
lecture 10: SQL III
Correlated Subquery

Main reference:

Modern Database Management, 11th Edition

Chapter 7: Advanced SQL

Subject Coordinator and Instructor:

Dr. Danna (Fahimeh) Ramezani

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 2

The DF lecture are designed and elaborated to create a collaborative

learning environment and engage students in concepts via class

activities and discussions.

If you have any question and you don’t want to share it in class,

send it to us via Discussion Board on ED.

However, it is better to speak out in class ☺

Participations and Discussions

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 3

Subject FlowchartSubject Flowchart

Design ERD base on the BRs

(Weeks 1, 3 & 4)

Convert ERD to the relations

(you have determined the PKs)
(Week 5)

Use forms & Documents ➔

Determine FDs
(Week 6)

Normalization
(Weeks 6)

Use forms & Documents ➔ BRs

(Weeks 1, 3 & 4)

Use FDs to determine all types of keys
(super key, Candidate keys, and PKs)

(Week 6)

Determine key and none key attributes
(Week 6)

Revise your relations and ERD
(Weeks 6)

You have a normalized database

which is ready for implementation

SQL

•Data Definition Language (DDL)

•Data Manipulation Language (DML)
(Week 7-10)

BR: Business Rule

ERD: Entity Relationship Diagram

FD: Functional Dependencies

PK: Primary Key

D
a
ta

 D
e
fi

n
it

io
n

 L
a
n

g
u

a
g

e
 (

D
D

L
)

(w
e
e
k
 2

)

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 4

Subject Overview

➢Design Entity Relationship Diagram (ERD)
➢Week 1: Data Modelling I (Conceptual Level): Entity, Attributes, PK, FK, …

➢Week 2: Data Definition Language (DDL): Create tables, constraints, insert, …

➢Week 3: Data Modelling II (Conceptual Level): Associative, Weak, …

➢Week 4: Data Modelling III (Conceptual Level): Subtype/Supertype

➢Week 5: Convert ERD to Relations (Logical Level)

➢Week 6: Functional Dependencies, and Normalization

➢Data manipulation
➢Week 7: Simple Query

➢Week 8: Multiple Table Queries

➢Week 9: Subquery

➢Week 10: Correlated Subquery

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 5

Lecture Objectives:

1. Correlated Subquery

2. Examples

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Processing Multiple Tables Using Subqueries

Subquery is an inner query (SELECT statement) inside an outer query.

Options:

➢ In a condition of the WHERE clause

➢ As a “table” of the FROM clause

➢ Within the HAVING clause

Subqueries (Nested queries) can be:

◦ Noncorrelated (Simple or Type 1)– executed once for the entire outer query

◦ Correlated– executed once for each row returned by the outer query

6

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 7

Subquery Example

Question 1: List all products whose price is above average price of products with ‘Oak’ finished.

SELECT productdescription, productstandardprice, productfinish
FROM product_t Table_a
WHERE productstandardprice >

(SELECT avg(productstandardprice)
FROM product_t Table_b
WHERE Table_b.productfinish= 'Oak’)

ORDER BY productfinish;

productdescription productstandardprice productfinish

8-Drawer Dresser 750.00 Birch

Entertainment Center 1650.00 Cherry

6' Grandfather Clock 890.00 Oak

7' Grandfather Clock 1100.00 Oak

8-Drawer Dresser 800.00 Oak

Oak Computer Desk 750.00 Oak

Amoire 1200.00 Walnut

7 rows

avg

592.50

Correlated Subquery Example
Question 2: List all products with a standard price above the

average price of products with the same finish.

SELECT productdescription, productstandardprice, productfinish
FROM product_t Table_a

WHERE productstandardprice >
(SELECT avg(productstandardprice)
FROM product_t Table_b
WHERE Table_b.productfinish = 'Oak')

ORDER BY productfinish;

Table_a.productfinish)

Table_a.productdescription, Table_a .productstandardprice, Table_a .productfinish

avg

658.33

avg

487.33

productdescription productstandardprice productfinish

Writer's Desk 512.00 Birch

8-Drawer Dresser 750.00 Birch

Entertainment Center 1650.00 Cherry

7' Grandfather Clock 1100.00 Oak

Oak Computer Desk 750.00 Oak

8-Drawer Dresser 800.00 Oak

6' Grandfather Clock 890.00 Oak

Amoire 1200.00 Walnut

avg

592.50

avg

658.33

product_t Table_a

Please run the ppt and
follow the animations to
understand the process
of executing the query.

ProductID ProductDescription ProductFinish ProductStandardPrice ProductLineID

1 Cherry End Table Cherry 175.00 1

2 Birch Coffee Tables Birch 200.00 1

3 Oak Computer Desk Oak 750.00 1

4 Entertainment Center Cherry 1650.00 1

5 Writer's Desk Oak 325.00 2

6 8-Drawer Dresser Birch 750.00 1

7 48 Bookcase Walnut 150.00 3

8 48 Bookcase Oak 175.00 3

… … … … …

ProductID ProductDescription ProductFinish ProductStandardPrice ProductLineID

1 Cherry End Table Cherry 175.00 1

2 Birch Coffee Tables Birch_S 200.00 1

3 Oak Computer Desk Oak 750.00 1

4 Entertainment Center Cherry 1650.00 1

5 Writer's Desk Oak 325.00 2

6 8-Drawer Dresser Birch 750.00 1

7 48 Bookcase Walnut 150.00 3

8 48 Bookcase Oak 175.00 3

… … … … …

Product_t Table_a

Product_t Table _b

Then … Average 175.00 and 1650.00 which is (175.00+ 1650.00)/2=912.5 will be passed to the outer query to be used.

Table_a.productfinish

avg

912.50

Another way to explain the process of executing the query.

175.00 < 912.5 so “Cherry End
Table” will not be in the result
table of the outer query … and
the story continues for every
row of Table_a …

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

In the outer query,

➢ SQL engine goes to Product-t table (Table_a),

➢ then starts from the first row of this table, and

➢ then take the value of ProductFinish (Table_a.ProductFinish that is cherry in the first row)

➢ then pass this value of ProductFinish (i.e. Table_a.ProductFinish) to the subquery.

In the subquery,

➢ SQL engine goes to Product_t table (Table_b),

➢ then find the rows where Table_b.productfinish=Table_a.productfinish,

➢ then calculate the average standard price of the products related to these rows (i.e. the products that finish in the

current value of Table_a.productfinish)

➢ then pass this average value to the outer query to show in the result table of the outer query.

The SQL engine then starts again from the outer query, goes to the second row of the Product-t table (Table_a), and

the process will be repeated for each row of the table in the outer query (that is Product-t table (Table_a) in this example).

Therefore, the subquery executes once for each row of the table in the outer query.

Processing a correlated subquery:

➢ List all products whose price is above average price of products with same finished.

10

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 11

Correlated vs. Noncorrelated Subqueries

• Noncorrelated subqueries:

• Do not depend on data from the outer query

• Execute once for the entire outer query

• Correlated subqueries:

• Make use of data from the outer query

• Execute once for each row of the outer query

• Can use the EXISTS operator

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Questions 3, 4 and 5

12

Show all orders that include furniture finished in Oak using:

• Join

• Simple Subquery

• Correlated Subquery

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 13

Question 3: Show all orders that include furniture finished in Oak using Join

SELECT orderid, product_t.productid, productdescription, productfinish
FROM orderline_t, product_t
WHERE product_t.productid = orderline_t.productid

and productfinish='Oak';

Now, only show the order IDs.

orderid productid productdescription productfinish

1 10 96 Bookcase Oak

2 3 Oak Computer Desk Oak

2 8 48 Bookcase Oak

4 3 Oak Computer Desk Oak

4 5 Writer's Desk Oak

32 5 Writer's Desk Oak

51 3 Oak Computer Desk Oak

54 3 Oak Computer Desk Oak

58 3 Oak Computer Desk Oak

63 3 Oak Computer Desk Oak

71 3 Oak Computer Desk Oak

11 rows

Let’s run the following query first and check the result table:

SELECT distinct(orderid)
FROM orderline_t, product_t
WHERE product_t.productid = orderline_t.productid

and productfinish='Oak’;

orderid

1
2
4

32
51
54
58
63
71

(9 rows)

Note: Order_ID and Product_ID are FKs in
Orderline_T

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 14

Question 4: Show all orders that include furniture finished in Oak

using simple subquery.

SELECT distinct(orderid)

FROM orderline_t
WHERE productid in (SELECT productid

FROM product_t
WHERE productfinish='Oak');

Non-correlated subqueries:

* Do not depend on data from the outer query

* Execute once for the entire outer query

productid

3
5
8
10
11
12
18
19

(8 rows)

Note: Order_ID and Product_ID are FKs in
Orderline_T

orderid

1
2
4

32
51
54
58
63
71

(9 rows)

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 15

Question 5: Show all orders that include furniture finished in Oak using Correlated Subquery.

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 16

SELECT distinct(orderid)

FROM orderline_t

WHERE EXISTS (SELECT *

FROM product_t

WHERE productid=orderline_t.productid
and productfinish='Oak’);

Question 5: Show all orders that include furniture finished in Oak

using Correlated Subquery.

Note: Order_ID and Product_ID are FKs in
Orderline_T

orderid

1
2
4

32
51
54
58
63
71

(9 rows)

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

ProductID ProductDescription ProductFinish ProductStandardPrice ProductLineID

1 End Table Cherry 175 10001

2 Coffee Table Natural Ash 200 20001

3 Computer Desk Natural Ash 375 20001

4 Entertainment Center Natural Maple 650 30001

5 Writer’s Desk Cherry 325 10001

6 8-Drawer Dresser White Ash 750 20001

7 Dining Table Natural Ash 800 20001

8 Computer Desk Walnut 250 30001

Subquery refers to outer-query data, so executes

once for each row of the table in the outer query.

Product_t

Processing a correlated subquery:

➢ Show all orders that include furniture

finished in natural ash.

OrderID ProductID OrderQuantity

1001 1 1

1001 2 2

1001 4 1

1002 3 5

1003 3 3

1004 6 2

1004 8 2

1005 4 4

1006 4 1

0 0 0

Orderline_t

1

2

3

4

orderline_t.productid

17

Note: Only the orders that involve products with Natural Ash
will be included in the final results.

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

In the outer query,

➢ SQL engine goes to Orderline-t table,

➢ then starts from the first row of this table which is related to the OrderID 1001, and

➢ then take the related ProductID ProductID (i.e. Orderline_t. ProductID which equals to 1 in the first row of the table),

➢ then pass this ProductID (i.e. Orderline_t. ProductID) to the subquery.

In the subquery,

➢ SQL engine goes to Product_t table,

➢ then find the row where ProductID= Orderline_t. ProductID,

then check if this product finish in ‘Natural Ash’.

➢ If yes, then pass the related OrderID to the outer query to show in the result table of the outer query.

The SQL engine then starts again from the outer query, goes to the second row of the Orderline-t table, and the

process will be repeated for each row of the table in the outer query (that is Orderline-t table in this example).

Therefore, the subquery executes once for each row of the table in the outer query.

Processing a correlated subquery:

➢ Show all orders that include furniture finished in natural ash.

18

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 19

Correlated Subquery (more Description for the example)

Question 5: Show all orders that include furniture finished in natural ash.

The subquery is testing

for a value that comes

from the outer query

The EXISTS operator returns a

TRUE value if the subquery

resulted in a non-empty set,

otherwise it returns a FALSE.

➔ A correlated subquery always refers to an attribute from a table referenced in the outer query

Correlated subqueries:
* Make use of data from the outer query
* Execute once for each row of the outer query
* Can use the EXISTS operator

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Processing a correlated subquery (Figure 7-8b):

Show all orders that include furniture finished in natural ash.

20

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 21

Questions 6: Calculate the average price of three groups of products with finishing in

Oak, Pine and Walnut.

Question 7: Show all products whose standard price is higher than the average price.

Answer these questions using Subquery in from clause

Subquery in FROM clause (Questions 6 and 7)

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 22

Subquery in FROM clause

SELECT productfinish, round(avg(productstandardprice)) as AveragePrice
FROM product_t
GROUP BY productfinish;

First: Calculate the average price for each group of products that have same finishing .

productfinish averageprice

0

Pine 256

Birch 487

Cherry 658

Walnut 525

Oak 593

Leather 362

Question 6: Calculate the average price of three groups of products with finishing in Oak, Pine and Walnut.

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 23

Subquery in FROM clause

SELECT avg(AveragePrice)

FROM

(SELECT productfinish, round(avg(productstandardprice)) as AveragePrice

FROM product_t

GROUP BY productfinish) MyTable

WHERE productfinish in ('Oak', 'Pine', 'Walnut');

Then we use the query in previous slide in FROM clause to calculate the average price of specific
groups, e.g. ‘Pine’, ‘Walnut’, ‘Oak’.

Question 6: Calculate the average price of three groups of products with finishing in Oak, Pine and Walnut.

Productfinish averageprice

0

Pine 256

Birch 487

Cherry 658

Walnut 525

Oak 593

Leather 362

avg

458

(1 row)

Productfinish averageprice

0

Pine 256

Birch 487

Cherry 658

Walnut 525

Oak 593

Leather 362

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Question 7: Show all products whose standard price is higher than the average price using subquery in From Clause.

SELECT productdescription, productstandardprice, AvgPrice
FROM

(SELECT round(avg(productstandardprice)) as AvgPrice
FROM product_t) Tavg

WHERE productstandardprice> AvgPrice;

avgprice

484 , product_t

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 25

SELECT productdescription, productstandardprice, AvgPrice

FROM

(SELECT round(avg(productstandardprice)) as AvgPrice

FROM product_t) Tavg , product_t

WHERE productstandardprice> AvgPrice;

Subquery in From Clause

Question 7: Show all products whose standard price is higher than the average price.

Subquery forms the derived table used in the
FROM clause of the outer query. This derived
table should have an alias name (Tavg).

The WHERE clause normally cannot include aggregate functions, but
because the aggregate is performed in the subquery its result can be used in
the outer query’s WHERE clause.

One column of the subquery is an aggregate function
that has an alias name (AvgPrice). That alias can then
be referred to in the outer query.

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

What are Sub-Query and Correlated Sub-Query?

Link:

https://www.youtube.com/watch?v=00Vxnod-6iE&index=8&list=PLJKaNMxPrhJTsly8opxBCAW2Lon8gJCge

Video

26

https://www.youtube.com/watch?v=00Vxnod-6iE&index=8&list=PLJKaNMxPrhJTsly8opxBCAW2Lon8gJCge
https://www.youtube.com/watch?v=00Vxnod-6iE&index=8&list=PLJKaNMxPrhJTsly8opxBCAW2Lon8gJCge

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Examples

27

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Produce a list of all products (product description) and the number of

times each product has been ordered.

28

Example 1

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 29

SELECT productdescription,productid,

(SELECT count(*)
FROM orderline_t
GROUP BY productid
HAVING productid=p.productid) as number_of_orders

FROM product_t p;

Solution 1 to Example 1: Produce a list of all products (product description) and the number of times each

product has been ordered.

productdescription | productid | c
-------------------------+-----------+----------
Cherry End Table | 1 | 7
Birch Coffee Tables | 2 | 5
Oak Computer Desk | 3 | 7
Entertainment Center | 4 | 7
Writer's Desk | 5 | 2
8-Drawer Dresser | 6 | 3
48 Bookcase | 7 | 1
48 Bookcase | 8 | 1
96 Bookcase | 9 |
96 Bookcase | 10 | 1
4-Drawer Dresser | 11 |
8-Drawer Dresser | 12 |
Nightstand | 13 | 1
Writer's Desk | 14 | 2
High Back Leather Chair | 17 | 1
6' Grandfather Clock | 18 |
7' Grandfather Clock | 19 |
Amoire | 20 | 1
Pine End Table | 21 |

| 24 |
| 25 |

(21 rows)

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 30

Select productdescription, p.productid, mycount

From

(select productid, count(*) as mycount

from orderline_t

group by productid)MT

full outer join product_t p on MT.productid= p.productid;

Question: Change this query to
produce a result table like the
result table of the first solution.

Solution 2 to Example 1: Produce a list of all products (product description) and the number of times each

product has been ordered.

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 31

Select productdescription, p.productid, mycount

From

(select productid, count(*) as mycount

from orderline_t

group by productid)MT

Right outer join product_t p on MT.productid= p.productid;

Solution 3 to Example 1: Produce a list of all products (product description) and the number of times each

product has been ordered.

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Show customers ID and name for all the customers who have ordered both product IDs

3 and 4 on the same order.

32

Example 2

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 33

select customerid, customername from customer_t
where customerid in
(select customerid from order_t where orderid in

(select orderid from order_t O where
3 in

(select productid from orderline_t OL where OL.orderid=O.orderid)
and 4 in
(select productid from orderline_t OL where OL.orderid=O.orderid)));

Solution 1 to Example 2: Show customers ID and name for all the customers

who have ordered both product IDs 3 and 4 on the same order

customerid | customername
----------------+-------------------

6 | Furniture Gallery
16 | ABC Furniture Co.

(2 rows)

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 34

Select customerid, customername from customer_t
where customerid in
(select customerid from order_t where orderid in

(select orderid from order_t O where
exists

(select * from orderline_t where productid=3 and orderid=O.orderid)
and exists
(select * from orderline_t where productid=4 and orderid=O.orderid)));

customerid | customername
-----------------+-------------------

6 | Furniture Gallery
16 | ABC Furniture Co.

(2 rows)

Solution 2 to Example 2: Show customers ID and name for all the customers

who have ordered both product IDs 3 and 4 on the same order

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 35

Select customerid, customername
from customer_t
where customerid in
(select customerid from order_t
where orderid in (select orderid from orderline_t where productid=3)

and
orderid in (select orderid from orderline_t where productid=4)

)
Order by customerid;

customerid | customername
-----------------+-------------------

6 | Furniture Gallery
16 | ABC Furniture Co.

(2 rows)

Solution 3 to Example 2: Show customers ID and name for all the customers

who have ordered both product IDs 3 and 4 on the same order

Using simple sub-query:

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 36

More Information

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Conditional Expressions Using Case Syntax (Figure 7-10)

This is available with newer versions of SQL, previously not part of the standard

37

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 38

SELECT CASE
WHEN productid between 1 and 10 THEN productdescription
WHEN productid between 11 and 15 THEN ‘**’
ELSE '####'
END AS productdescription
FROM product_t;

productdescription

Cherry End Table
Birch Coffee Tables
Oak Computer Desk
Entertainment Center
Writer's Desk
8-Drawer Dresser
48 Bookcase
48 Bookcase
96 Bookcase
96 Bookcase
**
**
**
**
####
####
####
####
####
####
####

(21 rows)

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 39

create view V1 as
select productid from product_t;

You can create a View of the queries that are frequently required:

productid

1
2
3
4
5
6
7
8
9

10
11
12
13
14
17
18
19
20
21
24
25

(21 rows)

Select * from V1;

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 40

Tips for Developing Queries

▪ Be familiar with the data model (entities and relationships)

▪ Understand the desired results

▪ Know the attributes desired in results

▪ Identify the entities that contain desired attributes

▪ Review ERD

▪ Construct a WHERE equality for each link

▪ Fine tune with GROUP BY and HAVING clauses if needed

▪ Consider the effect on unusual data

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 41

Query Efficiency Considerations

➢ Instead of SELECT *, identify the specific attributes in the

SELECT clause; this helps reduce network traffic of result set

➢ Limit the number of subqueries; try to make everything done in

a single query if possible

➢ If data is to be used many times, make a separate query and

store it as a view

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 42

Guidelines for Better Query Design

➢ Understand how indexes are used in query processing

➢ Write simple queries

➢ Break complex queries into multiple simple parts

➢ Don’t nest one query inside another query

➢ Don’t combine a query with itself (if possible avoid self-joins)

➢ Retrieve only the data you need

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 43

Routines and Triggers

➢ Routines: Program modules that execute on demand

▪ Functions–routines that return values and take input parameters

▪ Procedures–routines that do not return values and can take input or

output parameters

▪ Triggers–routines that execute in response to a database event

(INSERT, UPDATE, or DELETE)

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Figure7-13 Triggers contrasted with stored procedures (based on Mullins 1995)

Procedures are called explicitly

Triggers are event-driven
Source: adapted from Mullins, 1995.

44

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 45

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 46

Embedded and Dynamic SQL

➢ Embedded SQL

▪ Including hard-coded SQL statements in a program

written in another language such as C or Java

➢ Dynamic SQL

▪ Ability for an application program to generate SQL

code on the fly, as the application is running

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 47

Reasons to Embed SQL in 3GL

➢ Can create a more flexible, accessible interface for the user

➢ Possible performance improvement

➢ Database security improvement; grant access only to the

application instead of users

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani

Message from previous students ☺
Angelo Athanasiou (DF Grade HD)

➢ Why read the test book:

The modern database management textbook covers everything more in-depth than the lectures and will greatly

help with understanding any areas that are unclear, the textbook is also available from the UTS library so students

don't have to pay to access it. Older editions of the textbook can also be obtained for free and contain the same

relevant information.

➢ What to learn:

Learn how a relational database uses relations, cardinality, etc. because if you don't understand those concepts

early on the subject won't be as clear as it progresses.

Learn how SQL statements affect a database and what they do, as it is important to understand how they work

instead of just understanding what they do, such as knowing why a certain output is given instead of just knowing

what to do to get a certain output.

➢ To aid with the transition from ERD to SQL,

Microsoft Access can be used to understand how things work as you can view the ERD, as well as use SQL to gain

output. What I like about using Microsoft access to help people visualize is because you can use QbE to compare

how a query would be undertaken in SQL.

Links: How to use the Query By Example (QBE) grid | lynda.com tutorial:

https://www.youtube.com/watch?v=X9vyzpdUWHs

48

Date 5/5/2021Dr. Danna (Fahimeh) Ramezani 49

