
Week 10

Second order differential equations [Textbook: 7.4]



Second order differential equations

We consider equations of the form 
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Example: The force on a mass on a spring is 
proportional to the extension of the spring. 



We consider two types of 2nd order differential equations:
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Homogeneous 2nd-order DEs

Strategy for solving: guess a solution, then substitute and see if it works.
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So the ansatz works for all x, provided

This equation has solutions m1 and m2, so both              

and

are solutions to the DE. We can multiply both of these by any constant 
and still end up with a solution:

So the general solution is
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Result:
The general solution to the homogeneous 
equation is

where m1 and m2 are the distinct solutions of the auxiliary equation
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Example: 
Find the general solution to 0352 2
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Example: 
Find the general solution to 
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Example: 
Find the general solution to 



Complex roots
Sometimes the roots of the auxiliary equation may be complex.

e.g. Find the general solution to 
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Find the general solution to 
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Differential equation
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Auxiliary equation

Two distinct roots 
m1 and m2

Complex roots
m = α + iω
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Example: The equation of motion for a mass on a spring is
Find the general solution for y(t). 



Find the general solution to 
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What happens when the auxiliary equation has a double/repeated  root?

e.g: 
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When the auxiliary equation has a double root at m1
the general solution is
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Example: 



Differential equation
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Auxiliary equation

Two distinct roots 
m1 and m2

Complex roots
m = α + iω

Double root at
m = m1
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Two distinct roots 
m1 and m2

Complex roots
m =m = α + iβ

Double root at
m = m1
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“overdamped” “Damped oscillation” “critically damped”



Examples:
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Example: Find the general solution to the differential equation

Find the solution that satisfies the boundary condition y(0) = 6, y’(0) = -2.
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Summary: we have seen how to find the general solution of homogeneous 
2nd order differential equations



Second order inhomogeneous differential equations

We consider equations of the form 
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Example: The force on a mass on a spring is 
proportional to the extension of the spring. 



Uniqueness

Recall: The general solution to a 2nd order linear  DE has 2 arbitrary 
constants.

For all linear first and second order DEs, 
there exists a uniqueness theorem, which says: 

There is only one solution for inhomogeneous DE

If we can guess any solution,  then this must be the solution



We now consider inhomogeneous equations, which have a driving term
on the right-hand side
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The general solution is given by

Where yc is the complementary function, given by the general solution of  
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Inhomogeneous 2nd order DEs

And yp is the particular solution to 

1. Find general solution to 
this equation

2. Find particular solution 
to this equation

3. Add them together
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1. Find general solution to 
this equation

2. Find particular solution 
to  this equation

3. Add them together
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Rule of thumb: guess something that looks like f(x), 
together with the derivatives of f(x). 
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To find the general solution to the inhomogeneous equation, 
we add the particular integral to the complementary function:
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Find the general solution to the inhomogeneous equation: 
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Find the general solution to the inhomogeneous equation: 



To find the general solution to the inhomogeneous equation, 
we add the particular integral to the complementary function:
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Summary: We consider two types of 2nd order differential equations:
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The general solution is the most general solution 
that doesn’t take the boundary conditions into account.
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The full solution satisfies both the differential equation 
and the boundary conditions 
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Problem 
specified 
completely

Full solution:
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Example: Find the general solution to

Hence find the full solution that obeys the boundary conditions y(0) = 1, y’(0) = -5. 
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Second order differential equations are important in the theory of 
vibrations and resonances

E.g. Masses on springs:

electron

nucleusLight interacting with matter:

Electric field
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Example: Find the general solution for the following DE 
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What happens if the driving frequency ωf is equal to the resonance
frequency ω?

To see this, we have to find a new particular solution to 
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