
Journal of Computer and Communications, 2017, 5, 74-97
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.55007 March 31, 2017

Agile Software Development Methodologies:
Survey of Surveys

Malek Al-Zewairi1, Mariam Biltawi1, Wael Etaiwi1, Adnan Shaout2

1Computer Science Department, King Hussein Faculty of Computing Sciences, Princess Sumaya University for Technology
(PSUT), Amman, Jordan
2The ECE Department, The University of Michigan-Dearborn, Dearborn, US

Abstract
Agile software design and development methodologies have been gaining ri-
gorous attention in the software engineering research community since their
early introduction in the mid-nineties in addition to being highly adopted by
the software development industry. In the last 15 years, an excessive number
of research studies have been conducted on agile methods, a great number of
notable methods have been proposed and various surveys have been presented
by many researchers. In this study, the authors intend to conduct a literature
survey study of the surveys of the different agile methodologies ranging from
January 2000 to December 2015 using an intuitive research methodology
called “Compare and Review” (CR). Furthermore, these survey papers were
classified into four major categories according to their area of study. Addi-
tionally, the newly proposed agile methodologies that have not been addressed
yet in any other literature review were reviewed and compared in terms of
where the changes that they proposed lay on the SDLC.

Keywords
Agile, Software Methods, Survey, Compare and Review, Research
Methodology

1. Introduction

Agile in essence is an iterative, lightweight and lean software design and devel-
opment methodology that was born in the late 1990s to be highly compatible
with the rapid development of the WWW (World Wide Web) [1]. Similar to
climbing a well-designed ladder where length of all steps and distance between
each step is equivalent, agile methods divides a task into small-length iterations
that have the same interval size and distance making the transition between ite-
rations much smoother with much higher pace. Agile methodologies try to find

How to cite this paper: Al-Zewairi1, M.,
Biltawi, M., Etaiwi, W. and Shaout, A.
(2017) Agile Software Development Me-
thodologies: Survey of Surveys. Journal of
Computer and Communications, 5, 74-97.
https://doi.org/10.4236/jcc.2017.55007

Received: March 6, 2017
Accepted: March 28, 2017
Published: March 31, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.55007
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.55007
http://creativecommons.org/licenses/by/4.0/

M. Al-Zewairi et al.

75

an equilibrium point between no process and too much process, allowing it to
survive in dynamic environments where requirements frequently change while
striving high quality software product [2]. Unlike other methods, agile methods rely
on feedback as control mechanism which ensures greater customer satisfaction [3].

Agile encompasses various methodologies, including: Adaptive Software De-
velopment (ASD) [4], Agile Unified Process (AUP) [5], Crystal Methods [6],
Dynamic Systems Development Methodology (DSDM) [7], eXtreme Program-
ming (XP) [8], Feature Driven Development (FDD) [9], Kanban [10], Lean
Software Development [11], Scrum [12], Scrumban [Ladas 2009 and several va-
riant methods of agile].

The agile methodology is based on the “iterative enhancement” [13] technique
[14]. As a iteration based methodology, each iteration in the agile methodology
represents a small scale and self-contained Software Development Life Cycle
(SDLC) by itself [1]. Unlike the Spiral model [15], agile methods assume sim-
plicity in all practices [14].

In this research, the authors identify the following contributions: 1) a new re-
search methodology called Compare and Review (CR) is used in this paper; 2) A
survey of the surveys on agile methodologies were conducted, in which the sur-
vey papers were classified into four categories: “Agile Requirements Engineer-
ing”, “Agile Methods”, “Hybrid Agile Methods” and “Miscellaneous”; 3) Several
new agile methods that have not been surveyed yet were reviewed and compared
in terms of the changes that they proposed on the SDLC. Moreover, 26 surveys
and 4 articles were selected for evaluation out of more than 92 studies. The re-
sults prove agile capability as a strong software design and development metho-
dology.

The rest of the paper is organized as follows: Section 2 describes the research
methodologies. Section 3 explores the surveys on agile methods in the literature
and Section 4 reviews the most recent researches on XP, Scrum and FDD agile
methodologies that, up-to-our-knowledge, have not been addressed in any other
literature review. Finally, in Section 5, the evaluation of the survey studies and
the new agile methods is presented, and then the conclusion is presented in Sec-
tion 6.

2. Research Methodology

The authors followed a two-stage research methodology called “Compare and
Review” (CR), where the first stage aims to compare the survey studies on agile
methodologies. While, the second stage intends to review the most recent re-
search studies on XP, Scrum and FDD agile methods that have not been ad-
dressed in any previous literature reviews. In the following subsections, the re-
search methodology will be explained. Figure 1 shows the flowchart for the CR
research methodology.

2.1. Research Requirements

In this subsection, the research requirements that were used to govern this study

M. Al-Zewairi et al.

76

Figure 1. Flowchart of the CR research methodology.

are as follows:
• Formulate a basic understanding of the different Agile Software Develop-

ment Methodologies.
• Formulate a comprehensive knowledge of the XP, Scrum and FDD agile me-

thodologies.
• Formulate a comprehensive comparison between the newly proposed agile

methods in terms of the changes that they might have made in SDLC phases.

2.2. Selection Criteria

In this subsection, the search and selection criteria that was applied is listed. The
research must be:
• Indexed in one of the following digital databases: 1) ACM Digital Library; 2)

IEEE Digital Library; 3) Science Direct; 4) Springer or 5) Wiley Online Li-
brary.

• Either a Conference Paper or Journal Article.
• Published between January 2000 and December 2015.
• In English language (the entire paper and not just the abstract).
• Has one of the following key words in the paper Title, Keywords list, or Ab-

stract: {Agile; Software Methods; XP; Extreme Programming; Scrum; FDD;
Feature-Driven Development; Literature Review; Survey}.

2.3. Stage 1: Survey of Surveys on Agile Methods

This stage aims to provide a comprehensive comparison between the various
survey studies that addresses the different agile methodologies, which were pub-
lished between January 2000 and December 2015. A strict search and selection
criteria were applied, more than 32 studies were identified and 26 studies were
selected for the final review.

M. Al-Zewairi et al.

77

2.4. Stage 2: Literature Review of New Agile Methods

In this stage, the authors reviewed 12 new research papers that have not been
addressed yet in any previous literature review. Notably, all the papers were pub-
lished in 2015 and the same selection criteria that was applied at stage 1 was ap-
plied in this stage too.

3. Survey of Surveys on Agile Methods

In this section, the authors will explore the different surveys that have addressed
the agile methodologies in the past 15 years starting from January 2000 to De-
cember 2015. The surveys were classified into four categories as illustrated in
Figure 2: “Agile Requirements Engineering”, “Agile Methods”, “Hybrid Agile
Methods” and “Miscellaneous”.

3.1. Agile Requirements Engineering

One the most attractive features of agile methodology is that it accepts changes
to requirements during any phase of the SDLC, making it more flexible and
highly adaptable to dynamic environments where requirements change fre-
quently. In this subsection, the authors review the literature reviews on Agile
Requirements Engineering (RE).

Baruah presented in [16] a comparative study about the different ways each of
the agile methodologies manage requirements. Table 1 summarizes the differ-
ences between the eight agile software development methods in terms of re-
quirements management as presented in [16].

Inayat, et al. presented in [17] a comprehensive systematic review about re-
solving traditional requirements engineering issues using agile requirements en-
gineering for studies published between January 2002 and June 2013 in which 21
papers out of 531 were studied. The main results of the study can be summarized
as follow:
• Distribution of the publication sources is 57% conferences, 19% journals, and

5% magazines.
• The studies can be classified into four main categories according to the spe-

cific topic that they address, which are: 1) agile RE practices (29%); 2) new
methods (28%); 3) traditional RE vs. agile RE (5%), and 4) agile RE in general
(38%).

Figure 2. Agile methodologies surveys.

M. Al-Zewairi et al.

78

Table 1. Comparison between the different requirements management techniques under agile methods.

Agile Method Requirements Representation Customer Role

1. XP

User Stories as both written cards and conversations.
Written cards are not mandatory for implementation and are only considered
“promises for conversation”.
Requirements are not supposed to be complete or clearly stated.
User stories are destroyed after implementation is completed.

On-site customer is required to
participate in requirements definition,
estimation and prioritize.

2 Scrum
User stories are used to represent requirements.
The actual requirements are defied based on the discussion of user stories between
software owner and software developers.

Software owner plays the lead role in
defining the requirements.

3 FDD

Requirements are represented using UML diagrams.
List of features are used to manage the functional requirements.
Requirements are first represented in a high-level context.
For each modeling area, the requirements are modeled per domain.
After requirements are modeled, it should be peer reviewed.

Not specified.

4.
Lean Software
Development

Just-In-Time methodology is applied in requirements gathering.
User stories (cards) are also used by the customer to specify initial requirements
and sample screens by the developers.
Developers then provide a time estimate for each card.

Provide input on sample screens and
initial user stories.

5. ASD Requirements gathering is part of the speculation phase. Not specified.

6. Kanban

User stories are used to define each sprint main goal.
Each sprint handles a single user story.
Each story is divided into server-side and client-side task.
Each task is further divided into subtasks.

Not specified.

7. AUP

Requirement phase consists of the following activities: (1) identifying stakeholders,
(2) understanding problem, (3) establishing a basis of estimation, and (4) defining
user interface.
User stories are used in the construction phase.
Requirements are presented as Business Use Case Model.

Not specified.

8. DSDM Requirements are gathered and prioritized during the feasibility phase. Not specified.

• Year 2011 has the most published papers (43%).
• The majority of studies are affiliated to authors from North America and EU.
• The majority of studies followed an exploratory research methodology.
• Seventeen common RE practices among the different agile methods were

identified as shown in Table 2, which also indicates whether this practice is
part of the original XP method or not.

Ramesh, et al. provided an empirical study on agile RE practices in [18]. The
study-analyzed data collected from sixteen software companies (in USA) in or-
der to explain the differences between traditional RE and agile RE. The data was
solicited through systematic interviews. Moreover, a risk-based framework was
proposed to evaluate the influence of utilizing agile RE through factoring the as-
sociated risks. The major findings of the study are presented as follow:
• Six agile RE practices were identified, which are: 1) Face-to-face communica-

tion instead of written specifications; 2) Iterative RE; 3) Using extreme prac-
tices in requirement prioritization; 4) Using constant planning to manage
requirements changes; 5) Prototyping, and 6) Using review meetings with
acceptance tests.

M. Al-Zewairi et al.

79

Table 2. Summary of common RE practices among Agile Methods.

Practices Part of the Original XP

1. Face-to-face communication Open Workspace

2 Customer involvement On-Site Customer

3 User stories Planning Game

4. Iterative requirements Planning Game

5. Requirements prioritization Planning Game

6. Change management N/A

7. Cross-functional teams N/A

8. Prototyping N/A

9. Testing before coding Tests

10. Requirements modelling N/A

11. Requirements management N/A

12. Review meetings and acceptance tests Continuous Integration

13. Code refactoring Refactoring

14. Shared conceptualizations Metaphor

15. Pairing for requirements analysis N/A

16. Retrospectives Continuous Integration

17. Continuous planning Planning Game

• Seven problems posed by agile RE practices were identified, which are: 1)

Difficulties with the estimation of cost and schedule; 2) Inefficient or unsuit-
able architecture; 3) Overlook of non-functional requirements; 4) Participa-
tion of customers; 5) Single dimension prioritization; 6) Insufficient re-
quirements verification, and 7) Lacking sufficient documentation.

• Nine risks common with agile RE and its practices were identified by re-
viewing the literature. Which are: 1) Lacking requirements stability; 2)
Problems with customer capacity and consent; 3) Insufficient interaction
between customer and developer; 4) Missing important requirements; 5)
Only modelling functional requirements; 6) Overlook requirements re-
viewing; 7) Using designs to present requirements; 8) Focusing on perfect-
ing requirements prior commencing coding phase, and 9) Substantial flaws
with the schedule.

3.2. Agile Methods

Stavru surveyed the usage of agile methods through industrial survey studies
published between 2011 and 2012 [19]. They determined the papers, which
could be trusted and recommend that the quality level of researches could be
improved. The author concluded that the majority of the surveyed studies were
incomprehensive in addition to being not trustworthy. On the other hand, the
authors provided some recommendations in order to raise the research quality.

M. Al-Zewairi et al.

80

The recommendations include examining the rate of agile method usage as
compared to alternative methods; examine the rate of agile method usage in an
organizational level. Also, conducting researches about using agile method by
academics beside industry in order to decrease the gap between industry and
academia in addition to increase the trustworthiness in widespread adoption of
agile method usage. Additionally, providing highly detailed reports in the future;
thus, raising the level of confidence and trustworthiness in the reported studies.

Campanelli and Parreiras presented aspects of research on agile methods tai-
loring in [20]. The term agile method tailoring refers to the problem of selecting
an agile method to be adopted in the organization. The authors analyze the total
number of papers published in the area and proposed Figure 3 that shows the
number of articles published on agile method tailoring per year. The authors
classified the selected studies into two main category groups: categories focusing
on research aspects such as research type and research validation, and categories
focusing on technical aspects such as agile method covered and criteria for me-
thod tailoring.

Dingsøyr, et al. summarized the prior research in agile software development
and presented them within three main categories: the first category is agile prin-
ciples and agility, which involves adapting agile by refining the development
process to adapt to changes as needed. The second category is Research on agile
software development, which involves agile software development processes.
The last category is the seminal contributors and their relationships, which in-
volves identifying relationships among sources of seminal information of agile
software development [21].

da Silva Estácio and Prikladnicki studied the research studies that address
Distributed Pair Programming (DPP) from educational or industrial perspec-
tives in [22]. The term Pair Programming (PP) implies that two programmers
are collaborating at one computer. The distributed word refers to the geograph-

Figure 3. Number of papers on agile methods per year. Adopted from [20].

M. Al-Zewairi et al.

81

ical distribution of team members. The authors concluded that many quantita-
tive and qualitative conclusions such as; Empirical studies involving DPP and
real projects with industry professionals are very few and there are a need for
more empirical studies. Few studies also investigate the effects of DPP with pro-
fessionals, and the need to explore the effects of coordination, communication
and cultural diversity in DPP.

Hamed and Abusham are viewed the most popular agile methods systemati-
cally and their appropriateness with regard to Small to Medium Enterprises
(SMEs) environmental challenges in [23]. In this survey the authors proposed a
definition and a discussion of Scrum, XP, Crystal family and Dynamic Systems
Development Method (DSDM) methods, then explored the SME software chal-
lenges. The similarities and differences of these methods were compared against
the defined criteria.

Salvador, et al. reviewed the studies related to usability techniques in agile
methods, namely; scrum, XP and crystal in [24]. Moreover, 32 papers were sur-
veyed, the results of the survey showed that most frequent techniques used with
agile methodologies are the complementary techniques. The survey also con-
cluded that most of the studies performed usability evaluations only during the
implementation phase, which in turn were mostly constructed as elaborations of
case studies.

Hummel conducted a systematic and structured literature review of agile In-
formation Systems Development (ISD) in [25].Around 482 papers were collected
and investigated, however the author extended the findings of previous three re-
views by introducing new perspectives. The results illustrated a lack of agile ISD
quantitative studies and theoretical underpinnings. While, XP is the most re-
searched agile ISD method, scrum needs more research effort.

Dybå and Dingsøyr conducted a systematic review of 36 empirical studies of
agile software development in the period from 2001 to 2005 to investigate the
benefits, the limitations and the strength of evidence for agile methods. These
studies were grouped into four main groups: introduction and adoption, human
and social factors, perceptions on agile methods, and comparative studies. The
focus was on the six agile methods; XP, Scrum, Crystal, DSDM, FDD, and Lean
software development. The authors conclude that XP is the most common agile
method investigated in the reviewed studies, and there is a need to investigate in
the remaining agile methods. In addition to concern about the quality of studies
provided [26].

Abrahamsson, et al. presented a comparative analysis of agile software devel-
opment methods, including the method’s life cycle coverage, project manage-
ment support, practical guidance type, fitness-for-use, and empirical evidence as
the analytical lenses in [27]. Moreover, the authors concluded that the majority
of the studied methods did not concern about project management nor about
improving the development team member's skills and capabilities. Finally, the
authors recommend to concern about the quality of new methods instead of
quantity of existing methods.

M. Al-Zewairi et al.

82

3.3. Hybrid Agile Methods

Selleri Silva, et al. presented a review study on the agile methodologies that inte-
grate the Capability Maturity Model Integration (CMMI) where 3193 studies
were identified and 81 were selected for evaluation and classified into two main
classes; benefits to the organization in general and benefits to the development
process. The results shows that using agile methods was helpful in reaching level
2 and level 3 of CMMI and in some cases even level 5 [28].

Torrecilla-Salinas et al. studied the applicability of complying with the CMMI-
DEV model for Web development companies that have followed one of the agile
methods [29]. The study surveyed the current state-of-the-art on this topic to
answer five questions that were later used to analyze and evaluate the selected
studies. Six papers were selected for evaluation out of more than 1453 studies.
The results have shown that in the last 5 years more and more Web development
companies are moving towards adopting agile methods in order to help be certi-
fied against CMMI-DEV.

Santana, et al. provided a literature review to identify software process im-
provement (SPI) in agile environment [30]. The authors classified the reviewed
papers according to SPI aspects. Additionally, they identified new distinct ap-
proaches to Agile SPI, and they have suggested using one of the following three
agile SPI approaches: top-down approach, the agile SPI based on improving be-
havior, and the agile SPI based on improving practices. The authors also identi-
fied the difference between traditional and agile SPI especially in their goals. The
goal of traditional SPI is to elaborate a repeatable process that could be improved
with lessons learned. On the other hand, the process in agile SPI should be ready
for changes and improve its capability for changes. Furthermore, the author
mentioned another difference that is related to the knowledge transfer policies;
the traditional SPI dictates that knowledge should be transferred to people based
on some organizational policies and criteria such as training and document use,
while agile SPI considers knowledge transfer through meetings, informal and
learning should be based on individual experiences of team members.

Literature on the application of different agile practices in Global Software
Engineering (GSE) was summarized in [31]. The term GSE refers to distributing
agile across cultural, temporal, and geographical boundaries. The authors classi-
fy researches according to research type, as shown in Figure 4. They conclude
that the majority of studies are in the form of experience reports that contains
the experience in particular issues. On the other hand, there is a need for pro-
viding more validation, and evaluation research. Another conclusion the authors
mentioned that there is a need for analyzing the challenges and advantages of
combining Agile and GSE in the form of evaluation research.

An overview of the use of software metrics in the industrial agile context is pro-
vided by [32]. This study makes three contributions: First, the authors categorize the
metrics found in empirical agile studies and compares them with the metrics sug-
gested by agile literature, and they conclude that agile teams use many metrics sug-
gested by the agile literature. Second, the study highlights the reasons for and

M. Al-Zewairi et al.

83

Figure 4. Distribution of research types over the studied years. Adopted from [31].

effects of using metrics in agile software development. They conclude that me-
trics are used in the following areas: Sprint and Project Planning, Sprint and
Project Progress Tracking, Understanding and Improving Quality, Fixing Soft-
ware Process Problems, and Motivating People. Third, the study identifies high
influence metrics based on the number of occurrences and statements found in
the primary studies, they conclude that Velocity, Effort estimate, and Defect
count were the most popular metrics, and the most important metrics according
to qualitative analysis of metric importance are Customer satisfaction, Technical
debt, Build status, and Progress as working code.

Integrating agile software development processes with User Centered Design
(UCD) was presented in [33] as a systematic literature review, in order to iden-
tify and classify various challenging factors that restrict Agile and User Centered
Design Integration (AUCDI) such as: Lack of time for upfront activities, and to
explore the proposed practices to deal with these challenges. The authors classify
the finding in this topic according to publication channel and publication year.

Sriram and Mathew presented a review of literature on applying agile metho-
dologies in Global Software Development (GSD) and how agile methodology fit
in GSD [34]. Three main ideas were identified in this review paper on GSD;
performance of global software development, governance related issues, and
software engineering process related issues. More distant analysis of literature on
both agile and GSD showed that various types of agile methods were applied and
tailored appropriately to produce optimal performance in the context of GSD,
while empirical studies addressing GSD-Agile fit were not found. The most
common agile method used in GSD is SCRUM as the authors conclude.

Sohaib and Khan presented a literature review to describe how usability fit
with agile software development in order to gain stronger and effective usable

M. Al-Zewairi et al.

84

software system [35]. The authors mentioned that the usability could be adapted
to agile software development by doing some steps such as: using more itera-
tions and concern about testing at each phase of SDLC.

Using agile methods in the embedded software projects is reviewed systemat-
ically by Shen, et al. in [36]. The authors concluded that there is a need for more
effective research is this area. Although, there are many difficulties, Xie, et al.
concluded that using agile in such projects holds a positive impression [37]. The
authors presented many challenges of applying agile in embedded software pro-
jects, such as: development team challenges, time constraints and budget. The
authors recommended choosing the appropriate agile method according to the
challenges derived from the embedded system and how can the selected agile
method tackle these challenges.

3.4. Miscellaneous

Sletholt, et al. conducted a literature review to investigate the effects of using
agile practices in scientific software development processes, focusing on eva-
luating the agility of scientific software projects presented in five carefully se-
lected papers. The authors defined and utilized an agile mapping chart, with
elements based on Scrum and XP reference models for agility assessment pur-
pose. The authors compare their findings with the previously provided surveys.
The findings of these comparisons indicated that scientific software develop-
ment projects that have adopted agile have an improved testing process to com-
pare to the traditional methods [38].

A new analytical framework developed by Qumer and Henderson-Sellerscalled
(4-DAT) [39]. The proposed framework was applied on six agile selected me-
thods in addition to two traditional methods for comparison purposes. The
evaluation approach is done in this analytical framework to evaluate these me-
thods at the process level and practice level from four perspectives. The evalua-
tion aimed to select an appropriate agile method for a particular development.

Rauf and Al Ghafees provided an industrial survey to study the use of scrum
and XP agile practices in computer application development, the authors posted
a questionnaire to investigate the benefits of using agile, 79 responses were col-
lected from 45 companies. Survey results showed that 57% respondents use
Scrum and in turn it is the most common agile method used, while 27% respon-
dents use both XP and Scrum and only 5% respondents have reported to use XP
solely. In addition, the authors investigated the strength of benefits against each
agile practice, and explored the challenges against each agile practice [40].

A web-based survey conducted by Begel and Nagappan of employees who are
working on the software production processes [41]. The survey investigated how
Microsoft employees use agile software development methods and how they pe-
netrate of agile software development practices and their perceptions of why
agile works well or poorly on their software teams. The employee’s responses in-
dicate that around one-third of the respondents use agile, and SCRUM is the
most popular method with 65% of the respondents were using it in their team,

M. Al-Zewairi et al.

85

and most of agile users have a positive opinion about it.

4. Literature Review

In the following subsections, the authors will briefly introduce three agile me-
thods (i.e. XP, Scrum and FDD), then review the most recent researches that,
up- to-our-knowledge, have not been addressed in any other literature review
yet.

4.1. Extreme Programming (XP)

Among all of the agile methods, Extreme Programming (XP) is the most popular
and well-documented method [14] [23]. The XP method was first proposed by
Beck as a last resort to rescue a project that had been declared a failure [8]. In
XP, simplicity is the driving factor that applies to the software development
practices including the communications with the customer. Beck has defined
twelve rules that govern the XP method [14] [42] that are:
• Planning Game: the planning starts at the beginning of each iteration where

the stakeholders of the project meet to define, estimate and prioritize the
“User Stories” (i.e. requirements) for the next release.

• Small Releases: there are two types of version releases: initial version and
working version. The initial version is produced after a few iterations and it
does not implement all features, but only essential ones. While, a working
version is produced after a few weeks and contains most of the features.

• Metaphor: it is used in the modelling of the software system and is con-
structed by all the stakeholders.

• Simple Design: It is the base of the XP methodology and applies to the re-
quirements gathering, system design, coding, and communications with the
customer.

• Tests: In XP methodology, testing is considered one of the major activities to
ensure high quality product in addition to high customer satisfaction. Testing
begins before the coding phase, where developers are required to prepare the
test functions prior writing the code itself. While, customers are required to
prepare the functional test scenarios for each iteration.

• Refactoring: It means that any changes made on the system must uphold the
simplicity feature.

• Pair Programming: Coding of the software system is carried out in a group of
two developers.

• Continuous Integration: New parts of the software system are integrated as
soon as they pass both the unit and functional test cases.

• Collective Ownership: The ownership of the code produced belongs to all the
developers.

• On-Site Customer: Someone from the customer side must work with the de-
velopment team at all times.

• 40-Hour Weeks: The maximum working hours per week for developers must
not exceed 40-hours, which implies that the requirements must be revised to

M. Al-Zewairi et al.

86

adhere to this rule.
• Open Workspace: All work, including coding and development must take

place in a common environment.
Following, the review of the most recent works on XP that, up-to-our-know-

ledge, have not been addressed in any other literature review yet.
Chen and Wu proposed a modified method of XP consisting of 11 steps called

“my Agile” in order to allow more integration between XP methodology and
other computer science topics such as data structure, Object-Oriented Pro-
gramming (OOP), algorithms, etc. The 11 steps proposed method (“my Agile”)
shares 4 steps with the original XP method, which are step 5: “Dispatching and
Scheduling”, step 6: “Unit Test Code”, step 9: “Coding” and step 10: “Unit Test-
ing and Acceptance Testing”. Although, the authors identify steps 0, 1, 2 and 3
(“Exploring Requirements”, “Scenarios”, “Acceptance Test Cases and User Ma-
nual”, and “CRC Session” accordingly) as adopted from the Software Engineer-
ing discipline, steps 0 and 1 can be easily mapped to the first rule (i.e. planning
the game) of the original XP method. While, step 3 can be partly mapped to the
fifth rule (i.e. testing). Although, the remaining three steps 4, 7 and 8 (“Reverse
Engineering Tool”, “Data Structure Design”, and “Algorithm Design” accor-
dingly) are identified as novel steps designed specifically for “my Agile”, step 4
can be seen as merely using Computer-Aided Software Engineering (CASE)
tools to automate some of the design and verification steps. A project aiming to
develop a student grading system was designed to evaluate the proposed me-
thodology and it was applied in four universities in Taiwan [43].

Haryono presented a case study where XP methodology was applied in a
project for developing a Financial Management System (FMS) as a part of the
E-Government (e-Gov) in Indonesia [44]. The project followed the core practic-
es of XP methodology as shown in Figure 5. The project was evaluated using a
satisfaction questionnaire. The results showed that 100% of respondents were
satisfied with the method and indicated that it has helped with communications.
Moreover, it showed an increase in the sense of belonging to the system. None-
theless, 2% of respondents declared it less fit to the project type.

Radhakrishnan, et al. proposed a generic software model for educational pur-
poses that improves on the Common Software Measurement Integration Con-
sortium—Full Function Point (COSMIC FFP) method [45]. The method is de-
signed to measure the functional size of software, including real-time software to
better estimate project resources and schedules. The proposed model “eXtreme
Software Teaching” (XSOFT) integrates the XP method with the COSMIC FFP
method to help bridging the effort and time gap between learning software de-
velopment and working in software development.

4.2. Scrum

Scrum is a management and control process used for developing and sustaining
complex products in order to build software that meets business needs, incre-
mentally and empirically. It is considered a widely used agile method, first

M. Al-Zewairi et al.

87

Figure 5. Development methodology of the Indonesian E-gov FMS project.
Adopted from [44].

described in the year 1996 [12]. Scrum is also considered a lightweight, simple to
understand and difficult to master method.

Scrum starts by splitting the project into iterations (sprints). Before each
sprint, in the planning phase, all tasks to be done are kept in a list called “release
backlog”. During the planning process a next-sprint goal is identified and an-
nounced to the developers in order to show them the tasks are being performed
and at which level of detail to implement them, in addition, a prioritized collec-
tion of tasks are selected from release backlog to be completed in the next sprint.
When the planning phase is complete, each development team carries their
tasks.

The tasks in the sprint backlog remain unchanged until the end of the sprint
phase. While the development teams develop their tasks, the project should be
tracked and monitored through daily meetings and track tasks status in order to
enhance communications between teams and keep focus on the overall project
goals. After every sprint, an analysis and evaluation process progress through
pre-sprint meeting.

Following, the review of the most recent works on Scrum that, up-to-our-
knowledge, have not been addressed in any other literature review yet.

Chandana Ranasinghe and Perera demonstrated how the challenges and is-
sues related to offshore development (OSD) in Sri Lankan context can be over-
come using the scrum method, and to achieve success in OSD it is important to
combine engineering practices with scrum [46].

Esteves Maria, et al. described the use of the scrum agile method and its best
practices in the development of several academic interdisciplinary projects,
which are (1) a Java application prototype, based on Big Data, IoT, and (2) Cre-
dit Card fraud detection for a Proof of Concept (PoC), using cloud-compu- ting
resources accordingly [47].

M. Al-Zewairi et al.

88

Scott, et al. aimed to support the meshing hypothesis through using teaching
strategies matching the Felder-Silverman Learning Style Model in a Scrum
course and focusing on the processing dimension of this model. Consequently,
the authors corroborated that the knowledge of Scrum of the undergraduate
students’ was improved when they were given suitable instructional methods
according to the processing dimension of their learning styles. The authors pro-
vided experiments as evidence to support the meshing hypothesis [48].

Pierre Mattei, et al. used a combination of scrum agile methods with mod-
el-based programming to overcome the restraints of developing Space on-board
system project, which is considered complex, time consuming, and highly sus-
ceptible to errors [49].

de Souza, et al. presented an evaluation of Scrum adaptations to evaluate the
capstone project [50]. A case study is also presented that illustrates the adoption
of Scrum to manage the capstone project, which represented a direct and objec-
tive approach in order to have an environment similar to the real one. The au-
thors’ proposal was to determine, discuss and quantify how flexible and colla-
borative Scrum becomes when teaching Software Engineering.

Pauly, et al. presented a study to assess the adoption or adaption of Scrum
principles at an e-commerce company. The authors presented an in-depth single
case study, which in turn revealed that not all scrum principles are suitable in
each context [51].

The relationship between SCRUM and SDLC practices was studied in [52].
The authors proposed a framework to utilize the user experience design in SDLC
in organizations that use SCRUM in association with Capability Maturity Model
Integration (CMMI) practices. Moreover, the authors utilized the user expe-
rience design dimensions recommended by the Human Factors Institute, which
include training of professionals, creating and managing metrics to evaluate the
usability, and establishing a successful cases database for training purposes.
Many studies focus on using the scrum agile method in software companies,
such as [53] that study using of SCRUM in Brazilian small business.

Raj, et al. proposed a modified scrum process that focuses more on testing,
using Test-as-a-Service (TAAS) implementation in order to get the results faster
without increasing the cost of the project [54].

4.3. Feature-Driven Development (FDD)

FDD methodology is one of the AGILE methods for software development. FDD
is an iterative and incremental method based on dividing the software into many
different features (models), and then builds each model separately. The devel-
opment process for each model (feature) consists of five activities: develop gen-
eral model, build feature list, plan for feature, design for feature and build by
feature.

In the first activity, develop overall model, general high-level overview of
the project is set to better understand the problem domain, this step is im-

M. Al-Zewairi et al.

89

portant to the team in order to manage the relationship and interaction be-
tween the team members and the customer. In build feature list activity, the
team uses the knowledge extracted from the first activity to build a list of
features (or functionalities) required, and categorize them according to
business subjects.

The next activity is to plan for feature, in this stage, the development plan
set by the project manager and development manager, the plan contains the
ownership of feature, the time schedule and the responsibilities of the feature
development team. In the next activity, design the feature, the focus moves to
the features itself according to the programming tasks, the classes defined, the
sequence diagrams provided and methods prologue defined. The final activity
is to build by feature where each feature developed.

FDD is used for large projects, because it can be divided into many small-size
tasks, which increase the possibility to complete the project successfully. This
also gives the management the feasibility to change the team while the project
running is without affecting the project time schedule and the overall quality.
On the other hand, the documentation task is more complex, and the overhead
of the chief programmer is high, because he acts as a coordinator, mentor and
lead designer.

Mahdavi-Hezave and Ramsin proposed the Feature-Driven Methodology De-
velopment (FDMD) for Situational Method Engineering (SME), where the ob-
ject-oriented features used to specify the requirement of the target methodology
of SME in order to facilitate the development of the target methodology, and
enhance maintainability and reusability [55].

ISMAIL, et al. compared the difference between using FDD and SCRUM
methodologies to gather requirements for Open Source Software (OSS)
projects [56]. The authors concluded that FDD team gets more time than
SCRUM to accept changes in requirements, because FDD divided changes ac-
cording to its severity while SCRUM accepted changes in requirement at any
stage of the development process. The authors conclude that both the metho-
dologies set the tasks priorities with different roles, in FDD the domain expert
does this task, while in SCRUM it is done be scrum master. The authors com-
pare the two methodologies according to customer interaction too. They con-
clude that the customer interact with teams at every phase in SCRUM, and in
the initial phase in FDD.

5. Evaluation

In this section, the evaluation of the reviewed studies is categorized into two
main categories; survey of surveys and new agile methods.

5.1. Evaluation of the Survey of Surveys

In this survey, the authors study several surveys related to agile software devel-
opment. Table 3 summarizes twenty-sex survey papers related to agile software

M. Al-Zewairi et al.

90

Table 3. Review of the different surveys using agile methods.

Ref. Year
Type
(C/J)

Publisher Category
Year

Range
of

Papers
Methods Covered

[27] 2003 C IEEE Agile Methods 1994-2002 N/A Scrum, XP, Crystal, FDD

[26] 2008 J Elsevier Agile Methods 2001-2005 36 of 1996 Scrum, XP, Crystal, FDD, DSDM, Lean

[21] 2012 J Elsevier Agile Methods 2001-2011 N/A N/A

[23] 2013 C IEEE Agile Methods 2001-2013 7 of 167 Scrum, XP, Crystal, DSDM

[19] 2014 J Elsevier Agile Methods 2011-2012 9
Scrum, XP, Agile Modeling, FDD, ASD, DSDM, TDD,
Crystal Methods, Agile Up

[24] 2014 C ACM Agile Methods 2002-2012 32 of 307 Scrum, XP, Crystal

[25] 2014 C IEEE Agile Methods 2001-2013 482 Scrum, XP

[20] 2015 J Elsevier Agile Methods 2002-2014 56 Custom agile methods

[22] 2015 J Elsevier Agile Methods 2001-2014 34 DSDM

[18] 2010 J Wiley Agile RE N/A N/A N/A

[16] 2015 J Elsevier Agile RE 1998-2014 13 XP, Scrum, FDD, Lean, ASD, Kanban, AUP, DSDM

[17] 2015 J ACM Agile RE 2002-2013 21 N/A

[35] 2010 C IEEE Hybrid Agile Methods 2002-2009 N/A Scrum, XP

[31] 2011 J Wiley Hybrid Agile Methods 1999-2009 81 N/A

[36] 2012 C IEEE Hybrid Agile Methods N/A 52 Scrum, XP, Crystal, FDD, DSDM, ASD, TDD

[34] 2012 C IEEE Hybrid Agile Methods 2000-2011 N/A Scrum, XP, Crystal, DSDM, ASD

[37] 2012 C ACM Hybrid Agile Methods N/A 72 Scrum, XP, Crystal, FDD, DSDM, ASD, TDD

[33] 2014 C ACM Hybrid Agile Methods 2000-2012 71 Scrum, XP

[28] 2015 J Elsevier Hybrid Agile Methods 1998-2011 81 XP, General agile, Scrum, Lean, Custom agile methods

[30] 2015 C IEEE Hybrid Agile Methods 2002-2012 31 Agile SPI and traditional SPI

[32] 2015 J Elsevier Hybrid Agile Methods 2002-2013 30 N/A

[29] 2016 J Elsevier Hybrid Agile Methods 2009-2014 6 of 1453 XP, Scrum, Lean, CMMI, Custom agile methods

[41] 2007 C IEEE Miscellaneous N/A N/A Scrum, Agile Software Development

[39] 2008 J Elsevier Miscellaneous 1996-2006 N/A
Scrum, XP, Crystal, FDD
ASD, DSDM

[38] 2011 C ACM Miscellaneous 2003-2009 5 of 573 Scrum, XP

[40] 2015 C IEEE Miscellaneous N/A N/A Scrum, XP

development in the last 15 years. The table indicates the reference number for
each paper, the paper published year, the paper type (whether the paper is pub-
lished in either a conference (C) or a journal (J)). Additionally, Table 3 demon-
strates the publisher and shows the survey category used in the article according
to classification illustrated in Figure 2. Furthermore, it illustrates the period
covered by the survey paper in addition to the number of articles surveyed in
each reference. Finally, it lists the methods used in each survey.

As illustrated in Table 3, the number of surveys in agile software development
increased in the last three years, the year 2015 alone has eight papers, six journal
articles and two conference papers were published in reputable databases. The

M. Al-Zewairi et al.

91

reason of this increase refers to the increasing number of methods and en-
hancements of the Agile methods; thus, the need to compare, analyze and sum-
marize the increasing amount of researches in Agile methods become a very
important topic to the researcher and to the software development industry in
order to improve their performance to gain better output quality. Figure 6
shows the number of survey papers published per year.

Interestingly, the distribution of paper type across conference papers and
journal articles was divided equally as shown in Figure 7.

Figure 8 presents the ratio of published papers per publisher. It shows that
Elsevier has the highest percentage of 38%, while Wiley has the lowest percen-
tage of 8%.

Notably, “Hybrid Agile Methods” category was the most of surveyed in the li-
terature showing the importance of agile method compared to the other devel-
opment methodologies. Figure 9 shows the percentage of survey papers based
on the four classification categories.

Lastly, XP and Scrum Agile methods were the most surveyed agile methods.
Over 5529 papers were addressed in total in all of the 26 survey papers.

Figure 6. Number of survey papers published per year.

Figure 7. Distribution of surveys based on paper type.

M. Al-Zewairi et al.

92

Figure 8. Distribution of survey papers based on publisher.

Figure 9. Percentage of survey papers based on their classification.

5.2. Evaluation for the New Agile Methods

Table 4 summarizes the evaluation for the new agile method reviewed in Section
5. It compares the new agile methods according to the changes made on the
software development life cycle (SDLC). The results shows that all of the newly
proposed methods ignore improving the coding stage, while, focusing on im-
proving both the requirements and testing stages. As explained in Section 4(A),
although the authors of “my Agile” claim to have improved on the original XP
method, the authors were able to dispute their claim and map most of the
changes back to the original XP. On the other hand, “XSOFT” did not proposed
any changes on the original XP method. Instead, it proposed integrating the XP
method with the COSMIC FFP method to in order to minimize the gap between
learning software development and working in software development. As ex-
plained in Section 4(B), “Modified Scrum process” method proposed outsourc-
ing the testing phase by utilizing the cloud testing services (TAAS) in order to
improve the software testing results without increasing the cost of the project.

M. Al-Zewairi et al.

93

Table 4. Comparison between the different Agile Methods in terms of changes made tothe SDLC.

Ref. Method Name Agile Method Req. Design Coding Testing

[43] “myAgile” XP Yes Yes No Yes

[45] “XSOFT” XP No No No No

[54] “Modified Scrum process” Scrum No No No Yes

[55] “FDMD” FDD Yes No No No

As explained in Section 4(C), “FDMD” utilized common OOP practices in the
requirements elicitation.

6. Conclusion

Agile is considered one of the most popular software design and development
methodologies. In this study, a literature survey study of the surveys of the dif-
ferent agile methodologies ranging from January 2000 and December 2015 has
been conducted. In this study, 26 survey studies were selected for review and
evaluation using a new proposed research methodology called “Compare and
Review”. The surveyed studies classified into four categories: “Agile Require-
ments Engineering”, “Agile Methods”, “Hybrid Agile Methods” and “Miscella-
neous”. Moreover, four newly proposed agile methodologies were reviewed,
analyzed and compared. The evaluation shows that most of surveys were pro-
posed and published in 2015, and the most surveyed category were the Hybrid
Agile methods.

References
[1] Williams, L. (2010) Agile Software Development Methodologies and Practices. Ad-

vances in Computers, 80, 1-44. https://doi.org/10.1016/S0065-2458(10)80001-4

[2] El-Haik, B.S. and Shaout, A. (2010) Software Design for Six Sigma: A Roadmap for
Excellence. Wiley, Hoboken.

[3] Highsmith, J. and Cockburn, A. (2001) Agile Software Development: The Business
of Innovation. Computer, 34, 120-127. https://doi.org/10.1109/2.947100

[4] Highsmith, J. (1997) Messy, Exciting, and Anxiety-Ridden: Adaptive Software De-
velopment. American Programmer, 10, 23-29.

[5] Ambler, S. (2006) The Agile Unified Process (AUP)
http://www.ambysoft.com/unifiedprocess/agileUP.html

[6] Cockburn, A. (2004) Crystal Clear a Human-Powered Methodology for Small
Teams. Addison-Wesley, Reading.

[7] Tuffs, D., Stapleton, J., West, D. and Eason, Z. (1999) Inter-Operability of DSDM
with the Rational Unified Process. DSDM Consortium, 1, 1-29.

[8] Anderson, A., Beattie, R. and Beck, K. (1998) Chrysler Goes to Extremes. Disruted
Computers, 24-28.

[9] Coad, P., de Luca, J. and Lefebvre, E. (1999) Java Modeling Color with Uml: Enter-
prise Components and Process with Cdrom. Prentice Hall, Upper Saddle River.

[10] Ladas, C. (2009) Scrumban-Essays on Kanban Systems for Lean Software Develop-
ment. Modus Cooperandi Press, Seattle.

https://doi.org/10.1016/S0065-2458(10)80001-4
https://doi.org/10.1109/2.947100
http://www.ambysoft.com/unifiedprocess/agileUP.html

M. Al-Zewairi et al.

94

[11] Poppendieck, M. and Poppendieck, T. (2003) Lean Software Development: An Agile
Toolkit. Addison-Wesley, Boston.

[12] Schwaber, K. (1996) Controlled Chaos: Living on the Edge.

[13] Basili, V.R. and Turner, A.J. (1975) Iterative Enhancement: A Practical Technique
for Software Development. IEEE Transactions on Software Engineering, SE-1,
390-396. https://doi.org/10.1109/TSE.1975.6312870

[14] Cohen, D., Lindvall, M. and Costa, P. (2004) An Introduction to Agile Methods.
Advances in Computers, 62, 1-66. https://doi.org/10.1016/S0065-2458(03)62001-2

[15] Boehm, B. (1986) A Spiral Model of Software Development and Enhancement.
Software Engineering Notes, 11, 14-24. https://doi.org/10.1145/12944.12948

[16] Baruah, N. (2015) Requirement Management in Agile Software Environment. Pro-
cedia Computer Science, 62, 81-83. https://doi.org/10.1016/j.procs.2015.08.414

[17] Inayat, I., Salim, S.S., Marczak, S., Daneva, M. and Shamshirband, S. (2015) A Sys-
tematic Literature Review on Agile Requirements Engineering Practices and Chal-
lenges. Computers in Human Behavior, 51, 915-929.
https://doi.org/10.1016/j.chb.2014.10.046

[18] Ramesh, B., Cao, L. and Baskerville, R. (2010) Agile Requirements Engineering
Practices and Challenges: An Empirical Study. Formation Systems Journal, 20,
449-480. https://doi.org/10.1111/j.1365-2575.2007.00259.x

[19] Stavru, S. (2014) A Critical Examination of Recent Industrial Surveys on Agile Me-
thod Usage. Journal of Systems and Software, 94, 87-97.
https://doi.org/10.1016/j.jss.2014.03.041

[20] Campanelli, A.S. and Parreiras, F.S. (2015) Agile Methods Tailoring—A Systematic
Literature Review. Journal of Systems and Software, 110, 85-100.
https://doi.org/10.1016/j.jss.2015.08.035

[21] Dingsøyr, T., Nerur, S., Balijepally, V. and Moe, N.B. (2012) A Decade of Agile Me-
thodologies: Towards Explaining Agile Software Development. Journal of Systems
and Software, 85, 1213-1221. https://doi.org/10.1016/j.jss.2012.02.033

[22] Da Silva Estácio, B.J. and Prikladnicki, R. (2015) Distributed Pair Programming: A
Systematic Literature Review. Formation and Software Technology, 63, 1-10.
https://doi.org/10.1016/j.infsof.2015.02.011

[23] Hamed, A.M.M. and Abushama, H. (2013) Popular Agile Approaches in Software
Development: Review and Analysis. 2013 International Conference on Computing,
Electrical and Electronics Engineering, Khartoum, 26-28 August 2013, 160-166.
https://doi.org/10.1109/ICCEEE.2013.6633925

[24] Salvador, C., Nakasone, A. and Pow-Sang, J.A. (2014) A Systematic Review of Usa-
bility Techniques in Agile Methodologies. Proceedings of the 7th Euro American
Conference on Telematics and Information Systems, Valparaiso, 2-4 April 2014,
171-176.

[25] Hummel, M. (2014) State-of-the-Art: A Systematic Literature Review on Agile In-
formation Systems Development. 2014 47th Hawaii International Conference on
System Sciences, Waikoloa, 6-9 January 2014, 4712-4721.
https://doi.org/10.1109/HICSS.2014.579

[26] Dybå, T. and Dingsøyr, T. (2008) Empirical Studies of Agile Software Development:
A Systematic Review. Formation and Software Technology, 50, 833-859.
https://doi.org/10.1016/j.infsof.2008.01.006

[27] Abrahamsson, P., Warsta, J., Siponen, M.T. and Ronkainen, J. (2003) New Direc-
tions on Agile Methods: A Comparative Analysis. 25th International Conference on
Software Engineering, Portland, 3-10 May 2003, 244-254.

https://doi.org/10.1109/TSE.1975.6312870
https://doi.org/10.1016/S0065-2458(03)62001-2
https://doi.org/10.1145/12944.12948
https://doi.org/10.1016/j.procs.2015.08.414
https://doi.org/10.1016/j.chb.2014.10.046
https://doi.org/10.1111/j.1365-2575.2007.00259.x
https://doi.org/10.1016/j.jss.2014.03.041
https://doi.org/10.1016/j.jss.2015.08.035
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1016/j.infsof.2015.02.011
https://doi.org/10.1109/ICCEEE.2013.6633925
https://doi.org/10.1109/HICSS.2014.579
https://doi.org/10.1016/j.infsof.2008.01.006

M. Al-Zewairi et al.

95

[28] Selleri Silva, F., Soares, F.S.F., Peres, A.L., de Azevedo, I.M., Vasconcelos, A.P.L.F.,
Kamei, F.K. and De Meira, S.R. (2015) Using CMMI Together with Agile Software
Development: A Systematic Review. Formation and Software Technology, 58,
20-43. https://doi.org/10.1016/j.infsof.2014.09.012

[29] Torrecilla-Salinas, C.J., Sedeño, J., Escalona, M.J. and Mejías, M. (2016) Agile, Web
Engineering and Capability Maturity Model Integration: A Systematic Literature
Review. Formation and Software Technology, 71, 92-107.
https://doi.org/10.1016/j.infsof.2015.11.002

[30] Santana, C., Queiroz, F., Vasconcelos, A. and Gusmao, C. (2015) Software Process
Improvement in Agile Software Development: A Systematic Literature Review. 2015
41st Euromicro Conference on Software Engineering and Advanced Applications,
Funchal, 26-28 August 2015, 325-332. https://doi.org/10.1109/SEAA.2015.82

[31] Jalali, S. and Wohlin, C. (2012) Global Software Engineering and Agile Practices: A
Systematic Review. Journal of Software-Evolution and Process, 24, 643-659.
https://doi.org/10.1002/smr.561

[32] Kupiainen, E., Mäntylä, M.V. and Itkonen, J. (2015) Using Metrics in Agile and
Lean Software Development—A Systematic Literature Review of Industrial Studies.
Formation and Software Technology, 62, 143-163.
https://doi.org/10.1016/j.infsof.2015.02.005

[33] Salah, D., Paige, R.F. and Cairns, P. (2014) A Systematic Literature Review for Agile
Development Processes and User Centred Design Integration. Proceedings of the
18th International Conference on Evaluation and Assessment in Software Engi-
neering, London, 13-14 May 2014, 51. https://doi.org/10.1145/2601248.2601276

[34] Sriram, R. and Mathew, S.K. (2012) Global Software Development Using Agile Me-
thodologies: A Review of Literature. 2012 IEEE International Conference on Man-
agement of Innovation and Technology, Bali, 11-13 June 2012, 389-393.

[35] Sohaib, O. and Khan, K. (2010) Integrating Usability Engineering and Agile Soft-
ware Development: A Literature Review. 2010 International Conference on Com-
puter Design and Applications, Qinhuangdao, 25-27 June 2010, V2-32-V2-38.

[36] Shen, M., Yang, W., Rong, G. and Shao, D. (2012) Applying Agile Methods to Em-
bedded Software Development: A Systematic Review. 2012 2nd International
Workshop on Software Engineering for Embedded Systems, Zurich, 9 June 2012,
30-36. https://doi.org/10.1109/SEES.2012.6225488

[37] Xie, M., Shen, M., Rong, G. and Shao, D. (2012) Empirical Studies of Embedded
Software Development Using Agile Methods: A Systematic Review. Proceedings of
the 2nd International Workshop on Evidential Assessment of Software Technolo-
gies, Lund, 19-20 September 2012, 21-26. https://doi.org/10.1145/2372233.2372240

[38] Sletholt, M.T., Hannay, J., Pfahl, D., Benestad, H.C. and Langtangen, H.P. (2011) A
Literature Review of Agile Practices and Their Effects in Scientific Software Devel-
opment. Proceedings of the 4th International Workshop on Software Engineering
for Computational Science and Engineering, Wuhan, 9-11 December 2011, 1-9.

[39] Qumer, A. and Henderson-Sellers, B. (2008) An Evaluation of the Degree of Agility
in Six Agile Methods and Its Applicability for Method Engineering. Formation and
Software Technology, 50, 280-295. https://doi.org/10.1016/j.infsof.2007.02.002

[40] Rauf, A. and AlGhafees, M. (2015) Gap Analysis between State of Practice and State
of Art Practices in Agile Software Development. Agile Conference, Washington DC,
3-7 August 2015, 102-106. https://doi.org/10.1109/agile.2015.21

[41] Begel, A. and Nagappan, N. (2007) Usage and Perceptions of Agile Software Devel-
opment in an Industrial Context: An Exploratory Study. 1st International Sympo-
sium on Empirical Software Engineering and Measurement, Madrid, 20-21 Sep-

https://doi.org/10.1016/j.infsof.2014.09.012
https://doi.org/10.1016/j.infsof.2015.11.002
https://doi.org/10.1109/SEAA.2015.82
https://doi.org/10.1002/smr.561
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.1145/2601248.2601276
https://doi.org/10.1109/SEES.2012.6225488
https://doi.org/10.1145/2372233.2372240
https://doi.org/10.1016/j.infsof.2007.02.002
https://doi.org/10.1109/agile.2015.21

M. Al-Zewairi et al.

96

tember 2007, 255-264. https://doi.org/10.1109/ESEM.2007.12

[42] Beck, K. (1999) Extreme Programming Explained: Embrace Change. Addi-
son-Wesley, Boston.

[43] Chen, J.J.-Y. and Wu, M.M.-Z. (2015) Integrating Extreme Programming with
Software Engineering Education. 2015 38th International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics, Opatija,
25-29 May 2015, 577-582. https://doi.org/10.1109/MIPRO.2015.7160338

[44] Haryono, K. (2015) The Extreme Programming Approach for Financial Manage-
ment System on Local Government. 2015 International Conference on Science and
Technology, Pathum Thani, 4-6 November 2015, 29-34.
https://doi.org/10.1109/TICST.2015.7369335

[45] Radhakrishnan, P., Kanmani, S. and Nandhini, M. (2015) XSOFT: A Generic Soft-
ware Teaching and Learning Model. Computer Applications in Engineering Educa-
tion, 23, 432-442. https://doi.org/10.1002/cae.21613

[46] Chandana Ranasinghe, R.K. and Perera, I. (2015) Effectiveness of Scrum for Off-
shore Software Development in Sri Lanka. Moratuwa Engineering Research Confe-
rence, Moratuwa, 7-8 April 2015, 306-311.

[47] Esteves Maria, R., Rodrigues, L.A., Guarino de Vasconcelos, L.E., Fonseca Mancilha
Pinto, A., Takachi Tsoucamoto, P., Nunweiler Angelim Silva, H., Lastori, A., Da
Cunha, A.M. and Vieira Dias, L.A. (2015) Applying Scrum in an Interdisciplinary
Project Using Big Data, Internet of Things, and Credit Cards. 2015 12th Interna-
tional Conference on Information Technology—New Generations, Las Vegas, 13-15
April 2015, 67-72. https://doi.org/10.1109/ITNG.2015.17

[48] Scott, E., Rodríguez, G., Soria, Á. and Campo, M. (2016) Towards Better Scrum
Learning Using Learning Styles. Journal of Systems and Software, 111, 242-253.
https://doi.org/10.1016/j.jss.2015.10.022

[49] Pierre Mattei, A.L., Marques da Cunha, A., Vieira Dias, L.A., Fonseca, E., Saotome,
O., Takachi, P., Sousa Goncalves, G., Pivetta, T.A., da Silva Montalvao, V., Kendi,
C., Lopes de Freitas, F., Alves Ferreira, M. andrade Almeida, M. and Goncalves de
Oliveira Rodrigues, G. (2015) Nanosatellite Event Simulator Development Using
Scrum Agile Method and Safety-Critical Application Development Environment.
2015 12th International Conference on Information Technology—New Genera-
tions, Las Vegas, 13-15 April 2015, 101-106. https://doi.org/10.1109/itng.2015.22

[50] De Souza, R.T., Zorzo, S.D. and da Silva, D.A. (2015) Evaluating Capstone Project
through Flexible and Collaborative Use of Scrum Framework. IEEE Frontiers in
Education Conference, El Paso, 21-24 October 2015, 1-7.
https://doi.org/10.1109/fie.2015.7344249

[51] Pauly, D., Michalik, B. and Basten, D. (2015) Do Daily Scrums Have to Take Place
Each Day? A Case Study of Customized Scrum Principles at an E-Commerce Com-
pany. 2015 48th Hawaii International Conference on System Sciences, Kauai, 5-8
January 2015, 5074-5083. https://doi.org/10.1109/HICSS.2015.601

[52] Lima Peres, A. and Lemos Meira, S. (2015) Towards a Framework That Promotes
Integration between the UX Design and SCRUM, Aligned to CMMI. 2015 10th Ibe-
rian Conference on Information Systems and Technologies, Aveiro, 17-20 June
2015, 1-4. https://doi.org/10.1109/cisti.2015.7170443

[53] Lisi Romano, B. and Delgado Da Silva, A. (2015) Project Management Using the
Scrum Agile Method: A Case Study within a Small Enterprise. 2015 12th Interna-
tional Conference on Information Technology—New Generations, Las Vegas, 13-15
April 2015, 774-776. https://doi.org/10.1109/ITNG.2015.139

[54] Raj, G., Yadav, K. and Jaiswal, A. (2015) Emphasis on Testing Assimilation Using

https://doi.org/10.1109/ESEM.2007.12
https://doi.org/10.1109/MIPRO.2015.7160338
https://doi.org/10.1109/TICST.2015.7369335
https://doi.org/10.1002/cae.21613
https://doi.org/10.1109/ITNG.2015.17
https://doi.org/10.1016/j.jss.2015.10.022
https://doi.org/10.1109/itng.2015.22
https://doi.org/10.1109/fie.2015.7344249
https://doi.org/10.1109/HICSS.2015.601
https://doi.org/10.1109/cisti.2015.7170443
https://doi.org/10.1109/ITNG.2015.139

M. Al-Zewairi et al.

97

Cloud Computing for Improvised Agile SCRUM Framework. 2015 International
Conference on Futuristic Trends on Computational Analysis and Knowledge Man-
agement, New Delhi, 25-27 February 2015, 219-225.
https://doi.org/10.1109/ablaze.2015.7154995

[55] Mahdavi-Hezave, R. and Ramsin, R. (2015) FDMD: Feature-Driven Methodology
Development. 2015 International Conference on Evaluation of Novel Approaches to
Software Engineering, Barcelona, 29-30 April 2015, 229-237.
https://doi.org/10.5220/0005384202290237

[56] Ismail, U., Qadri, S. and Fahad, M. (2015) Requirement Elicitation for Open Source
Software By Using SCRUM and Feature Driven Development. International Journal
of Natural & Engineering Sciences, 9, 38-43.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

https://doi.org/10.1109/ablaze.2015.7154995
https://doi.org/10.5220/0005384202290237
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Agile Software Development Methodologies: Survey of Surveys
	Abstract
	Keywords
	1. Introduction
	2. Research Methodology
	2.1. Research Requirements
	2.2. Selection Criteria
	2.3. Stage 1: Survey of Surveys on Agile Methods
	2.4. Stage 2: Literature Review of New Agile Methods

	3. Survey of Surveys on Agile Methods
	3.1. Agile Requirements Engineering
	3.2. Agile Methods
	3.3. Hybrid Agile Methods
	3.4. Miscellaneous

	4. Literature Review
	4.1. Extreme Programming (XP)
	4.2. Scrum
	4.3. Feature-Driven Development (FDD)

	5. Evaluation
	5.1. Evaluation of the Survey of Surveys
	5.2. Evaluation for the New Agile Methods

	6. Conclusion
	References

