any other number not on this list is not a prime. Okay, now I will
challenge that. Consider

N = p1p2 . . . pn + 1

Well, this is bigger than all the pi so it is definitely not on the list. So
our assumption says it is not prime, so it is equal to some product of
smaller numbers. This means, one of the pi is a divisor. 4 But this
is false, because if you divide N by pi you get a whole number plus
1
pi

. �

A number x is called rational if there exist a, b ∈ Z such that x = a
b
.

For example, 0.3333 . . . is rational because it is equal to 1
3
. The set of

all rational numbers is denoted by Q. A real number that is not in Q
is called irrational.

4That sentence there needs a mini-proof too: Lemma 5.7.



12 MURRAY ELDER

Lemma 4.6.
√

2 is irrational.

See worksheet 2 for a step-by-step guide to proving this.
Many more examples and exercises on writing basic proofs in the

homework and worksheets.

5. Induction

An element s in a subset S ⊆ N is called a first element in S if s 6 x
for every x ∈ S.

Lemma 5.1. First elements are unique. (So we can say “the” first
element).

Proof. Suppose (for contradiction) there was a set S ⊆ N and two
elements s, t ∈ S both obeying the definition of first element of S. Then
since t ∈ S we have s 6 t (thinking of t as “an x” in the definition)
and since s ∈ S we have t 6 s (thinking of s as an x). Then s = t so
there was only one. �

The following statement is an axiom or fact which does not follow
from other facts.

Axiom 5.2 (Well ordering principle). Every non-empty subset of N
has a first element.

Eg: {5, 4, 6, 7} has a first element, 4.

Lemma 5.3. Let n, d ∈ Z with d > 0. Then there exist q, r ∈ Z with
0 6 r < d such that n = qd+ r.

Proof. Define M = {n− qd | q ∈ Z}. Then M ∩ N is a subset of N. It
is non-empty because if n > 0 you can take q = 0 and if n < 0 take
q = 2n (which is a negative number, so −qd is a big positive number).

Therefore by the well ordering principle M ∩ N has a first element,
call it r. Since r ∈M ∩N we have r > 0 and r = n−qd for some q ∈ Z.
If r > d (for contradiction) then r− d > 0 and r− d = n− (q + 1)d so
belongs to M ∩ N, and is smaller than r, contradicting our choice of r
as first element. �

The well ordering principle is equivalent to another, perhaps more
famous, principle:

Axiom 5.4 (Principle of mathematical induction). Let P (n) be a
statement about natural numbers n > 1. If

1. P (1) is true
2. P (k)→ P (k + 1) is true
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then P (n) is true for all n > 1.

A nice image is an infinite line of dominoes. P (i) is the statement
that domino number i falls. Think about how the two conditions show
that all dominoes fall.

In the worksheet we will prove that WOP implies PMI. Hint: con-
tradiction and consider the set {n ∈ N+ | ¬P (n)}.

Lemma 5.5. For all n ∈ N, n > 1

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

Proof. Let P (n) be the statement that 1 + 2 + 3 + · · · + n = n(n+1)
2

.

Then P (1) is true because LHS is 1 and RHS is 1(1+1)
2

= 1.
Assume that P (k) is true for some k > 1. Then consider P (k + 1):

LHS = 1 + 2 + 3 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

using the fact that we assume P (k) is true. Manipulate the RHS 5 to
get the answer

(k + 1)((k + 1) + 1)

2
Since P (1) is true and P (k) → P (k + 1) is true for k ∈ N, n > 1 then
by PMI P (n) is true for all n ∈ N, n > 1. �

Exercise 5.6. Prove that for n > 1

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

PMI is equivalent to a seemingly stronger statement: if P (s) is true
and if for all s 6 i 6 n P (i) is true, then P (n + 1) is true, then P (n)
is true for all n ∈ Z, n > s.

Lemma 5.7. For all n ∈ N, n > 1 if n is not prime then some prime
number p divides n.

Proof. Let P (n) be the statement that either n is prime or some prime
divides n. The statement is true for n = 2, 3, 4 (2, 3 are primes so it
is true, and n = 4 is divisible by 2). Assume for all 2 6 i 6 n, if i
is not prime then it has a prime divisor. Then if n + 1 is not prime,
by definition n + 1 = dq where d, q ∈ N and 1 < d < n + 1. Since
2 6 d 6 n then d is either prime or if not prime, some prime p divides
it, so d = pr, and n+ 1 = dq = prq so p | (n+ 1), so P (n+ 1) is true.

Then by PMI (stronger version) P (n) is true for all n > 2. �
5ie. k(k+1)

2 + (k + 1) = k(k+1)
2 + 2(k+1)

2 = k(k+1)+2(k+1)
2 = (k+1)(k+2)

2
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Lemma 5.8. For all n ∈ N, 11n − 4n is divisible by 7.

Proof. Let P (n) be the statement that 11n− 4n is divisible by 7. Then
P (0) is true because 110 − 40 = 1− 1 = 0 and 0 = 0.7 so it is divisible
by 7 (by our definition of divides from the RSA notes). Let’s check
P (1) since the 0 case is a bit weird: 111 − 41 = 7, great.

Assume that P (k) is true for some k > 0. Then consider P (k + 1):

11k+1 − 4k+1 = 11.11k − 4.4k

what do we do with this? Trick: 11 = 7 + 4, so write

11.11k−4.4k = (7+4).11k−4.4k = 7.11k+4.11k−4.4k = 7.11k+4(11k−4k)

now by our assumption (11k − 4k) = 7s for some s, so

7.11k + 4(11k − 4k) = 7.11k + 4.7s = 7(11k + 4s)

so is divisible by 7.
Since P (0) and P (k)→ P (k+ 1) are both true, by PMI P (n) is true

for all n ∈ N. �

Lemma 5.9. All horses are black.

Proof. Let P (n) be the statement that in any set of n horses, all the
horses in that set are black. P (0): if you take no horses, then every
horse contained in that set is black. (Since there are no horses, this is
true. The contrapositive of for all horses in my set, the horse is black
is there exists a horse in my set which is not black.)
P (k+ 1): take a set of k+ 1 horses, remove one, then this is a set of

k horses, which by assumption is all black. Now maybe the horse we
removed was white. So put it back in, and remove a different horse,
again you get a set of k horses so they must all be black. �

We will discuss this proof in the lectures. Is it correct? 6

6. Correctness of computer programs

How do you prove some code really does what you say it does? How
do you prove it will terminate?

We use what is called a loop invariant, some fact that is true at the
start of the code, and if it is true before one iteration of a loop then
it is true after. If you can also show some quantity is getting smaller,
or some other way to show the loop will stop after a finite number of
steps, this together with the loop invariant (which will still hold at the
end by induction) show correctness.

6in my proof, I needed two distinct horses to be in my set. If I only had one
(white) horse, I remove it to get an empty set, which is all black (P (0)), but when
I put it back in, I don’t have any other horse to remove.
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Example 6.1. Consider the following somewhat useless fragment of
code

int j = 9;

for(int i=0; i<10; i++)

j--;

We can define a loop invariant for it to be the statement that i+j = 9.
This is true before the loop (when i = 0 and j = 9), and if i + j = 9
then applying i++ followed by j-- means the new values of i and j still
sum to 9.

In Lemma 5.3 we proved that for every integer x and positive integer
d you can find q, r with 0 6 r < d and x = qd+ r. In fact more is true:
the q and the r that we get are unique.

Proof. Suppose there are two sets of numbers that work, so x = q1d+
r1 = q2d+ r2.

Then (q1 − q2)d = r2 − r1. But since 0 6 r1, r2 < d the right side of
this equation is strictly between −d and d. The left side is an integer
multiple of d, so the only number strictly between −d and d it can be
is 0.

Thus r2 − r1 = 0 so r2 = r1, and (q1 − q2) = 0 so q1 = q2. �

This proof and the proof of Lemma 5.3 tell us the unique numbers
q, r exist, but how do we actually find them? That is, the well ordering
principle just says sets have first elements, it doesn’t tell you what the
first element is. Luckily it is easy to compute q, r: assume x, d are
positive (for simplicity) then run the following

q=0;

r=x;

while(r>=d)

r=r-d;

q++;

return (q,r)

The while loop stops because r is getting smaller each iteration. The
loop invariant is (x = qd+r and r > 0): this is true at the start because
q = 0 and r = x. In one iteration we subtract d from r but q increases
by 1 so qd increases by d, so the sum stays the same. Since the loop
is only entered if r > d the r stays non-negative in one iteration of the
loop.

Example 6.2. Recall the Euclidean algorithm which (allegedly) com-
putes gcd(a, b). (See Section 14)
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We can now prove it is correct. Again I will assume a, b > 0 for
simplicity. First, we have an algorithm which computes the remainder
0 6 r < y of x on division by y (assuming x > y > 0).

Let a, b ∈ Z and a 6= 0 ∨ b 6= 0.
The steps are:

(1) Start with (a, b) such that a > b. (ie. put them in order).
(2) While b 6= 0,

compute the remainder 0 6 r < b of a divided by b.
set a← b, b← r (and thus a > b again).

(3) Return a

First, if b = 0 at the start then we skip the while loop and return a,
which is the gcd(a, 0).

We claim that the loop invariant is the value gcd(a, b). To prove
this claim, (its clearly true at the start) we need to show if a = qb+ r
with 0 6 r < b then gcd(a, b) = gcd(b, r). Suppose this is not true,
let d = gcd(a, b) and c = gcd(b, r). Then d divides r and c divides
a, so they are both common divisors of all three numbers a, b, r. If d
divides c, then as d = gcd(a, b) and c divides both a and b then d = c
by definition of gcd. Similarly (p ∨ ¬p) if c divides d we get the same
result. So d = c.

Part 2. Sets, functions, complexity

Part 2 covers the basics of set theory, functions between sets, appli-
cations to counting and algorithm complexity. Once we have the right
fundamentals we can easily talk formally and prove things about about
graphs, trees, (block designs), etc.

We have been using notation like A ⊆ B, x ∈ A, x ∈ N, A ∩ B, |A|
without properly defining it. Here we start by defining sets, seeing the
connection with logic we studied before, then functions between sets,
which will enable us to talk correctly and clearly about graphs and
trees, algorithm complexity analysis, block designs, and beyond the
course whenever you encounter any mathematical statements.

7. Set theory

A set is a well-defined collection of objects. The objects are called
elements of the set, or members of the set. Carefully defining what
well-defined means will take us beyond the scope of this course, into
axiomatic set theory and foundations of mathematics.

We can represent a set using brackets, for example A = {1, 2, a, 5, c}.
The elements are the five symbols you see listed inside the brackets.
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We could also describe a set using variables satisfying some conditions,
for example:

B = {x | (x ∈ N[(1 6 x 6 5) ∧ (x 6= 4)]) ∨ (x = a) ∨ (x = c)} .
The set {1, 5, 3, c, a, 1, 2} is the same as the set B, since a set is

defined only by the elements it contains, no matter how they are listed
or displayed.

The notation x ∈ A means x is an element of A and x 6∈ A means
¬(x ∈ A).

Example 7.1. (1) C = {x | x ∈ R, x < 0}
(2) D = {y | y ∈ R, y2 = 2}
(3) A ∩B = {x | x ∈ A ∧ x ∈ B} (intersection)
(4) A ∪B = {x | x ∈ A ∨ x ∈ B} (union)

Note the similarity of notation for ∩ and ∧, and ∪ and ∨. In the
example above C ∩D = {−

√
2} since this is the only number that is

in both sets.

Exercise 7.2. Let A = {a, b, c, d, e}, B = {b, d, e}, C = {f, g, a}. Find

(1) (A ∪B) ∩ (A ∪ C)
(2) A ∩ (B ∪ C)

A pictorial way to do this exercise is to draw a Venn diagram. See
the worksheet.

If A,B are sets we say A is a subset of B if ∀x ∈ A, x ∈ B, or
(x ∈ A) → (x ∈ B). Notation A ⊆ B. The notation A ⊂ B means
strictly contains:

((x ∈ A)→ (x ∈ B)) ∧ (∃y[y ∈ B ∧ y 6∈ A]).

So N ⊂ Z ⊂ Q ⊂ R.
Let U be some large “universal” set, so we assume all sets we speak

about are subsets of U . Then A = {x | x 6∈ A} means the set of
elements in U that are not in A.

There is a strong connection to the logic we covered before. We have
three operations on sets: ∩,∪,− which we can use to build new sets
from old ones, and in logic we have three connectives ∧,∨,¬.

Recall the tautologies in logic such as

¬(p ∧ q)↔ ¬p ∨ ¬q
In set theory we could consider sets

A ∩B and A ∪B.
How do we show two sets are the same? We show they contain exactly
the same elements.
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Lemma 7.3. A ∩B = A ∪B.

The proof goes: pick some arbitrary element of the LHS. Show it
belongs to the RHS. Since we picked an arbitrary thing, this shows
everything in the LHS is also in the RHS, so LHS⊆RHS. Repeat to get
RHS⊆LHS, then LHS=RHS.

Proof. Suppose x ∈ A ∩B. Then x is not in A ∩B. Now either x ∈ A
or not. If x ∈ A then since x 6∈ A ∩ B we must have x is not in B. So
either x ∈ A or x ∈ B, so x ∈ A ∪B. Thus

A ∩B ⊆ A ∪B.

Next, start over and suppose x ∈ A ∪ B. If x ∈ A then x ∈ B so
x 6∈ A ∩ B. Otherwise x 6∈ A so x 6∈ A ∩ B. In both cases we have
x 6∈ A ∩B so x ∈ A ∩B. Thus

A ∪B ⊆ A ∩B.

Since each set is contained in the other, they are equal. �

Exercise 7.4. Show that for any sets A,B,C ⊆ U

A ∩ (B ∪ C) = (A ∪B) ∩ (A ∪ C).

See the worksheet for a list of set identities next to a list of logical
tautologies.

The next exercise explains why well-defined collection of objects is
not quite good enough.

Exercise 7.5. Let P (S) be the property (of sets) that S does not
contain itself. For example, P (N) is true because N contains numbers,
it does not contain sets so it cannot contain itself. Another example:
the empty set ∅ is the set that has no elements, ∅ = {}. So it contains
nothing so cannot contain itself.

(a) Give some more examples.

Consider the set of all abstract concepts. Call it A . Then A contains
things like art, postmodernism, democracy, imaginary numbers.

(b) Which is true: A ∈ A or A 6∈ A ?

Let S = {S | P (S)} be the set of all sets that do not contain them-
selves.

(c) Which is true: S ∈ S or S 6∈ S ?
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7.1. Power set. Let A be a set. Then (axiom)7

P(A) = {B | B ⊆ A}
is a set. Its called the power set of A.

Questions:

• is ∅ ∈P(A)?

• is A ∈P(A)?

• is P(A) ∈P(A)?
8

Exercise 7.6. • Given A = {1, 2, 3} is a set, what is P(A)?
• Prove that if A is a set then A ( P(A)
• If A contains 4 elements, how many elements in P(A)?

Another axiom: ∅ is a set.
What can you build with just these two axioms? We have ∅ is

different to P(∅) = {∅}. So we have at least two different sets in
our world9. Can you think of how to get a third set which is different
from these two?

More info here: [4] (advanced topic, just in case you are interested in
where this basic set theory can end up). For a 3rd year level textbook
on axiomatic set theory see [1].

8. Relations

If A,B are sets we can define a new symbol (a, b) where a ∈ A and
b ∈ B. This symbol is not the same as {a, b}, it is a new symbol. Also
it is not the same as (b, a), the symbol has an order. We call it an
ordered pair. Define A×B = {(a, b) | a ∈ A, b ∈ B}.

Example 8.1. If A = {1, 2, 3} and B = {d, e} then

A×B = {(1, d), (2, d), (3, d), (1, e), (2, e), (3, e)}.

A subset of A×B is called a relation from A to B. We often use the
notation R to denote a relation.

7When we say “axiom”, we mean that the following fact is declared to be true.
As we have just seen, declaring that for any condition P the collection of objects
{x | P (x)} is a set leads to a contradiction, so we do not wish to make this an
axiom.

8Answers: Yes, yes, no.
9Our world, for now, is only the sets that we can really know exist assuming

only our two axioms.
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Example 8.2. Let A = {1, 2, 3, 4} and define R ⊆ A × A by R =
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. We write aRb if (a, b) ∈ R. So
for example 1R3.

In fact, the relation in this example could be called being strictly
smaller than. In general, relations don’t have to have any meaning,
they are just subsets of A×B.

Exercise 8.3. Let A = {1, 2, 3, 4}. Write down a relation R ⊆ A×A
which is like “>”.

Definition 8.4. Let A be a set. Then R ⊆ A× A is

• reflexive if for all a ∈ A, a
• symmetric if for all a, b ∈ A, a implies b
• antisymmetric if for all a, b ∈ A, a and b implies a = b
• transitive if for all a, b, c ∈ A, a and b implies a

Exercise 8.5. Let A = {1, 2, 3, 4} and

R = {(1, 1), (2, 2), (3, 1), (1, 3), (2, 3), (3, 2)}.

Decide which of the four properties (reflexive, symmetric, antisymmet-
ric, transitive) R satisfies.

Exercise 8.6. Construct an example (that means tell me a set A and
some subset of A× A) of a relation which is

• both symmetric and antisymmetric
• neither symmetric nor antisymmetric

These notions are extremely useful throughout mathematics. For
now, you should feel good if you can read the very abstract definitions
(written in logic and set theory notation) and write down examples,
prove/disprove some relation has them. This shows you are “getting
it” in this course.

Definition 8.7. Let A be a set. Then R ⊆ A× A is

• an equivalence relation if it is reflexive, symmetric and transitive
• a partial order if it is reflexive, antisymmetric and transitive

Exercise 8.8. Show that “≡ mod d” is an equivalence relation on Z,
and that “6” is a partial order (on Z,R etc).

Add: partitions.
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9. Functions on sets

A function from A to B is a relation f ⊆ A × B in which every
element of A appears exactly once as the first component of an ordered
pair in the relation.

That is,

∀a ∈ A∃b ∈ B[(a, b) ∈ f ] ∧ [((a1, b) ∈ f ∧ (a2, b) ∈ f)→ (a1 = a2)]

We could also write the condition as

∀a ∈ A∃!b ∈ B[(a, b) ∈ f ]

where the notation ! means “unique”. So ∃! means “there is exactly
one”.

Since each a ∈ A goes to exactly one b ∈ B we can also use the
notation f(a) = b, and we write f : A→ B.

Example 9.1. Define f : R→ Z by

f(x) = bxc = the greatest integer less than or equal to x.

Similarly we have g : R→ N by

g(x) = dxe = the smallest integer greater than or equal to x.

Exercise 9.2. Let h : N→ N defined by

h(n) =
⌈n

2

⌉
+ 7.

10 If n = your age, compute h(n).

Example 9.3. Let S = the set of all students at UTS and f ⊆ S ×N
where (s, n) means n is a student ID number for student s. What if f
was not a function? What if (s, 13645) and (t, 13645) were both in f?

Definition 9.4. Let f : A→ B be a function from a set A to a set B.
We say f is one-to-one (or 1-1) if

∀x∀y ∈ A[f(x) = f(y)→ x = y].

We want the student number function to be one-to-one.

Definition 9.5. Let f : A→ B be a function from a set A to a set B.
We say f is onto if

∀b ∈ B∃a ∈ A[f(a) = b].

10https://en.wikipedia.org/wiki/Age_disparity_in_sexual_

relationships. Should it be d·e or b·c?
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Setting up our definitions using logical statements like this, it is easy
to prove examples satisfy them or not. For example, f : R→ R defined
by f(x) = x2 is not 1-1:

¬∀x∀y ∈ A[f(x) = f(y)→ x = y]

↔ ∃x∃y ∈ A[f(x) = f(y) ∧ x 6= y]

this is true for x = 1, y = −1.

and not onto:
¬∀b ∈ B∃a ∈ A[f(a) = b]

↔ ∃b ∈ B∀a ∈ A[f(a) 6= b]

is true because there exists b = −1 so that no real number squared is
equal to −1.

Example 9.6. Is the function f : R → R defined by f(x) = 5x + 3
one-to-one?

f(x1) = f(x2)
→ 5x1 + 3 = 5x2 + 3
→ 5x1 = 5x2
→ x1 = x2

Since x1, x2 are arbitrary, the condition holds for all x1, x2 ∈ R so f is
1-1.

Exercise 9.7. Is the function h from Exercise 9.2 one-to-one? (Prove
or disprove).

Exercise 9.8. Let A = {a, b, c, d, e}, B = {b, d, e}, C = {f, g, a}. Give
examples of functions

(1) f : A→ B which is onto and not 1-1
(2) g : A→ B which is 1-1 and not onto
(3) h : A→ B which is both 1-1 and onto
(4) i : B → C which is onto and not 1-1
(5) j : B → C which is 1-1 and not onto
(6) k : B → C which is both 1-1 and onto

Lemma 9.9. Let A,B be finite sets. If f : A→ B is

• 1-1 then |A| 6 |B|.
• onto then |B| 6 |A|.

Proof. For 1-1 see pigeonhole principle section. The proof goes: if
|A| > |B|, then we have |A| pigeons to be placed into |B| holes, but
since we have more pigeons than holes, there must be at least one hole
with more than one pigeon in it. So if we place pigeon a in hole b = f(a)
there will be some b with b = f(a1) = f(a2).
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For the second claim, if |B| > |A| then write

B = {f(a) | a ∈ A} ∪ {b |6 ∃a ∈ A[f(a) = b]}.
The size of the first set is at most A, so the second set contains at
least one element, so f is not onto. So we get the second claim by
contrapositive. �

Definition 9.10. A function f : A→ B is a bijection if it is both 1-1
and onto.

Exercise 9.11. Show that f : R → R defined by f(x) = 5x + 3 is a
bijection.

Example 9.12. N and Z are in bijection. What? What about Lemma 9.9?
Surely N is smaller than Z?

Here is a bijective function.

f(n) =

{
k n = 2k
−k n = 2k + 1

Check it. (check it really is a function from N, it is 1-1 and onto.)
What does this mean? It means we haven’t defined size of infinite

sets properly yet. In fact, we will define two sets to be the same size if
there is a bijection between them.

Exercise 9.13. Is there a bijection between N and Q+?

Example 9.14. Is there a bijection between N and R+?

See the lecture slides for hints to these.

If f : A → B is a function between sets, and A1 ⊆ A, define the
notation f(A1) = {b ∈ B | ∃a ∈ A1[f(a) = b]}. Then using this
notation, f is onto if and only if f(A) = B.

Exercise 9.15. Let f : A → B be one-to-one and A1, A2 ⊆ A. Prove
that f(A1 ∩A2) = f(A1)∩ f(A2). Is the statement still true if f is not
one-to-one?

Exercise 9.16. Define a function A : N2 → N using the following
recursive definition.

A(0, n) = n+ 1 n > 0,
A(m, 0) = A(m− 1, 1) m > 0,
A(m,n) = A(m− 1, A(m,n− 1)) m,n > 0.

(a) Compute A(1, 3).
(b) Compute A(2, 3).
(c) Prove that A(1, n) = n+ 2 for all n ∈ N.
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(d) Prove that A(2, n) = 3 + 2n for all n ∈ N.
(e) Prove that A(3, n) = 2n+3 − 3 for all n ∈ N.

This function is called Ackermann’s function, it is famous because be-
yond these examples it is really hard to compute (it grows really fast
with its inputs). There are many different versions.

10. Algorithm complexity

This is a very brief introduction, if you study computer science you
will see this in more detail later. We first need a notion of comparing
speed (or memory usage) of algorithms. Imagine running an algorithm
on an old Windows 98 computer, and running the same algorithm on
my new iMac. The algorithm is the same, but the run times will
be different. We want a notion of comparing algorithms that ignores
particular computer implementations, and just says “doing it this way
is faster than doing it this way”.

Example 10.1. Consider these two algorithms in Murray-pseudocode:

power_slow(a real; n positive integer)

x = 1.0

for i = 1 to n do

x = x*a

return x

power_fast(a real; n positive integer)

x = 1.0

i = n

while i > 0 do

if i is odd then

x = x*a

i = floor(i/2)

if i > 0 then

a = a*a

return x
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If we compute power slow(3, 6) the computation takes 6 steps:

i x

1
1 3
2 9
3 27
4 81
5 243
6 729

If we compute power fast(3, 6) the computation takes 3 steps:

x i a

1 6 3
1 3 9
9 1 81

729 0

We might argue about whether this is 3 or 4 steps, but ignoring
actual implementation details and precise ways to count, we can see
that the fast algorithm will be qualitatively faster for large n. The idea
of the next definition is to just capture the speed without worrying too
much about details. The speed depends on the input n (and the input
value a but let’s ignore that). We also don’t want to worry about small
inputs, where maybe the slow algorithm happens to be better. We
want to say “doing it this way, in general, for large n, is this fast”.

Definition 10.2. Let f, g : N+ → R. We say that g dominates f if
there exist constants m ∈ R+ and k ∈ Z+ such that

|f(n)| 6 m|g(n)|

for all n ∈ N, n > k. We use the notation f ∈ O(g) and read this as
“f is in Big O of g”.

Example 10.3. The function f(n) = log2 n+5 is dominated by g(n) =
n, since for n > 10 we have log2(n) + 5 6 n. In fact we could choose k
smaller, but 10 is good enough: log2(10) ≈ 3.32.11

Some careful analysis of the two algorithms above shows that, up to
some constants, the fast version takes about log2 n steps (because each
step divides i by 2, roughly).

11Wait, my calculator doesn’t have a button for log2 only ln or log10?! See
Example 10.4 next.
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Example 10.4. Recall the formula

logb y =
loga y

loga b
.

If b = 2 and your calculator only has a button for log10 or loge = ln
then you can use this formula:

log2 n =
loge n

loge 2
.

Since loge 2 ≈ 4.6 is a fixed number, it doesn’t matter which log we use
because of the m in the definition.

Exercise 10.5. Let f(n) = 6n and g(n) = n2. Show that g dominates
f , that is, 6n ∈ O(n2).

In logic notation f ∈ O(g) if

∃m ∈ R+∃k ∈ N+∀n ∈ N+[(n > k)→ (|f(n)| 6 m|g(n)|)].
The negation f 6∈ O(g) is

∀m ∈ R+∀k ∈ N+∃n ∈ N+[(n > k) ∧ (|f(n)| > m|g(n)|)].
This means, given any constants m, k we can find some n which messes
it up: n is bigger than k and f(n) is bigger than mg(n).

Example 10.6. Let f(n) = 6n and g(n) = n2. Show that g is not
dominated by f . Using logic notation we want to show

∀m ∈ R+∀k ∈ N+∃n ∈ N+[(n > k) ∧ (|g(n)| > m|f(n)|)].
Given m, k, there exists (we can choose) n > max{6m, k}. Then n > k
and |g(n)| = n2 > 6mn since n > 6n so

|g(n)| = n2 > 6mn = m|6n| = m|f(n)|.
Alternatively we can argue by contradiction: suppose g ∈ O(f), then

there is some m, k so that n2 6 6mn for all n > k. Then since n is
positive, dividing both sides by n we get n 6 6m, which contradicts
that is holds for all n larger than k.

In the workshop, you can get some practice showing which functions
are “bigger” than which, and which are the same. Here are some warm-
ups to think about:

Exercise 10.7. Let f(n) = 6n2 + 5n + 2 and g(n) = n2. Show that
f ∈ O(g) and g ∈ O(f). So they are (up to Big O equivalence) the
“same”.

Exercise 10.8. Show that f(n) = nc is dominated en where c is any
positive integer. So polynomials are “slower” than exponentials.
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Exercise 10.9. Which is faster (who dominates who?) – exponentials
or factorials? 12

Big-O form Name
O(1) constant
O(log2 n) logarithmic
O(n) linear
O(n log2 n) n log n (sometimes called quasilinear)
O(n2) quadratic
O(n3) cubic
O(np), p ∈ N polynomial
O(cn), c > 1 exponential
O(n!) factorial

Table 1. Some standard functions for comparison.

See if you can understand anything in this video now: https://www.
youtube.com/watch?v=kVgy1GSDHG8

11. The pigeonhole principle

Before we needed to prove that if A,B were finite sets, and A was
smaller than B, then no function from A to B could be 1-1. If you
tried to make a function, some a ∈ A would have to be sent to some
b ∈ B that was already taken. To prove this intuitive hunch, we need
an axiom:

Axiom 11.1 (Pigeonhole principle). Ifm pigeons occupy n pigeonholes
and m > n then some pigeonhole has at least two pigeons in it.

This says, no matter how you try to arrange, maybe some holes are
empty, but no matter always one will have two or more pigeons.

Exercise 11.2. In your workshop, how many people are present?
What is the chance two people were born in the same month?

Axiom 11.3 (Pigeonhole principle). Ifm pigeons occupy n pigeonholes
and m > kn then some pigeonhole has more than k pigeons in it.

Example 11.4. Let A ⊆ N+ with |A| = 28. Then A contains at least
two elements with the same remainder mod 27. Proof: the pigeons
are the elements of A. The pigeonholes are the 27 possible values of
remainder when you write x = 27q + r. Since we have 28 numbers to
fit into 27 holes, the result follows by PHP.

12that is, show that one of f(n) = en, g(n) = n! dominates the other.



28 MURRAY ELDER

Exercise 11.5. Hùng is in a rush and grabs socks one at a time at
random from the dryer. He knows he washed 10 distinct pairs of socks
the day before and put them in the dryer. How many socks will he
need to take out before he is guaranteed to have a matching pair?

Exercise 11.6. Let p be an odd number and let S be any subset of
Zp+1 = {0, 1, . . . , p} which contains at least

2 +
p− 1

2

elements. Show that there are at least two elements of S with sum
equal to p.

Recall Lemma 9.9. We can now understand the proof given before.

Lemma 11.7. Let A,B be finite sets. If f : A → B is 1-1 then
|A| 6 |B|.

Proof. If |A| > |B|, then we have |A| pigeons to be placed into |B|
holes, but since we have more pigeons than holes, there must be at
least one hole with more than one pigeon in it. So if we place pigeon
a in hole b = f(a) there will be some b with b = f(a1) = f(a2) and
thus f is not 1-1. So by contrapositive the statement of the lemma is
true. �

We say a sequence 3, 9, 2, 7, 6, 1, 4, 10, 5, 8 contains a subsequence if
you can remove a few numbers to obtain the subsequence, for example
the above contains 2, 6, 4, 8. It contains an increasing sequence 3, 6, 10
and a decreasing sequence 9, 7, 6, 4. Claim:

Exercise 11.8. For each n ∈ N+, any sequence of n2 + 1 distinct
real numbers contains a decreasing or increasing subsequence of length
n+ 1.
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See Grimaldi for a nice proof of this using PHP.

Part 3. Counting

inclusion-exclusion
permutations, combinations. Number of license plates etc
Fibonacci (how many strings don’t contain 11, start with 1, etc)
Catalan - lattice paths, binary trees, brackets

Part 4. Introduction to number theory

Notes to learn enough number theory to be able to properly under-
stand RSA cryptography.

12. Modular arithmetic: ISBN and credit card check
digits

Friendly intro using ISBN and CC. Talk about QR codes.
(to be added). Please see lecture slides for this.

13. gcd

For this entire section, all numbers d, a, b, n etc. are integers.

Definition 13.1. Let d, a, b ∈ Z. We call d a divisor of a if a = ds for
some s ∈ Z. We write d | a. We call d a greatest common divisor of a
and b if
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• d | a and d | b (common divisor)
• if c | a and c | b then c | d (greatest)

We write d = gcd(a, b).

For example, gcd(21, 39): 1 divides both (always true) but so does 3,
and 1 | 3 so gcd(21, 39) = 3.

14. Euclidean algorithm

To find the gcd we have this (very old) algorithm:
Write

39 = × 21 +

where the last gap is a remainder between 0 and 29.

39 = 1× 21 + 18

Then repeat

21 = × 18 +

Repeat until the remainder is 0.
Why does this algorithm work?

39 = 1× 21 + 18

21 = 1× 18 + 3

18 = 6× 3 + 0

The last line says 3 divides 18 (because the remainder is 0) and the
second last line has 18 and 3 on the right hand side, and since 3 divides
both of these terms, 3 divides the left side.

Repeat this argument until the first line, so 3 divides both 39 and
21.

Why does the algorithm find the greatest divisor? See algorithm
complexity section.

Example: find gcd(26, 81)

81 = 3× 26 +

(always start with the big number on the left) repeat until remainder
is 0

26 = × +

= × +
...

= × + 0
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15. Euclidean algorithm backwards

Using the steps of the algorithm, you can always write gcd(a, b) =
λa+ µb for some numbers λ, µ.

Example

81 = 3× 26 + 3

26 = 8× 3 + 2

3 = 1× 2 + 1

2 = 2× 1 + 0

so gcd(81, 26) = 1, now use the steps backwards:

1 = 3− 2 = 3− (26− 8.3) = (1 + 8)3− 26

= 9.3− 26

= 9.(81− 3.26)− 26

= 9.81− 28.26

Exercise: find µ and λ integers so that 3 = µ(21) + λ(18).

Definition 15.1. If gcd(a, b) = 1 we say that a and b are relatively
prime.

16. Euler’s φ function

Definition 16.1. Let n ∈ Z. Define φ(n) to be the number of positive
integers less than n that are relatively prime to n.

In mathematical notation,

φ(n) = |{i | 1 6 i 6 n, gcd(i, n) = 1}|

Example: φ(9) = |{1, 2, 4, 5, 7, 8}| = 6. Find φ(7).
If a number p is prime the every number from 1 to p− 1 is relatively

prime to it, so φ(p) = p− 1.
Exercise: show that φ(p2) = p(p−1). Hint: write out all the numbers

in a nice table form, and see that everything except p, 2p, 3p, . . . , (p−1)p
is relatively prime.

Fact (to prove): If a and b are relatively prime then φ(ab) = φ(a)φ(b).
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17. Repeated squaring

Recall worksheet 1, and assessment task 1, we had an efficient way
to compute things like

12112 mod 13.

First, we had

[xy]n = [[x]n[y]n]n

(the remainders mod n are the same if you multiply first or second).
Then

121 ≡ 4 mod 13

so 12112 ≡ 412 mod 13. Now we do repeated squaring

42 = 16 ≡ 3 mod 13, 44 = 42.42 ≡ 3.3 = 9,

48 = 44.44 ≡ 9.9 = 81 ≡ 3 mod 13

so

412 = 48.44 ≡ 3.9 = 27 ≡ 1

General fact (interesting to prove): If a, n are relatively prime then

aφ(n) ≡ 1 mod n

.
Let’s prove it in the special case when n is a prime, call it p. (In this

case any 1 6 a < p is relatively prime to p, and φ(p) = p− 1).

Theorem 17.1 (Fermat’s little theorem). If p is prime and 0 < a < p
then

ap−1 ≡ 1 mod p.

Proof. Write

a, 2a, 3a, . . . , (p− 1)a.

(Why? You will see, its a clever trick).
Now, we claim that all of these numbers are distinct when you reduce

mod p. To show this, suppose ra ≡ sa mod p for some r, s between 1
and p − 1. Then ra = sa + kp, (r − s)a = kp so p divides both sides,
so p either divides a (which it can’t) or it divides r− s. However r− s
is a number strictly between −p and p, so the only possibility is that
r − s = 0 so r = s.

This shows that all those numbers are distinct mod p.

Example: p = 7 and a = 2, we get 2, 4, 6, 8, 10, 12 which reduces to
2, 4, 6, 1, 3, 5. We don’t normally put examples inside proofs.
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Now, multiply them all together. Since there are p− 1 of them, and
they are all between 1 and p− 1 (positive remainders after dividing by
p) then

a(2a)(3a) . . . ((p− 1)a) ≡ 1.2. . . . (p− 1)

where the numbers on the right side have been moved into this nice
order (they would be all mixed up as in the example).

Then taking all the as to the front of the left side we get

ap−1(1.2. . . . (p− 1)) ≡ 1.2. . . . (p− 1) mod p

and so the result ap−1 ≡ 1 mod p follows. �

18. RSA

All of the above is very abstract, useless mathematics right?
RSA uses it all to enable secret messages to be sent over public

channels, so anyone can see the encrypted messages.
Here is how it works:

(1) Alice picks n = pq where p, q are large distinct primes.
(2) Alice picks d, e such that de ≡ 1 mod (p−1)(q−1). How? She

picks e relatively prime to (p−1)(q−1), and uses the Euclidean
algorithm as we did above to write 1 = λe+µ(p− 1(q− 1) and
so the number d = λ.

(3) Alice publishes n and e, say online. Everyone in the world
knows what they are, but they do not know p, q or d. Alice
then gives these instructions, again online: “To send me a secret
message m (1 < m < n), send me [me]n”.

(4) Bob wants to send a message m, so he computes [me]n = c and
sends it. Anyone can see this remainder, so number between 1
and n, but this remainder is not the same as m, so they don’t
know what m was.

(5) Alice has more information that everyone else: she knows d.
She computes [cd]n and by all the theory above, she knows the
answer is actually Bob’s message m.

How does the last step work?

cd ≡ (me)d = med = m1+k(p−1)(q−1)

since ed ≡ 1 mod (p− 1)(q − 1).
Now what do you notice? Hint: (p− 1)(q − 1) = φ(pq).
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19. example of RSA

Alice picks p = 3, q = 5 so n = 15. She needs to pick d, e with
de ≡ (3 − 1)(5 − 1) = 2.4 = 8. She wants to use Euclidean algorithm
on e = 15 to find d, so she needs some e that is relatively prime to 8:

e = 1, 3, 5, 7.

If she picks e = 3 then d = 3 (Euclidean alg). So Alice publishes
e = 3, n = 15.

Now Bob wants to send m = 7. He computes 73 = 49.7 ≡ 4.7 =
28 ≡ 13 mod 15 so he sends 13 over the airwaves to Alice.

Since the numbers are so small, and exhaustive brute-force search
will find Bob’s message m = 7, but imagine the numbers are hundreds
of digits long.

Alice computes 13d = 133 = 169.13 ≡ 4.13 = 52 = 45 + 7 ≡ 7.

20. issues

We claim that mφ(pq) ≡ 1 mod pq, with pq = n, but that statement
above has the proviso that m,n should be relatively prime. The fact
(theorem) says nothing about the case if m,n have a common factor
greater than 1, so maybe its still true. But actually because n = pq,
how could m,n have a common factor? Only if Bob was lucky enough
to pick at random one of Alice’s top secret prime numbers. It is easy for
Bob to check if his (randomly chosen message) m is actually a divisor
of n, just by dividing. It is (should be) also highly unlikely to happen.

Other issues (to be added) and can be found online, there are various
attacks but still RSA is considered very secure under the assumption
that it is really difficult to guess what the primes p, q are.

You will hear people talk about security assumptions and one-way
functions. Nobody knows if in mathematics one-way functions exist,
but the function of multiplying integers is considered a candidate – its
easy for Alice to multiply p, q but very hard for people to reverse that
knowing only n (and e).

21. Example

Try this. Alice picks p = 5, q = 11 and Bob wants to send 436. 13

Go through the whole protocol. (Find your own e, d values).
Exercise: if you know n and φ(n) then you can work out p, q.

13Hint: this is too big, we can only send 0 < m < n to get a unique decryption.
Trick: Send it as two two-digit numbers 04 and 36. Alice and Bob would need to
agree on this as an extra part of the protocol.
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Part 5. Graphs and trees

22. Basic definitions

Definition 22.1 (Graph). A graph G = (V,E) is a pair of sets V , E
such that each e ∈ E is associated to some subset {v1, v2} ⊆ V of size
1 or 2.

The elements of V are called [plural: vertices, singular: vertex] or
nodes, and the elements of E are called edges or arcs.

Example 22.2. If V = {1, 2, 3}, E = {e11, e12, e13, e23, e32} where eij is
associated to {i, j} ⊆ V then G = (V,E) is a graph. We can visualise
G as a picture, with a dot for each element of V and a line between v1
and v2 if {v1, v2} is associated to some e ∈ E, so in this case we get

If {v1, v2} is associated to more than one edge in some graph G,
these edges are called multiple edges or multi-edges and G is said to
contain multiple edges. When each subset {v1, v2} ⊆ V of size 1 or 2
is associated to at most one element of E, we can choose to label each
edge by a subset of V of size 1 or 2, and write E ⊆P(V ). 14

A subgraph G = (V,E) is a graph G′ = (V ′, E ′) where V ′ ⊆ V,E ′ ⊆
E.

Definition 22.3 (Directed graph). A directed graph G = (V,E) is a
pair of sets V , E such that each e ∈ E is associated to some ordered
pair (v1, v2) ∈ V ×V . If (u, v) ∈ E we call u ∈ V the source vertex and
v the terminal vertex. In this case when we visualise G as a picture,
we draw arrows on the edges to indicate their direction, from source to
terminal.

Example 22.4. If V = {1, 2, 3}, E = {e11, e12, e31, e23, e32} where eij
is associated to (i, j) ∈ V 2 then G = (V,E) is a directed graph.

14Recall from the worksheet the power set of a set A is the set P(A) of all
subsets of A.
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Again if more than one edge is associated to the same ordered pair,
we call them multi-edges. If G is directed with no multi-edges we can
choose to label E by ordered pairs V ×V = V 2, and we write E ⊆ V 2.
In our example there are no multi-edges, since (2, 3) and (3, 2) are
different elements of V 2.

Exercise 22.5. Complete this list of definitions (use the previous
37181 notes Chapter 9, a textbook or online)

(1) loop
(2) multiple edges/multi-edge
(3) simple graph
(4) path
(5) length of a path
(6) circuit
(7) connected
(8) disconnected
(9) simple path

(10) endpoint(s) of an edge
(11) edge incident to a vertex
(12) adjacent vertices
(13) degree of a vertex (for undirected graphs), notation deg(v)
(14) in-degree and out-degree (for directed graphs)
(15) complete graph Kn on n vertices
(16) complete bipartite graph on m+ n vertices

Note that all our definitions are given (precisely) in terms of set
theory, rather than some picture-description. You should know now
that this is important for when it comes time to proving facts about
graphs. If we have imprecise definitions, we will have trouble in our
proofs.

I often use node instead of vertex to make the English simpler. Re-
member the grammar for plural versus singular if you use vertices,
vertex.

Definition 22.6 (Adjacency matrix). Let G = (V,E) be a graph (di-
rected or undirected). Assume |V | = n and V = {1, 2, . . . , n}. The
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adjacency matrix for G is a n × n matrix A = (aij) where aij is the
number of edges from vertex i to vertex j.

Example 22.7. The adjacency matrices for the two examples given
above are  1 1 1

1 0 2
1 2 0

 and

 1 1 0
0 0 1
1 1 0


Exercise 22.8. Give the adjacency matrices for these graphs.

Now that we have all these definitions, we can prove some theorems.

Theorem 22.9. If G = (V,E) is a graph (undirected) and |E| = n
then ∑

v∈V

deg(v) = 2n.

Do we have our definitions correct? How does degree work with loops
– does a loop count 1 or 2 towards the degree? 15

Proof. Imagine drawing a mark on your picture of G for each pair (v, e)
where v is an endpoint of e (and draw it close to v). Then the number
of marks you have drawn is

∑
v∈V deg(v). Now if each edge has exactly

two marks drawn on it, we have our theorem. So, it is important that
each loop has two marks drawn on it, which it does as we have specified
the drawing algorithm. �

Proof. A more formal version:
∑

v∈V deg(v) is counted by the number
of pairs (v, e) where v is an endpoint of e. Since for each e there are
exactly two such pairs (even when it is a loop, we have two pairs (v, e)
and (v, e)) so this number is equal to 2n. �

Exercise 22.10. What would be the corresponding statement for di-
rected graphs? Can you prove it?

Exercise 22.11. How many edges does the complete graph on n ver-
tices have?

15In the original 37181 notes from 2016 this is a problem.
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Theorem 22.12. If G = (V,E) is a graph with V = {1, 2, . . . , s} and
s × s adjacency matrix A, then the number of paths starting at i and
ending at j of length n > 1 is the ij-th entry in An.

What technique to prove this? First of all, check its true (do we have
our definitions of paths, and length of path, correct?) This is a state-
ment about paths of length n ∈ N+ so maybe induction is appropriate.

Proof. Let P (n) be the statement that the number of paths starting at
i and ending at j of length n > 1 is the ij-th entry in An.

Then P (1) is exactly the definition of adjacency matrix: the number
of paths of length 1 from i to j is given by aij.

Assume P (k) is true and consider Ak+1 = AAk. If we write Ak = (bij)
then by assumption bij is the number of paths from i to j of length k. By
the definition of matrix multiplication the ij-th entry of Ak+1 = AAk

is

ai1b1j + ai2b2j + · · ·+ ainbnj =
n∑
t=1

aitbtj

which counts paths whose first step goes via some different vertex t, so
counts all the paths that start at i and make one step to be at vertex t
and then follow a path from t to j. Since all of these paths are different,
we get the correct count. �

Exercise 22.13. What would be the corresponding statement for di-
rected graphs? The proof should go through exactly the same.

Application: https://math.stackexchange.com/questions/92555/
counting-the-number-of-paths-on-a-graph

How many different ways are there to unlock an android phone?

Theorem 22.14. Every path contains a simple path

Proof by induction on length of the path.

23. Graph isomorphism

In the next definition, we assume our graphs don’t have multi-edges,
just to make the statements easier to say.

Definition 23.1. Let G = (V1, E1) and H = (V2, E2) be two graphs
that do not have multi-edges, and so we can assume Ei ⊆P(Vi). We
say G,H are isomorphic if there is a bijection f : V1 → V2 such that
for all x, y ∈ V , we have {x, y} ∈ E1 if and only if {f(x), f(y)} ∈ E2.

Exercise 23.2. Decide if these two graphs are isomorphic.
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Exercise 23.3. Decide if these two graphs are isomorphic.

To show non-isomorphic, it is useful to have some invariants. For
example, if the number of vertices is different, you can say No straight
away. What other things might be preserved by an isomorphism?

Exercise 23.4. Decide whether these are invariants of a graph under
isomorphism (that is, if you apply an isomorphism map f to G then
f(G) has the same number of these things as G does.)

(1) number of loops (at each vertex)
(2) number of vertices of degree d
(3) number of edges
(4) number of cycles of length r

Exercise 23.5. Decide if these two graphs are isomorphic.

There is some very interesting current research on the complexity of
deciding if two input graphs are isomorphic – can it be done in polyno-
mial time? A/Prof Young Qiao in the School of Computer Science at
UTS is a world expert on finite graph (and finite group) isomorphism.
Current techniques use deep ideas in abstract algebra (see subject ....)

24. Euler paths and circuits

An Euler path in a graph is a path that traverses (uses) every edge
exactly once. An Euler circuit in a graph is an Euler path that starts
and ends at the same point.
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Exercise 24.1. Decide if there is a way to walk around this town
crossing every bridge exactly once (and return to your starting point).

or

16

Exercise 24.2. Decide if these graphs have Euler paths or circuits.

It turns out it is easy to decide whether or not a graph has an Euler
path or circuit: if a vertex has odd degree, then you cannot cross every
edge of the graph without getting stuck at this vertex. This becomes
the following theorem.

Theorem 24.3. A graph G = (V,E) has an Euler circuit if and only
if every vertex has even degree. G has an Euler path if either it has
exactly 0 or 2 vertices of odd degree.

This gives us a polynomial time algorithm to decide if G has a cir-
cuit/path or not: just compute the degree of each vertex.

25. Hamiltonian paths and circuits

Instead of visiting every edge, how about a path or circuit that visits
every node exactly once. This would be useful if you were a salesperson

16(image by Bogdan Giuşcă - Public domain (PD), based on the image, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=112920)
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who needed to visit a whole bunch of cities and didn’t want to waste
time/money visiting the same city twice.

Definition 25.1. A Hamiltonian cycle is a circuit in G that visits
every vertex exactly once. A Hamiltonian path is a path in G that
visits every vertex exactly once.

Exercise 25.2. Decide if these graphs have Hamiltonian paths or cy-
cles.

The old 37181 notes say it is unfortunate that we don’t have a lot
of results about Hamiltonian cycles. But actually it is interesting: the
problem of deciding if G has an Hamiltonian cycle is NP-complete.

The notes give this theorem, with a proof by contradiction.

Theorem 25.3. Suppose G = (V,E) is a simple graph with |V | = n >
3. Suppose that for every pair of non-adjacent vertices v1 and v2 we
have deg(v1) + deg(v2) > n. Then G has a Hamiltonian cycle.

Note, if a graph is not simple, you could remove all the loops first,
then check this theorem. Loops don’t help at all with finding a Hamil-
tonian path of course. If you can think of some clever way to check
if a graph fails to have a Hamiltonian cycle (which can be checked in
polynomial time in the number of vertices) then you get USD1M from
the Clay Institute.

26. Trees

A tree is an undirected graph G = (V,E) that satisfies any of the
following equivalent conditions: 17

(1) G is connected and has no cycles.
(2) G has no cycles, and a simple cycle is formed if any edge is

added to G.

17(which means, take one as your definition, then prove all the others are equiv-
alent to it)
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(3) G is connected, but would become disconnected if any single
edge is removed from G.

(4) G is connected and K3 is not a minor of G.
(5) Any two vertices in G can be connected by a unique simple

path.

By convention, we don’t allow the empty graph to be a tree. Check
the conditions if G was empty.

Exercise 26.1. Draw pictures of trees having |V | = 1, 2, 3, 4, 5. How
many different trees (up to graph isomorphism) are there of each size.
What do you notice about the number of edges versus the number of
vertices?

A leaf is a vertex of degree 1 in a tree. A forest is a graph where
each connected component is a tree.

Here is an example of how to show two of the criteria given above
are equivalent.

Theorem 26.2. G is connected and has no cycles if and only if G is
connected, but would become disconnected if any single edge is removed
from G.

Note if an only if means we must prove two directions.

Proof. Assume G is connected and has no cycles. Then G is connected.
Suppose (for contradiction) some single edge is removed (keeping its
endpoints x, y), and G is still connected. Then there is a path in G′

from x to y, so taking this path together with the removed edge we
have a cycle passing through x, y. Contradiction.

Now assume G is a connected graph with the property that removing
a single edge always disconnects it. Then G is connected. Suppose G
has a cycle. Then removing an edge on that cycle does not disconnect,
contradiction. So G doesn’t have any cycles. �

Exercise 26.3. This theorem proves that 1. and 3. are equivalent.
Show the rest are equivalent (note you can use syllogism and just show,
for example, 1. implies 2., 2. implies 4., 4. implies 5., 5. implies 3.
and you are done.

Recall a subgraph G = (V,E) is a graph G′ = (V ′, E ′) where V ′ ⊆
V,E ′ ⊆ E. A minor of G = (V,E) means a graph obtained from G by
taking a subgraph G′ = (V ′, E ′) and then replacing paths in G′ from x
to y where each vi on the path has degree 2, and replacing the path by
an edge. So saying that G contains K3 as a minor just means you can
take a subgraph which is a cycle, keep 3 vertices and replace the paths
between them by edges. So 1. and 4. are immediately equivalent.
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Theorem 26.4. A tree with n ∈ N+ vertices has n− 1 edges

Proof. Strong induction. True for n = 1, 2 (check: there is only one
graph of 1 vertex and one with two vertices). Assume true for k > 2 and
consider T with k+1 vertices. If T has no edges then it is disconnected
(k+1 > 3), so T has an edge. Choose one (there are only finitely many
to choose from) and erase it, leaving its endpoints, to get two trees (not
connected after removing an edge by Theorem 26.2). Each tree has 6 k
vertices so the statement is true for them, done. �

We mostly restrict to finite graphs and trees in First Year Discrete
Maths.But infinite graphs and trees lead to very interesting mathemat-

ics.

Theorem 26.5 (König’s lemma, special case). If T is an infinite tree
where each vertex has finite degree, then T has an infinite simple path.

Check Wikipedia for a proof (or do you think is sounds completely
obvious?).

According to Wikipedia This proof is not generally considered to
be constructive, because at each step it uses a proof by contradiction
to establish that there exists an adjacent vertex from which infinitely
many other vertices can be reached, and because of the reliance on a
weak form of the axiom of choice.

27. Spanning trees

Definition 27.1. A spanning tree of a graph G = (V,E) is a tree
H = (V,E ′) with E ′ ⊆ E.

Note if G has n vertices then a spanning tree (if it exists) must have
n − 1 vertices. Note that since a tree must be connected, if G is not
connected then it cannot have a spanning tree.

Exercise 27.2. Find two non-isomorphic spanning trees for this graph:

Theorem 27.3. Every connected non-empty finite graph contains a
spanning tree.

Proof. G is non-empty so choose a vertex, v1 and let T = v1. The the
following algorithm terminates in a finite number of steps (since G is
finite.)

Loop invariant: T is a tree. True at the start.
While T does not contain all vertices of G, do:
choose a vertex in G \ T , x. Since G is connected, for each v ∈ T

there is a path from x to v, and out of all these paths we can choose
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one path that only intersects with T at a single vertex (if not, step
back an edge). Add this path to T .

(loop invariant: T is still a tree by our careful choice of path)
Stops because each time T gets bigger and G is finite. At the end, T

contains all vertices (if not, the algorithm can keep going) and is (still)
a tree. �

In later optimisation courses you will study (more?) efficient algo-
rithms to construct spanning trees. Use Big O to make precise how
efficient.

28. Rooted trees

A rooted tree is just a tree with one vertex nominated to be called
the root. We often like to draw the root at the top (or bottom) of the
picture and then draw vertices connected by an edge to that vertex
below (or above), and continue, so it really looks like an upside-down
tree.

PIC

28.1. Application: bracket-free arithmetic. We can represent ex-
pressions like Inorder, preorder, postorder are three different conven-
tions on how to write the nodes of a rooted binary tree as a string.

(a) Inorder (Left, Root, Right)
(b) Preorder (Root, Left, Right)
(c) Postorder (Left, Right, Root)

Useful in computing, efficient to represent (old calculators would use
this for display, input); recursively defined.

29. Euler’s formula

In class we draw planar graphs on balloons to come up with the
following. We defined a face to be a polygonal region of the balloon
bounded by edges but with no edges inside.

Theorem 29.1. If G is planar, finite, then |V | − |E| + |F | = 2 (for
any representation/drawing of G on the plane without edge crossings.)

Application: K5 cannot be planar. Proof: add up |V | − |E| + |F |.
5,5.4=20, 5-20+F=2, F=17. But each face is a triangle, so ...
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