
Survey on the Efficacy of Agile Development – 
Zachary Zerafa (24557656)

Abstract

In a world where technological solutions prevail, the demand for software development and 
application products is increasing exponentially. To satisfy this, software companies have 
developed and employed various strategies of systematic, corporate processes to ensure that
the product deadlines are reached and that the client’s software requirements are fufilled. This
gave rise to agile development; a software development ideology best suited for small teams 
that follows an iterative structure of repeatedly updating backlogs and gathering with a team 
to collaborate on a project. 

This system was formalised in 2001, and since then the nature and magnitude of 
programming has evolved immensely. In this survey various agile methods will be evaluated 
and a conclusion on the best apporach to modern agile development will be reached.

1 – Introduction

What is Agile Development?

Agile development was a software development philosophy formalised in 2001 to retort to the 
unprecedented software requirements that clients were requesting. It is often described as 
iterative, meaning that it works based on repeating a series of steps frequently in different 
stages of the program’s development. Agile development is included in many methodologies, 
such as the scrum and kanban methods.

Practical use of agile development

These attributes aim to equip software developing teams
with a process that is extremely efficient when confronted
with changes of requirements, as well as accurately
meeting said requirements. Following the Dot-Com bubble
(Al-Zewairi et al., 2017), these qualities became sought by
businesses that aimed to establish an online presence and
further contributed to agile development’s use in
mainstream software developing firms.

2 – Scrum

Introduction to Scrum

Scrum is a method is designed so that a stakeholder is able
to point out undesirable effects of prototypes early and
programmers can mitigate the issues in a timely fashion.
This is due to the use of frequent conferences as an
opportunity to reflect on how well a program’s functionality

Basic Overview of the Scrum Sprint; a 
visual demonstration of a scrum sprint, 
demonstrating the iterative nature of a 
sprint



will suit the needs of a stakeholder. This process divided into “sprints” (Kumar et al. 2012), 
which are time frames in which small groups of developers (of ten from “five to nine people”, 
but may be well over (Kumar et al. 2012)) are to work on their project at hand and at the end 
of each sprint, a prototype is demonstrated with the stakeholders, who will judge the precision
to which the demonstration suits the user requirements. A scrum-master is tasked with 
managing the scrum session and guiding developers in following the user requirements 
discussed in scrum meetings, weaving the entire methodology together with the developing 
team. 

The Benefits

Due to the consistency and frequency of these meetings, it is a useful technique in 
maintaining strong and timely communication with the stakeholders, who define the scope of 
the software. Evidently, an analysis by A .Ahmed shows that 50% (Ahmed et al., 2010, Kumar
et al. 2012) of scrum activities (including scrum) involve stakeholders. Additionally, company 
PulpCo (Paasivaara et al., 2009) compared their results before and after employing iterative 
sprints. It was noted that before sprints, programmers often worked individually and drifted 
away from requirements more frequently, whilst by iteratively going through the cycle of 
sprints they kept strong contact with stakeholders and minimised the amount of rework due to
the consistency of communication. The scrum process was proven to bind the team closer to 
the requirements and increase workplace efficiency.

The Tradeoff

The scrum method would require considerable effort from stakeholders to ensure that 
requirements are satisfied and that the requirements are within the range of development 
teams to complete. It also places high pressure on the scrum master to ensure that the scrum
process is proceeding as intended, without sufficient effort, the methodology becomes 
inefficient. However by keeping stakeholders networked and having a strong scrum-master, 
their requirements are better fufilled. 

3-Kanban

Introduction to Kanban

Keeping track of workflow in programming is essential; overlapping tasks is a hazard that 
disrupts efficiency and adds surplus cost. However it is easily avoidable in agile environments
with iterative techniques to keep communication in check. The Kanban method originates 
from 1940s Toyota employee Taiichi Ohno (Kirovska et al., 2015) in a, the same method can 
be applied by the creation of user stories (structured user requirements with reasoning for 
their implementation), allocation of these stories to development teams, ranking of importance
for each user story, and further atomisation of these user stories, and finally sorting out which 
user stories are fufilled, in progress, or yet to program (Al-Zewairi et al., 2017). 

Effects

The purpose of this is to narrow the focus for each group of developers on their respective 
tasks, quantify the real-time workflow (Alaidaros et al., 2021)of all areas of the application and



shift resources appropriately. It is a form of iterative communication applied in a way unique 
from scrum; replacing constant intervals of stakeholder communication with defining the 
requirements well at the beginning and consistently marking off each requirement fufilled. 
Though there is less interaction with stakeholders, surprisingly the Kanban method performs 
better than the scrum method, with a slightly more consistent rate of success (Alaidaros et al.,
2021).

Overscoping

Kanban is valued for its ability to quantify requirements and allow for greater resource 
flexibility with minimal communication with stakeholders, however can be affected by 
overscoping, which refers to undertaking an “unrealistically grand amount of functions” 
(Bjarnason et al., 2012) that are beyond the means of the developing team, in either a sense 
of finance, magnitude, or timing. Kanban’s lack of communication can prove an issue when a 
team progressively recognises that the user stories may have a scope that is unrealistic to 
implement under certain conditions, whereas scrum’s more iterative approach allows for 
these issues to be identified and mitigated earlier.

4 - Extreme Programming

Extreme Programming Process

The agile method also comes in variants that hone in more on software development (Tripp et
al., 2016), extreme programming (XP) being the most popular of them all. XP is defined by a 
strong planning stage, where test functions are delevoped on user stories prior to case-
specifc code to analyse the project’s feasibility. Then the code is “refactored” into a form that 
is more efficient (such as reducing code’s Big O complexity) (What is Extreme Programming 
(XP)? 2021).From here, developers start “pair-programming” (Tripp et al., 2016); working on 
their sector of programming in pairs of two, which makes the coding process hastier and more
meticulous.

Efficacy

XP allows for the code to be reviewed with ease in comparison to other methods, mostly 
thanks to pair programming as a method to gain some level of instantaneous feedback. It also
offers more flexibility as programming teams are given more independence to work on test 
cases, reducing the cost and time of backtracking and changing previous code. The case 
study of Wood and Kleb (Wood & Kleb, 2003, Layman et al 2004) supports this claim, where 
they analysed a team at NASA use XP with a new language to solve a mathematical problem,
concluding that the experiment had double the average productivity. Though the results are 
succesful, more data may be necessary to back this claim for larger teams.

However the high focus on code quality also leaves possibility for gaps in the software’s 
design; functionality may be optimum, but if the product is not designed in an easy-to-use 
manner, stakeholders may be disgruntled.

5 - Lessons Learned and Future Promising Direction



Positive Outcomes

Agile method comes in many different forms but ultimately all benefit from the philosophy of 
cycling through bursts of iterative processes and working in a lightweight way that allows for 
adaptability to change. Evidently most types of agile produce desirable results as seen in 
previous case studies, as the use of placing programmers in collaborative groups (such as in 
scrum development teams and pair-programming teams for XP) boosts efficiency and helps 
to rectify concerns autonomously before even involving stakeholders.

Negative Outcomes

The adverse of scrum’s heavy involvement with stakeholders implies that their absense and 
the absense of scrum-master creates confusion and extra cost. Kanban’s independent 
scheduling techniques may reduce the need of tight stakeholder communication, but it delays 
the process of mitigating overscopes, which creates inefficiency. And though XP helps guide 
code optimisation, its lack of focus on design can lead to a project that meets fewer 
requirements. The recurring pattern is that the core concept behind each method is geared for
agility, but in doing so leaves open room for possible surplus cost if these risks are not 
acknowledged.

Optimised Solution for Future

Ideally a modern software company would want to apply a concoction of agile development 
based methods in unison to help reduce the risk factors of religiously following a single 
method. There are hybrid agile development methods such as scrumban (a method that 
balances a strong network with stakeholders while also valuing the idea of kanban’s 
independent, dynamic backlogging process) that are modern solutions businesses employ 
Alaidaros et al., 2021).

Reference

Al-Zewairi, M., Biltawi, M., Etaiwi, W., & Shaout, A. (2017). Agile Software Development

Methodologies: Survey of Surveys. Journal of Computer and Communications, 05(05), 

74–97. https://doi.org/10.4236/jcc.2017.55007 

Bjarnason, E., Wnuk, K., & Regnell, B. (2011). Requirements are slipping through the gaps: a 

case study on Causes & effects of communication gaps in large-scale software 

development. 2011 IEEE 19th International Requirements Engineering Conference. 

https://doi.org/10.1109/re.2011.6051639 

Bjarnason, E., Wnuk, K., & Regnell, B. (2012). Are you biting off more than you can chew? A 

case study on causes and effects of overscoping in large-scale software engineering. 

Information and Software Technology, 54(10), 1107–1124. 

https://doi.org/10.1016/j.infsof.2012.04.006 

Kumar, G., & Bhatia, P. K. (2012). Impact of Agile Methodology on Software Development 

Process, 1–16. 



Layman, L., Williams, L., & Cunningham, L. (2004). Exploring extreme programming in 

context: An industrial case study. Agile Development Conference, 1–10. 

https://doi.org/10.1109/adevc.2004.15 

Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2009). Using Scrum in distributed agile 

development: A multiple case study. 2009 Fourth IEEE International Conference on 

Global Software Engineering, 1–10. https://doi.org/10.1109/icgse.2009.27 

Tripp, J., Rienemschneider, C., & Thatcher, J. (2016). Job satisfaction in Agile Development 

Teams: Agile Development as work redesign. Journal of the Association for Information 

Systems, 17(4), 267–307. https://doi.org/10.17705/1jais.00426 

Wood, W. A., & Kleb, W. L. (2003). Exploring XP for scientific research. IEEE Software, 20(3), 

30–36. https://doi.org/10.1109/ms.2003.1196317 

Ahmed, A., Ahmad, S., Ehsan, N., Mirza, E., & Sarwar, S. Z. (2010). Agile software 

development: Impact on productivity and Quality. 2010 IEEE International Conference 

on Management of Innovation & Technology. https://doi.org/10.1109/icmit.2010.5492703

What is Extreme Programming (XP)? Agile Alliance | Extreme Programming (XP). (2021, 

March 10). Retrieved March 15, 2023, from 

https://www.agilealliance.org/glossary/xp/#q=~(infinite~false~filters~(postType~(~'post~'

aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper

~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~'asc~page~1 

Alaidaros, H., Omar, M., & Romli, R. (2021). The state of the art of Agile Kanban Method: 

Challenges and opportunities. Independent Journal of Management & Production, 12(8),

2535–2550. https://doi.org/10.14807/ijmp.v12i8.1482 

Kirovska, N., & Koceski, S. (2015). Usage of Kanban Methodology at Software Development 

Teams, 1–10. 

https://doi.org/10.1109/icmit.2010.5492703

