
Functions and Calculus
(review)



A function of one variable f (x) is a rule that transforms one 
number x into another number f (x).

A function has an input, or argument, and a single output, or value.

Product of all integers from 1 to n
Factorial function  denoted as   n!
0!=1

n

+1

x x+1

1 ∗ 2 ∗ 3 … ∗ 𝑛𝑛 = 𝑛𝑛!

Functions tell us how  one thing depends on another.



A function of one variable f (x) is a rule that transforms one 
number x into another number f (x).
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x cos(x)

sin 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥3
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Taylor series

cos
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Functions can be represented in a number of different ways.

1. Algebraically

2. As  a graph

3. As a table
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Most important property of any function: For each x there is only one f(x)

function not a function function            



The basic functions used in mathematical modelling

Polynomials

Power functions

Rational functions-
Ratio of polynomials

Exponential 
functions

...plus inverse functions of all of these. 
Anything else is called a Special Function.

Trigonometric 
functions

Hyperbolic 
functions



Exponential functions have the general form

Special case: when a = 2.718281828459045. .. = e , we obtain the exponential function

where a>0  is a constant.
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Properties:

1. Always grow in one 
direction, decay in the 
other

2. Never cross the x-axis

3. Look like straight lines on 
a logarithmic scale
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The trigonometric functions

xxf cos)( =

xxf sin)( =

cos ϴ = x
sin ϴ = y

𝑃𝑃(𝑥𝑥, 𝑦𝑦)

𝜃𝜃
1



Replacing x with x-a shifts the function 
a>0 units to the right.

E.g.

is the same as f(x)=x2, but shifted to the right by 2.

2)2()( −= xxf

Building new functions:

Adding a constant a shifts the function vertically:

2( ) 3f x x= +



The hyperbolic functions

The two hyperbolic functions are defined as

( )

( )xx

xx

eex

eex

−

−

−=

+=

2
1sinh

2
1cosh

exe-x

Like sine and cosine, cosh and sinh are related:



coshx

The function cosh x is known as the catenary (chain hanging freely from two points) function
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sinhx

The “hyperbolic sine” function is usually pronounced “shine”.

Slippery dip



The statement

means that f(x) can be made arbitrarily close to the number L by taking x towards a.

Limits

We think of                          as being the number that f approaches 

as x gets closer and closer to a

x

A function is continuous at the point x = a if 



Dealing with limits
To evaluate a limit of a continuous function, you can substitute directly.
i.e. To find

you can substitute x0 into f(x). 

Example: 

Note that the limit does not depend on the variable x!

lim
𝑥𝑥→𝑥𝑥0

𝑓𝑓(𝑥𝑥)

lim
𝑥𝑥→2

𝑥𝑥2

lim
𝑥𝑥→3

(𝑥𝑥3−1)



Sometimes a limit will be different when approached from different sides. E.g.:

lim
𝑥𝑥→0+

𝑓𝑓(𝑥𝑥)

lim
𝑥𝑥→0−

𝑓𝑓(𝑥𝑥)



f (x) = sin x
x

Sometimes a limit will exist even if the function is not continuous.
E.g.

lim
𝑥𝑥→0

𝑓𝑓(𝑥𝑥) =



Dealing with limits: the limit laws
For any two real functions f and g such that the relevant limits exist, we can prove:

(when                                      )

That is: limits obey the regular rules of algebra



Derivatives

The derivative of a function is the rate of 
change of the function at a particular point:

All differentiable functions are continuous, but not all continuous functions are differentiable.

f (x)

x

𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

𝑓𝑓 𝑥𝑥+ℎ −𝑓𝑓(𝑥𝑥)
𝑥𝑥+ℎ−𝑥𝑥

= lim
ℎ→0

𝑓𝑓 𝑥𝑥+ℎ −𝑓𝑓(𝑥𝑥)
ℎ

= lim
∆𝑥𝑥→0

∆𝑓𝑓
∆𝑥𝑥

= 𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

∆𝑓𝑓
∆𝑥𝑥 -Rate of change;   Slope of the tangent



Differentiation rules
For differentiable functions f(x) and g(x) we have the following rules:

1. Linearity

2. The product rule

3. The quotient rule

4. The chain rule

Using the product rule, we 
can show that  

1n nd x nx
dx

−=

This means that we can differentiate 
any polynomial function. E.g.



The chain rule

𝑓𝑓′ 𝑥𝑥 = lim
ℎ→0

𝑓𝑓 𝑔𝑔(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑔𝑔(𝑥𝑥))
ℎ

= lim
ℎ→0

𝑓𝑓 𝑔𝑔(𝑥𝑥 + ℎ) − 𝑓𝑓 𝑔𝑔 𝑥𝑥
𝑔𝑔 𝑥𝑥 + ℎ − 𝑔𝑔(𝑥𝑥)

𝑔𝑔(𝑥𝑥 + ℎ − 𝑔𝑔(𝑥𝑥))
ℎ



102 )21()( xxf −=

Chain rule examples: differentiate

3sin)( xxf =



Higher order derivatives can be computed by taken the derivative twice, 
three times, etc. They are written

We can use derivatives to find things out about the function:

,                      or

Flat (usually a maximum 
or minimum)

Concave up

Concave down



Derivatives of Hyperbolic functions 
can be found by applying the definitions of cosh and sinh:



Find the first derivatives of:

xxxf cos)( 2=

3
2)( 2 +

=
x

xxf

a) b)

c) d) 𝑓𝑓 𝑥𝑥 = 𝑒𝑒𝑥𝑥2+2𝑥𝑥+1

xxf tan)( =



𝑓𝑓 𝑥𝑥 = sin(cos(𝑥𝑥4 + 1))

Find the first derivatives of:



Implicit Functions

A function can be defined explicitly:

or implicitly:  f(x,y)=0

The derivative of an implicit function can be 
found by differentiating the entire expression, 
then using the chain rule.



Example: Find dy/dx given

1sin)( =+ xxyx



Applications: Using derivatives to find solutions to equations   
f(x)=0    (Newton’s method)

𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 = 0

𝑥𝑥3 + 𝑝𝑝𝑥𝑥 + 𝑞𝑞 = 0
(del Ferro, Tartaglia, Cardano,  1545)

For a function f(x) we can find the solution
to the equation

using Newton’s method. 

0)( =xf

zero

The idea is to start with an initial guess near the root, and use the derivatives to get a better 
guess. 

cos 𝑥𝑥 = 𝑥𝑥



The algorithm:

1. Start with a point x0

2. Draw a tangent to the curve, and find 
where this intersects the x axis    y=0

3. This point becomes the next best guess. 
Repeat 

x

f(x)

𝑦𝑦 − 𝑓𝑓 𝑥𝑥0 = 𝑓𝑓𝑓(𝑥𝑥0)(𝑥𝑥 − 𝑥𝑥0)

0−𝑓𝑓 𝑥𝑥0 = 𝑓𝑓𝑓(𝑥𝑥0)(𝑥𝑥 − 𝑥𝑥0)

𝑥𝑥 = 𝑥𝑥0 −
𝑓𝑓 𝑥𝑥0
𝑓𝑓′ 𝑥𝑥0

Newton’s Method 



The algorithm:

1. Start with a point x0

2. The next point is

3. Repeat: 

)('
)(

0

0
01 xf

xfxx −=

)('
)(

1

1
1

−

−
− −=

n

n
nn xf

xfxx

𝑥𝑥2 = 𝑥𝑥1 −
𝑓𝑓(𝑥𝑥1)
𝑓𝑓𝑓(𝑥𝑥1)



Example:
Find the number for which cos x = x 

𝑥𝑥0 = 𝜋𝜋/4.

𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥 − 𝑥𝑥

𝑓𝑓𝑓(𝑥𝑥) = −sin 𝑥𝑥 − 1

𝑓𝑓(𝑥𝑥) = cos(𝜋𝜋/4) −𝜋𝜋/4 = 2/2 − 𝜋𝜋/4
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𝑓𝑓𝑓(𝑥𝑥) = −sin(𝜋𝜋/4) −1 = − 2/2 −1

739.0
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.
𝑓𝑓(𝑥𝑥) = 0



Things that can go wrong 
with Newton’s method:

1. The derivative can become very small

2. You can land in a “cyclic” situation
(see tutorial 1 in Sec. additional study 
Questions, Q.3)

3.   Move away from the solution



Applications: Derivatives and approximations
From the definition of derivatives:

We can then approximate

when ∆x is small. 

This tells us how much y changes for a small change in x.

∆𝑦𝑦 ≈
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

∆𝑥𝑥



The main use of this is that it tells us how things scale for small changes. 

Example: The radius of a sphere increases from 10.0m to 10.1m. What is 
approximately the increase in volume?

∆𝑦𝑦 ≈
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

∆𝑥𝑥



1. The length of a rectangle is increasing at a rate of 3 cm/s and its width is increasing at a rate 
of 7 cm/s. When the length is 15 cm and the width is 7 cm, how fast is the area of the rectangle 
increasing?



2. Each side of a square is increasing at a rate of 2 cm/s. At what rate is the area of the 
square increasing when the area of the square is 49 cm2?



3. Air is pumped into a spherical balloon at the rate of 4 cm3/second. When the balloon’s 
radius is 20cm, determine the rate of increase of its a) radius, and b) surface area. 



4. If a snowball melts so that its surface area decreases at a rate of 1 cm2/min, find the rate at 
which the diameter decreases when the diameter is 11 cm. (Give your answer correct to 4 
decimal places.)
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