DISCRETE MATH 37181 TUTORIAL WORKSHEET 7

©MURRAY ELDER, UTS AUTUMN 2022

INSTRUCTIONS. Complete these problems in groups of 3-4 at the whiteboard. Partial solutions at the end of the PDF.

Notation: a binary string of length $n \in \mathbb{N}_+$ is an expression of the form $d_1 d_2 \dots d_n$ where $d_i \in \{0, 1\}$ for $1 \leq i \leq n$. For example, 11011 is a binary string of length 5. The set of all binary strings of length n is denoted $\{0, 1\}^n$.

Whenever people talk about strings of finite length, it is helpful to include strings of length 0. For this subject, let us denote the (unique) string of length 0 by the symbol λ .

If a, b, u, v are strings, we call u a *factor* of v if v = aub.

- 1. (a) How many binary strings of length 4 do not contain a factor 11?
 - (b) How many binary strings of length n do not contain a factor 11?
 - (c) How many binary strings of length n do not contain a factor 11 and have final digit 1?
- 2. Define a relation \mathscr{T} on the set of all finite length binary strings by $a\mathscr{T}b$ if
 - the sum of the digits in a is strictly less than the sum of the digits in b, or
 - -a is obtained from b by deleting one digit from b.

Which of the following is true?

A. \mathscr{T} is reflexive	C. \mathscr{T} is transitive	E . 11 <i>I</i> 0110
B . \mathscr{T} is antisymmetric	D . 0110 <i>I</i> 11	F . none of $(A)-(E)$.

- 3. A boolean function is a function of the form $f : \{0, 1\}^n \to \{0, 1\}$. What is the number of boolean functions of the form $f : \{0, 1\}^n \to \{0, 1\}$?
- 4. In the lectures Murray gave a "combinatorial proof" of the binomial theorem (formula to expand out $(x + y)^n$). Maybe you thought it was dodgy. Give a proof by induction instead. Hint you may need to use this lemma (and prove it first):

$$\binom{n}{i-1} + \binom{n}{i} = \binom{n+1}{i}$$

- 5. Use the Binomial theorem to prove the following identities: 1
 - (a) $\binom{n}{0} \binom{n}{1} + \binom{n}{2} \dots + (-1)^n \binom{n}{n} = 0.$
 - (b) $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$

Date: Week 7 workshop (Wednesday 6, Thursday 7, Friday 8 April).

¹Hint: easy, just plug into the formula. No proofs required since the theorem is already proved so you can just use it.

6. (a) Give a combinatorial proof 2 of the following fact

$$\binom{n}{i-1} + \binom{n}{i} = \binom{n+1}{i}$$

3

(b) Draw Pascal's triangle (to compute binomial coefficients without needing a calculator) using the above fact, down to 10 rows.

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} & & 1 \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & & 1 & 1 \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & & 1 & 2 & 1 \\ \end{pmatrix}$$

7. Consider strings consisting of the symbols '(' and ')'. Such a string is *balanced* if every '(' has a unique matching ')' to its right⁴. For example (()) and ()(()()) are balanced but (()))(() is not.

Let c_n be the number of balanced bracket strings of length 2n.

- (a) Compute c_0, c_1, c_2, c_3 .
- (b) Prove that $c_{n+1} = \sum_{i=0}^{n} c_i c_{n-i}$
- (c) Use the recursive formula to compute c_4, c_5, c_6 .
- 8. A *Dyck-path* in the *xy*-plane is a path consisting of 2n diagonal lines of length $\sqrt{2}$ and slope ± 1 , starting at (0,0) and ending at (0,2n), and never going below the *x*-axis.

How many different Dyck-paths from (0,0) to (0,2n) are there?

ENJOY YOUR STUVAC BREAK!

⁵Hint: consider the first time the prefix of the string becomes balanced. ⁶XHMTL requires you to write balanced code

²combinatorial proof means the LHS and the RHS are two different ways to count the same object. In this case the object is the number of subsets of size i of a set of size n + 1.

³Hint: you might want to use this in Question 3. Or you proved it using the ! formula.

⁴More formally, we can define 'being balanced' recursively by saying the empty string is balanced, and if u, v are balanced then (u)v is balanced.

Brief solutions:

- 1. (b) Recursive. If b_n is the number of binary strings of length n without a 11 factor, then $b_0 = 1$ and $b_1 = 2$. A string of length $n \ge$ either starts with 0 or 1. If it starts with 0, the next letter can be anything, so there are b_{n-1} possible strings. If it starts with 1, the next letter must be 0, and then anything, so there are b_{n-2} possible strings. So in total $b_n = b_{n-1} + b_{n-2}$. This is the Fibonacci sequence (starting at 1, 2).
 - (c) If c_n is the number of strings without 11 and ending with 1, then $c_0 = 0, c_1 = 1$. For $n \ge 2$ the last two digits must be 01 and we have b_{n-2} possible prefixes. So this is also the Fibonacci sequence (starting at 0, 1).
- 3. For each boolean string \vec{b} of length n (that is, \vec{b} is an element in $\{0, 1\}^n$), there are two possible values for f on \vec{b} . There are 2^n boolean strings of length n. So the number is

 2^{2^n}

7. (a)
$$c_0 = 1$$
 (there is one way to write nothing), $c_1 = 1$: (), $c_2 = 2$: ()(),(()), $c_3 = 5$: ()()(),()()),(())(),(())),((())).

(b) For each string of length 2n + 2, there is always a "first time" the prefix is balanced. For example ((())())() the first time is after 8 brackets. The balanced prefix always looks like (w) where w is a balanced string itself (possibly empty): if not then you could find a shorter prefix that is balanced.

So the number of ways to arrange the balanced prefix of length 2i + 2 is c_i , and the ways to write the suffix is c_{n-i} since there are 2(n-i) brackets left, thus $c_i c_{n-i}$ total such strings.

Every string has a unique *i* so that the first time the prefix is balanced is at 2i + 2 so we can add up all the cases for each *i* without even counting the same string twice. So $c_{n+1} = c_0c_n + \cdots + c_nc_0$ as required.

- (c) $c_4 = 14, c_5 = 42, c_6 = 132, c_7 = 429, c_8 = 1430, c_9 = 4862, c_{10} = 16796.$
- 8. The set of paths to (0, 2n + 2) can be broken up into those that return to the *x*-axis for the *first time* after 2*i* steps.

Answer: same as question 6: c_n .