
Exploring Extreme Programming in Context: An Industrial Case Study

Lucas Layman1, Laurie Williams1, Lynn Cunningham2
1North Carolina State University, Department of Computer Science, {lmlayma2,lawilli3}@ncsu.edu

2Clarke College, lynn.cunningham@clarke.edu

Abstract

 A longitudinal case study evaluating the effects of
adopting the Extreme Programming (XP) methodology
was performed at Sabre Airline Solutions™. The Sabre
team was a characteristically agile team in that they had
no need to scale or re-scope XP for their project parame-
ters and organizational environment. The case study
compares two releases of the same product. One release
was completed just prior to the team’s adoption of the XP
methodology, and the other was completed after ap-
proximately two years of XP use. Comparisons of the
new release project results to the old release project re-
sults show a 50% increase in productivity, a 65% im-
provement in pre-release quality, and a 35% improve-
ment in post-release quality. These findings suggest that,
over time, adopting the XP process can result in in-
creased productivity and quality.

1. Introduction

The introduction of Extreme Programming (XP) [4]

into mainstream software development has met with both
enthusiasm and skepticism. Reports both extol the virtues
and question the shortcomings of XP. Most often, these
reports take the form of anecdotal success stories or les-
sons-learned from organizations that have adapted XP for
a project [15, 16, 24]. However, many organizations re-
main skeptical regarding XP’s value. For these decision-
makers, an empirical, quantitative investigation is benefi-
cial for demonstrating XP’s efficacy. We increase the
existing evidentiary base of empirical XP knowledge with
a detailed study of an industrial team. We present this
case study within the context of the XP Evaluation
Framework [25, 26]. Our findings are useful for organi-
zations seeking scientific investigation into the real-world
impacts of utilizing XP practices.

In this single, longitudinal, holistic [28] case study, we
examine a product created by an XP software develop-
ment team at Sabre Airline Solutions™ in the United
States. We evaluated and compared two releases of the
Sabre team’s product. One release was completed just
prior to the team’s initial adoption of XP; the other re-
lease was completed after two years of stabilized XP use.
This ten-person team develops a scriptable GUI environ-

ment for external customers to develop customized end
user and business software.

XP originators aimed at developing a methodology
suitable for “object-oriented projects using teams of a
dozen or fewer programmers in one location” [10]. Abra-
hamsson et al. [2] contend that the XP methodology is
“situation appropriate” in that the methodology can be
adjusted to different situations. The characteristics of the
Sabre project placed it in the agile home ground [5] and
allowed the use of XP in a nearly “pure” form.

As discussed in Section 3, several XP case studies
were performed at Sabre. To differentiate this case study
from other case studies performed at Sabre, we heretofore
refer to the team in this study as Sabre-A (Agile). The
Sabre-A team was among the first to use XP at Sabre Air-
line Solutions. The perceived success of this and the
other early XP projects led to the use of XP with over 30
teams with more than 200 people throughout the organi-
zation.

In our case study, we examined five null hypotheses
regarding XP’s effectiveness. Because we are reporting a
single case study, we cannot conclusively reject or accept
these hypotheses. Our results add to the weight of evi-
dence in support or in refutation of these propositions.
We triangulate upon this support or refutation via objec-
tive and subjective quantitative methods and via qualita-
tive data collection and analysis. The null hypotheses
were as follows:
When used by teams operating within the specified con-
text, the use of XP practices leads to no change in:

H10: pre-release quality (as measured by defects
found before product release)

H20: post-release quality (as measured by defects
found by the customer after release)

H30: programmer productivity (as measured by both
user stories and lines of code per person-month)

H40: customer satisfaction (measured via interview
and customer feedback)

H50: team morale (assessed via a survey)

The remainder of this paper is organized as follows.
Section 2 provides background information, and Section 3
describes the context of the case study. Section 4 presents
the results of the case study. Section 5 discusses the case
study limitations. Finally, Section 6 summarizes our find-
ings and future work.

2. Background and related work

In this section, we discuss the advantages and limita-

tions of case study and qualitative research in software
engineering. We also discuss the Extreme Programming
Evaluation Framework created by the authors and provide
a brief survey of other XP research.

2.1. Case study research

Case studies can be viewed as “research in the typical”

[7, 12]. As opposed to formal experiments, which often
have a narrow focus and an emphasis on controlling con-
text variables, case studies test theories and collect data
through observation of a project in an unmodified setting
[29]. However, because corporate, team, and project
characteristics are unique to each case study, comparisons
and generalizations of results are difficult and are subject
to questions of internal validity [13]. Nonetheless, case
studies are valuable because they involve factors that
staged experiments generally do not exhibit, such as
scale, complexity, unpredictability, and dynamism [20].
Case studies are particularly important for industrial
evaluation of software engineering methods and tools
[12]. Researchers become more confident in a theory
when similar findings emerge in different contexts [12].
By recording the context variables of multiple case stud-
ies and/or experiments, researchers can build evidence
through a family of experiments. Replication of case
studies addresses threats to experimental validity [3].

2.2. Qualitative research

Qualitative methods can be used to enrich quantitative

findings with explanatory information that helps to under-
stand “why” and to handle the complexities of issues in-
volving human behavior. Seaman [23] discusses methods
for collecting qualitative data for software engineering
studies. One such method is interviewing. Interviews are
used to collect historical data from the memories of inter-
viewees, to collect opinions or impressions, or to under-
stand specific terminology. Interviews can be structured,
unstructured, or semi-structured [23]. Semi-structured
interviews, as were conducted in this case study, are a
mixture of open-ended and specific questions designed to
elicit unexpected types of information.

2.3. Extreme Programming Evaluation Frame-
work

The Extreme Programming Evaluation Framework

(XP-EF) is an ontology-based benchmark for expressing
case study information [25]. The XP-EF records the con-
text of the case study, the extent to which an organization
has adopted and/or modified XP practices, and the result

of this adoption. The necessity for common ontologies
emerges from the need to exchange knowledge [19]. The
XP-EF is composed of three parts: XP Context Factors
(XP-cf); XP Adherence Metrics (XP-am); and XP Out-
come Measures (XP-om).

In the XP-EF, researchers and practitioners record es-
sential context information of their project via the XP
Context Factors (XP-cf). Recording context factors such
as team size, project size, criticality, and staff experience
can help explain differences in the results of applying the
methodology. The second part of the XP-EF is the XP
Adherence Metrics (XP-am). The XP-am use objective
and subjective metrics to express concretely and compara-
tively the extent to which a team utilizes the XP practices.
When researchers examine multiple XP-EF case studies,
the XP-am also allow researchers to investigate the inter-
actions and dependencies between the XP practices and
the extent to which the practices can be separated or
eliminated. Part three of the XP-EF is the XP Outcome
Measures (XP-om), which enable one to assess the busi-
ness-related results (productivity, quality, etc.) of using a
full or partial set of XP practices.

A more detailed discussion of the XP-EF, its creation,
rationale, and shortcomings may be found in [26]. An
initial validation of the XP-EF may be found in [26]; fur-
ther work in this area is ongoing. Instructions and tem-
plates for measuring and reporting an XP case study data
via XP-EF Version 1.3 have been documented by the au-
thors of this paper [25, 26].

2.4. XP studies

Practitioners and researchers have reported numerous,

predominantly anecdotal and favorable studies of XP. A
number of these reports discuss the use of XP with small,
co-located teams. Wood and Kleb [27] formed a two-
person XP team and analyzed the productivity of their
project as part of a pilot study at NASA to assess XP in a
mission-critical environment. When the project results
were normalized with past comparable projects, the XP
approach was approximately twice as productive.

Abrahamsson [1] conducted a controlled case study of
four software engineers using XP on a data management
project at a Finnish research institute. The project lasted
eight weeks with a fixed development schedule and fixed
resources. Comparison between the first and second re-
leases yielded the following results: planning estimation
accuracy improved by 26%, productivity increased by 12
lines of code (LOC)/hour, and the defect rate remained
constant at 2.1 defects/thousand lines of code. Similarly,
Maurer and Martel [17] reported a case study of a nine-
programmer web application project. The team showed
strong productivity gains after switching from a docu-
ment-centric development process to XP.

Reifer reported the results of a survey of 14 firms
spanning 31 projects [21]. Most projects were character-

ized as small pilot studies, for internal use only, and of
low risk. It was reported that these projects had average
or better than average budget performance and schedule
adherence. Projects in the software and telecommunica-
tions industry reported product quality on par with nomi-
nal quality ratings; e-business reported above par quality
ratings; and the aerospace industry reported below par
quality ratings for their agile/XP projects.

A year-long case study structured using the XP-EF
was performed with a small team (7-11 team members) at
IBM [26] to assess the effects of adopting XP practices.
Through two sequential software releases, this team tran-
sitioned and stabilized its use of a subset of XP practices.
The use of a “safe subset” of the XP practices was neces-
sitated by corporate culture, project characteristics, and
team makeup. The team improved productivity and im-
proved their post-release defect density by almost 40%
when compared to similar metrics from the previous re-
lease. These findings suggest that it is possible to adopt a
partial implementation of XP practices and to yield a suc-
cessful project.

El Emam [6] surveyed project managers, chief execu-
tive officers, developers, and vice-presidents of engineer-
ing for 21 software projects. El Emam found that none of
the companies adopted agile practices in a “pure” form.
Project teams chose which practices to adopt selectively
and developed customized approaches to operate within
their particular work contexts. The Sabre-A team showed
evidence of an almost pure adoption of XP, with some
customizations to fit their environment.

Boehm and Turner acknowledge that agile and plan-
driven methodologies each have a role in software devel-
opment and suggest a risk-based method for selecting an
appropriate methodology [5]. Their five project risk fac-
tors (team size, criticality, personnel understanding, dy-
namism, and culture) aid in selecting an agile, plan-
driven, or hybrid process (see Figure 1 for an example).
The Sabre-A team in this case study is an example of a
team that can be classified as characteristically agile.

Robinson and Sharp [22] performed a participant-
observer study based on ethnography. The researchers
participated with an XP team to examine the relationship
between the 12 XP practices and the four XP values:
communication, feedback, simplicity, and courage. Rob-
inson and Sharp concluded that the XP practices can be
used to create a community that supports and sustains a
culture that includes the XP values. However, the spe-
cific 12 practices are not the only means for achieving the
same underlying values; teams that adopt a subset of the
practices can produce a similar culture.

3. Sabre Airline Solutions case study

We add to the body of knowledge about XP by report-

ing a case study with a Sabre Airline Solutions develop-
ment team. This study was done as a part of a coopera-

tive research effort between North Carolina State Univer-
sity and several development teams at Sabre Airline Solu-
tions. The Sabre-A team was selected as an example of a
team that was characteristically agile and did not need to
scale or re-scope XP. Team selection was also influenced
by data availability, team size, and the cooperativeness of
the team with the researchers. The last factor proved im-
portant because the research team was working within a
limited time frame.

In this study, we compare the third and the ninth re-
leases of the Sabre-A team’s product. From this point
forth, we refer to the third release as the “old release” and
the ninth release as the “new release.” The team used a
traditional, waterfall-based software process in the old
release. Development for the old release began in early
2001 and lasted 18 months. Work on the new release
commenced in the third quarter of 2003. In the two and
half years that passed from the beginning of the old re-
lease to the beginning of the new release, the team be-
came veterans of XP and customized their XP process to
be compatible with their environment.

Detailed data was collected for each release, and much
of this data was gathered from historical resources. The
old release was developed approximately two years prior
to the beginning of this study. The researchers were not
present for the old release, and the team was not aware
that any research would be done on their product or on
their documentation. Consequently, some in-process XP-
EF metrics were not available. The research team was
present only for a portion of the new release development.
Many of the XP-EF metrics were readily available for the
new release by examining source code, defect tracking
systems, build results, and survey responses. Qualitative
data was gathered from team members to aid in under-
standing quantitative findings. Six of the team’s ten full-
time members were interviewed during the new release.
The interviews were semi-structured, and each inter-
viewee was asked the same set of questions.

The Sabre-A case study will now be described in terms
of the XP-EF and its sub-categories. Section 3.1 presents
the context of the Sabre-A case study so that results can
be interpreted accordingly. Section 3.2 outlines the Sa-
bre-A team’s XP use to help understand the extent to
which the team actually employs XP.

3.1. Context factors (XP-cf)

 The XP-cf utilize six categories of context factors out-

lined by Jones [11]: software classification, sociological,
geographical, project-specific, technological, ergonomic,
and an additional category, developmental factors, based
upon work by Boehm and Turner [5].

Software classification. In the XP-EF, projects are
classified as one of six software types: systems [used to
control physical devices]; commercial [leased or marketed
to external clients]; information systems [for business

information]; outsourced [developed under contract];
military; or end user [private, for personal use]. The Sa-
bre-A team’s product is funded both internally and by
customer contribution. No single customer dictates re-
quirements, though customer suggestions are integrated
into the product. Since the product is built and marketed
to appeal to many customers, we classify this project as
commercial software.

Sociological factors. Team conditions for both re-
leases are shown in Table 1. In the old release, the turn-
over consisted of two developers leaving the team and
two joining the team. The team gained a new member
each time an old member left. These personnel changes
were distributed over an 18 month period, making the
transitions easier for the team. Three of the team mem-
bers in the new release worked on the old release. In the
new release, developers were under pressure to incorpo-
rate more features into the product as the release deadline
approached. This impaired the rigorous testing of the
product and may have contributed to lower code quality.

Table 1: Sociological factors

Context factor Old New
Team Size 6 10
Highest Degree
Obtained

None: 1
Bachelors: 3
Masters: 2

None: 0
Bachelors: 8
Masters: 2

Experience Level
of Team

6-10 years: 4
<5 years: 2

6-10 years: 5
<5 years: 5

Domain Expertise Medium High
Lang. Expertise Medium High
Exp. of Proj. Mgr. Low Medium
Specialist Avail-
able

System architect
Delivery manager

Personnel Turnover 67% 10%
Morale Factors Layoffs, man-

ager change
High delivery
pressure, ex-
pected layoffs
and team reas-
signments

Geographical. Table 2 documents the geographical

factors. The number of customers more than doubled
between the time of the old release and the time of the
new release. This led to increased usage of the product as
well as the generation of a higher number of require-
ments.

Table 2: Geographical factors

Context factor Old New
Team location Co-located
No. customers Approx. 5 Approx. 11
Customer loca-
tion

Remote, multi-national, several time-
zones.

Supplier None

Project-specific factors. As shown in Table 3, though
the number of actual new, changed, and deleted lines in
the new release is relatively small, these changes affected
numerous classes and functions. The size of the new and
changed classes are similar for each release, though many
more functions and classes were altered in the old release.
Thousands of lines of executable code (KLOEC) are non-
blank, non-comment lines.

Table 3: Project-specific factors

Context factor Old New
New & Changed
User Stories

N/A 32

Domain Scriptable GUI environment
Person Months 108 14.7
Elapsed Months 18 3.5
Nature of Project Enhancement/maintenance
Constraints Date constrained, scope con-

strained, semi-resource con-
strained

New/Chged Classes
Total Classes

276
903

180
1,337

New/Chged Method
Total Methods

1,777
8,233

710
13,301

New/Chged KLOEC 32.4 6.5
KLOEC of New &
Changed Classes

67.9 68.9

Component KLOEC 133.8 193.4
System KLOEC 133.8 221.6

Technological. The team’s technology factors are
summarized in Table 4. Some XP practices, such as con-
tinuous integration and collective code ownership, were
already a part of the team’s waterfall process. These
practices were not part of planned XP development but
were elements of the existing process. The team used
Microsoft® Project to organize and schedule project tasks
during the old release. In the new release, the planning
game was used to establish release and iteration plans.
User stories and task estimates were recorded in a Micro-
soft Excel spreadsheet that was also used to forecast re-
lease points and iterations based on the team’s project
velocity.

Defect prevention and removal practices also changed
between releases. In both releases, the team had dedi-
cated testers to perform system- and integration-level test-
ing. However, ad hoc testing by developers and testers
served as the primary means to identify potential prob-
lems in the code during production of both releases. A
code review policy was in place during the old release,
but it was not strictly enforced. Pair programming took
the place of code reviews in the new release. If a pro-
grammer did not pair when developing source, it was

common to ask a colleague for a peer review. Customer
tests were also integrated into the new release.

Table 4: Technological factors

Context factor Old New
Software Devel-
opment Method-
ology

Waterfall with
some XP prac-
tices

XP

Project Man-
agement

Microsoft Pro-
ject

Planning game

Defect Preven-
tion & Removal
Practices

Code reviews,
QA team, ad
hoc testing

Pair program-
ming, unit test-
ing, QA team, ad
hoc testing by
developers and
customer

Language Java, C++ Java
Reusable Mate-
rials

Third party
libraries

Third party li-
braries, unit test
suites, automated
build machine

Ergonomic. As shown in Table 5, in the old release

the team sat in semi-private cubicles, most of which were
along the same hallway. In the new release, the team sat
in an open office environment with furniture and pair
programming stations arranged by the developers. A
large whiteboard was available, and printouts of iteration
plans and process metrics were attached to the walls. Test
equipment and an automated build machine were also
present in the room.

Customer interaction changed considerably between
the two releases. In the old release, the product delivery
team and the lead developers were responsible for cus-
tomer communication. Requirements were delivered to
developers in a variety of ad hoc ways, and the developers
frequently visited customer sites around the world. In the
new release, a representative from Sabre’s product mar-
keting department served as the XP customer. This repre-
sentative made final decisions on product functionality,
and was on-site approximately half of the time and was
available by phone or e-mail at other times.

Table 5: Ergonomic factors

Context factor Old New
Physical Layout Semi-private

cubicles
Open office XP
lab

Distraction of
Office Space

Low Medium

Customer
Communication

Visit customer
sites worldwide,
e-mail, other ad
hoc methods

Customer rep-
resentative on-
site, available
through phone
and e-mail

Developmental. The Sabre-A development team’s
Boehm-Turner risk factors for the old release are graphed
on a polar chart’s five axes, shown in Figure 1. These
factors were evaluated both through empirical informa-
tion and through consultation with the team’s develop-
ment lead. The team’s shape indicates that a hybrid “par-
tially agile, partially plan-driven method” is appropriate.
The developmental factor that appears to necessitate plan-
driven practices is culture.

The team’s risk factors for the new release are shown
in Figure 2. The team’s size increased, but it still remains
on the agile portion of the axis. Also, culture and dyna-
mism moved toward the agile ends of their respective
axes. The change in culture can be attributed to the addi-
tion of personnel with more chaos-tolerant personality
types. Also, as Sabre Airline Solutions shifted toward XP
as a whole, all developers had to adapt to an environment
that embraced agility and open-space programming labs
instead of waterfall and private cubicles.

Figure 1: Old release developmental factors (adapted

from [5])

The increase in dynamism may be attributed to several
factors. The number of customer-requested changes and
enhancements grew as the system evolved to include
more features. Also, the number of external customers
increased in the new release, escalating the number of
customer-driven enhancement requests. The personnel
factor, which pertains to skill level, remained the same.
Though some personnel turnover occurred between the
releases, the skill and experience of new team members
were comparable to that of the team members that left.

Figure 2: New release developmental factors

3.2. Adherence metrics (XP-am)

Most companies that use XP adopt the practices selec-

tively and develop customized approaches to operate
within their particular contexts [6]. The XP adherence
metrics enable case study comparison, the study of XP
practice interaction, and the determination of contextu-
ally-based, “safe” XP practice subsets. These metrics
also provide insight into whether a team has adopted XP’s
core values. Unfortunately, many of the objective metrics
in the XP-am could not be gathered for this case study
since most of the metric information in this study is col-
lected from historical data. For those metrics that could
not be calculated, anecdotal evidence was solicited from
the team leader, who was present in both releases. Inter-
views were also conducted with team members to aid in
understanding and in substantiating this evidence.

The Shodan Adherence Survey (described fully in [25]
and adapted from [14]) is an in-process, subjective means
of gathering XP adherence information from team mem-
bers. Survey respondents report the extent to which they
use each practice on a scale from 0% (never) to 100%
(always). The survey was taken during new release de-
velopment; the survey was not administered during the
old release. Eleven team members took the survey, in-
cluding one team member who left during the new re-
lease.

We present the combined results of these adherence
metrics based upon three categories: planning (Table 6),
coding (Table 7), and testing (Table 8). For each section,
we present the results of the XP-am metrics followed by
the Shodan survey results. We also provide substantiation
based on interviews with team members.

3.2.1. Planning adherence metrics. The release length
in the old release was appropriate for the waterfall process
and a less volatile requirement set. During the time of the
new release, the team operated almost exclusively on it-
eration plans, and their product was continuously avail-
able via an automated build machine. Product versions
were primarily dictated by the marketing department.
Versioning served a means for the business unit to track
production rather than as a development milestone. For
the new release, stand-up meetings were conducted every
morning in the lab. The marketing representative serving
as the XP customer was on-site approximately half the
time and was available through phone and e-mail the rest
of the time.

According to team members, the daily stand-up meet-
ings were a valuable asset for problem resolution and
team communication. Team members also stated that the
short iterations were helpful and allowed them to create
more accurate estimates. Also, by estimating planning
only a few weeks at a time, there was less anxiety about
completing future tasks. When using the waterfall
method, the developers were often under pressure to meet
inaccurate task schedules that were created several
months earlier in the development cycle.

Table 6: XP adherence metrics – Planning

Planning metric Old New
Release Length 18 months 3.5 months
Iteration Length None 10 days
Requirements added
or removed to Total
Shipped Ratio

N/A N/A

Subjective (Shodan) Mean (σ2) Mean (σ2)
Stand up meetings N/A 92.7% (10.1)
Short Releases N/A 91.8% (11.7)
Customer Access /
On-site Customer

N/A 89.1% (12.2)

Planning Game N/A 84.5% (10.4)

3.2.2. Coding adherence metrics. In the old release,
pairing did not occur, but a code review policy was in
place. According to the team leader, in the new release,
the team paired approximately half the time. In inter-
views, some developers noted their dislikes for pairing
because of differences in age and in expertise. Almost all
interviewees disliked mandated pairing and saw no value
in pairing on trivial tasks. However, everyone agreed that
it was a valuable process for solving problems and over-
coming technical difficulties. One developer noted that
the time required to switch pairs is often underestimated
when this occurs several times per day. Developers
agreed that collective ownership is valuable and stated
that the group shares code often. Yet, some people still
regard their code as proprietary, particularly highly-
specialized or fragile pieces of code. The metaphor score

was low since no analogy could be created for the system.
However, the team used a system of names in the product.

Table 7: XP adherence metrics – Coding
Coding metric Old New
Pairing Frequency
(anecdotal)

0% 50%

Inspection Frequency
(anecdotal)

60% 20%

Solo Frequency
(anecdotal)

100% 50%

Subjective (Shodan) Mean (σ2) Mean (σ2)
Pair Programming N/A 67.3% (16.2)
Refactoring N/A 66.4% (18.6)
Simple Design N/A 78.2% (9.8)
Collective Ownership N/A 70.0% (18.4)
Continuous Int. N/A 81.8% (6.0)
Coding Standards N/A 90.0% (6.3)
Sustainable Pace N/A 80.0% (11.8)
Metaphor N/A 56.4% (27.3)

3.2.2. Testing adherence metrics. The team’s new re-
lease test coverage reflects a concerted effort to adopt
automated unit testing. Test coverage is averaged over
the entire component, not just the new and changed por-
tions. The team wrote automated unit tests before adding
or changing functionality and before refactoring code.
The ratio of Test Classes to New and Changed classes
indicates that more than half of the new and changed
classes have a corresponding test class. Nearly all of the
new classes written have a corresponding test class.
Static legacy code was not always unit tested.

Table 8: XP adherence metrics – Testing
Testing metric Old New
Test Coverage (stmnt) N/A 32.9%
Test Run Frequency
(anecdotal)

None 1.0

Test Class to Story Ra-
tio

N/A 3.22

Test Classes to
New/Changed classes
Ratio (JUnit only)

0.036 0.572

New Classes with cor-
responding Test
Classes (JUnit only)

4.8% 80.0%

Test LOC / Source
LOC

0.054 0.296

Subjective (Shodan) Mean (σ2) Mean (σ2)
Test First Design N/A 67.3% (14.2)
Automated Unit Tests N/A 78.2% (23.2)
Cust. Acceptance Tests N/A 56.4% (20.2)

In interviews, team members stated that automated
tests were difficult to write for some GUI components
because of limitations in available unit testing technology.
Developers noted that they enjoy the rapid feedback af-
forded by unit testing. The developers’ view corresponds
with that of Mugridge [18], who likens test-driven devel-
opment to the repeatable experiments of the scientific
method. Some developers stated that there was an ade-
quate amount of customer acceptance tests, however these
tests were not automated. The XP customer sometimes
had difficulty creating acceptance tests due to time con-
straints and system scope.

4. Results (XP-om)

 Of utmost importance to decision makers is whether

or not adopting XP aids in productively creating a higher
quality project. We provide quantitative output meas-
urements of productivity and quality, as well as qualita-
tive information gathered from team member interviews.
We performed member checking with team members to
review our findings and receive any final feedback on
their XP experience.

Defect information was collected from the team’s de-
fect tracking system. We now explain the method that
was used to identify and to classify defects for both the
old and the new releases. Internal (pre-release) defects
were identified by examining the “originating customer”
field of each defect header. According to the team’s qual-
ity tracking lead, a defect was found internally if the
originating customer field did not refer to an external cus-
tomer. If the originating customer field indicated an ex-
ternal customer, the defect was considered to be a post-
release defect. Furthermore, any Severity 3 defects were
classified as internal defects since the team’s severity
schema states that all Severity 3 defects were found dur-
ing development regardless of their impact on the system.
Also, all defects are reviewed by a quality assurance (QA)
panel to determine if they are, indeed, software defects.
Any defect entry that had not been classified by the QA
panel as a defect was not counted. All entries that ad-
dressed the same problem (duplicate defects) were
counted as one defect.

In interviews conducted during the new release, team
members were asked to discuss their likes and dislikes of
the XP process. All team members individually and in-
dependently responded that increased communication
amongst the team was the most beneficial aspect of XP.
Stand-up meetings allowed the developers to understand
better the work being done on all aspects of the project.
A general increase in team communication also allowed
for problems to be resolved more quickly. It was stated
that often one developer would overhear a problem some-
one else was having and was able to suggest a solution or
the two were able to collaborate on the problem. Devel-
opers also enjoyed the rapid feedback afforded by unit

testing and pair programming during the code and design
phases.

When citing their dislikes about their XP process, most
developers cited mandatory pair programming as one
drawback to their process. While they considered pair
programming to be valuable for problem solving and im-
plementing difficult functionality, it was often considered
an inefficient use of time to pair on menial tasks. The
interviewees also noted that, while the open lab increased
communication, the noise level could sometimes become
a distraction.

The Sabre business-related results, structured via the
XP-Outcome Measures (XP-om), are shown in Table 9.
A relative scale is used to protect proprietary information.
Results are measured with respect to the “component un-
der study,” which is the body of code listed as the
KLOEC of New & Changed Classes in Table 4. The en-
tire Component KLOEC is not factored into the result
because it does not accurately reflect the amount of work
that took place during new release development. The rest
of the System KLOEC is not counted because it is de-
signed and built as a separate component from the com-
ponent under study.

Table 9: XP outcome measures (relative scale with

the old release at 1.0)
XP Outcome Measures Old New
Internally-Visible Quality
(test defects/KLOEC of code)

1.0

0.35

Externally-Visible Quality
(released defects/KLOEC of
code four months after release)

1.0 0.64

Productivity (stories/person-
month)
Relative KLOEC person-month

N/A
1.0

-
1.46

Customer Satisfaction (approx) N/A High
Morale (via survey) N/A 68.1%

Internally-Visible Quality. Internal (pre-release) de-

fect density, which concerns defects identified by Sabre
testers, improved by 65%. These findings support the
alternative hypothesis H11: when used by teams operating
within this specified context, the use of a specified subset
of XP practices leads to an improvement in pre-release
quality. Testing was done by the dedicated testers associ-
ated with the Sabre-A team and the developers perform-
ing ad-hoc functional testing and unit testing throughout
development. We temper these results by noting that
these measurements may be skewed because the old re-
lease was subject to 18 months of continuous internal
testing, while the new release was internally tested for
only 3.5 months.

Externally-Visible Quality. We observed that the
number of defects found in the customer’s production
system has improved by approximately 35%. These find-

ings support the alternative hypothesis H21: when used by
teams operating within this specified context, the use of a
specified subset of XP practices leads to an improvement
in post-release quality. The defect numbers presented
reflect a collection period of four months after each re-
lease.

Post-release defect counts were impacted by several
important factors. One major influencing factor was the
doubling of the number of external customers between the
old and the new releases. The old release was not used
extensively since most customers were awaiting the com-
pletion of a new, concurrently-developed version of the
product in progress at that time. However, the new re-
lease was used significantly by more customers, some of
which had a more complex problem domain than custom-
ers of the old release. Evidence of similar customer use
of the product in the old and new releases and an assess-
ment of feature complexity would aid in determining the
accuracy of the post-release defect comparison.

 The team’s defect rates were well-below industry av-
erages [9, 11] in both the old and the new releases. Fur-
thermore, no Severity 1 defects were reported for the new
release. A Severity 1 defect is classified as a defect that
causes the customer’s system to be unusable, whereas a
Severity 2 defect is a defect where the customer’s system
is working badly and their operations and/or revenue is
negatively impacted, but a work-around exists for the
defect. The post-release defect severity distribution for
both releases is shown in Table 10.

Table 10: Post-release defect severity distribution

Severity Old New
1 12% 0%
2 88% 100%

Productivity. The results suggest that team had in-

creased their productivity (in terms of KLOEC/PM) by
approximately 50% between the old release and the new
release. These findings support the alternative hypothesis
H31: when used by teams operating within this specified
context, the use of a specified subset of XP practices leads
to an improvement in developer productivity. A decrease
in the relative complexity of implemented features can
potentially affect this metric. Recording the amount of
developer effort spent on non-production activities, such
as installation, training, and customer support activities,
would also help account for variations in these results.
Furthermore, the team’s increased familiarity with the
application domain in the new release may have affected
the results. Unfortunately, the user story per person
month metric was unavailable since the team did not util-
ize user stories during the old release. This metric would
help in gauging the amount of actual functionality pro-
duced by the developers, rather than the amount of code
they produce.

Customer satisfaction. Proponents of XP profess that
customers are more satisfied with the resulting project
because the team produced what the customer actually
wanted, rather than what they had originally expressed
they wanted. In the future, we plan to author and validate
a customer satisfaction survey instrument. Unfortunately,
we could not contact the external customers for this pro-
ject. Therefore, we can draw no inferences regarding the
null hypothesis H40 regarding customer satisfaction. An-
ecdotally, however, the customers were very satisfied
with the new release product. One customer expressed to
the team that it was one of the most professionally-
developed products he had ever used. Feedback from
other customers was unavailable.

Morale. Morale was assessed via an additional ques-
tion on the Shodan Adherence Survey. The question read,
“How often can you say you are enjoying your work?” In
interviews, several team members stated that they enjoyed
their jobs and enjoyed the XP methodology more than the
waterfall method. However, we cannot verify that the
team members who made these comments worked on the
old release. Survey results indicated that team members
felt they were working at a sustainable pace. However,
since there is no assured basis for comparison in the old
release, we can draw no inferences about the null hy-
pothesis H50 regarding morale.

5. Case study limitations

The Sabre-A team in this case study is characteristi-

cally agile and has organizational and managerial support
to use the XP methodology. Therefore, their successful
implementation may not be representative of teams that
are not characteristically agile (e.g. large, distributed
teams) and/or do not have management and organiza-
tional support. This case study does not provide any in-
sight into extending the range of applicability of XP be-
yond small, co-located teams.

The comparison is made between two releases of the
same product. We sought to reduce internal validity con-
cerns by studying the same software project with a team
comprised largely of the same personnel. However, there
are many differing characteristics between the two pro-
jects that must be kept in mind when examining the re-
sults. The amount of new and changed LOEC in the new
release was approximately one-fifth the size of the old
release, and smaller projects are often considered to be
less complex. However, the system size increased 65%
between the old and new releases, and overall system
cyclomatic complexity increased by 20%. Also, team
members expressed that feature complexity was much
higher in the new release when compared to the old re-
lease. Furthermore, the amount of test code written in the
new release was not included in effort calculations or total
system size. Therefore, productivity and effort results in
the new release may be underestimated.

6. Summary and future work

As is often the case with software engineering innova-

tion, empirical research on the efficacy of XP is lagging
behind adoption of the methodology and its practices.
Both commercial decision-makers and researchers are
awaiting empirical evidence of the efficacy of XP. We
contribute such evidence by performing an industrial case
study with a Sabre Airline Solutions development team.
This case study compares two releases of the Sabre
team’s product: one completed prior to adoption of XP
and the other completed after two years of XP experience.
We examined five hypotheses related to the results of the
team’s adoption of XP practices in their context. We
summarize our case study findings in the format sug-
gested by Fenton [8] in Table 11.

We remind the reader that these results are based on
one case study in one particular context. Our results can
be used to build up the weight of evidence about XP, but
we cannot conclusively accept or reject the hypotheses.
Our findings suggest that the adoption of XP practices can
improve programmer productivity and can improve prod-
uct quality. All findings should be taken in the context of
a product that grew and evolved significantly in the time
period between the two releases under study.

Table 11: Case study summary

When used by teams operating within the specified
context, the use of a specified subset of XP practices
leads to an improvement in . . .
Number Alternative Hypothesis Case study

evidence?
1 . . . pre-release quality Yes – 65%

reduction in
defects found
in test

2 . . . post-release quality Yes – im-
proved by a
factor of 35%
in defects
found in cus-
tomer systems

3 . . programmer produc-
tivity

Yes – 50%
increase in
code output

4 . . . customer satisfaction N/A
5 . . . team morale N/A

We are currently analyzing two other case studies con-

ducted at Sabre Airline Solutions. Three additional case
studies structured by the XP-EF are about to commence.
The results of this family of case studies and that of other
researchers will build an empirical body of results con-
cerning XP in various contexts in various organizations.

Specifically, we intend to examine trends in the variety of
subsets of XP practices that emerge.

Acknowledgements

The authors wish to thank the individuals on the Sabre

development team for participating in this study, and
Kerry Rodgers and Scott Frederick for their invaluable
assistance. We also wish to thank the anonymous re-
viewers for their valuable comments and the students in
the North Carolina State University Software Engineering
Reading Group for their helpful suggestions on this paper.
This research was supported by Sabre Airline Solutions.
Lynn Cunningham participated in this research through
support from the National Science Foundation Distributed
Mentor Project.

References

[1] P. Abrahamsson, "Extreme Programming: First Re-
sults from a Controlled Case Study," in 29th EUROMICRO
Conference. Belek, Turkey: IEEE, 2003.
[2] P. Abrahamsson, J. Warsta, M. T. Siponen, and J.
Ronkainen, "New Directions in Agile Methods: A Comparative
Analysis," in International Conference on Software Engineering
(ICSE 203). Portland, OR: IEEE Computer Society, 2003, pp.
244-254.
[3] V. Basili, F. Shull, and F. Lanubile, "Building Knowl-
edge Through Families of Experiments," IEEE Transactions on
Software Engineering, vol. 25, pp. 456 - 473, 1999.
[4] K. Beck, "Extreme Programming Explained: Embrace
Change." Reading, Massachusetts: Addison-Wesley, 2000.
[5] B. Boehm and R. Turner, "Balancing Agility and Dis-
cipline: A Guide for the Perplexed." Boston, MA: Addison
Wesley, 2003.
[6] K. El-Emam, "Finding Success in Small Software
Projects," Agile Project Management, vol. 4, 2003.
[7] N. E. Fenton and S. L. Pfleeger, "Software Metrics: A
Rigorous and Practical Approach," Brooks/Cole Pub Co., 1998.
[8] N. E. Fenton, "Conducting and Presenting Empirical
Software Engineering," Journal of Empirical Software Engi-
neering, vol. 6, pp. 195-200, 2001.
[9] B. B. S. I. Group, "Benchmarking of Software Engi-
neering Practices at High Maturity Organizations," Bangalore
Software Process Improvement Network, 2001.
[10] R. Jeffries, A. Anderson, and C. Hendrickson, "Ex-
treme Programming Installed," in The XP Series, K. Beck, Ed.
Upper Saddle River, NJ: Addison Wesley, 2001.
[11] C. Jones, Software Assessments, Benchmarks, and
Best Practices. Boston, MA: Addison Wesley, 2000.
[12] B. Kitchenham, L. Pickard, and S. L. Pfleeger, "Case
Studies for Method and Tool Evaluation," in IEEE Software,
vol. 12, July 1995, pp. 52-62.
[13] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P.
W. Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg, "Pre-
liminary Guidelines for Empirical Research in Software Engi-
neering," in IEEE Transactions on Software Engineering, vol.
28, 2002, pp. 721-733.

[14] W. Krebs, "Turning the Knobs: A Coaching Pattern
for XP Through Agile Metrics," in Extreme Programming/Agile
Universe, L. Williams, Ed. Chicago, IL: Springer, 2002.
[15] M. Marchesi and G. Succi, "Extreme Programming
Examined," in XP Series, K. Beck, Ed. Boston: Addison
Wesley, 2001.
[16] M. Marchesi, G. Succi, D. Wells, and L. Williams,
"Extreme Programming Perspectives," in XP Series, K. Beck,
Ed. Boston: Addison Wesley, 2002.
[17] F. Maurer and S. Martel, "Extreme Programming:
Rapid Development for Web-Based Applications," in IEEE
Internet Computing, vol. 6, Jan/Feb 2002, pp. 86-91.
[18] R. Mugridge, "Test Driven Development and the Sci-
entific Method," presented at Agile Development Conference,
Salt Lake City, UT, 2003, 47-52.
[19] P. Nour, "Ontology-based Retrieval of Software Engi-
neering Experiences," in Computer Science. Calgary, Alberta,
Canada: University of Calgary, August 2003.
[20] C. Potts, "Software Engineering Research Revisited,"
in IEEE Software, September 1993, pp. 19-28.
[21] D. J. Reifer, "How to Get the Most out of Extreme
Programming/Agile Methods," in 2nd XP and 1st Agile Uni-
verse Conference. Chicago, IL: Springer LNCS 2418, August
2002, pp. 185-196.
[22] H. Robinson and H. Sharp, "XP Culture: Why the
twelve practices both are and are not the most significant thing,"
presented at 1st International Agile Development Conference
(ADC '03), Salt Lake City, UT, 2003, 12-21.
[23] C. B. Seaman, "Qualitative Methods in Empirical
Studies of Software Engineering," in IEEE Transactions on
Software Engineering, vol. 25, 1999, pp. 557-572.
[24] D. Wells and L. Williams, "Extreme Programming
and Agile Methods -- XP/Agile Universe 2002," in Lecture
Notes in Computer Science. Berlin: Springer-Verlag, 2002.
[25] L. Williams, W. Krebs, and L. Layman, "Extreme
Programming Evaluation Framework for Object-Oriented Lan-
guages -- Version 1.3," North Carolina State University De-
partment of Computer Science, Raleigh, NC, TR-2004-11, April
6, 2004.
[26] L. Williams, W. Krebs, L. Layman, and A. Antón,
"Toward a Framework for Evaluating Extreme Programming,"
presented at Proceedings of the Eighth International Conference
on Empirical Assessment in Software Engineering (EASE 04),
2004, in press.
[27] W. Wood and W. Kleb, "Exploring XP for Scientific
Research," IEEE Software, vol. 20, pp. 30-36, 2003.
[28] R. K. Yin, "Case Study Research: Design and Meth-
ods," in Applied Social Research, vol. 5, D. J. Rog, Ed., Third
ed. Thousand Oaks, CA: Sage Publications, 2003.
[29] M. V. Zelkowitz and D. R. Wallace, "Experimental
Models for Validating Technology," in IEEE Computer, vol. 31,
May 1998, pp. 23-31.

