
A Case Study on Benefits and Side-Effects of Agile
Practices in Large-Scale Requirements Engineering

Elizabeth Bjarnason, Krzysztof Wnuk, Björn Regnell

Department of Computer Science, Lund University,
Lund, Sweden

{elizabeth.bjarnason | krzysztof.wnuk | bjorn.regnell}@cs.lth.se

ABSTRACT

In the software industry, there is a strong shift from traditional
phase-based development towards agile methods and practices.
This paper reports on a case study aimed at investigating if, and
how, agile Requirements Engineering (RE) can remedy the
challenges of traditional RE, and what new challenges agile RE
may pose. The results from an initial case study with 9
practitioners from a large software development company,
which is transitioning towards agile-inspired processes, show
that agile practices address some RE challenges such as
communication gaps and overscoping, but also cause new
challenges, such as striking a good balance between agility and
stability, and ensuring sufficient competence in cross-functional
development teams.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification –
methodologies (e.g., object-oriented, structured)

General Terms
Management, Documentation, Human Factors.

Keywords
Requirements engineering, Agile, Empirical study, Case study.

1. INTRODUCTION
Requirements Engineering (RE) for agile software development
(e.g. eXtreme Programming [1], Scrum [14]) is different from
traditional Requirements Engineering. Traditionally,
requirements are managed by RE specialists, in a phase
separated in time from design and development, and
documented in specific requirements artefacts. In contrast, in
agile Requirements Engineering the detailed requirements are
defined gradually in interaction between the customer (or
customer representative) and the development team. Agile RE is
often less formal and therefore not always explicitly denoted
‘RE’, and the requirements are not always documented. The RE

for agile software development versus traditional (phase-based)
software development has been compared (e.g. [7].) There are
also a number of experience reports on the differences (e.g. [5],
[13]) and the challenges of transitioning to agile methods (e.g.
[13].) Based on a large empirical study of companies that use
agile methods [10], six agile RE practices have been identified
including their benefits and challenges.

In order to further increase the understanding of agile practices,
we empirically investigated the following research questions:
(RQ1) how do agile RE practices address the challenges of
traditional RE, and (RQ2) what new challenges do agile RE
practices incur. We have performed a case study at a large-scale
software development company that is transferring from a
traditional to an agile RE process. The study investigates
challenges of traditional RE, their causes and consequences, and
how the newly introduced agile RE practices affect this
situation. Results for two of the challenges (for traditional RE)
have been reported, namely Overscoping [2] and
Communication gaps [3]. The other RE challenges (covered by
the full study) are Keeping the SRS updated, Development Work
Monitored from Requirements and Manual Selection of
Requirements for Products. In this paper, we report on the
findings around the impact of the agile RE practices.

The remainder of this paper is structured as follows: Section 2
provides background information about the context of our
industrial case study. Section 3 describes the methodology used
in this study. Section 4 contains the results from the interviews,
while we in Section 5 interpret and conclude the results of the
study, and describe future research.

2. THE CASE COMPANY
Our results are based on empirical data from industrial projects
at a large company that is using a product line approach [9]. The
company has around 5000 employees and develops embedded
systems for a global market. A typical project has a lead time of
up to 2 years and develops around 60-80 new features,
corresponding to approximately 700-1000 detailed requirements.
Each feature is developed by a cross-functional team including
around 2-10 developers. In combination with the legacy
functionality, which amounts to a very complex and large set of
requirements at various abstraction levels in the order of
magnitude of 20,000 entities, it is an example of the Very-Large
Scale Requirements Engineering context [11].

To meet the challenges of high requirements volatility in very-
large scale software development, the case company is
introducing a new development process that is partly influenced
by the agile method Scrum [14]. The responsibility for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Agile RE’11, July 26, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0890-8/11/07…$10.00.

requirements management has been transferred from the
(previous) requirements unit, partly into the business unit and
partly into the software development unit. The old stage-gate
model with several increments is replaced by a continuous
development model with a toll-gate structure for the software
releases of the software product line (to allow coordination with
hardware and product projects.) Five RE-related agile practices
are being introduced at the company, namely:

• One Continuous Scope Flow. The scope for all software
releases is continuously planned and managed via one
priority-based list (comparable to a product backlog.)
The business unit gathers and prioritizes features from a
business perspective. The software unit estimates the cost
and potential delivery date for each feature, based on
priority and available software resource capacity.

• Cross-Functional Development Teams that include a
customer representative assigned by the business unit
(comparable to customer proxy.) These teams have the full
responsibility for defining the detailed requirements,
implementing and testing a feature (from the common
priority-based list) within the given boundaries of time
and resources.

• Integrated Requirements Engineering. The requirements
engineering tasks are integrated with the other
development activities, i.e. the detailing and formal
documentation of requirements is done at the same time as
design and development of the feature and within the
same (development) team together with its customer
representative (proxy).

• Gradual & Iterative Detailing of Requirements. The
requirements are first defined at the high level (features in
the priority-based list) and then iteratively refined, by
the development team, into more detailed requirements as
the design and implementation work progresses.

• User Stories & Acceptance Criteria [6] are used to
formally document the requirements agreed for
development. The acceptance criteria are then covered by
test cases.

At the time of the study all of these methods were defined in
the company’s internal development process. The methods
One Continuous Scope Flow and Cross-Functional
Development Teams were fully implemented and applied in
the projects, while the Gradual & Iterative Detailing of
Requirements was partly implemented and the usage of User
Stories & Acceptance Criteria and Integrated Requirements
Engineering were in the process of being implemented
(training and tool support was being planned.)
The size and complexity of the software development remains
the same as with the previous process. The impact on project
lead times is to be evaluated.

3. RESEARCH METHODOLOGY
The research was conducted using a qualitative research
approach [8] that aims at understanding complex phenomena in
the context where they exist. Semi-structured interviews with a
high degree of discussion between the interviewer and the
interviewee [12] were performed in order to study the impact of
the agile practices. The experience of one of the authors (who
has worked at the case company) has served as input in shaping
the interview instrument (available on-line [4].) It covers (1) a
number of challenges of traditional RE, and their potential
causes and consequences, and (2) a number of agile RE
practices, their impact on the previous RE challenges and which

new challenges they may pose. The data from the transcripts
was analyzed by using content analysis [8] based on the
interview instrument [4]. The transcribed chunks of text were
placed within the relevant sections (corresponding to challenges
and agile practices.) These were numbered and relationships
were captured by noting dependencies to and from each
category in specific columns.

Nine practitioners who have worked for the case company for 5-
8 years were interviewed. Their roles (in the old process) cover
the full project life cycle from requirements definition through
development to the end product. They currently work with early
software technology studies (2 persons), software project
management (2 persons), software quality management (3
persons), software process management (1 person), and software
development (1 person.)

Limitations. The set of agile practices covered by the study is
limited to the practices adopted by the case company and the set
of challenges is limited to the challenges experienced at the case
company. Further, the results may not be valid for cases with
characteristics too dissimilar from the case in this study.

4. RESULTS
This section reports on the responders’ view of the agile RE
practices; which RE challenges they address, and which (new)
challenges they incur. Table 1 contains an overview of the
results. Our interpretation and conclusions can be found in
Section 5.

4.1 One Continuous Scope Flow
The challenge of overscoping (aka over allocation) is seen to be
addressed by this practice (which was implemented at the time
of our study.) The practice unites the inflow of requirements to
the development unit into one list of features that is continuously
re-prioritized and agreed with development according to the
amount of available capacity. In combination with a short
preparation period for each feature (where it is prepared for
development) this practice is experienced to reduce the amount
of wasted effort and subsequent loss of staff motivation when
features are dropped and removed from the project scope. It was
also mentioned that this practice has improved the
communication around planning, resulting in more efficient and
co-ordinated planning between the business unit and the
development units.
In general, the view is that there is (still) a tendency towards
overscoping; the business unit requests unrealistically large
amounts of features, which are weakly prioritized (most features
are critical) and the development unit commits without planning
for agility, i.e. for handling changes later on. In addition, the
development teams underestimate the effort required for
development. However, the practice has brought transparency
and visibility to the scoping process. As stated by one
interviewee, ‘We still have overscoping in all projects. But, it is
more controlled now and easier to remove things without having
done too much work.’ Another consequence of this practice,
mentioned by the interviewees, is that the system is not complete
until late in the life cycle, with the risk of not uncovering
system-level issues until late in the project.

Table 1. Summary of the view of the interviewees on each
agile RE practice (number of mentioning interviewees given,

9 in total); traditional RE challenges that the practice
addresses & challenges the practice incurs.

Agile RE practices:

 O
ne

 c
on

t s
co

pe
 fl

ow

 C
ro

ss
-f

un
ct

io
na

l t
ea

m
s

 In
te

gr
at

ed
 R

E
 G

ra
du

al
 d

et
ai

lin
g

 U
se

r s
to

rie
s &

 A
TC

Addressed RE Challenges
Communication gaps 1 9 4 5 2
Overscoping 6 4 4
Keeping SRS Updated 4 4 2
Dev work not monitored fr reqs 2 1
Unclear requirement coverage 1
Customer expectations not met 2 1
Low motivation for reqs work 1 1 1
Quality issues 4
Waste 2 1 4 1
Low reqs quality 1 1
Unreliable SRS 1
Unstable SRS 1

Challenges of the agile practices
Planning for agility 3 3
Weak reqs prioritization 3
Weak effort estimates 1
Quality issues 1
System completed late 1
Capturing innovation 1
Lack of documented reqs 1
Customer-proxy role 2
Ensuring competence (RE, VV) 5
Motivating teams for reqs work 3
Weak requirements at start 2

4.2 Cross-Functional Development Teams
This practice (which was implemented at the time of the study)
was experienced to address communication gaps, though several
interviewees also mentioned that communication within cross-
functional teams is a challenge. For example, several
interviewees mentioned that the customer representative (or
proxy) is not always sufficiently available and involved in the
development team. Overscoping is also seen to be addressed by
this practice; since the team can focus on the most important and
relevant requirements for their feature. In addition to
implementing a feature, a cross-functional team is responsible

for defining and documenting the requirements for a feature.
This is believed to address both the challenge of keeping the SRS
updated, as well as, the challenge of development work
monitored from requirements. It was also mentioned that this
practice increases the clarity of requirement coverage and
degree to which customer expectations are met; by working
closely together unclarities in the requirements can be resolved
early on. This results in requirements of higher quality (e.g.
clearer, unambiguous) and subsequent higher software quality
(less errors), as well as, less waste due to rework since issues are
resolved already while discussing requirements. One respondent
contrasted this view by pointing out that independent testing
leads to increased quality, i.e. where there is a communication
gap and competition between developers and testers more issues
are found and reported.
Challenges experienced in applying this practice include
difficulties with (already mentioned) customer-proxy role,
including innovative ideas from the developers, ensuring
sufficient test competence within the team, as well as, getting the
development teams to document requirements.

4.3 Integrated RE Process
Communication gaps are also seen to be addressed by
integrating the requirements engineering work into the software
development process; both by describing the development
process in one (unified) development process, and by integrating
the requirements work with other development work. (At the
time of the interviews this practice was described in the process,
but only partly implemented.) The awareness of each others’
roles is believed to increase when they are all defined in the
same process description. In addition, by bringing the
requirements engineering tasks closer to the development work,
several interviewees have experienced that the business and the
engineering roles actively discuss the requirements and so gain
an increased common understanding, which increases their
ability to find solutions that satisfy both business and
engineering aspects. One interviewee said, ‘Working together on
the requirements, you understand each other better and solve
problems as you go along.’

4.4 Gradual Detailing of Requirements
When detailing the requirements gradually and iteratively, as the
development progresses, it is natural to expect that the
requirements are actively worked with throughout development.
(At the time of the interviews, this practice was under
implementation.) Gradual detailing of requirements was
mentioned as addressing the challenges of monitoring
development from a requirements perspective and
communication gaps within development, as well as, between
business role(s) and development team. This, in turn, was
believed to lead to a more feasible scope, i.e. less overscoping.
Finalizing and documenting the detailed requirements only
when they are needed for implementation means that the
requirements are (by then) more stable and less likely to change.
This was mentioned by several of the interviewees as addressing
the challenge of keeping the SRS updated and, by one
interviewee, as resulting in a more reliable requirements
specification (closer to what is actually implemented.) It was
also mentioned that this reduces the (wasted) effort that would
be required to handle the updates for those changes (that now
occur before the detailing takes place.)

A couple of the interviewees had experienced a lack of a clear
requirements picture at the beginning of development. This had
resulted in significant requirements changes during the
development with subsequent rework and frustration within the
development team.

4.5 User Stories & Acceptance Criteria
Defining requirements with user stories [6] was mentioned by a
couple of interviewees as a way to facilitate the communication
between business and engineering roles, and (by expressing the
viewpoint of the users) increase the probability of capturing and
meeting the customers’ expectations. (This practice was agreed,
but not implemented at the time of the interviews.) One
interviewee also believed that the user story technique increases
the quality of the requirements; by ensuring that the user context
is captured, the actual requirements are more clearly
communicated. Documenting detailed requirements as
acceptance test criteria was believed to increases the motivation
of the developers to work with requirements since, as expressed
by one interviewee, ‘code is more fun to write than
requirements.’ (The case company uses automatic test cases.) It
was also mentioned that this practice is believed to address the
challenge of keeping the SRS updated (by generating it from the
acceptance test cases.)

5. CONCLUSIONS
Our results indicate that agile practices (at least partly) remedy
several challenges and issues related to traditional RE in large-
scale software development, though they also pose new
challenges. By improving the communication between the
business and the engineering roles (with cross-functional teams,
gradual & iterative detailing of requirements, and user stories)
the requirements can be identified, communicated and agreed
upon more efficiently. Also, defining the project scope via one
continuous & unified list of scope where the most prioritized
features are worked on first (to some degree) addresses
overscoping.
Transferring an organization to agile RE practices is in itself a
challenge that requires major mind-set changes; the business
unit must adapt to gradual commitment to project scope and to
becoming more involved with development teams through-out
the project life cycle; the development unit needs to become
actively involved in the requirements detailing and management.

Our results also uncover some challenges with agile RE
practices such as ensuring sufficient competence (customer
representatives, requirements and testing), including innovative
ideas from development, and striking a good balance between
agility and stability both at project level (degree of commitment
in relation to flexibility for late changes) and within a
development team (accuracy in effort estimates in relation to
level of requirements detailing.) For the methods that had not
yet been fully implemented at the time of the study (User Stories
& Acceptance Criteria and Integrated RE), our interviewees did
not mention any (new) challenges with these practices. We
assume this is due to lack of experience with applying the
methods, and therefore pose interesting points to revisit.

Future research includes investigating the impact of different
levels of agility, the long-term effects of agile methods in large-
scale software development, as well as, widening the research to
include more software companies.

6. ACKNOWLEDGMENTS
We would like to thank all anonymous interviewees for their
invaluable contribution to this project. The project is partly
funded by the Swedish Foundation for Strategic Research and
VINNOVA (The Swedish Governmental Agency for Innovation
Systems) within the EASE projects.

7. REFERENCES
[1] Beck, K. 1999. Extreme Programming Explained. Addison-

Wesley, London.

[2] Bjarnason, E, Wnuk, K., Regnell, B. 2010. Overscoping:
Reasons and Consequences – A Case Study in Decision
Making in Software Product Management. In Proceedings
of 4th IEEE Int. Workshop on Software Product
Management (Sydney, Australia, 27th Sept 2010),
IWSPM’10. 30-39, IEEE Press, New York, 30-39.
DOI=10.1109/IWSPM.2010.5623866

[3] Bjarnason, E., Wnuk, K., Regnell, B. 2011. Requirements
Are Slipping Through the Gaps - A Case Study on Causes
& Effects of Communication Gaps in Large-Scale Software
Development. Accepted for publication at 19th Int.
Requirements Engineering Conference, Aug 29th-Sept 2nd,
2011.

[4] The interview guide for the Before aNd After (BNA) case
study is available at
http://serg.cs.lth.se/research/experiment_packages/bna/

[5] Bose, S., Kurhekar, M., Ghosal, J. 2008. Agile
Methodology in Requirements Engineering. SETLabs
Briefings Online.

[6] Cohen, M. 2004. User Stories Applied. For Agile Software
Development. Addison-Wesley, New York.

[7] Paetsch, F., Eberlein, A., Maurer, F. 2003. Requirements
Engineering and Agile Software Development. In
Proceedings of 12th IEEE Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
pp 308-313, IEEE Comp Society Press, Washington.
DOI=10.1109/ENABL.2003.1231428

[8] Patton Quinn, M. 2002. Qualitative Research & Evaluation
Methods. 3rd edition. Sage Publication Ltd., London.

[9] Pohl, C., Böckle, G., van der Linden, F. J. 2005. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, New York

[10] Ramesh, B., Cao, L., Baskerville, R. 2010. Agile
requirements engineering practices and challenges: an
empirical study. Information Systems Journal, vol 20,
issue 5, 449-280. DOI=10.111/j.1365-2575.2007.00259.x

[11] Regnell, B., Berntsson-Svensson, R., Wnuk, K. 2008. Can
We Beat the Complexity of Very Large-Scale
Requirements Engineering? In Proceedings of Int Conf on
Requirements Engineering: Foundation for Software
Quality, Vol. 5025 of LNCS, Springer-Verlag, pp 123-128.
DOI=10.1007/978-3-540-69062-7_11

[12] Robson, C. 2002. Real World Research. Blackwell
Publishing, London.

[13] Savolainen, J., Kuusela, J., Vilavaara, A. 2010. Transition
to Agile Development - Rediscovery of Important
Requirements Engineering Practices. In Proceedings of 18th
Requirements Engineering Conference, IEEE Comp
Society Press, pp.289-294. New York.
DOI=10.1109/RE.2010.41

[14] Schwaber, K., Beedle, M. 2002. Agile Software
Development with SCRUM, Prentice Hall, New York

