
Matrices 



ma’tr|ix n. (pl. ~ices or ~ixes)  5. (Math.) rectangular array of 
quantities in rows and columns that is treated as a single quantity. 
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A matrix is a rectangular array of numbers.
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A matrix has order m x n if it has m rows and n columns.

A (1 x n) matrix is known as a row vector;
an (m x 1) matrix is called a column vector. a
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The elements of a matrix A are often written

ija

ith row
jth column

Eg: 
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If two matrices are the same order, they may be added or subtracted.
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It follows that matrices are commutative and associative under addition:

A + B = B + A

A + (B + C) = (A + B) + C

A zero matrix is any matrix with all elements equal to zero,
and is usually written 0:

A + 0 = 0 + A = A
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It is straightforward to multiply matrices by a scalar quantity k:
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Multiplying two matrices together is more complicated. 
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Rule: the number of columns of the first matrix  must equal the number of rows of 
the second. 



Rule: the number of columns of the first matrix  must equal the number of rows of the second. 
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][ABMultiplication of two matrices can be written as a sum:
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We define the product of a row vector and a column vector
as being the sum of the components, added together. E.g:
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If the matrices have the “wrong” dimensions for multiplication, 
then the product does not exist. E.g: 
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Matrix multiplication is non-commutative, i.e. Usually,

AB ≠ BA
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Matrix Algebra

Most rules for manipulating matrices are the same as 
those for regular numbers.

Equality:

If A = B and A = C then B = C

Associativity under addition:

A+B = B + A
(A + B) + C = A + (B + C)



Matrix multiplication is associative

A(BC) = (AB)C

but is non-commutative, i.e. Usually,

AB ≠ BA
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Matrix multiplication has some other “strange” properties:

1. AB = 0 does not necessarily mean that A = 0 or B = 0 

2. AD = AC does not necessarily mean that D = C
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The identity matrix I is the matrix with the property

AI = IA = A
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The Inverse of a square matrix
The inverse of a square matrix A (written A-1) has the property that

A-1 A = I      and A A-1 = I 

A matrix only has one inverse.
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The transpose of a matrix is obtained by interchanging the rows and the
columns:
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If A and B have the same order, 
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Summary: Rules of matrix algebra

Equality:

If A = B and A = C then B = C

Addition:

A+B = B + A
(A + B) + C = A + (B + C)

Multiplication:

(A + B) C = AC + BC
k (A + B) = kA + k B
k(AB) = (kA) B

Special matrices:

AI = IA = A
A + 0 = A

If A has an inverse,

A-1 A = A A-1 = I

Transposes:

(A+B)T = AT + BT

(AB) T= BTAT

Remember that in general:

AB ≠ BA
AB = 0 does not necessarily mean that A = 0 or B = 0
AD = AC does not necessarily mean that D = C



Main uses of matrices:

Numerical simulations, image processing, solving linear systems of equations …

Solving systems of Equations
Matrices are very useful for representing systems of linear equations.
E.g. Suppose we want to solve
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Overview:
To solve the system

Write in matrix form:

Multiply on the left by the inverse of the square matrix:
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Example:
Solve the linear system
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Crammer’s Formula
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Replace the second column of matrix A with
column vector b and find the determinant D2.

D is the determinant of matrix A.

Replace first column of matrix A with
column vector b and find the determinant
D1.



Steps to compute the determinant using cofactors: 

1. Remove the top row (or first column)

2. Multiply the coefficients of this row with +, -, +, -, +, - etc…

3. Multiply the coefficients of this row with the determinant of the minor matrix
i.e. the matrix obtained by deleting the coefficient’s row and column

The cofactors are the signed determinants of the small matrices.
Determinants of 3x3 matrices
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Determinants of 3x3 matrices
The determinant of a 3 x 3 matrix is given by the formula

and is often denoted by |square brackets| around the matrix.
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Example: Calculate the determinant of 
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Tricks when dealing with determinants
If any row or column contains only zeros then the determinant is zero
e.g.

If any two rows or columns are identical then the determinant is zero
e.g.

To find the determinant of a matrix in triagonal form, 
multiply down the diagonal
e.g.
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Use Crammer’s method to find the solution of linear system 
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Multiply by the inverse from the left :

Put the equations in matrix form:

3 x 3 systems

If we can find an inverse of a 3x3 matrix, we can solve 3x3 (or higher) systems:
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Finding the inverse of a 3 x 3 matrix

The inverse can be found by using a series of row operations. 
Any system of equations is unchanged by:

• Multiplying a row by a scalar

• Adding a multiple of one row to another

• Swapping any two rows 
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2. Use row operations to transform the left half into the identity. 
The right half will then be the inverse. 

Steps to find the inverse of an n x n matrix: 

1. “Augment” the matrix:
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Example: find the inverse of 
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Alternate method for finding the inverse:

1. Compute the matrix of cofactors C

2. Transpose this to form the Adjugate matrix Adj(A)

3. The inverse is then

The cofactors are the signed determinants 
of the small matrices.
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The determinant of a 2x2 matrix is written

If ∆=0, there is no unique solution to the equations A x = b.

E.g. Consider the system

bcad −=∆
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Definition:
A linear 3 by 3 system with zeros below the main diagonal is said to be in row-echelon form.

This can be solved using back-substitution.



A matrix can be put into row-echelon form using Row-operations. This is known as Gauss 
elimination.

Example: For the system

The augmented matrix is

Any system of equations is unchanged by:

• Multiplying a row by a scalar

• Adding a multiple of one row to 
another

• Swapping any two rows 



Example: Does this system of equations have a (unique) solution?
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Under/overspecification of a problem

We might think so, but here the situation is more complicated than simply having three 
equations and three unknowns. 



Example: Does this system of equations have a (unique) solution?

1 2

1 2 3

2 3

2 1
2 1
3 2 3

x x
x x x

x x

+ =
+ + = −
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Under/overspecification of a problem

We might think so, but here the situation is more complicated than simply having three 
equations and three unknowns. 
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