Calculus of Several Variables



Content

« Directional derivative, gradient

« Maximum and Minimum of f(x,y)



Vectors: revision

A vector is something that has both magnitude and direction

Force, acceleration, displacement, velocity, torque, momentum are all vectors.
(Mass, energy, time, speed, height, temperature are not)

We can write a vector in terms of its components:

7 a
a = (a1, az,a3) .
or in terms of the coordinate unit vectors i, j and k: 43 ,
a —= CLl,i\ + agj -+ agf{ al Y
)




Vectors have only magnitude and direction, and so have no position.




One of the most important vector operations is the dot product.
The dot product between two vectors a and b is

a-b=ab, +a,b,+a,b,
This is equivalent to
a-b =|a||b|cos & 1
| L

The dot product tells us how much two vectors are pointing in the same direction
The length of a vector

2 2 2

Unit vector _ a
a=—
|



Directional derivative

Given a function of two variables f(x,y) the partial derivative with
respect to x is the derivative when y is held constant:

o JOt+hy)-fxy) o JLy+h) - f(x,)

o T g T M,

ox
Partial derivative with respect to y is the derivative when x is held

constant: We can think of this quantity as being the slope in the direction
of x and y.

Can we define derivative in any direction?



Directional derivative

Z

Maximum
increase

(x, 3, f(x, y))

The directional derivative of f at (x,, y,) in the direction of
a unit vector u(a,b) is

J(x, +ha, y,+hb)— f(xy,y,)

D, f (%, ) =lim

h
if this limit exists.



Directional derivative

If u(1,0)=i then D=f, Duf(xo,y0)=}1irr3f(x° +ha, y, J;Zhb)—f(xo,yo)

If u(0,1)=j then D;=f,



Directional derivative

If f(x,y) is a differentiable function of x and y, then f has a
directional derivative in the direction of any unit vector u(a, b)
and

D, f(x, y)——{ca+é

x=x,+ah, y=y,+bh,
¢(h) = f(x,y) = f(x, +ah,y, +bh)
dg(h) _of d(x,+ah) of d(y,+bh) @f+b@

D X = + = 4 ——
SED=ZZ TN o o dh ox oy

If the unit vector u makes an angle 6 with the positive x-axis,
then we can write u=(cos 6, sin 0)

and the formula for the directional derivative becomes

D,f(xy) = filx,y) cos O+ f/[x, y)sin O



Directional derivative
Directional derivative can be written in a vector form. Let

9 I _ _
E@x’ﬁyj Vf, u=(a,b), [u=1
Duf(x,y)=%q+%b=vf-u

D,f(x,y)= f.(x,y)a+ [f,(x,0)b = (f.(x,), f,(x,))-(a.D)
=(f.(x.), f,(x,))-u=Vf -u

If f is afunction of two variables x and y, then the gradient of f is the
vector function defined by
of . of .

VS () = (£ (62, £, (e p)) =i o

Another notation for the gradient is grad .



Properties of directional derivative
Let

D, f(x,y)= a—f;a + éb Vf -u=|Vf]u|cos @ =|Vf|cos O

» Maximum value of the directional derivative D, f(x) is |V/(x)]
and it occurs when u has the same direction as the gradlent
vector Vf(x,y), 0=0,so fincreases most rapidly along V£ (x)

D, f(x,y)=Vf -u=|Vf|u/cos0=|Vf|

» Minimum value of the directional derivative D, f (x) is —|V/(x)|
and it occurs when u has the opposite dlrectlon as the
gradient vector Vf(x) . So f decreases most rapidly along— V/(x)

- The direction u normal to v#(x) is the direction of zero change

o D) =Vf u=[Vfulcos /2= 0



Properties of directional derivative

« At every point in the domain of f(x,y) the gradient of f V£ (x)

Is normal to the level curve passing through the point

Duf(x,y)=Vf-ll=‘Vlel‘COS7Z’/2=O
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Example1 : Calculate the gradient of [f(z,y) =" -y
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Example 2: Calculate the gradient of

2

Fla,y) = e siny

Vf =i e smy) + ole” smy) =—i2xe™ sin y + je‘x2 COS y

Ox oy




Example 3: Calculate the slope of the function

f(may) — 332 _y2
in the direction of the vector

v =21+ :
t th int (1,1 D
at the point (1,1).
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Properties of directional derivative

It f is afunction of three variables, the gradient vector is V' (x)

VF = (fo f £ = A i K

The symbol r is a differential operator that acts on the scalar function f.

o 0 0
e <@:c’ 8y’8z>

The directional derivative along a unit vector u(a,b,c) can be
expressed in terms of the gradient as

Duf(x,y,x)ZVf(x,y,Z)-u:ag_pbg_kcg
OxX oy Oz




Example: The temperature in a rectangular box is given by

T(x.y,z) =xyz(1-x)(2—-y)(4 — z)
with0<x<1,0<y<20<z<4

If a mosquito is at the point with coordinates (1/2,1,1), in which
direction should it fly to cool off as fast as possible?

VT(x,y,z):iai+jg+kg

ox Oy Oz
oT
= = y21=0)@ =) =2) — 0z = y)(4 - 2)
Z—T =xz(1-x)2-y)4—2)—xyz(1-x)(4—2)
Y
oT

el xy(1=x)2-y)4—z)—xyz(1-x)(2-y)




VT(X,y,Z):i@-Fj@-l—k@

ox Oy Oz

oT
—|  =r2(-0)Q2-»)@-2)-x0z(2-y)4-2)|,,,, =0
Ox (1/2.1.1) B
oT
8_ =xz(1-x)2—-y)(4—-z)—xyz(1-x)(4— Z)‘(1/2,1,1) =0

Yz
oT 1
= y(1=x)(2=y)4=2)=xpz(1=3)2= )|, 5, ) = >
v=—VT] =(0,0,—1/2)

(1/2,1,)

The direction of the fastest decrease of T is in the opposite
direction of z axis.



Minimum and maximum values
Definition

A function of two variables has a
local maximum at (a,b) if

flz,y) < f(a,b)

for all points (x,y) in some disk with
centre (a,b).
Similarly, if

flz,y) = f(a,b)

then there is a local minimum.

If the inequality holds for all
values of (x,y) then f has an
absolute maximum (or absolute
minimum) at (a,b).




Fermat’s theorem:

If f has a local extremum at (a,b)
and the first partial derivatives
exist, then the gradient is zero.

vf‘(a,b) = (

2

Fla,y) = e siny



Note that

Local max or min Vflias =0

But it is not necessarily true that

Local max or min

Vf|(a,b) — O

Counter-example:
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Maximum And Minimum values
* The extreme values of f(x,y) can occur only at:

* Boundary points of the domain f(x,y)

* Critical points: where Vf|,, =0 iszero or does not exist

If the first and second order partial derivatives of f are continues
around some region (a,b) and Vil =0 then the second
derivative test can be applied to classify the extremum points

Cases:
D= f:m: fmy * If D>0 and fxx (a,b) > O, f(a,b) has a min
| Sy Sy (a.b) If D>0and f, (a,b) <0, f(a,b)hasa max

* If D<O saddle point
D=0 higher order derivatives are required



Example: Find all critical points of

f(xay) :x2_y2
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=2x=0=>x=0
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Example: Find all critical points of

2

Fla,y) = e siny

/. Dxe ¥ siny=0=>x=0 S

Ox o

@:e_x2 cosy:O:>cosy:O:>y:£+7zk,keZ
oy 2

(0,2 + 7k)
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Example: ; , )
Find and classify the critical points of fle,y) =3c —a° = 2y" +y

8f —3-3x"=0= x=+1
OX

of
0y
The critical points are: (1,—1);(1,0);(1,1);(-=1,=1);(—1,0); (=1,1)

4y —4y=0=>y=0,y==l



0’ f 0’ f

ox°  OxOy| |—6x
D =

0’ f 0’ f 0

oxdy oy’

_ 2
D|, , =-6x(12y 4)\(19_1)
The critical point (1,-1) is a saddle point
_ 2

D Ly =—6x(12y° = 4) -
f.=6>0

0

= —6x(12y* —4
PIETP S

= —6(12—4)=-48 <0

|, =6(12-4)=48>0

The critical point (-1,-1) is @ minimum point.

The classification of the rest of the critical points are left as an exercise



O>f  Of
x> Ox0 —6 0
p=|"  TE . |=-6x(12y* - 4)
o’f 0°f 0 12y -4
Ox0y  Ox’
— 2 _ . .
D‘(I,O) =—0x(12y 4)‘(1)0) =—6(0-4)=24>0
]Fxx — —6 Xl = —6 < O The critical point (1,0) is a maximum point
— 2 _ _ _
D|,,=-6x(12y" ~4)|  =-6(12-4)=-48<0

The critical point (1,-1) is a saddle point.
’ .

The classification of the rest of the critical points are left as an exercise



Finding the absolute minimum or maximum

Theorem:

The absolute maximum or minimum of a continuous
function f defined on a domain D must either occur at
the critical points of f, or at extreme values of f on the
boundary of D.

To find the absolute maximum and minimum in a domain:

1. Find all critical values of f within D
2. Find all extreme values on the boundary of D

3. Compare these, and take the maximum/minimum.



Example: Find the absolute maximum of the function

f(xay) :xZ_yZ

in the domain D = {(z,y)|z* + y* < 2}
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