
Overscoping in Agile Developments – Zachary Zerafa
(24557656)

Abstract

With the growing demands for software products, the demand for strong programming
frameworks also develop. Several software development philosophies have developed in
the past half century, a notable example being agile development’s scrum and kanban
methods. These methodologies are designed to be highly adaptable to changes in
requirements and constrains; often containing iterations of short-term activities to
efficiently increment workload, however these method ar susceptible to the issue of
overscoping, which may lead to unintended side effects that in certain contexts could
potentially jeopardise the efficiency, quality, and cost of the development process. This
article, the causes, effects and gravity of overscoping will be assessed and a range of
possible mitigation tactics will be discussed.

1 – Introduction

What is Overscoping

Overscoping (also referred to as scope-creep) refers to attempting to fufil more
stakeholder requirements than are financially, technically or chronically feasible by an
assigned development team. This is often convoked by unrealistic expectations on
schedule and budget or otherwise encompassing an “unrealistically grand amount of
functions” (Bjarnason et al., 2012).

There are various sources from which overscoping can occur, one of which includes the
misunderstanding of the process on the end of stakeholders, as unfamiliarity with the
nature of their desired system may induce scope creep; the crescendo of requirements
building up to a level that becomes unmanageable.

Overscoping may also arise due to the diverse visions of individual stakeholders not being
able to come to a consensus on a defined set of requirements to implement in a program
(Bjarnson et al. 2010), which can in turn lead to delays due to the lack of direction for the
development team. An array of different agile methods are vulnerable to the effects of
overscoping, either due to their communication-independence, common
misimplementations or lack of definitive deadlines or project constraints.

Overscoping in Scrum

Scrum is an agile methodology that employs a cyclic process called a ‘sprint’, typiclly
lasting two to four weeks (Ionel 2008), where developers develop and display a prototype
of the software product, following a discussion with stakeholders on which requirements
are fufilled or need additional work. This always leaves developers with a definitive goal
that directly satisfies the requirements set by stakeholders.

Though this leaves developers with a strong sense of direction (which can aid in avoiding
overscoping), due to the abiguity of a project’s duration and high frequency of stakeholder
meetings (Ionel 2008), requirements are being updated at a regular interval without a
static date to compare with for time management.

Overscoping in Kanban

Kanban is another agile method that uses a backlog nicknamed the “kanban”, which
categorises of all stakeholder requirements according to their level of completion to
efficiently allocate resources amongst different requirement tasks autonomously from
stakeholders; it has abismal reliance on constant stakeholder communication. However
this method is also tainted by overscoping. Kanban contains few stakeholder meetings
aside from an initial instance of communication with stakeholders in order to form the
backlog, which can prove problematic when a team practically recognises that the user
stories may have a scope that is unrealistic to implement under certain conditions
(Bjarnason et al., 2012). In such a situation overscoping arises from a lack of
communication between developer and stakeholder.

2 – Quality of the Issue of Overscoping

Risks of Cost and Delays

There is ample reason for coverscoping to be
researched and analysed; the risks of being unaware of
this issue can lead to large losses in resources and
time, which can only be prevented by strategising
management strategies and assessing their practicality
through case studies. Overscoping is known to
impediment projects financially (Bjarnason et al., 2010)
and delay the release of a several product, since the
misallocation of resources that could go towards the
final product are rendered futile and reworking on
previous tasks often becomes necessary.

For instance, a project release date that isn’t properly
correlated with the quantity and intensity of the
requirements chosen by stakeholder may create a time
window that is not feasible for development. This
generic case of overscoping leads to extending the
deadline due to a misunderstanding of the requirements as well as extra costs in
promotional campaigns (Bjarnason et al., 2012).

An instance such as the previously explained has been
viable material for research in the past, as a case study by
Prasanta Dey (Dey et al. 2007) applied risk-mapping
methods to quantify the gravity and probability of a range of
known software
development risks and concluded that scope creep had the
highest severity out of all software development risks,
further stressing the cruciality of research into strategies to
combat overscoping.

High Frequency of Issue

Though it is clear that ignorance of overscoping poses a great threat to the software
development industry, the saliency of this issue in a large quantity of case studies
emphasises the need for this issue to be addressed.

The effects of overscoping on financial
resources, timing, the development
team and the stakeholders as
discussed in Overscoping: Reasons
and consequences (Bjarnson et al.
2010). The numerous undesired
effects render overscoping the prime
danger in software development
projects

A case study with an anonymous software companry with approximately 5000 employees
was conducted by Lund University to investigate the root causes of overscoping, where a
sample of 19 employees recounted five previous cases of overscoping in their history with
the company (Bjarnson et al. 2010). This demonstrates that scope creep is a highly
practical issue that is present in many project scenarios, offering incentive for research.

Another case study including a team of students being taught how to carry out various
agile methods found the outcome that many teams experienced scope creep, despite
efforts of maintaining strong stakeholder communication, and found an uneven distribution
of workload as a correlated effect (Anslow et al. 2015).

Feasibility to Mitigate

Though there is a high presence of overscoping in the software industry, there are many
methods to ward off scope creep that are efficient and cost-effective to implement, which
being discussed in research can help raise awareness and boost overall productivity for all
software development teams. Agile methods by themselves tend to have higher resistance
to overscoping than traditional waterfall methodologies (Bjarnason et al., 2012), however
the sole use of agile development methods does not suffice in eradicating the issue, as
visible in the previous student case study (refer to High Frequency of Issue). A range of
extensions for agile methods are plausible solutions for overscoping, such as cost
estimations and enhancing methods of communication.

3 – Cost Estimate Solution

What is Cost Estimation

Cost estimation refers to techniques used by development teams to
predict the magnitude of requirements that a stakeholder provides
(Pfleeger et al. 2005). The methods used are often mathematical in
nature, using previous statistics of previous case studies and
experiences as data to run analysis tests such as neural
networking or regression (Jorgensen et al. 2007). Cost estimation
offers great defense to development teams against the risks of
scope creep as it offers a way to measure the resources and
project duration that requirements require and allows for
comparison to what the team is capable of undertaking; allowing
overscoping requirements to be identified early.

Requirements

Cost estimation is enhanced by a wide range of analysis tools and techniques used to
make optimum use of the data at hand. UML (Unified Modelling Language) refers to a
standard of representing software systems through object-oriented illustrations (Kim et al.
2006), and serves as a useful tool to project the cost of a project at a technical level. UML
use case diagrams demonstrate a variety of different users and the actions that they would
exexute through the software system (Pfleeger et al. 2005) (also known as use cases),
and can be manipulated for cost estimation by finding the sum of the actors and use cases
as a quantity to compare to previous projects and their correlated costs, assisting in
deciding whether the project is within the capabilities of the development team.

The cost (c) of a
requirement (i) is
proportional to the
time (t) spent on the
requirement (Slittili et
al. 2011); this is an
example of quantifying
cost estimation to
approximate the
resources of a
requirement and
whether it is feasible.

Regression is a mathematical tool that is frequently used in software cost estimation that
works on mapping bivariate data with a line of best fit (Pfleeger et al. 2005). This can be
used to compare a set prior projects and their costs, graphed based on cost as well as
anothere chosen factor of the projects. When a line of best fit is rendered (Jorgensen et al.
2007), the relationship between the factor of the project and cost can be examined, for
instance, examining the rate that the cost of a project increases per requirement.

Limitations and Solution Space Strategy

Cost estimation provides an edge in hasty identification of overscoping, however it is
highly dependent of data originating in previous projects and planning schematics such as
UML, which may not always be conveniently available to software development teams.
Additionally, it is possible that the data is unreliable as it may be affected by an
uncountable array of external factors that may not be applicable to the project in context.

In applying this solution, it is worth noting that cost estimates are always prone to
inaccuracies (Pfleeger et al. 2005). A healthy solution space strategy would be to account
for size of the dataset, chosen confidence interval for statistical calculations and the
context of the current project in contrast to those in the dataset as a general measure on
how reliable the output of cost estinamtion techniques are.

4 – Solution of Communication

Relationship between Communication and Overscoping

Overscoping in select contexts arises as a product of lack of communication with
stakeholders; either by misinterpreting or not recording key stakeholder requirements
(Ajmal et al. 2019), and in turn leads to the development team undertaking more
requirements than necessary. For this reason, it becomes imperative that regardless of the
type of agile method utilised, a strong communication line with stakeholders is maintained.

Methods such as Kanban have minimal communication and as a result fall into this
category of risk, however Scrumban is a Kanban-specific solution that attempts to
integrate the iterative communication of scrum into the Kanban method as to rectify any
scope misunderstandings immediately. It functions by maintaining the kanban backlog but
setting intervals for stakeholders to analyse and question the state of the backlog, allowing
for dialogue that will help hone the development team on only the scope defined by the
stakeholders (Bhavsar et al. 2020).

Requirements

An assortment of tools and strategies can be implemented to establish a strong network
with stakeholders, including JIRA; a development management service that offers a
collection of features such as a digital kanban backlog, sprint progress reports, a custom
query language to search for specific sprints, in conjunction with a abundance of graph
generators that visualise all the aforementioned data (this can be used in conjunction with
cost estimation techniques to have a high degree of control over the project’s scope). JIRA
provides all the necessary means to construct and describe the progress in a scrumban
framework, which provides a strong basis in communicating the project with stakeholders
through JIRA’s repertoire of graphing presentation features.

Limitations

Ameliorating communication with stakeholders is a cost efficent and trivial solution to
apply, however a few caveats are present. Being closer knit with stakeholders increases
the risk of stakeholders adding more requirements as the project slowly progresses due to
the facilitated communication. Stakeholders that are unaware of the issue and
consequences of overscoping can inadvertently increase the workload for their project and
face the consequences of decreased quality and extended deadlines.

With this in mind, the solution space would require setting clear boundaries with the
stakeholders on what is feasible and the limit to the quantity of requirements. Informing
stakeholders about the concept of scope creep creates a common understanding that
protects both parties from the risks that overscoping suscitates.

Summary

Overscoping is a serious dilemma in the field of software development that can plague
even robust agile methodologies with decreased project quality and deadline extensions,
however there are a range of mitigation tactics such as cost estimation and extensive
communication that prove effective in keeping scope creep at bay. It is often suitable to
apply a balanced mix of these solutions rather than one solution alone in order to have a
strong buffer against scope creep and secure a project’s efficiency and quality.

Reference

Ajmal, M., Khan, M., & Al-Yafei, H. (2019). Exploring factors behind Project SCOPE
CREEP
stakeholders’ perspective. International Journal of Managing Projects in Business,
13(3), 483–504. https://doi.org/10.1108/ijmpb-10-2018-0228

Anslow, C., & Maurer, F. (2015). An experience report at teaching a group based Agile
Software Development Project Course. Proceedings of the 46th ACM Technical
Symposium on Computer Science Education.
https://doi.org/10.1145/2676723.2677284

Bhavsar*, K., Shah, D. V., & Gopalan, D. S. (2020). Scrumban: An agile integration of
scrum and Kanban in software engineering. International Journal of Innovative
Technology and Exploring Engineering, 9(4), 1626–1634.
https://doi.org/10.35940/ijitee.d1566.029420

Bjarnason, E., Wnuk, K., & Regnell, B. (2010). Overscoping: Reasons and consequences -
a case study on decision making in software product management. 2010 Fourth
International Workshop on Software Product Management.
https://doi.org/10.1109/iwspm.2010.5623866

Bjarnason, E., Wnuk, K., & Regnell, B. (2012). Are you biting off more than you can chew?
A case study on causes and effects of overscoping in large-scale software
engineering. Information and Software Technology, 54(10), 1107–1124.
https://doi.org/10.1016/j.infsof.2012.04.006

Dey, P. K., Kinch, J., & Ogunlana, S. O. (2007). Managing risk in software development
projects: A case study. Industrial Management & Data Systems, 107(2), 284–303.
https://doi.org/10.1108/02635570710723859

Ionel, N. (2008). Critical Analysis of the Scrum Project Management Methodology.

Jorgensen, M., & Shepperd, M. (2007). A systematic review of Software Development Cost
Estimation Studies. IEEE Transactions on Software Engineering, 33(1), 33–53.
https://doi.org/10.1109/tse.2007.256943

Kim, S. E., Lively, W., & Simmons, D. (2006). An Effort Estimation by UML Points in the
Early Stage of Software Development . https://doi.org/10.12691/ajse-1-1-2

Pfleeger, S. L., Wu, F., & Lewis, R. (2005). Software cost estimation and sizing methods:
Issues, and guidelines. Rand Corp.

Sillitti, A., Hazzan, O., Bache, E., & Albaladejo, X. (2011). Agile processes in software
engineering and Extreme Programming: 12th International Conference, Xp 2011,
Madrid, Spain, May 10-13, 2011. proceedings. Scholars Portal.

