lecture 6: Normalization
Combined File (Parts 1 & 2)

Main reference:

Modern Database Management, 11t Edition
Chapter 4: Logical Database Design and the Relational Model

Subject Coordinator and Instructor:

Dr. Danna (Fahimeh) Ramezani

Participations and Discussions

If you have any question and you don’t want to share it now,
send it to us via UTSOnline/Discussion Board.

However, it is better to speak out ©

Please follow the following signs in the lecture slide ©

X v

Subject Flowchart

Use forms & Documents = BRs
—~ (Weeks 1, 3 & 4)
(q\]
X + 4
§ Design ERD base on the BRs Use forms & Documents =
= (Weeks 1, 3 & 4) Determine FDs
5' = _ (Week 6) y
a Convert ERD to the relations Use FDs to determine all types of keys
B’ (you have determinedthe PKs) (f """~~~ """~~~ ———— > (super key, Candidate keys, and PKs)
(@) (Week 5) (Week 6)
< !
8’ Determine key and none key attributes
iIU ! (Week 6)
c Normalization
_g (Weeks 6)
c
%S| BR: Business Rule Revise your relations and ERD
QO (Weeks 6)
55 ERD: Entity Relationship Diagram J SQL
8| FD: Functional Dependencies You have a normalized database || *Data Definition Language (DDL)
PK: Primary Key which is ready for implementation *Data Manipulation Language (DML)
(Week 7-10)

NI

Subject Overview

~Design Entity Relationship Diagram (ERD)
» Week 1: Data Modelling | (Conceptual Level): Entity, Attributes, PK, FK, ...
» Week 2: Data Definition Language (DDL): Create tables, constraints, insert, ...
» Week 3: Data Modelling Il (Conceptual Level): Associative, Wealk, ...
» Week 4: Data Modelling Ill (Conceptual Level): Subtype/Supertype
» Week 5: Convert ERD to Relations (Logical Level)
»Week 6: Functional Dependencies, and Normalization

»~Data manipulation
~Week 7: Simple Query
~Week 8: Multiple Table Queries
~Week 9: Subquery
~Week 10: Correlated Subqguery

Lecture Five Objectives:

Introduction: Why we need to do normalization and what are the anomalies?

1. Terms to Know to Do Normalization
1.1. Functional Dependencies
1.2. Keys: Super-key, Candidate key and Primary Key
1.3. Determining Candidate Keys from Functional Dependencies (FDs)
1.4. Partial Functional Dependencies
1.5. Transitive Functional Dependencies
1.6 Why Partial and Transitive FDS cause the anomalies?

Well-Structured Relations and Data Normalization
Steps in normalization

First Normal Form

Second Normal Form

2.
3.
4.
5.
6.

Third Normal Form

Why we need to do

normalization?

By now:

* You have designed your ERD.
* You have converted your ERD to the relations.

» Questions:

1. Are your relations well-structured?

2. Will you have any redundant data in your relations?

3. Will you have any data inconsistency in your database?

Example 1-Figure 4-2b

EMPLOYEE2

EmplD Name DeptName Salary CourseTitle DateCompleted
100 Margaret Simpson Marketing 48,000 SPSS 6/19/201X

100 Margaret Simpson Marketing 48,000 Surveys 10/7/201X

140 Alan Beeton Accounting 52,000 Tax Acc 12/8/201X

110 Chris Lucero Info Systems 43,000 Visual Basic 1/12/201X

110 Chris Lucero Info Systems 43,000 C++ 4/22/201X
190 Lorenzo Davis Finance 55,000

150 Susan Martin Marketing 42,000 SPSS 6/19/201X
150 Susan Martin Marketing 42,000 Java 8/12/201X

Question—Is this a relation? Answer—Yes: Unique rows and no multivalued attributes

Question—What’s the primary key? Answer—Composite: EmpID, CourseTitle

Is this relation (table) well-structured? Have a look at the anomalies in this Table:

EMPLOYEE2
EmpID Name DeptName Salary CourseTitle DateCompleted
Margaret Simpson Marketing @ SPSS 6/19/201X
100 Margaret Simpson Marketing 48,000 Surveys 10/7/201X
Alan Beeton Accounting 52,000 12/8/201X x
0 Chris Lucero Info Systems 43,000 Visual Basic 1/12/201X
110 Chris Lucero Info Systems 43,000 C++ 4/22/201X
190 Lorenzo Davis Finance 55,000
150 Susan Martin Marketing 42,000 SPSS 6/19/201X
150 Susan Martin Marketing 42,000 Java 8/12/201X

» Insertion Anomaly: can’t enter a new employee without having the employee take a class (or at least
empty fields of class information) - Why?

» Deletion Anomaly : if we remove employee 140, we lose information about the existence of a Tax Acc
class.

» Modification Anomaly : giving a salary increase to employee 100 forces us to update multiple records.

Note: The anomalies also happen after merging databases that are designed by the other database
designers, or merging tables from different databases to create a new table.

RNES

Example 2—-Figure 4-26

OrderlD Order Customer Customer Customer ProductlD Product Product Product Ordered
Date 1D MName Address Description Finish StandardPrice Quantity

1006 10/24/2010 2 Value Plano, TX 7 Dining Matural 800.00 2
Furniture Table Ash

1006 10/24/2010 2 Value Plano, TX 5 Writer's Cherry 325.00 2
Furniture Desk

1006 10/24/2010 2 Value Plano, TX 4 Entertainment Matural 650.00 1
Furniture Center Maple

1007 10/25/2010 5] Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery cO Dresser

1007 10/25/2010 5] Furniture Boulder, 4 Entertainment Matural 650.00]
Gallery cO Center Maple

FIGURE 4-26 INVOICE relation (1NF) (Pine Valley Furniture Company)

Question—Is this a relation? Answer—Yes: Unique rows and no multivalued attributes

Question—What’s the primary key? Answer—Composite: OrderlID, ProductID

Is this relation (table) well-structured? Have a look at the anomalies in this Table:

OrderlD Order Customer Customer Customer ProductlD Product Product Product Ordered
Date ID Name Address Description Finish StandardPnce Quantity

1006 10/24/2010 2 Value Plana, TX 7 Dining Natural ~ 800.00 2
Furniture Table Ash

1006 10/24/2010 2 Value Plano, TX [+ Whiter's Cherry 325.00 2
Furniture Desk

1006 10/24/2010 2 Value Plano, TX 4 Entertainment Natural 650.00 1
Furniture Center Maple

1007 10/25/2010 [Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery co Dresser

1007 10/25/2010 6 Furniture Boulder, 4 Entertainment Natural 650.00 3
Gallery co Center Maple

FIGURE 4-26 INVOICE relation (1NF) (Pine Valley Furniture Company)

» Insertion Anomaly: if new product is ordered for order 1007 of existing customer, customer data must be
re-entered, causing duplication

» Deletion Anomaly : if we delete the Dining Table from Order 1006, we lose information concerning this
item’s finish and price

» Update (Modification) Anomaly: changing the price of product ID 4 requires update in multiple records.

Note: The anomalies also happen after merging databases that are designed by the other database designers,
or merging tables from different databases to create a new table.

Solution of these problems:

You need to normalize
your relations to solve
these problems

=

Subject Flowchart

Use forms & BR & Documents

v

Design ERD

'

Convert ERD to the relations
(you have determined the PKSs)

Determine FDs

\ 4

Use FDs to determine all types of keys
(super key, Candidate keys, and PKs)

v

Determine key and none key attributes

Normalization

A 4

Revise your relations and ERD

A 4

You have a norma;ized database

which is ready for implementation

A 4

SQL
*Data Definition Language (DDL)
*Data Manipulation Language (DML)

N

1. Terms to Know for

Normalization

1. Terms to Know for Normalization

1.1. Functional Dependencies

1.2. Keys: Super-key, Candidate key and Primary Key

1.3. Determining Candidate Keys from Functional Dependencies (FDs)
1.4. Partial Functional Dependencies

1.5. Transitive Functional Dependencies

1.6 Why Partial and Transitive FDS cause the anomalies?

1.1. Functional Dependencies

Functional Dependency: A constraint between two attributes in which the value of
one attribute (dependent) is uniquely determined by the value of another
attribute(s) (determinant).

» The value of attribute X (determinant) uniquely determines the value attribute(s) Y (dependent)

X->Y

» The value of attributes X and Z (determinants) uniquely determine the value attribute(s) Y and M and
N (dependents)

X, Z->Y, M, N

Example:
EmplD -> FName, Lname, DeptName, Salary

Important Note

We determine Functional Dependencies based on
the Business Rules and Forms.
NOT based on the designed ERD.

Note: in the next slide | used the stored data to illustrate
Functional Dependencies between attributes.

CustomerID = CustomerName, Customer_Street, Customer_City, Customer_State, CustomerPostal_Code

OrderID =» OrderDate, CustomerID, CustomerName,

Customer_ID Customer_Name Customer_Street | Customer_City | Customer_State | CustomerPostal_Code

_Contemporary Casuals 1355 S Hines Blvd Gainesville FL 32601-2871

_ Value Furnitures 15145 S.W. 17th St. Plano X 75094-7743

1900 Allard Ave Alhany 12209-1125

S - —— —
> =

TR -

QR — e

5585 WeStCOtt Ct. bacramemu Y4 ,UD-4UD0

Hnw\r\ Ciivrn: ichi nnc

Impressmns
Furniture Gallery 325 Flatiron Dr. Boulder CO 80514-4432

New Furniture Palace Ave Farmington NM NULL

Order_ID Order_Date

e /na/r0nq

1/11/2009

Example

Let’s determine Functional Dependencies based on the following Business
Rules:

BR1: Customers’ information, like name and address, need to be stored in the database.
BR2: Any customer can place many orders.

BR3: Company needs to store order date for each order.

Si“f? BR1: Customers’ information, like name and address, need to be stored in the database.
BR2: Any customer can place many orders.
BR3: Company needs to store order date for each order.

Question: which of the following FD set is correct?

A CustomerlID = CustomerName, Customer_Street, Customer_City, Customer_State, CustomerPostal_Code (
OrderID - OrderDate, CustomerID
OR
B CustomerID = CustomerName, Customer_Street, Customer_City, Customer_State, CustomerPostal_Code, OrderID
OrderID - OrderDate

2
Question: OrderlD functionally determines CustomerID or vice versa?

Contemporarv Casuals 1355 S Hines Blvd Gainesville 32601-2871
Value Furnitures 15145 SW. 17th St. Plano X 75094-7743
OrderID > OrderDate, CustomerID Home Furnishings 1900 Allard Ave Albany NY 12209-1125
A Eastern Furniture 1925 Beltline Rd. Carteret NJ 07008-3188
1002 9 4/10/2009’ 4 Impressions 5585 Westcott Ct. Sacramento CA 94206-4056
Furniture Gallery 325 Flatiron Dr. Boulder co 80514-4432
New Furniture Palace Ave Farmington NM NULL
CustomerlID = CustomerName, ..., OrderID - EK
B I 7 s
4 - Eastern Furniture, ..., 1002 & 1004 B /102000 ’ >_
_ 19/07/2009 1
4

I 1/11/2000

1.2. Keys of a Relation

» Super-Key:

» |s a set of attributes within a table (relation) whose values can be used to uniquely identify a row in the
relation.

» Candidate Key:

= An attribute, or minimal set of attributes, that uniquely identifies a row in a relation (A unique identifier).

= Each non-key field is functionally dependent on every candidate key.

= One of the candidate keys will become the primary key

E.g., perhaps there are both “credit card number” and “SS#” in a table. In this case both are candidate keys.

Ve " Candidate Keys S
» |s a unique identifier u/ [Keys
= |t cannot contain null values Super keys

» One of the candidate keys will become the primary key

> P”mary Key e . o Primary Key

Super key, Key, Candidate key and Primary

RNES

One of the candidate keys
will become the primary key

_—

Super-Key

Note: Names are not a good choice to be a PK.

Explain two properties that must be satisfied by candidate keys?

a) Non-redundancy:
Studentid | firstName lastName courseld

No attribute in the key can be

deleted without destroying the

property of unique

identification.

b) Unique identification:

For every row, the value of the key must uniquely identify that row.

Explain the difference between candidate key and primary

key.

Answer: A primary key is an attribute (or combination of attributes) that
uniquely identifies a row In a relation. When a relation has more than one
such attribute (or combination of attributes), each is called a candidate key.

The primary key is then the one chosen by users to uniquely identify the

rows in the relation. 4:
N

1.3. Determining Candidate Keys Using Functional Dependencies (FDs)

» The candidate keys of a relation R can be defined using given FD set

of the relation.

» To achieve this goal, the following concepts are discussed:

1.3.1. Attribute Closure

1.3.2. The Algorithm to Determine Candidate Keys Using FDs

1.3.1. Attribute Closure

> Attribute Closure:

Attribute closure of an attribute set can be defined as a set of attributes which
can be functionally determined from it.

Given FD set of a Relation R, If A is an attribute (or a combination of attributes), the set
of attributes in relation R that are functionally dependent on A is called Attribute Closure
of A and it can be represented as A".

» Steps to Find the Attribute Closure of A
Given FD set of a Relation R:
1- Add A to the attribute closure set of A (A+)

2- Recursively add attributes which can be functionally determined from attributes of the
set A+ until done.

1.3.1. Example: Find the Attribute Closure of A

R (E-ID, E-Name, E-City, E-State)
FDs = { E-ID> E-Name, E-ID - E-City, E-City - E-State }

The attribute closure of E-ID can be calculated as:
1. Add E-ID to the set
(E-ID)+ = {E-ID}
2. Add Attributes which can be derived (functionally determined) from any attribute of set.

= In this case, E-Name and E-City can be derived from E-ID.
= |n addition, E-State can be derived from E-City. So these are also a part of closure.

(E-ID)+ = {E-ID, E-Name, E-City, E-State }
Similarly:

(E-Name)+ = {E-Name}
(E-City)+ = {E-City, E-State }

Reference: http://www.geeksforgeeks.org/finding-attribute-closure-and-candidate-keys-using-functional-dependencies/

1.3.2. The Algorithm to Determine Candidate Keys Using FDs

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Collect all related FDs to the relation R

Create a table with three columns Left Middle Right

Write all attributes that only show up on the left side of some FDs under Left column

These attributes must be part of a key

Write all attributes that only show up on the right side of some FDs under Right column

These attributes are not part of any key

Write all attributes that show up on both left and right sides of some FDs under Middle column

These attributes may or may not be part of a key

Determine the closure of attributes under Left and Middle columns to find which combination of those
attributes will functionally determine all other attributes. Start from attributes under Left column.

Step 6.1. Add the attribute to the attribute closure set
Step 6.2. Add Attributes which can be derived from any attribute of the attribute closure set.

The different combinations of attributes under Left and Middle columns that functionally determine all
other attributes in relation R are keys for R i.e. If A+ =R then A is a candidate key for R

-

%%

1.3.2. Example: Determining Candidate Keys Using FDs

R (ABCD) . .

FDs={AB->C, Steps 1,2, 3,4 and 5 Left Middle Right
C->B, A BC D
C-> D}

Note: Super Key is the combination of attributes under the Left and Middle columns (in this example ABC is the super key).

Step 6.1. A+ ={A}
Step 6.2. A+ is not equal to R. Therefore, we need to add another attribute under Middle column and find the attribute closure of
the combination of A and B:
AB+ ={AB}
AB+ ={AB} and AB->C then AB+ = {ABC}
AB+ ={ABC} and C-> D then AB+ = {ABCD} =R
We Ineiad to try other combinations of attributes under Left and Middle columns to find all possible candidate key.
Similarly:
AC+ = {ACBD}
Step 7: Determine the candidate keys:

AB+ equals to R. So AB is a candidate key for R.
AC+ also equals to R. So AC is another candidate key for R.

More Examples for Determining keys Using FDs:

There are more examples
presented in the related video
that is uploaded on UTSonline

in Week 5 folder.

Class Activity 5.3: Determine the PK of the following relation
First Create the Left/Middle/Right Table

INVOICE (OrderID, ProductlID, OrderDate, CustomerID, CustomerName, CustomerAddress, ProductDescription,
ProductFinish, ProductStandardPrice, OrderQuantity)

> FDs: OrderlD, ProductID =» OrderQuantity

ProductID = ProductDescription, ProductFinish, ProductStandardPrice
OrderID = OrderDate, CustomerlID, CustomerName, CustomerAddress

CustomerlD - CustomerName, CustomerAddress Which attributes may be
part of a candidate key?

Left Middle Right
OrderID CustomerID | OrderQuantity
ProductID ProductDescription

ProductFinish
ProductStandardPrice
&

OrderDate QL
CustomerName .
CustomerAddress — h‘ =

N

jf‘L(INVOICE (OrderID, ProductID, OrderDate, CustomerlID, CustomerName, CustomerAddress, Left Middle Right

ProductDescription, ProductFinish, ProductStandardPrice, OrderQuantity) OrderID CustomerID | OrderQuantity
ProductID ProductDescription
OrderlD, ProductID = OrderQuantity ProductFinish
ProductIiD = ProductDescription, ProductFinish, ProductStandardPrice g";d”;tsmndardprice
rderDate

OrderID =» OrderDate, CustomerID, CustomerName, CustomerAddress CustomerName
CustomerID > CustomerName, CustomerAddress CustomerAddress

Now we need to find all possible candidate keys

OrderID+ = {OrderID, OrderDate, CustomerID, CustomerName, CustomerAddress}
Therefore “OrderID, ProductID”

is the only composite candidate

ProductID+ = {ProductID, ProductDescription, ProductFinish, ProductStandardPrice} key and also the PK of the
relation

{OrderID, ProductID}+ = {OrderID, ProductID, OrderQuantity, OrderDate, CustomerID, CustomerName,
CustomerAddress, ProductDescription, ProductFinish, ProductStandardPrice} = INVOICE

Note: Considering that {OrderID, ProductID}+ = INVOICE we don’t need to add another attribute to this combination to

create a new candidate key. Because we are looking for minimal set of attributes to make a candidate key.

{ProductID, CustomerID} += {CustomerlID, Productld, ProductDescription, ProductFinish, ProductStandardPrice,

CustomerName, CustomerAddress}

. {OrderID, CustomerlID} +={ OrderID, OrderDate, Customerld, CustomerName, CustomerAddress, Customer|D} -

Partial and Transitive

Functional Dependencies

Important Note:

Partial and Transitive Functional Dependencies in a relation

cause the insertion, deletion and modification anomalies.

 What is Partial Functional Dependency?

 What is Transitive Functional Dependency?

 Why they cause the anomalies?

1.4. Partial Functional Dependencies (Book format)

A functional dependency in which one or more non-key attributes are functionally
dependent on part (but not all) of the primary key (Composite primary Key).

Full Dependency X

Transitive Dependencies J

v v

OrderlD | OrderDate | CustomerlD | CustomerName | CustomerAddress | ProductD | ProductDescription | ProductFinish | o 105t _ | OrderedQuantiy

Partial Dependencies Partial Dependencies

Composite primary Key of this relation is: OrderID, ProductID

1.4. Partial Functional Dependencies (Tutorial format)

A functional dependency in which one or more non-key attributes are functionally
dependent on part (but not all) of the primary key (Composite primary Key).

INVOICE (OrderID, ProductID, OrderDate, CustomerID, CustomerName, CustomerAddress, x
ProductDescription, ProductFinish, ProductStandardPrice, OrderQuantity)

> FDs:

OrderID, ProductID =» OrderQuantity

ProductID = ProductDescription, ProductFinish, ProductStandardPrice

OrderID = OrderDate, CustomerID, CustomerName, CustomerAddress

CustomerlD = CustomerName, CustomerAddress

Class Activity 5.4: For the relation below:

a) Find partial functional dependencies, and

b) Explain if we need to check for partial functional dependencies in every relation.

EMPLOYEE (Employee ID, Skill ID, Emp_F Name, Emp_L_Name, Emp_Date_Employed, Emp_DOB, Company_ID,
Com_Name, Skill_Title, Skill_Type, Date_Completed)

FDs:

Employee_ID --> Emp_F_Name, Emp_L_Name, Emp_Date_Employed, Emp_DOB, Company_ID, Com_Name
Skill_ID --> Skill_Title, Skill_Type

Company_ID --> Com_Name

Employee_ID, Skill _ID --> Date_Completed

a) Considering the following FDs, there is a partial functional dependency in EMPLOYEE relation:
Employee_ ID --> Emp_F Name, Emp_L Name, Emp_Date_Employed, Emp_DOB, Company_ID, Com_Name
Skill_ID --> Skill_Title, Skill_Type

As you see, one or more non-key attributes are functionally dependent on part (but not all) of the primary key (Composite primary Key).

b) We just need to check the issue with partial functional dependency just for the relations with a Composite primary Key.

1.5. Transitive Functional Dependencies (Book format)

A functional dependency between the primary key and one or more non-key
attributes that are dependent on the primary key via another non-key attribute.

Full Dependency

Transitive Dependencies J
OrderlD | OrderDate | CustomerID | CustomerName | CustomerAddress | ProductlD | ProductDescription | ProductFinish | o ~°%4%!. | OrderedQuantiy

Partial Dependencies Partial Dependencies

Composite primary Key of this relation is: OrderID, ProductID

1.5. Transitive Functional Dependencies (Tutorial format)

A functional dependency between the primary key and one or more non-key

attributes that are dependent on the primary key via another non-key
attribute.

INVOICE (OrderID, ProductiD, OrderDate, CustomerID, CustomerName, CustomerAddress, x
ProductDescription, ProductFinish, ProductStandardPrice, OrderQuantity)

> FDs:

OrderID, ProductID = OrderQuantity
ProductIlD =» ProductDescription, ProductFinish, ProductStandardPrice

OrderID = OrderDate, CustomerID, CustomerName, CustomerAddress

CustomerID = CustomerName, CustomerAddress

Class Activity 5.5: For the relation below:

a) Find transitive functional dependencies, and

b) Explain if we need to check for transitive functional dependencies in every relation.

EMPLOYEE (Employee ID, Skill ID, Emp_F Name, Emp_L_Name, Emp_Date_Employed, Emp_DOB, Company_ID,
Com_Name, Skill_Title, Skill_Type, Date_Completed)

FDs:
Employee_ID --> Emp_F_Name, Emp_L_Name, Emp_Date_Employed, Emp_DOB, Company_ID, Com_Name

Skill_ID --> Skill_Title, Skill_Type
Company_ID --> Com_Name

Employee_ID, Skill _ID --> Date_Completed

a) Considering the following FDs, there is a transitive functional dependency in EMPLOYEE relation:

Company_ID --> Com_Name

As you see, one or more non-key attributes that are dependent on the primary key via another non-key attribute.

b) We just need to check the issue with transitive functional dependency just for the relations with more than one
dependent attributes.

1.6. Why Partial and Transitive FDS cause the anomalies?

4 .
Functional Full Dependency
Dependency
Di agram for Transitive Dependencies
INVOICE (Figure |) ¥
4-27
N) Drc{erl[} OrderDate | CustomerlD |CustomerName | CustomerAddress | ProductlD | ProductDescription | ProductFinish Smﬁgﬁ;im OrderedQuartity x
Partial Dependencies Parhal Dependencies
[INVOICE Relation g INVOICE (QrderlID, ProductlD, OrderDate, CustomerID, CustomerName, CustomerAddress, x
ProductDescription, ProductFinish, ProductStandardPrice, OrderQuantity)

[FDs]x OrderID, ProductID = OrderQuantity
ProductID = ProductDescription, ProductFinish, ProductStandardPrice

OrderID = OrderDate, CustomerID, CustomerName, CustomerAddress

CustomerID - CustomerName, CustomerAddress

Have a look at the anomalies in INVOICE relation (table) that has partial and
transitive FDs:

OrderlD Order Customer Customer Customer ProductlD Product Product Product Ordered
Date ID Name Address Description Finish StandardPnce Quantity

1006 10/24/2010 2 Value Plana, TX 7 Dining Natural ~ 800.00 2
Furniture Table Ash

1006 10/24/2010 2 Value Plano, TX [+ Whiter's Cherry 325.00 2
Furniture Desk

1006 10/24/2010 2 Value Plano, TX 4 Entertainment Natural 650.00 1
Furniture Center Maple

1007 10/25/2010 [Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery co Dresser

1007 10/25/2010 6 Furniture Boulder, 4 Entertainment Natural 650.00 3
Gallery co Center Maple

FIGURE 4-26 INVOICE relation (1NF) (Pine Valley Furniture Company)

» Insertion Anomaly: if new product is ordered for order 1007 of existing customer, customer data must be
re-entered, causing duplication

» Deletion Anomaly : if we delete the Dining Table from Order 1006, we lose information concerning this
item’s finish and price

» Update (Modification) Anomaly: changing the price of product ID 4 requires update in multiple records.

Why do these anomalies exist?
Because there are multiple themes (entity types) in one relation. This results in duplication and an
unnecessary dependency between the entities.

Have a look at the relation (in two formats) and review the answer to “Why
Partial and Transitive FDS cause the anomalies?”

Functional Full Dependency
Dependency
Diagram for Transitive Dependencies
INVOICE
(Figure 4-27) v v
OrderlD | OrderDate | CustomerlD |CustomerName | CustomerAddress | ProductlD | ProductDescription | ProductFinish SHE;?;;;GE OrderedQuarntity x
T T T A A A A
Partial Dependencies Partial Dependencies
INVOICE
[Relation]\ INVOICE (QrderID, ProductID, OrderDate, CustomerID, CustomerName, CustomerAddress,
ProductDescription, ProductFinish, ProductStandardPrice, OrderQuantity)

Why do these anomalies exist?

Because there are multiple themes (entity types) in this relation. This results in data

duplication and an unnecessary dependency between the entities.

General rule of thumb: A table should not pertain to more than one entity type.

e

2. Well-Structured
Relations and Data
Normalization

2. Well-Structured Relations

» A relation that contains minimal data redundancy and allows users to

Insert, delete, and update rows without causing data inconsistencies

» Goal is to avoid anomalies
* |nsertion Anomaly: adding new rows forces user to create duplicate data

= Deletion Anomaly: deleting rows may cause a loss of data that would be
needed for other future rows

» Modification (update) Anomaly: changing data in a row forces changes to
other rows because of duplication

General rule of thumb: A table should not pertain to more than one entity type.

|

2. Data Normalization

» Primarily a tool to validate and improve a logical design so
that it satisfies certain constraints that avoid unnecessary

duplication of data

» The process of decomposing relations with anomalies to

produce smaller, well-structured relations

3. Steps in Normalization (Figure 4.22)

Table with
multivalued
attributes

Y

First
normal
form

¥

Second
normal
form

k

Third
normal
form

Remove
multivalued
attributes

Remove
partial
dependencies

Remove
transitive
dependencies

Remove remaining

anomalies resulting
from multiple candidate
keys

Boyce-Codd
normal
form
Remaove
multivalued
Y dependencies
Fourth
normal
form
Remaove
remaining
¥ anomalies
Fifth
normal
form

3rd normal form is
generally considered
sufficient

The Process of Designing and Normalizing an ERD:

Review the Business Rules and Forms —p ERD Normalization

Review the Business Rules and Forms —»u 1NF, 2NF, 3NF

(&) Bﬁ

NOTE: considering that BCNF is optional to learn for this subject, we don’t need to
determine all candidate keys of the relations to complete the normalization process.
If you want to check your relation to make sure it is also in BCNF, then you need to
determine all candidate keys of the relations.

NOTE: Please DO NOT use your ERD or Relations to determine FDs.

First Normal Form

4. First Normal Form

No derived attribute (Derived attribute can be calculated or derived using some business rule from
other attributes)

= Example: In the following relation StuAge is a derived attribute and should be removed from the relation

C « Student(StudentID, StuDateOfBirth, StuAge, StuAddress)
» Student(StudentID, StuDateOfBirth, StuAddress)

Every attribute value is atomic (Atomic attributes can’t be divided into subparts)

= Example: In the following relation StuAddress is a non-atomic attribute and should be divided to smaller parts

« Student(StudentID, StuDateOfBirth, StuAddress)
* Student(StudentID, StuDateOfBirth, StuUnitNumber, StuStreet, StuSuburb, StuState)
Note: in the following slides “Customer Address” has been ASSUMED as an atomic attribute.

No multivalued attributes (Multivalued attributes can have more than one value at a time)

Based on this, a relation is in first normal form if;
= There are no repeating groups in the relation.

= A Primary key has been defined, which uniquely identifies each row in the relation
= Example: In the next slides

Table with multivalued attributes, not in 1t normal form

> Multivalued attributes: Attributes that can have more than one value at a time.

» Arelation is in first normal form (1NF) if:
= There are no repeating groups in the relation.
= APrimary key has been defined, which uniquely identifies each row in the relation

OrderlD Order Customer Customer Customer ProductlD Product Product Product Ordered
Date ID Name Address Description Finish StandardPrice Quantity
1006 10/24/2010 2 Value Plano, TX 6 Dining Natural 800.00 2\
Furniture Table Ash
5 Writer's Cherry 325.00 2
Desk
4 Entertainment Natural 650.00 1
\ Center Maple j
1007 10/25/2010 6 Furniture Boulder, A1 4-Dr Oak 500.00 4)
Gallery CcO Dresser
4 Entertainment Natural 650.00 3
Center Maple
_)

FIGURE 4-25 INVOICE data (Pine Valley Furniture Company) Note: This is NOT a relation.

Table with no multivalued attributes and unique rows, in 15t normal form (1NF)

Orderll Order Customer Customer Customer ProductlD Product Product Product Ordered
Date 1D Mame Address Description Finish StandardPnce Quantity
1006 10/24/2010 2 Value Plano, TX 7 (Dining Matural 800.00 2
Furniture Table Ash
1006 10/24/2010 2 Value Plano, TX 53 Writer's Cherry 325.00 2
Furniture Desk
1006 10/24/2010 2 Value Plano, TX 4 Entertainment MNatural 850.00 1
Furniture \ Center Maple)
1007 10/25/2010 6 Furniture Boulder, 11 (4-Dr Oak 500.00 4)
Gallery co Dresser
1007 10/25/2010 5 Furniture Boulder, 4 Entertainment MNatural 650.00 3
Gallery CcO Center Maple
_ J

FIGURE 4-26 INVOICE relation (1NF) (Pine Valley Furniture Company)

Note: This is a relation and is in 1NF, but not a well-structured one.

This relation is still x

Anomalies in this Table (Review)

OrderlD Order Customer Customer Customer ProductlD Product Product Product Ordered
Date ID Name Address Description Finish StandardPnce Quantity

1006 10/24/2010 2 Value Plana, TX 7 Dining Natural ~ 800.00 2
Furniture Table Ash

1006 10/24/2010 2 Value Plano, TX [+ Whiter's Cherry 325.00 2
Furniture Desk

1006 10/24/2010 2 Value Plano, TX 4 Entertainment Natural 650.00 1
Furniture Center Maple

1007 10/25/2010 [Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery co Dresser

1007 10/25/2010 6 Furniture Boulder, 4 Entertainment Natural 650.00 3
Gallery co Center Maple

FIGURE 4-26 INVOICE relation (1NF) (Pine Valley Furniture Company)

» Insertion Anomaly: if new product is ordered for order 1007 of existing customer, customer data must be re-
entered, causing duplication

» Deletion Anomaly : if we delete the Dining Table from Order 1006, we lose information concerning this
item’s finish and price

» Update (Modification) Anomaly: changing the price of product ID 4 requires update in multiple records.
Why do these anomalies exist?

Because there are multiple themes (entity types) in one relation. This results in duplication and an unnecessary
dependency between the entities.

RNES

Class Activity 5.6: Find the anomalies in the following relation with Employee_ID and

Skill_ID as the composite PK.

Employee ID | Emp_F_Name | Emp_L _Name | Emp_Date_Employed | Emp_DOB | Company_ID | Com_Name | Skill ID Skill_Title Skill_Type | Date_Completed
1123 Sara Brown 1/1/2014 1/1/1985 C12 Google B86 C++ PL 2/5/2020
1123 Sara Brown 1/1/2014 1/1/1985 C12 Google V25 Visual Basic PL 7/9/2019
1456 Jake Cooper 5/8/2013 7/8/1990 C12 Google C55 c# CL 5/6/2006
1456 Jake Cooper 5/8/2013 7/8/1990 C12 Google A23 Java PL 3/7/2020
1456 Jake Cooper 5/8/2013 7/8/1990 C12 Google Cc45 Python PL 4/6/2007
7892 Fahimeh Ramezani 2/3/2013 8/7/1987 C13 IBM Cc45 Python PL 8/9/2018
7892 Fahimeh Ramezani 2/3/2013 8/7/1987 C13 IBM B86 C++ PL 7/4/2016
8764 Ricky Romanous 2/3/2015 4/3/1982 Ci4 SAS B86 C++ PL 9/9/2009
8764 Ricky Romanous 2/3/2015 4/3/1982 Ci4 SAS C55 CH# CL 12/1/2005

» Insertion Anomaly: if new product is ordered for employee 7892 working in existing company, company data must
be re-entered, causing duplication

> Deletion Anomaly: if we delete Visual Basic from the list of skills related to employee 1123, we lose information
concerning this skill’s title and type.

» Update (Modification) Anomaly: updating the skill type of skill ID C55 requires update in multiple records.

Class Activity 5.7: Is the following relation in 1INF?

STAFF (staffID, staFName, stalLName, staAddress, staGender, staPhone, staDOB,
staAge, staSScale, staJType, staCSalary, staSDate, DocPager, DocSpecialty,
NursePosition, StaffType)

STAFF is not in 1INF as we have a non-atomic attribute staAddress, and a drived

attribute staAge.

Important Note

Please be aware that the FKs should not be shown in
the ERD ...

In the examples that are provided in the following
slides, we have used the SQL server diagrams that have
FKs included (we did not use the Crow's Foot notation)

Second Normal Form

5. Second Normal Form

» 1NF PLUS every non-key attribute is fully functionally dependent on
the ENTIRE primary key

= Every non-key attribute must be defined by the entire key, not by
only part of the key

= No partial functional dependencies

> Solution:

1. Create new relation for each Primary Key (PK) and move non-key attributes that are
only dependent on this PK.

2. Consider this PK as a Foreign Key (FK) in the original table (relation)

Partial Functional Dependencies in INVOICE (Book and Tutorial Formats)

Functional Full Dependency
Dependency
Diagram for Transitive Dependencies
INVOICE
(Figure 4-27) v v

OrderlD | OrderDate | CustomerlD |CustomerName | CustomerAddress | ProductlD | ProductDescription | ProductFinish StandardPrice OrderedQuantty x

1+ ¢ | 1 £ _t ¢

Partial Dependencies Partial Dependencies

INVOICE
Relation

INVOICE (QrderID, ProductID, OrderDate, CustomerID, CustomerName, CustomerAddress,
ProductDescription, ProductFinish, ProductStandardPrice, OrderQuantity)

ProductlD = ProductDescription, ProductFinish, ProductStandardPrice
OrderID = OrderDate, CustomerlID, CustomerName, CustomerAddress
CustomerID = CustomerName, CustomerAddress

FDs g OrderID, Product|D = OrderQuantity

Based on the FDs there are partial functional dependencies in this relation & Therefore, This Relation (INVOICE) is NOT in 2"d Normal Form

RNES

RemOVing Partial DependenCiES (using Book Format in Figure 4-28)
1. Create new relation for each Primary Key (PK) and move non-key attributes that are only dependent on this PK.

2. Consider this PK as a Foreign Key (FK) in the original table (relation)

INVOICE Full Dependeancy
p | Order ID
Order Date Transitive Dependencies
Customer ID
Customer Name Y Y
Customer Address Produ
Product 1D OrderlD | OrderDate | CustomerlD | CustomerName | CustomerAddress | ProductlD | ProductDescription | ProductFinish Siandar d;tn'ce OrderedQuantity
. - -
rodt Fevah” 4 4 17) | 1 1 1
Froduct Standard Price ") : .
Ordered Chuantit Partial Dependencies Partial Dependencies
O':r'“;”‘ —| OrderlD | ProductlD | Ordered Quantity | ORDERLINE (3NF) (
[
Order Date ﬁl
Customer ID
Customer Name Product
CW“"?‘ Address ProductiD ProductDescription ProductFinish StandardPrice | PRODUCT (3NF)
Includes
A
ORDER LINE N
P{Podet® , [sordered 1o e | Order 1D OrderlD OrderDate CustomerlD CustomerName CustomerAddress CUSTOMERORDER (2NF)
Product Descripion | " Pk | ProductiD
Product Fnish — A A
Product Standard Price Ordared Quantity
Transitive Dependencies

Partial dependencies are removed, but there are still transitive dependencies

RemOVing Partial DependenCiES (using Tutorial Format for Relations)
1. Create new relation for each Primary Key (PK) and move non-key attributes that are only dependent on this PK.

2. Consider this PK as a Foreign Key (FK) in the original table (relation)

INVOICE
pK |OrderiD INVOICE (OrderID, ProductID, OrderDate, CustomerID, CustomerName,
e o CustomerAddress, ProductDescription, ProductFinish, ProductStandardPrice, K
Customer Name .
Customer Address OrderQuantity)
Product ID
Product Description OrderID, ProductlD =» OrderQuantity
Product Finish)
ket Glanderd Frios _[ProductID =» ProductDescription, ProductFinish, ProductStandardPrice
Ordered Quantity
OrderID = OrderDate, CustomerID, CustomerName, CustomerAddress
CustomerID = CustomerName, CustomerAddress

OROER » New Relations: Getting it into Second Normal Form
pK |Order ID

e PRODUCT (ProductiD, ProductDescription, ProductFinish, ProductStandardPrice) J

Customer Name

Customer Address

o ORDER (OrderID, OrderDate, CustomerID, CustomerName, CustomerAddress)
PRODUCT A . x
P Prodct D L)) e ORDER-LINE (OrderID*, ProductID*, OrderQuantity)

PodatDesapion |1 KA | ok FK (OrderID) references ORDER {
oo R FK (ProductID) references PRODUCT

Partial dependencies are removed, but there are still transitive dependencies in ORDER relation.

-

Class Activity 5.4: For the relation below:

C) Remove patrtial functional dependencies from the EMPLOYEE relation and provide new relations and the revised ERD.

EMPLOYEE (Employee_ID, Skill ID, Emp_F _Name, Emp_L_Name, Emp_Date_Employed, Emp_DOB, Company_ID,

Com_Name, Skill_Title, Skill_Type, Date_Completed)

EMPLOYEE

FDs:
Employee_ID --> Emp_F_Name, Emp_L_Name, Emp_Date_Employed, Emp_DOB, Company_ID, Com_Name

Skill_ID --> Skill_Title, Skill_Type
Company_ID --> Com_Name

Employee_ID, Skill_ID --> Date_Completed

Employee ID
SKill_ID

Emp_F_Name
Emp_L_Mame
Emp_Date_Employed
Emp_DOB
Company_ID
Com_Mame
Skill_Title

Skill_Type
Date_Completed

SKILL (Skill_ID, Skill_Title, Skill_Type)

EMPLOYEE_SKILL (Employee ID*, Skill ID*, Date_Completed)

FK (Employee_ID) references EMPLOYEE
FK (Skill_ID) references SKILL

EMPLOYEE (Employee ID, Emp_F Name, Emp_L_Name, Emp_Date Employed, Emp_DOB, Company_ID, Com_Name)

Class Activity 5.4: For the relation below:

C) Remove patrtial functional dependencies from the EMPLOYEE relation and provide new relations and the revised ERD.

EMPLOYEE (Employee ID, Emp_F Name, Emp_L_Name, Emp_Date Employed, Emp_DOB, Company ID, Com_Name)

SKILL (Skill _ID, Skill_Title, Skill_Type)

EMPLOYEE_SKILL (Employee ID*, Skill ID*, Date_Completed)

EMPLOYEE

Employee ID SKILL

EMPLOYEE_SKILL \ Skill ID

Emp_F_Name)
Emp L Mame Date Completed j
Emp_Date_Employed
Emp DOB
Company_ID
Com_Mame

Skill_Title
Skill_Type

Third Normal Form

6. Third Normal Form

» 2NF PLUS no transitive dependencies (functional dependencies on non-primary-key
attributes)

» Note: This is called transitive, because the primary key is a determinant for another attribute,
which in turn is a determinant for a third.

» (If it is non-transitive then each non-key attribute is not dependent on, or a determinant for,
any other non-key attributes).

» Solution:
1. Non-key determinant with transitive dependencies go into a new table;

2. Non-key determinant becomes primary key in the new table, and

3. Stays as foreign key in the old table (relation)

By now ...
we have converted INVOICE relation to three new relations as follows:

OrderlD ProductiD Ordered Quantity | ORDERLINE (3NF) /

- . Product J
ProductiD ProductDescription ProductFinish StandardPrice | PRODUCT (3NF)

OrderlD OrderDate CustomerlD CustomerName CustomerAddress CUSTOMERORDER (2NF)

A X

A

Transitive Dependencies

OrderlD, ProductlD =» OrderQuantity

ProductID =» ProductDescription, ProductFinish, ProductStandardPrice
OrderID =» OrderDate, CustomerlID, CustomerName, CustomerAddress
{ CustomerID - CustomerName, CustomerAddress

You can see there is a transitive functional dependencies in ORDER relation.

Removing Transitive Dependencies (Book Format in Figure 4-29)

» Solution:
1. Non-key determinant with transitive dependencies go into a new table;

2. Non-key determinant becomes primary key in the new table, and
3. Stays as foreign key in the old table

OrderlD OrderDate CustomerlD CustomerMame CustomerAddress CUSTOMERORDER (2MNF) x

I i)

Transitive Dependencies

¥

OrderlD OrderDate CustomerlD ORDER (3NF) (
¥
CustomerlD CustomerName CustomerAddress CUSTOMER (3NF) (

OrderID = OrderDate, CustomerID, CustomerName, CustomerAddress

CustomerID - CustomerName, CustomerAddress

Removing Transitive Dependencies (Using Book Format in Figure 4-29)
1. Non-key determinant with transitive dependencies go into a new table;

2. Non-key determinant becomes primary key in the new table, and

3. Stays as foreign key in the old table

OrderlD OrderDate CustomerlD CustomerMame CustomerAddress CUSTOMERORDER (2MF) x

I 4 ‘)

Transitive Dependencies

¥

OrderlD | OrderDate CustomerlD ORDER (3NF) /
¥
CustomerlD CustomerName CustomerAddress CUSTOMER (3NF) J
ORDER
pi | Order ID CUSTOMER ORDER

Customer ID Order ID
x Order Date PK|omer® HBEee—e——aas o< J
D Customer Name Ordes Date
CAmtomer Name Customer Address FK1 | Customer ID

Crustomer Address]

Removing Transitive Dependencies (Using Tutorial Format for Relations)
1. Non-key determinant with transitive dependencies go into a new table;
2. Non-key determinant becomes primary key in the new table, and

3. Stays as foreign key in the old table

ORDER (QOrderID, OrderDate, CustomerID, CustomerName, CustomerAddress)

> FDs:

OrderID = OrderDate, CustomerlID, CustomerName, CustomerAddress

CustomerID - CustomerName, CustomerAddress

> New Relations that are in 3NF:

ORDER
CUSTOMER (CustomerID, CustomerName, CustomerAddress) / OrderID | OrderDate | CustomerID
. 1001 18/04/1983 | 1233
ORDER (OrderlID, OrderDate, Customer|D7) 1003 12/01/1988 | 1233
FK (CustomerID) references CUSTOMER
 ORDER |
pK |OrderID ORDER
x pK | Customer ID 1 px | Order ID J
Order Date St s ot ol ‘
n) | o o
Customer Name Customer Address FX1 | Customer ID RN
Customer Address :

Normalized logical Design

OrderlD Order
Date D Name Address

Customer Customer Customer ProductlD Product

Description

Product
Finish

Product

StandardPrice Quantity

Ordered

1006 10/24/2010 2

Value
Furniture

Plano, TX

1007 10/25/2010 6 Furniture Boulder,
Gallery co

7

Dining
Table

Writer's
Desk

Entertainment

Center
" 4-Dr
Dresser
4 Entertainment

Center

Natural
Ash

Cherry

Natural
Maple
Oak

Natural

Maple

800.00

325.00

650.00

500.00

650.00

2

FIGURE 4-25 INVOICE data (Pine Valley Furniture Company)

_} : INVOICE

pK | Order D

Order Date
Customer ID

Customer Name
Customer Address
Product 1D

Product 1
Product Fnish

Product Standard Price
Ordered Quantity

ProductlD =» ProductDescription, ProductFinish, ProductStandardPrice

CustomerlID = CustomerName, CustomerAddress

OrderID = OrderDate, CustomerID

OrderID, ProductIiD = OrderQuantity

ORDER
x PK |OrderID
Order Date
Customer ID
Customer Name
Customer Address
Includes
PRODUCT f -
Product ID ordered o
L ot Ao | orderiD
Product Descrption Pk | ProductiD
Product Fnish
Product Standard Price Orderad Quantity

CUSTOMER DRDER
Customer 10 |y pK | Order ID
Customer Name Oirder Date
Customer Address Fi1 | Customer ID

Includas
PRODUCT

Product ID ORDER LINE
- Bordered | Akt | OrderiD
Product Description ~|PK, P2 | ProductiD
Product Finish .
Product Standard Price Ovrdered Cuantity

Class Activity 5.5: For the relation below:

C) Remove transitive functional dependencies from the EMPLOYEE relation and provide new relations and the revised ERD.

EMPLOYEE (Employee_ID, Skill ID, Emp_F Name, Emp_L Name, Emp_Date_Employed, Emp_DOB, Company_ID,
Com_Name, Skill_Title, Skill_Type, Date_Completed)

FDs:

Employee_ID --> Emp_F_Name, Emp_L Name, Emp_Date_Employed, Emp_DOB, Company_ID, Com_Name
Skill_ID --> Skill_Title, Skill_Type

Company_ID --> Com_Name

Employee_ID, Skill_ID --> Date_Completed

EMPLOYEE (Employee ID, Emp_F_Name, Emp_L Name, Emp_Date_Employed, Emp_DOB, Company_ID, Com_Name)

EMPLOYEE (Employee ID, Emp_F Name, Emp L Name, Emp_Date Employed, Emp_DOB, Company_ID*)
FK (Company_ID) references COMPANY

COMPANY (Company ID, Com_Name)

Class Activity 5.5: For the relation below:

C) Remove transitive functional dependencies from the EMPLOYEE relation and provide new relations and the revised ERD.

EMPLOYEE (Employee ID, Emp_F Name, Emp_L Name, Emp_Date Employed, Emp_DOB, Company_ID*)
FK (Company_ID) references COMPANY

COMPANY (Company ID, Com_Name)

SKILL (Skill_ID, Skill_Title, Skill_Type)

EMPLOYEE_SKILL (Employee_ID*, Skill ID*, Date_Completed)
FK (Employee_ID) references EMPLOYEE

. EMPLOYEE
FK (Skill_ID) references SKILL SRILL
- Employee_ID
I’ EMPLOYEE_SKILL\ skill ID

Emp_F_Name H =0 4
Emp_L_Mame bate_c:ompleted _) .
Emp_Date_Employed gi:::_]l'—mee
Emp_DOB _lyp

¥

COMPANY

Company_ID

Com_MName

Summary

» State two properties of candidate keys
» Determining keys from FDs
» Define first, second, and third normal form

» Use normalization to decompose anomalous relations to

well-structured relations

Next Lecture...

1. Review of 1INF, 2NF and 3NF.

2. Boyce Codd Normal Form (BCNF) = Optional

1.1. BCNF Example 1
1.2. BCNF Example 2

3. Creating New Relations in a Higher Normal Form - Optional
4. Role of Normalization - Optional

5. Advantages of Refinement (Top-Down) Approach - Optional

6. Tutorial 6 — Section one

This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permit-
ted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their
classes. All recipients of this work are expected to abide by these
restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.

Copyright © 2013 Pearson Education

