
Integration by substitution [Textbook: 5.5]

Integration by parts [Textbook: 5.6]

Partial Fractions 



Techniques of Integration

There are a  number of techniques that can be used to evaluate integrals.
Here we cover the most important analytic techniques: 

1. Substitution

2. Integration by parts

3. Partial fractions

There are also a number of numerical techniques. 



Techniques of integration: substitution

We can often convert integrals into a simple form by “swapping variables”
between the integration variable x and a new variable u.
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Often, substitution can be use to evaluate “tricky-looking” integrals.  

Example: ∫ dxxex2
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Integrating powers of sine and cosine

Often we have to integrate integrals that looks like this:

If the power is odd then we can evaluate this by using the identity



If the power is even then we use the “half-angle identities”:

so



Trigonometric substitution
We can often evaluate integrals involving a square root, e.g.

By making a trigonometric substitution 

The trick is to use pick the right substitution to get rid of the square root. 

Note that we have to ensure that x lies in the range of the trig function. 



Examples:





Example:
Show that the area of a circle is πr2



Impossible Integrals

It is important to realise that there are some integrals that cannot be done, 
i.e. whose answer cannot be expressed in terms in simple “closed form”. 

Examples:

The elliptic integrals:

E.g.

The error function

These integrals can sometimes be evaluated in special cases. 



½ ln |x^2+2| + C

No closed form



½ sin-1 (2x) + C

1/3 (x2+1) 3/2 + C



-1/2 cos(θ2) + C



Example: Arc length
The arc-length along a curve y =f( x) is given by

Compute the length along the curve y =  x3/2 from x = 0 to x = 9.
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Techniques of Integration: integration by parts
Products of functions, e.g. 

can often be integrated “by parts”.
xx sin2 xxe4

The product rule for derivatives is

Integrate both sides with respect to x:
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So, for any product u(x) v’(x), we can integrate as follows:

This only works if the second integral (on the RHS) 
is simpler that the original one. 

When presented with an integral of a product, e.g. 

1. We want one of the functions to be easy to integrate 
(choose this one as v’)

2. We want the other function to be easy to differentiate 
(choose this one to be u)



dxuvuvdxvu ∫∫ ′−=′



Important: If we don’t pick the correct part 
of the product to integrate, then we end up with a more complicated integral.

Example:

∫ dx sin xx
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Example: Find 

dxuvuvdxvu ∫∫ ′−=′
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Example:
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Example: (with integration limits)
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How to integrate  functions in the form

where p(x) and q(x) are polynomials.  Examples:
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Finding integrals using partial fractions
We can use the method of partial fractions to find integrals of the form

where p(x) and q(x) are polynomials. For example, for the integral

We write the integrand as a sum of two fractions: 

We can then do the integral:
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To find the constants A and B, we use the following trick:
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Integrate:
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What about integrals that look like this?
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Examples of integrals

[1/3 ex3 + C]

ln|(x+2)/(x+1)| + C
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