
Calculus of Several Variables
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Content

• Definition of functions of several variables

• Continuity of  functions of several variables

• Partial derivatives
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A function of one variable  f (x) is a 
rule that transforms one number x into 
another number f (x).

We often express this transformation by writing

E.g. Let f : R -> [-1,1] be the real-valued function f(x) = cos x.
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A function of two variables f (x,y) is a rule for transforming 
two numbers x and y into a unique number f (x,y) .

We often write that z =f (x,y) to make it clear that for each
pair (x,y) we get the output z. 

Because x and y are not 
connected, they are known 
as the  independent 
variables. 4



The domain D of f is the set of all variables (x,y) such that  f
is defined and has a real value.

The range R of f is the set

Example:

Domain:

Range:

422 ≤+ yx

20 ≤≤ z
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The graph of a function is the surface drawn in three dimensions 
with equation z = f(x,y). 
To draw a graph we use a technique called slicing:

1. Hold one variable constant (to some value k) 
while we plotting with respect to one of the other variables. 

2. Change k, then repeat. 

x

y

z

Example: Sketch a graph of 
f(x,y) = x2 + y2
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The lines f(x,y) = const are known as level curves.
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We can obtain a contour plot by plotting level curves f(x,y) = k
at regular intervals of k, and then projecting the curves onto 
the x-y plane:
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Recall: limit for a 1-variable function
Suppose that f(x) is a real valued function. The expression

means that f(x) can be made arbitrarily close to L by taking x towards a.

We can define a left limit

and a right limit

depending on the direction in which the limit 
is taken.

f (x)

x

We only say that “a limit exists” if both these exist and are equal, i.e. if
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Limits in two dimensions
Definition: Given a function of two variables 
f(x,y), we write that

If the function f can be made arbitrarily close to 
L by taking the point (x, y) sufficiently close to 
(a, b).

Note that the limit must be independent 
of the direction of approach

If the limit process yields a 
different result for two directions, 
then the limit does not exist. 11



Example:

The function 

has no limit as (x,y) -> (0,0). 
Approaching to zero along x
axis the limit is 1

Approaching zero along y 
axis the limit is -1.
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Examples:  Find the limits.  
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Examples:  Find the limits.  
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Definition A function f(x) is continuous at (x,y) = (a,b) if
Continuity in two dimensions

Rule of thumb: A discontinuity occurs if:
1. The function definition changes
2. There is a division by zero 15



Recall: The derivative of a real 
function is defined as

rise

run

A function f is differentiable at the 
point x0 if the derivative exists.

We often write the derivative as f’(x):
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Definition of Partial Derivative
Let f : A ½ R2 ! R be a real-valued function f(x,y). Then the partial 
Derivatives of f at the point (x0,y0) are defined as  

We often write these as

The partial derivative is the derivative with all the other 
variables held constant.

NB: it is very important to remember to write 
it with the partial “∂” symbol. 
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Example:
)( 22

),( yxeyxf +−=

The partial derivative can be thought of as the slope in a given 
direction
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Eg: )( 22

),( yxeyxf +−=

The partial derivative can be thought of as the slope in a given
direction
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Eg: )( 22

),( yxeyxf +−=

The partial derivative can be thought of as the slope in a given
direction
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Example:
Let

then

To compute the partial derivative we treat all other variables as 
constants: 

Definition: A function f (x,y)  with continuous first partial 
derivatives is called a differentiable function.
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Example: Compute fx and fy for
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Example:
Find fy when
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Partial derivatives obey most of the usual rules of normal 
derivatives, such as the product rule, and the quotient rule. 

Example:  Find fx and fy when:

However, there are differences too:

• It is not true that 

• The chain rule is more complicated
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Example:
Find fx and fy of
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By differentiating once again, we obtain four partial derivatives
of second order:

We can also form third partial derivatives and so on. 

Higher order partial derivatives:
The partial derivatives fx and fy are known as the first partial 
derivatives or the partial derivatives of first order.
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We can think of the second-order partial derivatives as representing
degree of curvature in each of the different directions. 

concave up

concave down
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Example:
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Clairaut’s theorem: If both fxy and fyx are continuous on an open 
set surrounding (x0,y0), then 

at the point (x0,y0).

29



Example:   Compute fxy and fyx for

Ans: 2 x + cos y
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Partial differential equations
Almost all mathematical models are expressed in terms of equations
involving partial derivatives. 

Laplace’s equation

The solution f can represent:

• Voltage across a capacitor

• Pressure in a fluid 

• Velocity of steady-state fluid flow in a pipe

Solutions to Laplace’s equation give the functions with the smallest “overall curvature”.
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The wave equation:

A solution to this equation is

which is a wave moving in the positive x direction.
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