Week 10

Second order differential equations [Textbook: 7.4]



Second order differential equations

We consider equations of the form

d 2 d
dy +ey=f(x)

dx

Example: The force on a mass on a spring is
proportional to the extension of the spring.




We consider two types of 2"d order differential equations:

2 homogeneous
ad y+b%+cy=0 J
X

dx’
Y. f(x)
dx dx Y

Inhomogeneous



Homogeneous 2"d-order DEs

2
d {+bd—y+cy=0
dx dx

a

Strategy for solving: guess a solution, then substitute and see if it works.



So the ansatz ¥ =¢™"  works for all x, provided

—b+ Vb? — 4dac
m =
2a

This equation has solutions m, and m,, so both
y:€m1$ and y: emzﬁi

are solutions to the DE. We can multiply both of these by any constant
and still end up with a solution:

mix

y = Ae y — Bemgm

So the general solutionis |, — gemue | gemez



Result: Y Y
The general solution to the homogeneous ¢ dx’ b dx
equation is

y(x)=Ae™ + Be™

+cy =0

where m, and m, are the distinct solutions of the auxiliary equation

am’ +bm+c=0

Example: e d
Find the general solutionto 2 )2/ 54 3y=0
= dx dx




Example:

Find the general solution to d2)2/ " 6@ +8y=0
dx dx
Example: 4> d
Find the general solution to f +79 0

dx dx



Complex roots
Sometimes the roots of the auxiliary equation may be complex.

e.g. Find the general solution to

d’y . dy
—4—+13y=0
dx? dx d







2
d {+6@+13y=0
dx dx

Find the general solution to




Differential equation

2
d Z—I—bﬂ—l—cy:O
dx dx

\ 4

Auxiliary equation

a

am®>+bm-+c=0

o~ 1

Two distinct roots Complex roots
m,; and m, m=o +io

y(x)=Ae™ + Be™"

y(x)=e* (Acoswx+ Bsin ax)



2
Example: The equation of motion for a mass on a spring is Mﬁg +ky =20
Find the general solution for y(t).




dzy

2

Find the general solution to +25y=0

dx



What happens when the auxiliary equation has a double/repeated root?
e.g.
dy  dy
——4
dx dx

+4y=0



When the auxiliary equation has a double root at m,
the general solution is

y(x)=(A4Ax+ B)e™"

Example:

d’y dy
+2—+y=0
dx? dx d




Differential equation

2
d Z—I—bﬂ—l—cy:O
dx dx

\ 4

Auxiliary equation

a

am®>+bm-+c=0

< 1S

Two distinct roots Complex roots Double root at
m, and m, m=a +io m=m,
. myx
y(x)=Ae™ + Be™ y(x) =(Ax+B)e™

y(x) =e™ (Acoswx+ Bsin wx)



/

Two distinct roots
m, and m,

y(x)=Ae™ + Be™

y(z) =e

\ 4

| S

Complex roots Double root at

y(x)=(Ax+ B)e™"

(A cos(fx) + Bsin(fx))

\ 4

“overdamped”

“Damped oscillation” “critically damped”

A 4



Examples: 2
d )2’+5Q—3y =0

dx dx




dx’

dx?

+4Q
dx

dy

+4y =0

—-6—+25y=0

dx



Example: Find the general solution to the differential equation

d’ d
Y422 35-0
dx dx
Find the solution that satisfies the boundary condition y(0) = 6, y’'(0) = -2.

\

L)



Summary: we have seen how to find the general solution of homogeneous
2nd order differential equations

Differential equation

dy ,dy
+b—+cy=0

a? de

4

Auxiliary equation

a

am*+bm+c=0

7 1N

Two distinct roots Complexroots Double root at
my and m; m=a=i® m=my
— X
y(x) =A4e™ + Be™ y(x)=(4x+B)e

y(z) = €** (A cos(wz ) + B sin(wz))




Second order inhomogeneous differential equations

We consider equations of the form

2
ad y+bdy+cy=f(x)

dx? dx

Example: The force on a mass on a spring is
proportional to the extension of the spring.




Uniqueness

The general solution to a 2nd order linear DE has 2 arbitrary
constants.

Recall:

For all linear first and second order DEs,
there exists a unigueness theorem, which says:

There is only one solution for inhomogeneous DE

If we can guess any solution, then this must be the solution



We now consider inhomogeneous equations, which have a driving term
on the right-hand side

dz homogeneous
r» +cy 0 J

inhomogeneous




Inhomogeneous 2" order DEs

ady+b;l +cy=f(x)

dx’

The general solution is givenby V = Yc + Vp

Where y. is the complementary function, given by the general solution of

2
4 d yzc + b dy. +cy. =0 \1. Fir'md general solution to
this equation

dx dx

2. Find particular solution
to this equation

And y, is the particular solution to
3. Add them together

adzyp+bdyp+cy = f(x)
dx’ dx i

d2

d > — (e +yp)+b (yc+yp)+c(yc +yp)=f(X)



2
d J;P A dyP +cy, = 1(x) 1. Fir.wd general solution to
dx dx this equation
2. Find particular solution
to this equation
3. Add them together

a

Rule of thumb: guess something that looks like f(x),
together with the derivatives of f(x).

2
DIr 3D 9y~ 6410
X

dx



To find the general solution to the inhomogeneous equation,
we add the particular integral to the complementary function:

4x

2
d yZP +3dyp +2y, =3e
dx X



Find the general solution to the inhomogeneous equation:

2x

dzyP +2dyP

dx’ dx typ=3e



Find the general solution to the inhomogeneous equation:

2x

dZyP _3dyP

o2 +2y,=e

y, = Axe™



To find the general solution to the inhomogeneous equation,
we add the particular integral to the complementary function:

2
d’y 2a’y

— +y=06e"
dx’ dx 4



Summary: We consider two types of 2" order differential equations:

dy

homogeneous
+cy 0 J

Differential _—~

equation

a’2 dy
a +b +c X
S Th oy = S (x)

inhomogeneous
(X)) =y,

Y'(x0) =V, \

Boundary conditions



The general solution is the most general solution
that doesn’t take the boundary conditions into account.

Without
boundary
conditions

—

d2

dx

d2

dx

dy

dx

dy

—+cy=0

S To=/)

General solution

y(x) = (general homogeneous)

+ (Inhomogeneous)



The full solution satisfies both the differential equation
and the boundary conditions

B 2
d a +cy=0
dx dx
Y(x0) =¥,
Y'(x,) =V,
oropler Full solution:
speciied ~ y(x) =Some function of x
completely
d y ,dy
+b—+c X
a— b —+ay= f(x)
y(x) =y,
V'(x) =v,



Example: Find the general solution to

d’y _dy
—5—+6y=>06e"
dx’ dx 4 .

Hence find the full solution that obeys the boundary conditions y(0) = 1, y’(0) = -5.







Second order differential equations are important in the theory of

vibrations and resonances electron

E.g. Masses on springs:

-

4 el I Electric field[——1-— -
Light interacting with matter: nucleus

"‘% Electric fiald
A

Direction




Example: Find the general solution for the following DE

dzy

2

+9y =10sin2x
dx



What happens if the driving frequency o is equal to the resonance
frequency ?

To see this, we have to find a new particular solution to

d’y
dt’

V4

2 .
+w,y=fsinwt

y,=Atcosa,t



I b | k ,l I i ﬂ
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