
The Integral Calculus



Integration has two seemingly  unrelated definitions:

1. Integration is the 
reverse operation to differentiation

2. Integration is the limit when we 
sum a large number of small quantities.

These are useful for:

1. Solving Differential equations

2. Computing aggregate quantities
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Integrals as anti-derivatives
An indefinite integral F(x) of a function f(x) is written
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and is the Antiderivative of f(x), i.e. It is the function for which

F(x) is often known as the primitive function of  f(x)
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E.g.

Let f(x) = 2x + 1. A function that has f(x) as its derivative is

Let g(x) = k=const. A function that has g(x)  as its derivative is



If F(x) is indefinite integral of a function f(x) then G(x)=F(x) + C, where C is a constant is
also an indefinite integral of f(x)     
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We find the primitive function F(x) by reverse differentiation.

E.g.
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Because

We then have
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More complicated integrals:
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We also know

therefore

2
1 arctan

1
dx x C

x
= +

+∫



Often the more complicated integrals are given using Tables of Integrals.
e.g. 



1D definite integrals 
We think of a one-dimensional definite integral 
as the sum of areas of infinite number of rectangles:

As the number of rectangles increases, a better and better 
approximation for the area under the curve is obtained.

This is known as the Riemann sum of the integral. 
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2. An integral is also the sum of a large number of very small quantities



NB: The integral is often thought of as the area under a graph.

However, integrals can also be negative or zero (unlike areas).
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The fundamental theorem of calculus

These two ideas of integration (anti-derivatives, Riemann sums) are the same.

This is expressed by the following formal statements:

1. If f(x) is continuous on an interval [a,b] and a <x < b then

2. If f(x) is continuous on an interval [a,b] and F’(x) = f(x), then
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Proof:
Divide [a,b] into n equal sections. Then 
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• If we define the area function for f(x) between a and  x  to be A(x), then we 
have

• Assuming the function is continuous and sufficiently smooth then dividing 
through by the distance h, and  letting this value tend towards zero, we find

• Hence                        .   In other words, the area function is the antiderivative 
of f(x), so                          . 
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General properties of definite Integrals 
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General properties of definite Integrals 



Example: Evaluate
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Example: Evaluate
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Example: Evaluate
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Example: Compute the average value of the function f(x) = 3 + sin 2x
over the interval 0 < x < ¼/2

Formula for average of f(x) 
over an interval [a,b]:



Example: Compute the root-mean-square   (RMS) of the following 
function:
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Formula for RMS of f(x) 
over an interval [a,b]:
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Example: Evaluate
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