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Instructions. Complete these problems in groups of 3-4 at the whiteboard. Partial solutions at the end
of the PDF.

1. An old woman goes to market and a horse steps on her basket and crushes her eggs. The
rider offers to pay for the damage and asks her how many eggs she had brought. She does not
remember the exact number, but when she had taken them out two at a time, there was one
egg left. The same happened when she picked them out three, four, five and six at a time, but
when she took them out seven at a time they came out even (no eggs left). What is the smallest
number of eggs she could have had? 1

2. (a) State Euler’s theorem.

(b) Give an example of its use.

(c) Find the remainder of 716 upon division by 40 (that is, compute [716]40]). Can anyone do this
in one second?

(d) Compute ϕ(40) = ϕ(2.2.2.5) using the Lemmas in Lecture 16: ϕ(pn) =? when p is prime and
ϕ(ab) =? when a, b are relatively prime.

(e) What is the size of the set Z∗
40?

(f) Demonstrate (by example) that multiplying every element of Z∗
40 by a ∈ Z∗

40 simply permutes
the elements around, by checking a = 3.

3. (a) Without using a computer, find the final digit of 4368. 2

(b) Without using a computer, what is the value of [4368]18 ?

4. Prove that every n ∈ N, n > 1 can be written as a product of primes.

That is, there exist p1, . . . , pr distinct primes and i1, . . . ir ∈ N+ so that n = pi11 p
i2
2 . . . pirr . 3 4

5. Prove that if x, y ∈ Z∗
n (that is, x, y are relatively prime to n) then so is [xy]n. 5

Date: Week 9 workshop (Wednesday 27, Thursday 28, Friday 29 April).
1From: Number Theory and Its History (Dover Books on Mathematics) Oystein Ore, 1948
2Hint: mod 10 will give the final digit. Repeated squaring, or can you use Euler’s theorem?
3Hint: strong induction
4Actually, you can prove that up to reordering the product of primes is unique. Proving uniqueness: suppose n =

pi11 pi22 . . . pirr = qi11 qi22 . . . qiss , where without loss of generality we can assume the primes are written in increasing size order.
Then r = s and pi = qi. If you like doing these proofs, maybe you like doing pure mathematics.

5Therefore, when we multiply elements of Z∗
n together they stay inside Z∗

n.
1
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6. Let G be a set, and ∗ : G × G → G a function. 6 We call (G, ∗) a group if the following three
conditions are satisfied:

1 ∗ is associative. 7

2 there exists an element e ∈ G so that for all x ∈ G we have ∗(x, e) = x = ∗(e, x).

3 for each x ∈ G there exists y ∈ G so that ∗(x, y) = e = ∗(y, x).

Discuss with your teammates whether each of the following examples is a group: 8.

(a) G = Z∗
n, ∗(a, b) = [ab]n

(b) G = Z, ∗(a, b) = a + b.

(c) G = Z, ∗(a, b) = ab (a multiplied by b).

(d) G = Z, ∗(a, b) =
a

b
(a divided by b).

(e) G = the set of all 2×2 matrices with real number entries and determinant 1, ∗(A,B) = AB
(matrix multiplication) 9

7. Find the 2018 final exam from the UTS Library website 10, and do questions 19, 20, 23.

END OF TUTORIAL WORKSHEET 9

6For example, G = Z∗
n, ∗(x, y) = [xy]n (you just proved that [xy]n lands back inside G).

7that is, ∗(x, ∗(y, z) = ∗(∗(x, y), z) for all x, y, z ∈ G. To save time, you don’t have to prove this, just decide between
your teammates if you all agree its true or false.

8if Yes, what is the element e? Given x, what is the element y in the last condition?
9We assume at least one person in each team has done Maths 1, LDS, or otherwise knows about matrices
10UTS no longer provides copies of past exams since COVID. Why not? You should ask the Library and Exams branch.

Instead we have posted this under the Final Exam tab in Canvas.
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Brief solutions:

1. We have a number x with [x]2 = 1, [x]3 = 1, [x]4 = 1, [x]5 = 1, [x]6 = 1, [x]7 = 0. Find the smallest
x that satisfies all those conditions. To brute-force it I would just start at x = 7, 14, 21, . . . and
check the remainders mod 2, 3, 4, 5, 6 and stop the first time I find the remainders are all 1.
Alternatively, since x = 2p + 1, and x = 3q + 1, . . . , we need x = 2.3.2.5k + 1 (note I don’t
need to put 4, 6 since I already have some of their factors - for 4 I just need an extra 2.) This is
60k + 1, so I am looking for the smallest k so that 60k + 1 is divisible by 7. Answer: 301.

So many additional questions, why did the old woman take them out and back so many times
previously? Was the horse black?

2. ϕ(40) = ϕ(8)ϕ(5) = (8− 4)(4) = 16 so 716 mod 40 ≡ 1 by Euler’s theorem.

Z∗
40 = {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}

(good, there are 16 elements here) and

3Z∗
40 = {3, 9, 21, 27, 33, 39, 3.17, 3.19, 3.21, 3.23, 3.27, 3.29, 3.31, 3.33, 3.37, 3.39}

(multiply and reduce those last ones mod 40, and it should check out.)

3. (a) mod 10 will give the final digit. Try the repeated squaring method to do this quickly:

43 ≡ 3 mod 10 so we need 32 = 9, 34 = 9.9 = 81 ≡ 1, 38 = 34.34 = 1.1, will be 1 from now on, so

4368 ≡ 368 = 364+4 = 364.34 = 1.1 ≡ 1

But even quicker is to use Euler’s theorem: ϕ(10) = (5− 1)(2− 1) = 4 so

4368 = (434)17 ≡ 117 = 1

by Euler’s theorem.

(b) ϕ(18) = ϕ(9)ϕ(2) = 6 so by Euler’s theorem a6 ≡ 1 mod 18 when a is relatively prime to
18.

68 = 66 + 2 so a68 = a66a2 = (a6)11a2 ≡ 1.a2 when a is relatively prime to 18 .

We have gcd(43, 18) = 1 so we can use this, we get 43 ≡ 7 and 4368 ≡ 432 ≡ 72 = 49 ≡ 13

If you didn’t see Euler’s theorem, you can do the whole thing with repeated squaring: 43 ≡ 7,
72 = 49 ≡ 13, 74 ≡ 7, 78 ≡ 13 alternates between 13 and 7. Then 768 = 764.74 ≡ 7.7 ≡ 13.

4. Proof: Either n is prime (and we are done), or not. If not, by definition of not being prime,
n = ab where

a, b,∈ Z, 1 < a, b < n

by definition (negation of being prime). By strong induction, a = pi11 p
i2
2 . . . pirr and b = qi11 q

i2
2 . . . qiss .

Okay, so that is the idea, now we need to start the proof again from the start. Let P (n) be the
statement . . . . Base case n = 2 is true. Etc.
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5. gcd(n, x) = 1 means 1 = ax + bn; gcd(n, y) = 1 means 1 = cy + dn; multiply together to get

1 = (ax + bn)(cy + dn) = acxy + n(. . . )

If p | xy and p | n then p | 1 according to the above equation, so that means p must be equal to
1, and gcd(xy, n) = 1.

6. (a) By question 7, ∗ is a map from G×G back inside G. Multiplication is associative (annoying
to prove this, but I think we can all agree). The element e in this case is 1. For each x ∈ G, since
gcd(x, n) = 1 (relatively prime), it has a multiplicative inverse (Euclidean algorithm backwards).
So all the conditions check out, and this is a group.

Note this is a finite group, it has size ϕ(n).

Also note this fact: if G is a group and a ∈ G then multiplying (applying ∗) every element of G
by a of the left is a bijection from G to G (simply permutes the elements around). Proof: First
let me write a ∗ b instead of ∗(a, b) to make life easier.

To prove one-to-one: for x, y ∈ G, if a ∗ x = a ∗ y, then multiplying (applying ∗) both sides of
the left by the inverse of a and applying the rules gives x = y. This shows multiplication by a
on the left is one-to-one.

To show onto: since a ∈ G it has an inverse element, which we can call a−1 ∈ G. That is,
a ∗ a−1 = e. For each x ∈ G there is an element (a−1 ∗ x) ∈ G so that a ∗ (a−1 ∗ x) = x, so the
map is onto.

This question is leading us to an advanced topic beyond the scope of 37181, but actually what
we proved in the lecture about Z∗

n is much more general.

(b) Yes (c) No (d) No

(e) Yes, this is a group, since det(AB) = det(A) det(B) is a thing (proved? in Maths 1 or at
least stated.) Using this, if det(A) = 1 and det(B) = 1 then det(AB) = 1 so ∗(A,B) lands back

inside G. The element e in this case is the identity matrix

(
1 0
0 1

)
. Since det = 1, every element

of G has a matrix inverse, so the last rule checks out.


