UTS: ENGINEERING AND INFORMATION TECHNOLOGY

lecture 5: Relational Model

Main reference:

Modern Database Management, 11th Edition Chapter 4: Logical Database Design and the Relational Model

Subject Coordinator and Instructor:

Dr. Danna (Fahimeh) Ramezani

Innovation in practice eng.uts.edu.au • it.uts.edu.au

UTS CRICOS PROVIDER CODE: 00099F

Participations and Discussions

The DF lecture are designed and elaborated to create a collaborative learning environment and engage students in concepts via class activities and discussions.

If you have any question and you don't want to share it in class, send it to us via **Discussion Board on ED**.

However, it is better to speak out in class ③

Subject Flowchart

Date 8/30/2022

Subject Overview

Design Entity Relationship Diagram (ERD)

- > Week 1: Data Modelling I (Conceptual Level): Entity, Attributes, PK, FK, ...
- > Week 2: Data Definition Language (DDL): Create tables, constraints, insert, ...
- > Week 3: Data Modelling II (Conceptual Level): Associative, Weak, ...
- Week 4: Data Modelling III (Conceptual Level): Subtype/Supertype
- > Week 5: Convert ERD to Relations (Logical Level)
- > Week 6: Functional Dependencies, and Normalization

Data manipulation

- > Week 7: Simple Query
- > Week 8: Multiple Table Queries
- > Week 9: Subquery
- > Week 10: Correlated Subquery

A relational model (a model of a possible database implementation) is a collection of inter-related

tables that is build up based on an ERD (an abstract concept of our database).

1. Components of relational model: Data structure, Data manipulation, Data integrity

2. Relations

- 2.1. Correspondence with E-R Model (Data structure)
- 2.2. Key Fields
- 2.3. Integrity Constraints (Data integrity)
 - 2.3.1. Domain Constraints
 - 2.3.2. Entity Integrity
 - 2.3.3. Referential Integrity

3. Transforming EER Diagrams into Relations

- 3.1. Mapping Regular Entities to Relations
- 3.2. Mapping Binary Relationships (1:M, 1:1, M:N (Associative Entities)
- 3.3. Mapping Ternary (and n-ary) Relationships
- 3.4. Mapping Weak Entities
- 3.5. Mapping Unary Relationships
- 3.6. Mapping Supertype/Subtype Relationships

A relational model (a model of a possible database implementation) is a collection of inter-related tables that is build up based on an ERD (an abstract concept of our database).

Date 8/30/2022

- **1. Components of Relational Model**
- **Data structure** (in this video) Tables (**relations**), rows, columns

 \succ **Data manipulation** (Lecture 7 -10)

Powerful SQL operations for retrieving and modifying data

Data integrity (Video 4.2) \succ

Mechanisms for implementing business rules that maintain integrity of manipulated data \rightarrow referred to PK/FK

6

Table also called Relation Domain Primary Key Ex: NOT NULL © guru99.com CustomerID CustomerName Status 1 Google Active **Tuple OR Row** 2 Amazon Active 3 Apple Inactive Total # of rows is Cardinality **Column OR Attributes** Total # of column is Degree

Video 4.1: Relation

Total # of column is Degree

Images Reference: https://www.guru99.com/relational-data-model-dbms.html

Date 8/3

Dr. Danna (Fahimeh) Ramezani

2. Relation

> A relation is a named, two-dimensional table of data.

>A table consists of rows (records) and columns (attribute or field).

- Requirements for a table to qualify as a relation:
 - It must have a **unique name**.
 - Every attribute value must be **atomic** (not multivalued (like Skill), not composite (like Address))

(More on this in the next lectures).

- Every **row** must be **unique** (can't have two rows with exactly the same values for all their fields).
- **Attributes** (columns) in tables must have **unique names**.
- The order of the columns must be irrelevant.
- The order of the rows must be irrelevant.

2.1. Relational Model Concepts Correspond to E-R Model

- > **Relations (tables)** correspond with **entity types** and with many-to-many relationship types.
- > Rows correspond with entity instances and with many-to-many relationship instances.
- > Columns correspond with attributes.

Relations (tables)

Ins_ID	Ins_F_Name	Ins_L_Name	
12548	Danna	Ramezani	
45476	Ricky	Brown	
14475	Jack	Cooper	

NOTE: The word *relation* (in relational database) is NOT the same as the word *relationship* (in E-R model).

2.2. Key Fields (Review)

к	Customer_ID	Customer_Name	Customer_Street	Customer_City	Customer_State	CustomerPostal_Code
	1	Contemporary Casuals	1355 S Hines Blvd	Gainesville	FL	32601-2871
	2	Value Furnitures	15145 S.W. 17th St.	Plano	тх	75094-7743
+	3	Home Furnishings	1900 Allard Ave	Albany	NY	12209-1125
0	4	Eastern Furniture	1925 Beltline Rd.	Carteret	LΝ	07008-3188
	5	Impressions	5585 Westcott Ct.	Sacramento	CA	94206-4056
	6	Furniture Gallery	325 Flatiron Dr.	Boulder	со	80514-4432
	7	Eastern Furniture	Palace Ave	Farmington	NM	NULL

Order II

1001

1004

Order_Date 8/09/2009

4/10/2009 19/07/2009

1/11/2009

28/07/2009

PK

Keys are special fields that serve two main purposes:

<u>Primary keys</u> are **unique** identifiers of the relation.

Examples include Customer ID, etc. This guarantees that all rows are unique.

- Foreign keys are identifiers that enable a dependent relation (on the many side of a relationship) to refer to its parent relation (on the one side of the relationship).
- Keys can be *simple* (a single field) or *composite* (more than one field).
- Keys usually are used as indexes to speed up the response to user queries (more on this in Chapter 5).

Primary key/Foreign key (Review)

Class Activity 4.1 \rightarrow in the live lecture

Explain why when there is one-to-many relationship between two entities, **PK** of the entity on the one side will be **FK** on the entity on the many side. Provide your explanation via an example.

Class Activity 4.2 (2 Minutes) → in the live lecture

Remind the rule: in each one-to-many relationships, PK of the entity on one side is FK of the entity on the many side.

Question: What would be the FK in a relation (table) that need to have a relationship

with OrderLine_T?

Solution to class Activity 4.1 \rightarrow in the live lecture

Question: What would be the FK in a relation (table) that need to have a relationship with OrderLine_T?

РК	Customer_ID	Customer_Name	Customer_Street	Customer_City	Customer_State	CustomerPostal_Code
	1	Contemporary Casuals	1355 S Hines Blvd	Gainesville	FL	32601-2871
	2	Value Furnitures	15145 S.W. 17th St.	Plano	ТХ	75094-7743
+	3	Home Furnishings	1900 Allard Ave	Albany	NY	12209-1125
	4	Eastern Furniture	1925 Beltline Rd.	Carteret	NJ	07008-3188
	5	Impressions	5585 Westcott Ct.	Sacramento	CA	94206-4056
	6	Furniture Gallery	325 Flatiron Dr.	Boulder	со	80514-4432
	7	Eastern Furniture	Palace Ave	Farmington	NM	NULL

Order_ID	Order_Date	Customer_ID	FK
1001	8/09/2009	4	
1002	4/10/2009	3	
1003	19/07/2009	1	\geq
1004	1/11/2009	6	
1005	28/07/2009	4	
1006	27/08/2009	4	

Video 4.2. Integrity Constraints

2.3. Integrity Constraints

Integrity Constraints are applied to facilitate maintaining the accuracy and integrity

of data in the database.

The major types of integrity constraint are:

2.3.1. Domain Constraints (Determines the allowable values for an attribute)

2.3.2. Entity Integrity (PK fields can't be null)

2.3.3. Referential Integrity (foreign key value MUST match a primary key value)

РК	Customer_ID	Customer_Name	Customer_Street	Customer_City	Customer_State	CustomerPostal_Code
	1	Contemporary Casuals	1355 S Hines Blvd	Gainesville	FL	32601-2871
	2	Value Furnitures	15145 S.W. 17th St.	Plano	тх	75094-7743
+	3	Home Furnishings	1900 Allard Ave	Albany	NY	12209-1125
	4	Eastern Furniture	1925 Beltline Rd.	Carteret	NJ	07008-3188
	5	Impressions	5585 Westcott Ct.	Sacramento	CA	94206-4056
	6	Furniture Gallery	325 Flatiron Dr.	Boulder	со	80514-4432
	7	Eastern Furniture	Palace Ave	Farmington	NM	NULL

Order_ID	Order_Date	Customer_ID	FK
1001	8/09/2009	4	0
1002	4/10/2009	3	
1003	19/07/2009	1	\geq
1004	1/11/2009	6	
1005	28/07/2009	4]
1006	27/08/2009	4	D

2.3.1. Domain Constraints

All the values that appear in a **column** of a relation (Table) must be from **the same domain**. • A domain is the set of values that may be assigned to an attribute.

Example: the domain value for attribute **Student_ID** is an **integer with 4 digits** then the **domain** can be any integer number between 1000, 9999.

- A domain definition is usually consisting of the following components:
 - Domain name
 - Description
 - Data type
 - Size (or length)
 - Allowable values
 - Allowable range

	TABLE 4-1 Domain Def	finitions for INVOICE Attri	butes	
	Attribute	Domain Name	Description	Domain
	CustomerID	Customer IDs	Set of all possible customer IDs	character: size 5
'	CustomerName	Customer Names	Set of all possible customer names	character: size 25
es	CustomerAddress	Customer Addresses	Set of all possible customer addresses	character: size 30
	CustomerCity	Cities	Set of all possible cities	character: size 20
ge	CustomerState	States	Set of all possible states	character: size 2
	CustomerPostalCode	Postal Codes	Set of all possible postal zip codes	character: size 10
	OrderID	Order IDs	Set of all possible order IDs	character: size 5
	OrderDate	Order Dates	Set of all possible order dates	date: format mm/dd/yy
	ProductID	Product IDs	Set of all possible product IDs	character: size 5
	ProductDescription	Product Descriptions	Set of all possible product descriptions	character: size 25
	ProductFinish	Product Finishes	Set of all possible product finishes	character: size 15
	ProductStandardPrice	Unit Prices	Set of all possible unit prices	monetary: 6 digits
	ProductLineID	Product Line IDs	Set of all possible product line IDs	integer: 3 digits
	OrderedQuantity	Quantities	Set of all possible ordered quantities	integer: 3 digits

Domain definitions enforce domain integrity constraints.

Date 8

2.3.2. Entity Integrity

Entity Integrity:

- No primary key attribute may be null. All primary key fields **MUST have data**.
- The primary key should have a **unique value** for each row in the table.

Date 8/30/2022

2.3.3. Referential Integrity

 Referential Integrity states that any foreign key value (on the relation of the many side) MUST match a primary key value in the relation of the one side.

РК	Customer_ID	Customer_Name	Customer_Street	Customer_City	Customer_State	CustomerPostal_Code
	1	Contemporary Casuals	1355 S Hines Blvd	Gainesville	FL	32601-2871
	2	Value Furnitures	15145 S.W. 17th St.	Plano	ТХ	75094-7743
-+	3	Home Furnishings	1900 Allard Ave	Albany	NY	12209-1125
	4	Eastern Furniture	1925 Beltline Rd.	Carteret	NJ	07008-3188
	5	Impressions	5585 Westcott Ct.	Sacramento	CA	94206-4056
	6	Furniture Gallery	325 Flatiron Dr.	Boulder	со	80514-4432
	7	Eastern Furniture	Palace Ave	Farmington	NM	NULL

Order_ID	Order_Date	Customer_ID	FK
1001	8/09/2009	4	
1002	4/10/2009	3	
1003	19/07/2009	1	\geq
1004	1/11/2009	6	
1005	28/07/2009	4	J
1006	27/08/2009	4	

• Referential Integrity rule is used to maintain the **consistency among rows** between the two tables.

Referential integrity constraints are implemented with foreign key to primary key references.

CREATE TABLE Customer T NUMBER(11,0) NOT NULL. (CustomerID CustomerName VARCHAR2(25) NOT NULL. CustomerStreet VARCHAR2(30), VARCHAR2(20), CustomerCity CustomerState CHAR(2), CustomerPostalCode VARCHAR2(9), CONSTRAINT Customer PK PRIMARY KEY (CustomerID)); CREATE TABLE Order T (OrderID NUMBER(11.0) NOT NULL. OrderDate DATE DEFAULT SYSDATE, CustomerID NUMBER(11.0), CONSTRAINT Order_PK PRIMARY KEY (OrderID), CONSTRAINT Order_FK FOREIGN KEY (CustomerID) REFERENCES Customer T (CustomerID)) **Integrity Constraints** (Referential Integrity)

How referential integrity will be implemented in a relational database?

Referential Integrity rules for delete operation

- **Restrict:** don't allow delete of "parent" side if related rows exist in "dependent" side
- **Cascade:** automatically delete "dependent" side rows that correspond with the "parent" side row to be deleted
- Set-to-Null: set the foreign key in the dependent side to null if deleting from the parent side
 - The foreign key can be null
 - Set-to-Null is not allowed for weak and associated entities
 - **Set-to-Null** is **not** allowed when is related to a mandatory cardinality.

2.3.3. Referential Integrity: Restrict

Restrict: don't allow delete of "parent" side if related rows exist in "dependent" side

Delete of "parent" side

2.3.3. Referential Integrity: Cascade

Cascade: automatically delete "dependent" side rows that correspond with the

"parent" side row to be deleted.

Photo Reference: http://www.edugrabs.com

Issue: Risk of loosing some important data in the dependent table(s)

2.3.3. Referential Integrity: Set-to-Null

Set-to-Null: set the foreign key in the dependent side to null if deleting from the parent side.

Photo Reference: http://www.edugrabs.com

2.3.3. Referential Integrity: Set-to-Null (cont.)

Set a value of FK to Null is not allowed for weak and associated entities (where FK are part of the key).

Entity Integrity

- No primary key attribute may be null.
- All primary key fields **MUST have unique data**.

РК			<	FK	FK			N PK		
	Employee			Employee ID	Course ID	Date Completed	1 1		Course	
Employee ID	Employee Name	Birth Date		1234587	C68	1/1/2017		ourse ID	Course Title	Topic
1234587	Jack	1/1/1960		3459087	A57	1/2/2016	A		Knowledge Management	
3459087	Danna	5/2/1985		3459087	C68	5/10/2016	1	58	Project Management	
							1—			
							1			

Set a value in FK to Null is not allowed when is related to a mandatory cardinality.

РК	Customer_ID	Customer_Name	Customer_Street	Customer_City	Customer_State	CustomerPostal_Code
	1	Contemporary Casuals	1355 S Hines Blvd	Gainesville	FL	32601-2871
	2	Value Furnitures	15145 S.W. 17th St.	Plano	ТХ	75094-7743
	3	Home Furnishings	1900 Allard Ave	Albany	NY	12209-1125
	4	Eastern Furniture	1925 Beltline Rd.	Carteret	NJ	07008-3188
	5	Impressions	5585 Westcott Ct.	Sacramento	CA	94206-4056
	6	Furniture Gallery	325 Flatiron Dr.	Boulder	со	80514-4432
	7	Eastern Furniture	Palace Ave	Farmington	NM	NULL

Dr. Danna (Fahimeh) Ramezani

We know about the relations ...

We know the integrity constraints ...

Now we are ready to start converting different type of attributes and entities to the relations considering the integrity constraints Now we know about the relations and the integrity constraints ...

we are ready to start converting different type of entities to the relations ...

3. Transforming ERD into Relations

- **3.1. Mapping Regular Entities to Relations**
- **3.2.** Mapping Binary Relationships
- Binary One-to-Many
- Binary One-to-one
- Binary Many-to-Many → Associative Entities
- **3.3. Mapping Ternary (and n-ary) Relationships**
- **3.4. Mapping Weak Entities**
- **3.5. Mapping Unary Relationships**
- **3.6. Mapping Supertype/Subtype Relationships**

Transforming ERD into Relations

Video 4.3: Mapping Regular Entities to Relations

Date 8/3

3.1. Mapping Regular Entities to Relations CARTOON **3.1.1. Simple attributes**: E-R attributes map directly onto the relation Cad **3.1.2.** Composite attributes: Use only their simple component attributes **3.1.3.** Multivalued Attribute: Becomes a separate relation with a foreign key taken from the superior entity

3.1.1. Mapping a regular entity (Figure 4-8) with simple attribute

3.1.1. Simple attributes: E-R attributes map directly onto the relation

(a) CUSTOMER entity type with simple attributes

(b) CUSTOMER relation

CUSTOMER			
CustomerID	CustomerName	CustomerAddress	CustomerPostalCode

or

CUSTOMER (CustomerID, CustomerName, CustomerAddress, CustomerPostalCode)

Date 8/30/2022

3.1.2. Mapping a composite attribute (Figure 4-9)

3.1.2. Composite attributes: Use only their simple component attributes

(a) CUSTOMER entity type with composite attribute

CUSTOMER <u>Customer ID</u> Customer Name Customer Address (CustomerStreet, CustomerCity, CustomerState) Customer Postal Code

(b) CUSTOMER relation with address detail

CUSTOMER

CustomerID CustomerName CustomerStreet CustomerCity CustomerState CustomerPostalCode
--

or

CUSTOMER (<u>CustomerID</u>, CustomerName, CustomerStreet, CustomerCity, CustomerState, CustomerPostalCode)

Date 8/30/2022

3.1.3. Mapping a multivalued attribute (Figure 4-10)

3.1.3. Multivalued Attribute: Becomes a separate relation with a foreign key taken from the superior entity.

- Multivalued attribute becomes a separate relation with foreign key
- One-to-many relationship between original entity and new relation

Class Activity 4.3 (10 min) \rightarrow in the live lecture

Redesign the following entity, where every employee need to have at least one skill and every skill can be chosen by any employee. The information about skills like skill ID and name need to be stored in the database.

Explain why this need to be redesigned, and then convert your new ERD to the relations.

EMPLOYEE Employee ID Employee Name Employee Address {Skill}

Solution to Class Activity 4.3 -> in the live lecture

where every employee need to have at least one skill

EMPLOYEE Employee ID Employee Name Employee Address {Skill}

Transforming ERD into Relations

Video 4.4: Mapping Binary Relationships

3.3. Mapping Binary Relationships

- **3.3.1. One-to-Many:** Primary key of the entity on the one side becomes a foreign key of the entity on the many side.
- **3.3.2. One-to-One:** Primary key of the entity on the mandatory side becomes a foreign key of the entity on the optional side.
- **3.3.3.** Many-to-Many → We need to create a *new relation* (Associative Entity) where the primary keys of the related entities will participate in making the composite primary key of the new relation (associative entity).

3.3.1. Mapping a 1:M relationship (Figure 4-12)

a) Relationship between customers and orders

Dr. Danna (Fahimeh) Ramezani

Date 8/30/2022
3.3.1. Mapping a 1:M relationship- Other Format

a) Relationship between customers and orders

Note: If FK is part of the key, need to be added at the **beginning** of the relation and **underlined** with a **star**. If FK is not part of the key, should be added at the end of the relation with a **star**.

Dr. Danna (Fahimeh) Ramezani

3.3.2. Mapping a binary 1:1 relationship (Figure 4-14)

Rule: in 1:1 relationships, PK of the entity on the Mandatory side will be FK in the entity on the Optional side

Example of mapping an associative entity with an identifier (Figure 4-16)

Class Activity 4.4: Convert the following ERD to the relations using the second format. $(5 \text{ min}) \rightarrow$ in the live lecture

3.3.3. Mapping an M:N Relationship OR Associative Entities

a) Completes relationship (M:N)

The *Completes* relationship will need to become a separate relation.

(Figure 4-13)

3.3.3. Mapping an M:N relationship (Figure 4-13) (cont.)

Dr. Danna (Fahimeh) Ramezani

Another example of mapping an associative entity (Figure 4-1)

entity

Dr. Danna (Fahimeh) Ramezani

Class Activity 4.5: Convert the following ERD to relations. (10 min) \rightarrow in the live lecture

Solution to Class Activity 4.5: Convert the following ERD to relations.

CUSTOMER									
CustomerID	CustomerNan	ne Custo	omerStre	CustomerCity	CustomerState	e CustomerPos	stalCode		
	et								
ORDER									
OrderID	OrderDate	Custome	rID						
ORDER	LINE								
OrderID	OrderID ProductID OrderedQuantity								
PRODUCT									
ProductIE	ProductDe	escription	ProductFinis	sh ProductSta	andardPrice P	roductLineID			

Example of mapping an associative entity with an identifier (Figure 4-16)

Class Activity 4.6: Convert the associative entity in this ERD to a relation? $(5 \text{ min}) \rightarrow$ in the live lecture

Transforming ERD into Relations

Mapping Ternary (and n-ary) Relationships

FK

FK FK FK

- One relation for each entity and one for the associative entity
- Associative entity has foreign keys form each entity in the relationship. These FKs will be part of its composite PK.

Question: Will you make a composite PK? or you will generate a surrogate key?

Mapping a ternary relationship (Figure 4-19)

a) PATIENT TREATMENT Ternary relationship with associative entity

BR: Many physician can prescribe many treatment for many patient, many times a day.

So, you may have ... a **physician** that prescribed the **same treatment** for the **same patient** on the **same day**.

So, you may have ... multiple records with the same Physician_ID, Treatment_code, Patient_ID, and PTTreatmentDate

That's why we need to include PTreatmentTime as well to make a unique composite key ...

Mapping a ternary relationship (Figure 4-19) (cont.)

BR: Many **physician** can prescribe many **treatment** for many **patient**, **many times a day**.

Patient_ID	Physician_ID	Treatment_code	PTreatmentDate	PTreatmentTime	PTreatmentResults	
123	34	x56	1/1/2020	12:00	Pain	
123	34	x56	1/1/2020	13:00	No pain	
123	34	x56	1/1/2020	18:30	Normal	

b) Mapping the ternary relationship PATIENT TREATMENT

Based on the BR, we may have **multiple records** with **the same** Physicia_ID, Patient_ID, Treatment_code, and PTTreatmentDate \Rightarrow

To create a unique PK, treatment **date** and **time** are included in the composite primary key.

But this makes a very cumbersome key...

It would be better to create a **surrogate** key like Treatment#.

Class Activity 4.7: Convert the following ERD to relations. (10 min) → in the live lecture

BR: Many physician can prescribe many treatment for many patient, many times a day.

Based on the BR, we may have **multiple records** with **the same** Physicia_ID, Patient_ID, Treatment_code, and PTTreatmentDate

Dr. Danna (Fahimeh) Ramezani

- The weak entity becomes a separate relation with a foreign key taken from the superior entity
- The primary key composed of:
 - Partial identifier of weak entity
 - Primary key of identifying relation (strong entity)

NOTE: Foreign keys can have null values, but the **domain constraint** for the foreign key <u>should NOT allow null value</u> for a <u>weak</u> entity, or an <u>associative</u> entity, or if it is related to a <u>mandatory cardinality</u>.

Assessment Challenge 4.2: This fact refers to which two integrity constraints? Using which part of the "create table scripts" we can implement this fact?

Example of mapping a weak entity (Figure 4-11)

The PK of an Weak entity

Explore in Class 4.2: Let's jump to Ed and write some query to create these relations. **BR:** Each Employee have many dependents.

EMPLOYEE Employee ID Employee Name
--

EMPLOYEE (EmployeeID, Employee_F_Name, Employee_L_Name)

DEPENDENT (<u>EmployeeID*</u>, <u>Dependent_F_Name</u>, <u>Dependent_M_Name</u>, <u>Dependent_L_Name</u>, DOB, Gender) FK (EmployeeID) references EMPLOYEE

NOTE: the domain constraint for the foreign key <u>should NOT allow *null*</u> value if DEPENDENT is a weak entity

Video 4.7: Mapping Unary Relationships

Transforming ERD into Relations

3.6. Mapping Unary Relationships

One-to-One and One-to-Many: Recursive

foreign key in the same relation

- > Many-to-Many: Two relations
 - One for the entity type
 - One for an associative relation in which the primary key has two attributes, both taken

from the primary key of the entity

Is Married To

PERSON

One-to-one

Mapping a unary 1:1 relationship: Recursive foreign key in the same relation

FK (SpouseID) references PERSON

Mapping a unary 1:N relationship: Recursive foreign key in the same relation

(a) **EMPLOYEE** entity with unary relationship

(b) EMPLOYEE relation with recursive foreign key

	Ē	EMPLOYEE mployee ID mployee Name mployee Date of Birth	anages	Is Managed By			
	EMPLOYEE	1	1				
	EmployeeID	EmployeeName	EmployeeDa	ateOfBirth	ManagerID		
	EMPLOYEE (<u>EmployeeID</u> , EmployeeName, EmployeeDateOfBirth, ManagerID*) FK (ManagerID) references EMPLOYEE						

Employee_ID	Employee_Name	Employee_DateOfBirth	Manager_ID
1123	Sara	1.1.2000	7892
1456	Jake	1.1.2000	7892
7892	Fahimeh	1.1.1970	1245
1245	Julia	1.1.1980	•••
			•••

Mapping a unary M:N relationship

Two relations:

- One for the entity type
- One for an associative relation in which the primary key has two attributes, both taken from the primary key of the entity
- BR: Any Item can have many Component and any Component will be related to many Items.

There is a M:N relationship between ITEM and COMPONENT

ITEM

Item_No	Item_Description	Item_Unit_Cost
12	Wheel	50
13	Spoke	0.5
14	Rim	30
15	Valve	5

COMPONENT

Item_No	Component_No	Quantity
12	13	30
12	14	1
12	15	1

Date 8/30/2022

Dr. Danna (Fahimeh) Ramezani

Transforming ERD into Relations

Video 4.8: Mapping Supertype/Subtype Relationships

3.7. Mapping Supertype/Subtype Relationships

- One relation for supertype and for each subtype
- Supertype attributes (including identifier and subtype discriminator) go into supertype relation
- Subtype attributes go into each subtype; primary key of supertype relation also becomes primary key of subtype relation
- 1:1 relationship established between supertype and each subtype, with supertype as primary table

64

Supertype/subtype relationships (Figure 4-20)

- One relation for supertype and for each subtype
- Supertype attributes (including identifier and subtype discriminator) go into supertype relation
- Subtype attributes go into each subtype; primary key of supertype relation also becomes primary key of subtype relation
- 1:1 relationship established between supertype and each subtype, with supertype as primary table

EMPLOYEE (<u>Employee_Number</u>, Employee_Name, Employee_Street, Employee_City, Employee_State, Employee_CustomerPostalCode, Employee_Date_Hired, **Employee_Type**)

HOURLY_EMPLOYEE (<u>H Employee Number</u>*, Hourly_Rate) FK (H_Employee_Number) references EMPLOYEE

SALARIED_EMPLOYEE (<u>S Employee Number</u>*, Annual_Salary, Stock_Option) FK (S_Employee_Number) references EMPLOYEE

HOURLY_EMPLOYEE (<u>C Employee Number</u>*, Contract_Number, Billing_Rate) FK (C_Employee_Number) references EMPLOYEE

Mapping supertype/subtype relationships to relation

(Figure 4-21)

These are implemented as one-to-one relationships.

Note: This is the best method to map supertype/subtypes to relations. There are other two methods that will be discussed in the related tutorial.

Introducing a subtype discriminator (overlap rule)

EMPLOYEE (<u>Employee_Number</u>, Employee_Name, Employee_Street, Employee_City, Employee_State, Employee_CustomerPostalCode, Employee_Date_Hired, **Employee_Type**)

HOURLY_EMPLOYEE (<u>H_Employee_Number</u>*, Hourly_Rate) FK (H_Employee_Number) references EMPLOYEE

SALARIED_EMPLOYEE (<u>S_Employee_Number</u>*, Annual_Salary, Stock_Option) FK (S_Employee_Number) references EMPLOYEE

HOURLY_EMPLOYEE (<u>C_Employee_Number</u>*, Contract_Number, Billing_Rate) FK (C_Employee_Number) references EMPLOYEE Composite Discriminator Attribute

Employee_Number	Employee_Name	Employee_Street	Employee_	_City Employ	ee_State	Emplo	yee_CustomerPostalCode	Date_Hire	Employe_type (H? S? C?)
1123	Sara			U	TS			1/1/2014	YNY
1456	Jake			32/	50			5/8/2013	NYN
7892	Fahimeh			12/	97			2/3/2013	NNY
H_Employee_Numbe	r Hourly_Rate	S_Employee	eNumber	Annual_Salary	Stock_Op	otion	C_Employee_Number	Contract_Num	ber Billing_Rate
1123	80	145	6	70000	0.2		7892	9856	50
							1123	9812	30

Summary

- List properties of relations.
- Transform E-R and EER diagrams to relations.
- Create tables with entity and relational integrity constraints.

Next Lecture...

1. Terms to know to Do Normalization

- **1.1. Functional Dependencies**
- 1.2. Keys: Super-key, Candidate key and Primary Key
- 1.3. Determining Candidate Keys from FDs
- 1.4. Partial Functional Dependencies
- 1.5. Transitive Functional Dependencies
- 2. Data Normalization and Well-Structured Relations
- 3. Steps in normalization
- 4. First Normal Form
- 5. Second Normal Form
- 6. Third Normal Form

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.