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Assessments
Assessments are based on six Skills Tests hosted on Canvas: 
The Skills tests cover and overlap four Mastery test areas weighted 
as

2

5%

15%

15%

Mastery   Testing area 1: 

Mastery   Testing area 2: 

Mastery   Testing area 3: 

Mastery   Testing area 4: 15%

If you achieved at least  40% in the final exam and your overall mark 
is at least 50%  then congratulations! You have passed the subject.

Final    Exam:                                                                  

50%

50%



Content of the Mathematical Component
• Linear Algebra

 General solution of linear systems
 Determinants
 Eigenvalues and eigenvectors
 Linear transformations

• Multivariable Calculus

 Partial derivatives
 Maximum & Minimum
 Directional Derivative
 Optimization
 2D Integration
 3D Integration



Matrices
(A Brief Review) 



A matrix is a rectangular array of numbers.
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The elements of a matrix A are often written

ija

ith row
jth column

Eg: 
















=

333231

232221

131211

aaa
aaa
aaa

A

A matrix has order m x n
if it has m rows and n columns.

Matrices  Review 

ijij aA =][

• (1 x n) matrix is known as a row vector;

• (m x 1) matrix is called a column vector. 
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Two matrices are said to be equal if they have the same sizes and all their
elements are equal.
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Types of square matrices:

An upper triangular matrix has the form

A lower triangular matrix has the form

A diagonal matrix has the form



If two matrices have the same sizes, they may be added or subtracted.
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It follows that matrices are commutative and associative under 
addition:

A + B = B + A

A + (B + C) = (A + B) + C

A zero matrix is any matrix with all elements equal to zero,
and is usually written 0:

A + 0 = 0 + A = A
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It is straightforward to multiply matrices by a scalar quantity k:
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Multiplying two matrices together is more complicated. 
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Rule: the number of columns of the first matrix 
must equal to the number of rows of the second. 
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Multiplication of two matrices can be written as a sum:

Multiplication of Matrices 

















 −

231
210
021

















202
311
101















 −−−
= 5

521

Multiplication of Matrices 















 −

231
210
021

















202
311
101



If the matrices have the “wrong” dimensions for multiplication, 
then the product does not exist. E.g: 
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Matrix multiplication is associative

A(BC) = (AB)C

but is non-commutative. Usually,

AB ≠ BA
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Because AB ≠ BA, we must always specify on which side we are doing the 
matrix multiplication



Exercise: 

Multiplying X on the left by A:

Multiplying X on the right by A:
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Matrix multiplication has some other “strange” properties:

1. AB = 0 does not necessarily mean that A = 0 or B = 0 

2. AB = AD does not necessarily mean that B = D

Matrices  Review 
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The identity matrix I is the matrix with the property:        AI = IA = A
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The Inverse of a matrix

The inverse of a square matrix A (written A-1) has the property that

A-1 A = I      and A A-1 = I 

A matrix  has a unique inverse.

Find the inverse of matrices
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The transpose of a matrix is obtained by interchanging the rows and the
columns:
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Using the rules for addition, subtraction, multiplication and inverses, 
as well as the special matrices I and 0, we can re-arrange matrix equations.

Example: Suppose A, B, C and X are all 2 x 2 matrices, where

Re-arrange the equation

to find X.









=

12
01

A 






−
=

12
21

B 







=

10
00

C

CBXA =+ 2



Example: B, C and X are all 2 x 2 matrices, with 

Re-arrange the equation

to find X.
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Summary: Rules of matrix algebra

Equality:

If A = B and A = C then B = C

Addition:

A+B = B + A
(A + B) + C = A + (B + C)

Multiplication:

(A + B) C = AC + BC
k (A + B) = kA + k B
k(AB) = (kA) B
(A B) C = A(BC)

Special matrices:

AI = IA = A
A + 0 = A

If A has an inverse,

A-1 A = A A-1 = I

Transposes:

(A+B)T = AT + BT

(AB) T= BTAT

Remember that in general:

AB ≠ BA
AB = 0 does not necessarily mean that A = 0 or B = 0
AD = AC does not necessarily mean that D = C



Linear Equations
• Linear algebra is one of the essential parts of mathematics.

In short it is the study of the linear equations.

• Linear equation in the variables x1, x2,..., xn is an equation that
can be written as

• Here a1, a2, …an, b are real or complex numbers and n is any
positive integer number

• The following equations are linear

• While the following equations are not
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Linear Equations
Consider the system of linear equations
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Linear Equations
The linear equation can be written as
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Linear Equations
If the inverse of A exist then the solution can be written as
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Linear Equations
The system of linear equations can be written in a matrix form
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Linear Equations
An other Example
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Linear Equations
An other
Example
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Linear Equations
• A number of applications in science, business, economy are linear in 

nature. This naturally leads to linear systems.

• A number of nonlinear problems can be approximated to be linear
This will also lead to linear systems.

• A number of problems in Statistics, Operational Analysis, 
Optimization, leads to linear systems.

• Solutions of partial differential equations, ordinary differential 
equations, finite-difference equations can lead to the system of 
linear equations.

• In short Linear Algebra has vast applications in many branches of 
Sciences and Mathematics

• Digital Image processing 



Linear Equations
• A system of linear equations (or simply a linear system ) is a 

collection of one or more linear equations involving the same 
variables 

• In general

• A solution of the system is a list x1,x2, ..., xn of numbers that
makes each equation a true statement.
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Linear Equations
• A system of linear equations

• The set of coefficients aij form the matrix of the linear system

• The element aij located in the ith row and the jth column of
matrix A. The size of the matrix is
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Matrix Form of Linear Equations
• Denoting

• The system can be written in the matrix form

• Two fundamental questions about a linear system

1. Does at least one solution exist?

2. Is the solution unique?
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













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x
x



2

1

x



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






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
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b
b



2

1

b

bAx =


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












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