Integration in Two Dimensions



1D definite integrals (review)

We think of a one-dimensional definite integral
as the sum of areas of infinite number of rectangles:

A= [} fG)dx = lim X7, f(x;)Ax

where

This is known as the Riemann sum of the integral.

As the number of rectangles increases a better and better
approximation for the area under the curve is obtained.



NB: The integral is often thought of as the area under a graph.

A

However, integrals can also be negative or zero (unlike areas).
t




We can extend this definition to integrals of 2D functions over
rectangular domains .

m n Ay . d—c
j [ reunaxay = tim L2 2 Gy, T m
i=1j=1 Ax =
n
AA = AxAy
This time, the integral represents X; = a+iAx

a signed volume under the 2D surface.




Given a function of two variables, we can approximate the integral by summing the rectangles

= j L b fx,y)dxdy = i Zf (xi yj)AxAy,

i=1j=1
- — 2
Example: Estimate the total power in a laser beam AA = AxAy = Imm

Beam profile in GW/m?
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To perform an integral in 2D, we use nested (or iterated) integration:

y N
For a rectangular domain, this means that d|
we pick one variable to integrate over first
and evaluate this while keeping the other
variable constant. cl i
a b

a

A = ﬂf(x,y)d/l = fbfdf(x,y)dydx= fb -ff(x,y)dy- dx
D ¢ ¢ c _



Example: evaluate

3
2
A=ff x2ydxdy
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Fubini’s theorem states that for integrals of continuous functions
over rectangular domains, the order of integration is not important.

[ d

ﬂf(x y)aa = f ff(x y)dydx—f ff(x,y)dy_ dx =

 C

[ j Gz dy




Unlike in 1D, the domain of integration

in 2D can be complicated. R

To integrate in 2D, we first have D
to describe the domain of :
integration.

The general form is:

D = {(x,y) | some inequalities involving x, y}



Examples: D = {(x,y) | some inequalities involving x, y}

D={(y)|x>1y>1} D={ey)| ~1gxg2y5x)

\
N

D={(xy)| - 1<y Lx>y} D={(xy)|x*+y* < 4}



Integrating over more complicated domains:

First, write down and draw the domain in 2D, e.g.

D:mel—lsxgz 0<y<x+q

Pick the inequalities and use them
as the limits for you integral:

A= [ jo e y)dyd

(Important: make sure that the outer limits do not depend on x or .
If this happens, swap the order of integration).

Then integrate, starting with the inner integrals.



Example: Find Jj (6x + 6y)dxdy
D

over the domain

D={(y)|0<x<1, 0<ygLx)

1

X
A= ff (6x + 6y)dydx
0
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=X

I x 1 Y=
A=II(6x+6y)dydx=J(6xy+3y2)‘ dx =
00 0 y=0

1
2 2 9 ;p=l
=I(6_)_c +3x )dx:gx _023
0



Given a function f(x,y) on a domain D,

the integral of a function f(x,y) over this domain D is

b g,(x)

fD fdA :ﬂf(x,y)dydx=f f f(x,y)dydx
D

a g,(x)



Example: Integrate 4
j x cosydA
D
where D is the region
bound by y =0, y = x2, and y
x = +/T.
Jr Jr =
A= j J'xcosydydx= jxsiny‘ dx =
0 0 0 y=0
Jr s
. 1e . 1
= j xsin x dx :—Jsmudu =——(cost—cos0)=1
0 2 0 2

u=x>= du=2xdx



Given a function f(x,y) on a domain D,

the integral of a function f(x,y) over this domain D is

b g,x)

fD fdA :fff(x,y)dydx=f f f(x,y)dydx
D

a g,(x)



Example: Integrate

j x cosydA
D

where D is the region
bound by y =0, y = x2, and

x = +/T.
Vi Iz =
A= j Ixcosydya’xz jxsiny‘ dx =
0 O O. y=0
Jr 7
.9 | 1
= J XSin x dx:—‘[smudu =——(coszt—cos0)=1
0 2'O 2

u=x>= du=2xdx



The integral can be thought of as a weighted sum over the domain,
where the function f(x,y) gives the weighting.

Integrating the function f(x,y) = 1 over the domain D gives the area of
the domain.

A= j J}a’xdy
~»D



Example:
Find the area of the domain between the curves y = x2 and y = x3.
y N
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Swapping the order of integration

Some domains of integration can be
described in two ways:

D={(xy)|a<x<bgllx)<y<gh(x)}
D=1xy)|c<y<dhl(y) <x <hu(y)}

When this happens we can swap the order

(via a generalisation of Fubini’s theorem):
NV
b g,(x) gl
ﬂ f(x,y)dydx = j j f(x,y)dydx =
D a g,(x)
d h,(y) |
f(x,y)dxdy

c h(y)



Some integrals are easier performed one way than another.
To swap the order:

1. Draw a graph

2. From the graph write down the limits of the domain

3. Put these limits into the integral ’ v
E.g. m/2 /2 sin x
dxd
[ ] =
0
72 L sin x "Psinx |
Azjj dydx=J‘ y| dx=
00 X 0o X $=0
/2

= j sinxa’x:—(cosg—cosO) =1
0



We can also change the order to avoid “splitting” an integral.

1
2

E.g. Evaluate ff xy dxdy
0 7Y

7z

Over the region shown:

D={xy)|lysx<2,  0<



Double integrals can be separated: if the limits do not depend on xand y

d rb d b
fc faf(X)g(Y) dy=fc g(y)dyff(x)dx

a

>

Example: evaluate

1 1
1 1
ff ex+y dxdy — f eydyf ex dx




Polar coordinates
We often want to integrate circular domains, or regions with
round elements. For this we need polar coordinates.
A ‘
The transformation from (x,y) to (r,0) is

A X=rcosf
y=rsin@ %

X

To integrate, we also need to change
from dx dy to dr du

2 S
ey
18 | X ‘3‘“‘
ST
: S
iy
05 : Wi

R
0 il
05 ,4'

i 3
A A
@;}'jlllmnm\\\\‘\\\\\\

ﬂlmllll\:‘ RS




To integrate, we divide the domain into a large number of small sections,
each with area dA.

X=rcoso
Length of small element I=dr y=rsing

Width of small element w= rd0

‘ The area of a small element A=rdrd©



To go from (x,y) to (r, ©), we make the
transformation

dxdy ‘ rdrdo

And then integrate, picking one
coordinate to
integrate over first:

6, r (0)

!)f f(x,y)dydx = ] ] f(rcos 0,rsin @)rdrdO

6. r(0)

1 l



Example: Integrate y 1 ' X=rcos6

y=rsin@
// xdx dy
A

where A is the area shown:

/4
rzdrj cosOdo =

0

/4 2

A:”xdxdyzj jrcos@ rdrd 6 =
D 0 0
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Example: evaluate " X=rcoso
y=rsing
/ / x +y ) dx dy
1 \/72 27 1 1 27
A= j (x* +y*)dxdy = jjr rdrd6 = jr3drjd9=
_W 0 0
4|} i
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Example (important for quantum electrodynamics, statistics):

Use polar coordinates to evaluate: X=rcoso
y=rsin@
I = j e~ % dx
o0 o0 CORe's w0 21 ,
[’ = je‘x dxj e’ dy= I Ie‘x - dxdy:_[je_r rdrd6 =
—0 —o0 —00 —00 00
27 00 , 272_ o0 "
= Id@je"’ m’r=7 e'du=-me™” ; —r=1=+rn
0 0



Example: Show that the area of a circle is tR?

A =ﬁdxdy
D

27 R R 27
A:“dxdyzjj rdrdezjrdrjdez
D 0 0 0 0




General change of coordinates:

We can write a new coordinate system in terms of the old as

r = x(s,t)
Y= y(s ’ t)
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We would like a way of writing the area element dA = dx dy in terms
of the new coordinates.



To change the area element from (x,y) to (s,t) we use the Jacobian

dxdy =

This is often written dxdy = ‘

as

dx
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Example: Cartesian to polar coordinates:

X=rcoso
y=rsin6

dxdy =

0x
00

00

drdO =

cosO
sin@

—rsin@
rcos@

drdO = rdrdO



Example: Cartesian to Elliptic coordinates

X = acosh u cosv "

y = asinhusinv

dxdy = a’(sinh” u + sin” v)dudv
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