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Week 2

The cross product [Textbook: 9.4]

Vector equations of lines  and planes [Textbook: 9.5]



Dot product

Two vectors Scalar 

a
b θ

Cross product

Two vectors Vector
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The cross product

The cross product between two vectors a and b is written

ba×
The cross product is a vector which always points in direction perpendicular to both a and b

Eg: 

x

y

z

a b

ab θ

nbaba ˆ sinθ=×

normal unit vector to both a and b
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To avoid ambiguity we use the right-hand rule:

5



x

y

z

î ĵ
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The unit vectors i, j and k form
a right-handed coordinate system:
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The cross product can be calculated using the following formula
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Example: Calculate the cross product between                                   and

kji ˆˆˆ
a 

b  

( )1 2 3, ,a a a=a ( )1 2 3, ,b b b=b



The cross product can be calculated using the following formula
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Example: Calculate the cross product between a = <-1,0,1> and b = <1,2,2>

kji ˆˆˆ

a 

b  
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Example: Calculate the cross product between a = <-1,3,2> and b
= <-1,3,2>

Example: Calculate the cross product between a = <1,0,2>  and
b = <-1,1,1>
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Example: Calculate the cross product between vectors

ˆ ˆˆ ˆ3 2 , 2= − + + = + −a i j k b i j k
 



abba ×−=×

The cross product does not commute
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( ) cabacba ×+×=+×

The cross product is distributive over vector addition:

bababa ×=×=× kkk )()(
For any scalar k:

0aa =×

( ) 0=×⋅ baa

The cross product of a vector with itself is zero:

For any two vectors a and b:



“Real-world” application: torque

Torque is defined as

Frτ ×=
Displacement from pivot point

Force 
F

r

pivot
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Example: Calculate the torque in the following situation: 

10 kg
pivot

1 m 
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Example: charged particle in a magnetic field

The force on a particle moving with velocity v
in a uniform magnetic field B is

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

q= ×F v B



Cross products occur commonly when describing
rotations about an axis. E.g.



Vector representation of lines and planes

A vector representing position is usually 
written with the symbol r

ˆ ˆ ˆx y z= + +r i j k

x

y

z
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The magnitude of the position vector is

|r| = |<x,y,z>| =  
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When each of the three variables x, y and z are functions of 
a single variable  t, we obtain a curve in 3D space.

x

y

z

We can represent the curve as a direct relationship between x,y and z:

This is called the Cartesian representation.

A relation involving a parameter t
is called a parametric representation.
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Example:
For the 2D position vector r(t) = <x(t),y(t)>, 
plot the curves

(a) x(t) = 2 t
y(t) = -t

(b) x(t) = cos t
y(t) = sin t



p
a

t p

Any straight line can be written in vector form

r(t) = a + t p
where p is the direction of the line, and a is a 
point on the line

Example: 
Draw the line passing through A(-1,-1 and parallel to p = <2,-1>
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Example: 
Find the vector and Cartesian equations of the line passing 
through the points A(1,1,3) and B(2,1,-1) .

a tp
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Planes

Anything of the form

a x + b y + c z = Const.

is a plane.

e.g:  

1. z = 1

2. y = 2

3. x + y + z = 1

x

y

z

x

y

z
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Vector representations of planes

x

y

z

p

q

Any two vectors p and q together define a plane

up

vq

a

Any plane can be written in the form

r(u,v) = a + u p + v q

where:

p, q are the vectors that define the plane

a is some point on the plane

u,v are two scalars
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Example: 
1. Find a vector equation of the plane passing through  A(1,2,3) and parallel to the vectors 
p = <0,1,-1> and q = <1,0,-1>

r(u,v) = a + u p + v q
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z
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Normals to the plane

A plane can also be defined by a 
normal vector  n , together with a point a lying on the plane. 

n
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1. The vector (r – a) always lies in the plane

2. The vector (r – a) is always perpendicular to 
the normal vector

So:
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Example (using the normal to find the plane equation):
Find the equation of the plane with normal n = <2,3,5> and passing through the point A(8,10,1)
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The normal can be found using the cross product.

Suppose points A, B and C lie on the plane. 
A normal vector is given by 

A

B

C



Example: 
1. Find the Cartesian equation of the plane passing through the points A(3,-2,0) , B(-1,2,-1) and 
C(0,0,4)
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