DISCRETE MATH 37181 TUTORIAL WORKSHEET 4

©MURRAY ELDER, UTS AUTUMN 2022

INSTRUCTIONS. Complete these problems in groups of 3-4 at the whiteboard. Partial solutions at the end of the PDF.

- 1. Prove (use induction) that for all $n \in \mathbb{N}_+$ $2+4+6+8+\cdots+(2n)=n^2+n$
- 2. Prove (use induction) that for all $n \in \mathbb{N}_+$

$$2 + 7 + 12 + 17 + 22 + \dots + (5n - 3) = \frac{n(5n - 1)}{2}$$

- 3. Prove that 6 divides $n^3 + 5n$ for all $n \in \mathbb{N}$.
- 4. Let P(n) be the statement that $n^2 + 5n + 1$ is even.
 - (a) Prove that P(n) implies P(n+1) for any n > 0.
 - (b) For which values of n is P(n) actually true?
 - (c) What is the *moral* of this exercise?
- 5. Let $c \in \mathbb{R}_+ = \{x \in \mathbb{R} \mid x > 0\}$. Prove that $\exists k \in \mathbb{N}$ such that for all $n \ge k, n! > c^n$. ¹
- 6. Prove or disprove:

$$\forall n \in \mathbb{N}, \ n^3 + 4n \equiv 0 \mod 5$$

7. Prove or disprove: For all $n \in \mathbb{N}_+$,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

8. Find an expression (which does not use $+\cdots +$ or \sum) for the function unknown computed by the following code:

```
int unknown(int n)
{
  if n=1 return 1
  else return (unknown(n-1)+(2*n-1)^2)
}
```

Date: Week 4 workshop (Wednesday 16, Thursday 17, Friday18 March).

¹this means than *eventually* the function n! will *dominate* or be bigger than c^n .

²Hint: If there are too many abstract things here, try doing the question for some *fixed* value of $c \in \mathbb{R}_+$ first. Eg c = 5. Once you understand how to do it for c = 5, try repeating it for a general positive real number c instead.

9. Prove that PMI implies WOP. Start with:

Suppose (for contradiction) that WOP is false, so there is some non-empty set S which does not have a first element.

Let P(n) be the statement that "for all $i \in \mathbb{N}, i \leq n, i \notin S$ ".

- 10. Complete this definition: A loop invariant is ...
- 11. Consider this pseudocode.

```
function mycode(int m, int n)
{
    while (m>= 0 and m<= 100)
        m:= m+1
        n:= n-1
    end while
    return n
}</pre>
```

- (a) Show that "m + n = 50" is a loop invariant for the while loop.
- (b) Show that "m + n is even" is a loop invariant for the while loop.
- (c) Show that "m + n is odd" is a loop invariant for the while loop.
- (d) Why does it terminate? What is the output?

m	n	output
100	0	
-10	100	
50	0	
0	0	

(You can use this table to try out the algorithm on different inputs, then go back and answer part (d).)

12. Recall problem 3 (vi) from worksheet 2. At that time you had just seen the WOP but not really used it. Now the following statement should be straightforward to prove using WOP ³.

For all $n \in \mathbb{Z}$, if n > 1 then n is divisible by some prime number p.

Hint: Given n > 1, let $D = \{s \in \mathbb{Z} \mid (s|n) \land (s > 1)\}$ be the set of integers that divide n. Explain why D is non-empty, and also why $D \subseteq \mathbb{N}$. Then show that the first element of D is a prime which divides n.

13. Prove that if x > 0 is any fixed real number, then

$$(1+x)^n > 1 + nx$$

for all $n \in \mathbb{N}, n \ge 2$.

14. Prove or disprove: for all $n \in \mathbb{N}$, $(3n+1)7^n - 1$ is divisible by 9.

³or induction, which we did in the lecture, but for this question try to prove it using WOP.

Brief solutions:

1. Let P(n) be the statement that

$$2+4+6+8+\dots+(2n) = n^2+n.$$

Then P(1) is true since LHS=2 and RHS= 1 + 1 = 2.

Assume P(k) is true. Then P(k+1): LHS=

$$2 + 4 + 6 + 8 + \dots + (2k) + (2k + 2) = k^{2} + k + (2k + 2)$$

using the inductive assumption

=
$$k^2 + 3k + 2 = (k+1)(k+2) = (k+1)((k+1)+1) = (k+1)^2 + (k+1)$$

= RHS

Then by PMI P(n) is true for all $n \ge 1$.

2. Let P(n) be the statement that

$$2 + 7 + 12 + 17 + 22 + \dots + (5n - 3) = \frac{n(5n - 1)}{2}.$$

Then P(1) is true since LHS=2 and RHS= $\frac{1(4)}{2} = 2$.

Assume P(k) is true. Then P(k+1):

LHS = 2 + 7 + 12 + 17 + 22 + ... + (5k - 3) + (5k + 5 - 3) =
$$\frac{k(5k - 1)}{2}$$
 + (5k + 2)

using the inductive assumption

$$=\frac{k(5k-1)}{2} + \frac{2(5k+2)}{2} = \frac{5k^2 - k + 10k + 4}{2} = \frac{5k^2 + 9k + 4}{2}$$

(secretly I will work out the RHS, then make them match up (and write it nicely at the end))

RHS =
$$\frac{(k+1)(5k+5-1)}{2} = \frac{(k+1)(5k+4)}{2} = 1$$

Then by PMI P(n) is true for all $n \ge 1$.

3. Let P(n) be the statement that 6 divides $n^3 + 5n$, then P(1) is true since $1^3 + 5.1 = 6$. Since we need to prove for all $n \in \mathbb{N}$, we must start at n = 0: P(0) is true since 6 divides $0 = 0^3 + 5.0$.

Assume for induction that P(k) is true for $k \ge 0$, which means $k^3 + 5k = 6s$ for some $s \in \mathbb{Z}$. Then

$$(k+1)^3 + 5(k+1) = k^3 + 3k^2 + 3k + 1 + 5k + 5 = k^3 + 3k^2 + 8k + 6$$

Now use the inductive assumption

$$= k^{3} + 5k + 3k + 3k^{2} + 6 = 6s + 3k(k+1) + 6$$

so if we can show 3k(k+1) is a multiple of 6 we are done. It is because k(k+1) is even, since either k is even or if not k+1 is even. Thus P(k) implies P(k+1).

Then by PMI P(n) is true for all $n \ge 0$.

- 4. (a) Assuming P(n) we have $n^2 + 5n + 1 = 2s$ for some $s \in \mathbb{Z}$. Then
- $P(n+1): (n+1)^2 + 5(n+1) + 1 = n^2 + 2n + 1 + 5n + 5 + 1 = n^2 + 5n + 1 + 2n + 6 = 2s + 2n + 6$ is even, so $P(n) \to P(n+1)$.
 - (b) None.
 - (c) Moral: a proof by induction needs both P(1) true (or some starting number) and $P(n) \rightarrow P(n+1)$ to work.
 - 5. Let P(n) be the statement that $n! > c^n$.

Assume P(k), then $P(k+1) : (k+1)! = k!(k+1) > c^k(k+1) > c^k \cdot c$ if we assume that k+1 > c and $c^k \cdot c = c^{k+1}$, so $P(k) \to P(k+1)$ assuming we choose $k \ge c$.

Base step: we need to find a value of k so that P(k) is actually true (remember the moral learned from the last exercise!).

Using this picture, I claim that if I choose $k = \lceil c \rceil^2$ (rounding up the value of $c \in \mathbb{R}^+$ to the nearest whole number) then $(\lceil c \rceil^2)! > c^{\lceil c \rceil^2}$.

To prove this, I need another picture:

(can you complete this proof?)

Then by PMI P(n) is true for all $n \ge \lceil c \rceil^2$.

- 6. False: true for 0,1 but for n = 2 it is false.
- 7. This is true, and since its a statement about all n we use PMI.

Let P(n) be the statement that $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$. Then P(1) is true since LHS= $\frac{1}{1.2}$ and RHS= $\frac{1}{1+1} = \frac{1}{2}$.

Assume P(k), then consider P(k+1):

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \sum_{i=1}^{k} \frac{1}{i(i+1)} + \frac{1}{(k+1)(k+2)}$$
$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$
$$= \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$$
$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$
$$= \frac{(k+1)(k+1)}{(k+1)(k+2)}$$
$$= \frac{(k+1)}{(k+2)}$$

so P(k+1) is true.

So by PMI since P(1) is true and $P(k) \to P(k+1)$ then P(n) is true for all $n \in \mathbb{N}_+$.

8.
$$u(1) = 1, u(n) = u(n-1) + (2n-1)^2$$
, so

$$u(n) = 1 + 3^2 + 5^2 + 7^2 + \dots + (2n-1)^2.$$

If we want a formula that doesn't involve a sum, guess a formula for u(n) by computing small values, then use induction to prove it. Solution:

 $1 + 3^{2} + \dots + (2n - 1)^{2} = \frac{n(2n + 1)(2n - 1)}{3}$

9. Proof: Suppose (for contradiction) that WOP is false, so there is some non-empty set S which does not have a first element.

Let P(n) be the statement that "for all $i \in \mathbb{N}, i \leq n, i \notin S$ ".

Then P(0) is true because if 0 belongs to S, it would have to be the first element, and so it (and all $i \leq 0$, which is just i = 0) is not in S.

If P(k) is true then $0, 1, 2, \ldots, k \notin S$. If k + 1 is in S then it would have to be the (recall we proved first elements, if they exist, must be unique) first element, but S does not have one, so k + 1 is not in S, and so P(k + 1) is true.

Then by PMI P(n) is true for every $n \in \mathbb{N}$ which means that S is empty, which is a contradiction since we started by saying S is non-empty.

- 10. A *loop invariant* is a statement that if true before one iteration of the loop, remains true after one iteration.
- 11. (a) If m + n = 50, then in one iteration $m + n \rightarrow m + 1 + n 1 = m + n = 50$ still.
 - (b) It terminates because each iteration increases the value of m, and if m exceeds 100 then it will stop. If m starts of negative or greater than 100 then it will not enter the loop at all at stop straight away.

Output: If m < 0 or m > 100 then it simply outputs the value n entered by the user.

If $0 \le m \le 100$ then we subtract stuff from *n*. Let's use the loop invariant to help us. Call m', n' the new values of the variables at the end of the loop.

At the end, m' = 101 (if m = 100 we perform one more iteration of the loop). We know that the sum m + n remains invariant during the loop, so if originally m + n = p then at the end 101 + n' = p, so n' = p - 101. So I claim the output is n + m - 101.

m	n	output
100	0	-1
-10	100	100
50	0	-51
0	0	-101

- 13. Let P(n) be the statement that $(1 + x)^n > 1 + nx$ where x is a fixed positive real number. Then P(2) is true since $(1 + x)^2 = 1 + 2x + x^2 > 1 + 2x$ since $x^2 > 0$. Assume P(k) is true for $k \ge 2$. Then P(k + 1):
- $$\begin{split} (1+x)^{k+1} &= (1+x)^k (1+x) > (1+kx)(1+x) = 1+kx+x+kx^2 = 1+(k+1)x = kx^2 > 1+(k+1)x\\ \text{since } kx^2 > 0 \text{ so } P(k) \to P(k+1).\\ \text{Then by PMI true for all } n \geqslant 2. \end{split}$$
 - 14. Hint: You may need to prove another fact first: $7^m + 2$ is divisible by 3.