
Available online at www.sciencedirect.com

ScienceDirect
www.elsevier.com/locate/ijproman
International Journal of Project Management 35 (2017) 13–27
Excessive software development: Practices and penalties
Ofira Shmueli a, Boaz Ronen b,⁎

a Ben-Gurion University of the Negev, Industrial Engineering and Management Department, Israel
b Tel Aviv University, Faculty of Management, Israel

Received 19 October 2015; received in revised form 25 September 2016; accepted 3 October 2016
Available online 28 October 2016
Abstract

This study focuses on the tendency to develop software excessively, above and beyond need or available development resources. The literature
pays little attention to this issue, overlooking its crucial impact and penalties. Terms used in reference to excessive software development practices
include over-requirement, over-specification, over-design, gold-plating, bells-and-whistles, feature creep, scope creep, requirements creep,
featuritis, scope overload and over-scoping. Some of these terms share the same meaning, some overlap, some refer to the development phase, and
some to the final system. Via a systematic literature search, we first demonstrate the poor state of research about excessive software development
practices in the information systems and project management areas. Then, we suggest a framework consolidating the problems associated with
excessive software development in three ‘beyond’ categories (beyond needs, beyond resources, beyond plans), describe and analyze their causes,
consequences, boundaries and overlapping zones. Finally, we discuss the findings and present directions for future research.
© 2016 Elsevier Ltd, APM and IPMA. All rights reserved.

Keywords: Software development; Project management; Over-requirement; Over-specification; Over-design; Gold-plating; Bells-and-whistles; Mission creep;
Feature creep; Scope creep; Requirements creep; Featuritis; Scope overload; Over-scoping
1. Introduction

Over four decades ago, Brooks (1975) observed that the
most difficult part of developing a software system is deciding
precisely what to build. He further noted that, if done
incorrectly, no other part of the development work cripples
the resulting system as much or is more difficult to undo later.
This observation, which has been repeatedly acknowledged
over the years by academic research and practical experience,
still holds today.

Catering to user, market or organizational needs1 in software
development projects has a major impact on project success. Not
meeting just the right needs is one of the reasons for project
failure (Charette, 2005; Keil et al., 1998), perhaps even the most
crucial one (Kliem, 2000; Longstaff et al., 2000). Software
⁎ Corresponding author.
E-mail addresses: ofirash@post.bgu.ac.il (O. Shmueli),

boazr@post.tau.ac.il (B. Ronen).
1 See Appendix A for explanations of the software engineering terms.

http://dx.doi.org/10.1016/j.ijproman.2016.10.002
0263-7863/00/© 2016 Elsevier Ltd, APM and IPMA. All rights reserved.
scoping is a critical project process (Zwikael and Smyrk, 2011)
and project success is sensitive to the defined scope (Cano and
Lidón, 2011). Although wrong scope definition refers to both
scoping under and over the actual needs (Bjarnason et al., 2012;
Buschmann, 2009; Zwikael and Smyrk, 2011), excessively
loading the scope is much more common (Bjarnason et al.,
2012; Boehm, 2006; Karlsson et al., 2007), and thus stands at the
focus of this work. Exceeding the right scope expands project
size, which is a major risk dimension in software development
projects (McFarlan, 1981; Zmud, 1980) in the sense that project
risk is an increasing function of project size (Barki et al., 1993;
Glass, 1998; Houston et al., 2001;Maguire, 2002). In comparison
to smaller projects, large-scale projects fail three to five times
more often (Charette, 2005), are much more prone to unexpected
colossal events including even bringing an organization down
(Flyvbjerg and Budzier, 2011), and have a 65% probability of
being stopped and abandoned (Jones, 2007).

This study relates mainly to traditional plan-based software
development methodologies, such as the waterfall approach.
Current agile techniques claim to resolve problems associated

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijproman.2016.10.002&domain=pdf
mailto:
mailto:
http://dx.doi.org/10.1016/j.ijproman.2016.10.002
http://dx.doi.org/10.1016/j.ijproman.2016.10.002
http://dx.doi.org/10.1016/j.ijproman.2016.10.002
http://dx.doi.org/10.1016/j.ijproman.2016.10.002

14 O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
with plan-based methodologies but the debate on which
methodology is more effective (Beck and Boehm, 2003;
DeMarco and Boehm, 2002), especially in the requirements
engineering (RE) context still exists (Dyba and Dingsyr, 2009;
Inayat et al., 2015a). Critics of agile techniques claim that agile
requirements engineering concepts lead to neglecting non-
functional requirements related to performance, security, and
architecture (Cao and Ramesh, 2008; Dyba and Dingsyr, 2008;
Maiden and Jones, 2010). Although studies that describe
requirements engineering practices in an agile context address
some of these problems (Bakalova and Daneva, 2011; Lucia
and Qusef, 2010), knowledge about the solutions that agile
brings to RE is fragmented and whether while introducing
solutions to these problems new challenges are introduced is
yet to be examined (Inayat et al., 2015a). Accordingly, recent
studies claim that this field is still immature and needs further
research on agile RE and its real-world impact and applications
(Maiden and Jones, 2010; Inayat et al., 2015a, 2015b).
However, the understanding that no size fits all (Boehm and
Lane, 2010a) and that both approaches have their merits and
excel under appropriate conditions, suggests more balanced
hybrid approaches that integrate both into the right mix for each
specific project (Boehm and Turner, 2003, 2005; Boehm et al.,
2010; Dyba and Dingsyr, 2008, 2009).

The risky practice of expanding a software project to include
excessive functionality and capabilities2 is referred to in the
literature by a variety of partially overlapping terms, including:
over-requirement, over-specification, over-design, gold-plating,
bells-and-whistles, mission creep, feature creep, scope creep,
requirements creep, featuritis, scope overload and over-scoping.

While all these terms relate overall to excessive software
development practices, as elaborated upon in the next sections,
there are some differences, depending, for example, on the
project development phase in which each practice takes place,
whether requirements3 added under the excessive development
practice can be implemented within the project constraints or not
and whether the added requirements are essential, just optional or
completely unnecessary. However, once extra features are
introduced into a project excessively, they are seldom eliminated
regardless of necessity or of how and during which project phase
they are included within the scope (Dominus, 2006; Wetherbe,
1991).

Excessive software development practices are considered risky
practices. They impose a variety of penalties on project outcome,
withmany negative consequences on project schedule, quality and
costs (Bernstein, 2012; Bjarnason et al., 2010; Buschmann, 2009,
2010; Coman and Ronen, 2010; Ronen et al., 2012). While some
studies refer to a change in requirements of about 25% on average
(Jones, 1994; McConnell, 1996), others present an average total
volume growth of 14% to 25% for software projects in various
domains, with a monthly rate of change in requirements of 1% to
3.5% (Choi and Bae, 2009; Jones, 1996). Jones (1996), however,
emphasizes that these numbers can be misleading since the
maximum growth rate observed in many cases exceeded 100%.
2 See Appendix A for explanations of the software engineering terms.
3 See Appendix A for explanations of the software engineering terms.
Coman and Ronen (2009b) ascribe over 30% of the features in
financial software applications serving such organizations as
banks or insurance companies to excessive software development.
They claim that over 25% of the software development efforts in
R&D organizations are devoted to issues and activities that do not
add value (Coman and Ronen, 2010). Considering the conserva-
tive estimate of 25% superfluous scope (Battles et al., 1996;
Coman and Ronen, 2010), one must wonder what the costs of
excessive software development amount to in terms of budget and
schedule overruns as well as damage to system quality and
integrity. According to McConnell (1996), due to the multiplica-
tive costs associated with doing work downstream, these costs
probably amount tomuchmore than 25%. Using the COCOMO II
estimation model (Boehm et al., 2000a, 2000b), which considers
the exponential nature of the development effort, the estimated
cost increment might indeed be even higher than the scope
increment, at least with respect to the development activity.
Non-development project activities, such as preparing infrastruc-
tures or training users, are affected by size and content and are
expanded as well due to excessive software development
practices. To show that costs can be reduced by eliminating
excess, Battles et al. (1996) provide an example of an electric
utility which succeeded in reducing the software development
budget by 30% without reducing performance by avoiding
unnecessary upgrades and non-critical work. Ronen et al. (2012)
refer to a cellular phone service provider that by adopting the 25/
25 rule in software development, i.e., terminating 25% of the
projects and eliminating 25% of the features4 in the remaining
projects, improved the project completion rate and development
pace.

Although it is thus extremely important to explore the risky
excessive software development practices, enhance the knowl-
edge and awareness of them, and to recommend remedies for their
mitigation, a literature search reveals only thin, spare, fragmented
and scattered research on these issues. This work makes three
main contributions to this challenge. First, via a systematic
literature search, focused on title, abstract and keywords of articles
in top-rated journals, it unravels the small amount of current
relevant research in these leading journals. Second, it gathers and
elaborates upon the different terms associated with excessive
software development practices and provides a comprehensive
picture regarding their nature, causes and consequences. Third,
based on the findings and analysis presented here it proposes a
research agenda for future research in several directions.

The rest of this paper is dedicated to reviewing the various
excessive software development practices and to exposing the
current poor state of relevant research. Section 2, first identifies
the various terms that relate to excessive software development
practices and then presents the findings of a systematic
literature search for relevant research. Section 3 consolidates
the various excessive software development practices in three
‘beyond’ categories, and analyzes their nature, causes, and
boundaries. Finally, Section 4 discusses the findings, conclu-
sions and implications and proposes a research agenda. A
glossary of basic software engineering terms used here is
4 See Appendix A for explanations of the software engineering terms.

Table 1
Sources for literature review.

Journal

1 European Journal of Information Systems (EJIS)
2 Information Systems Journal (ISJ)
3 Information Systems Research (ISR)
4 Journal of AIS (JAIS)
5 Journal of Information Technology (JIT)
6 Journal of Management Information Systems (JMIS)
7 Journal of Strategic Information Systems (JSIS)
8 MIS Quarterly (MISQ)
9 International Journal of Project Management (IJPM)
10 Project Management Journal (PMJ)
11 IEEE Transactions on Software Engineering
12 IEEE Software
13 Computer
14 IEEE Transactions on Engineering Management
15 Information and Software Technology (IST)
16 Communications of the ACM
17 Harvard Business Review (HBR)

15O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
provided in Appendix A, and a further description of our
literature search is provided in Appendix B.

2. The state of research on excessive software
development practices

As mentioned above, the risky practice of excessively
expanding the software project is referred to in the literature by
a variety of names, some of which share the same meaning or
overlap: over-requirement, which refers to specifying a product
or a service beyond the actual needs of the customer or the
market (Shmueli et al., 2014); over-specification, which also
refers to defining product or service specifications beyond the
actual needs of the customer or the market (Ronen and Pass,
2008); over-design, which refers to designing and developing
products or services beyond what is required by the specifica-
tions and/or the requirements of the customer or the market
(Ronen and Pass, 2008); gold-plating, which refers to extra
software which not only consumes extra effort but also reduces
the conceptual integrity of the product (Boehm and Papaccio,
1988); bells-and-whistles, which refers to adding unnecessary
features to software (Ropponen and Lyytinen, 2000); feature
creep, which refers to changing features while a product is still
in development (Elliott, 2007); requirements creep and mission
creep, which also refer to changing requirements and mission
while a product is still in development (Elliott, 2007); scope
creep, which refers to the steady increase of the system's scope
(Buschmann, 2009); featuritis, which refers to the tendency to
trade functional coverage for quality and the tendency to
deliver as many functions and as early as possible (Buschmann,
2010); scope overload, which refers to the excessive inclusion
of software features within the scope of a project while
consuming more resources than those available (Shmueli et al.,
2015c); and over-scoping, which also refers to setting a scope
that requires more resources than are available (Bjarnason et al.,
2010).

The above excessive software development practices present
extreme risks to project success (Bjarnason et al., 2010; Boehm,
1991; Buschmann, 2009, 2010; Coman and Ronen, 2010),
leading to delayed project launch and resource overruns, overall
excessive complexity, increased probability of defects and
reliability problems, software which is larger than needed and
even loss of an entire company (Battles et al., 1996; Buschmann,
2009; Buschmann, 2010; Coman and Ronen, 2009b, 2010;
Westfall, 2005). Acknowledging their highly negative influence
and prevalence (Buschmann, 2009, 2010; Coman and Ronen,
2010; Jones, 1996; Ronen et al., 2012), one might have expected
research to explore these excessive software development
practices and to reveal their nature and causes. However, all our
digging and burrowing for such research indicated no such focus.

The many terms used to describe excessive software
development practices and their acknowledged penalties they
impose on the software project, on one hand, and the feeling of
research shortage on the other hand, have motivated us in
performing a systematic literature search to check the state of
research on excessive software development practices. Our
systematic literature search which focused on 17 leading sources
confirms that there is very little research on these negative
practices. A description of the literature search is presented next,
together with its findings. Further elaboration on the search, the
list of the searched terms and their variations is provided in
Appendix B.

Since the issue we relate to is mainly relevant to the
information systems (IS), software engineering (SE) and software
development (SD) areas, we covered in our literature search, as
listed in Table 1, eight sources (1–8) included by the Association
of Information Systems (AIS) among the Senior Scholars' Basket
of Journals (AIS, 2011), two top sources in the project
management (PM) area (9–10), namely the International Journal
of Project Management (IJPM) and the Project Management
Journal (PMJ), and five sources dealing with practical issues in
the software development (SD) and software engineering (SE)
areas, namely three IEEE journals, Computer, IEEE Transaction
on Engineering Management, and Information and Software
Technology (11–15). Finally we also covered two reviews that
deal with and also set the current agenda (16–17), namely
Communications of the ACM and the Harvard Business Review.

In these publications, we considered all papers published up to
September 2015. The search targeted the 12 terms related to
excessive software development practices in various forms
(“scope overload”, “scope-overload and “scopeoverload”; “bells
and whistles” and “whistles and bells”; etc.), as elaborated in
Appendix B. To target papers that focus on an excessive software
development practice and to avoid those that mention it in some
marginal manner, for example as part of a risk list, we focused our
search on the title, abstract and keywords.

This search yielded 20 hits which, after manual relevancy
checks, came down to 12 articles, pointing to the scarcity of
research on these problems. Out of the overall publications in
our literature search, the proportion dealing with excessive
software development practices is less than 0.001%.

Table 2 presents the acceptable yield (after manual relevancy
checks, as elaborated in Appendix B) ordered by year of
publication. It is noteworthy that the majority of the articles (six
of the 12, namely 1, 3–7) deal with requirements creep. It is also

Table 2
Extracted articles — source type, method of research.

Article Type of source Term Method of research

1 Jones, 1996 SD-IEEE Requirements creep Speculation/commentary
2 Boehm, 1996 SD-IEEE Gold-plating Speculation/commentary field study
3 Hendrix and Schneider, 2002 ACM Requirements creep Case study
4 Damian and Chisan, 2006 SE-IEEE Feature creep

Requirements creep
Case study

5 Lee-Kelley and Sankey, 2008 PM Requirements creep Case study qualitative research
Semi-structured interviews

6 Chen and Yang, 2009 SD-IEEE Scope creep
Requirements creep

Case study

7 Choi and Bae, 2009 SE-IST Requirements creep Conceptual model; Case study
8 Buschmann, 2010 SD-IEEE Featuritis

Unnecessary features
Speculation/Commentary

9 Coman and Ronen, 2010 PM Over-specification
Over-design

Speculation/Commentary

10 Bjarnason et al., 2012 SE-IST Over-scoping Case study
11 Shmueli et al., 2015a PM Over-requirement Laboratory experiment
12 Shmueli et al., 2015c IS Over-requirement

Scope overload
Laboratory experiment

16 O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
important to note that, out of the 12 papers, three (9, 11, 12) are
products of the authors of this paper. Regarding the source type,
five of the articles (1, 2, 4, 6, 8) were published in SD/SE-IEEE
journals, three of the articles (5, 9, 11) were published in PM
journals, two of the articles (7, 10) were published in the SE-IST
journal, one (3) in the ACM journal, and one (12) in an IS journal.
Referring to the research method column in Table 2, based on the
taxonomy developed by Palvia et al. (2007), four papers (1, 2, 8,
9) presented opinions in a commentary, providing little or no
empirical evidence, six papers (3–7, 10) applied a case-study
approach, and two (11, 12) presented empirical results of a
laboratory experiment. Examining the content of the 12 articles
demonstrates the generality of the excessive development
problems in terms of the different domains and software types
they are manifested in: from commercial software to military
software, from general information systems to enterprise resource
planning software and whether the software project is developed
in house or by an outsourced supplier. Looking at the level of
analysis in these studies implies overall an organization issue,
since this is the level of analysis in most studies, with only one
study (5) referring to the group (the development team) and three
(8, 11, 12) referring to the individual (developer or architect).
Reviewing the negative consequences of the various problems
shows that in general all excessive development problems expose
the software project to similar penalties, negatively affecting
schedule, cost and quality. However, reviewing the causes,
dynamic and the attitude toward the manifestation of the various
problems, points to some differences. Requirements creep, feature
creep and scope creep are considered in some studies an inherent
consequence of the software project dynamics on which
the software team and sometimes also the clients have no
control. This is because change, during the course of a software
project, is considered almost inevitable, either due to external
factors such as changes in regulation or due to business factors
such as competitive pressures. The other problems, such as
over-requirement and over-scoping however, which are listed
sometimes as negative by-products of the creep problems, are
treated differently. Most of their presented causes are related to
human factors, such as the wish to provide the best possible
solution or the desire to include front-end technology even when
not needed, and thus theoretically can be avoided. However, only
two papers (11, 12) were dedicated to empirical exploration of the
behavioral roots of over-requirement via a laboratory experiment
and only one (23) also explored a mitigation concept in an
experimental environment.

The essence of these 12 excessive development practices
together with the above observations have led us to consider
the classification and consolidation of these practices into three
major categories, relating to the project aspect which they
interfere with — project needs, project plans and project
resources. Accordingly, based on a wider literature view, not
limited to the listed leading journals and not limited to studies
that focus specifically on this issue, the next section presents
these three categories and proceeds with a deeper analysis of
their nature, causes, and boundaries.

3. Review and analysis of excessive software
development practices

The dozen terms used to describe excessive software
development practices, together with selected references, are listed
respectively in the first and second columns of Table 3. Terms 1 to
5 refer to specifying, designing and developing a software system
beyond the actual needs of the customer or the market, namely
loading the software with unnecessary features and capabilities
(Boehm and Papaccio, 1988; Markus and Keil, 1994; Ronen and
Pass, 2008; Ropponen and Lyytinen, 2000). Terms 6 to 9 refer to
changing and adding features and functionality once the project is
under way (Elliott, 2007; Feiler, 2000) while the tenth term, which
usually accompanies them, refers to the tendency to load a project
with features (Buschmann, 2010). Finally, the terms 11 and 12
refer to setting a scope that includes more functionality than can be
implemented within the framework of the project resources, i.e.,
the time, people, and budget assigned to the project. Relating to the

Table 3
Excessive software development practices.

Term used for practice Selected references for practice Category of similar practices and commonalties

1. Over-requirement Pass and Ronen, 2014; Shmueli et al., 2015a, 2015c A) Beyond Needs: Specifying, designing and developing
a software system beyond the actual needs of the customer
or the market, loading the software with unnecessary
features and capabilities

2. Over-specification Abrahams, 1988; Coman and Ronen, 2010;
Ronen and Pass, 2008

3. Over-design Coman and Ronen, 2009a, 2010
4. Gold-plating Boehm and Papaccio, 1988; Boehm, 1991; Kaur et al., 2013;

Khanfar et al., 2008; Malhotra et al., 2012; NASA, 1992;
Wheatcraft, 2011

5. Bells-and-whistles Ropponen and Lyytinen, 2000
6. Mission creep Elliott, 2007 B) Beyond Plans: Continuously changing and adding

features and functionality beyond the planned plans,
once the software development project is underway,
loading the project with extra features

7. Feature creep Elliott, 2007; McConnell, 1997; Rust et al., 2006
8. Scope creep Buschmann, 2009; Feiler, 2000; Lang and Fitzgerald,

2005; Murphy, 2001; Wheatcraft, 2011
9. Requirements creep Damian and Chisan, 2006; Elliott, 2007; Jones, 1996;

Wheatcraft, 2011
10. Featuritis Buschmann, 2010; Elliott, 2007
11. Scope overload Shmueli et al., 2015c C) Beyond Resources: Setting the scope of a software

system beyond the available resources, including more
functionality and capabilities than can be implemented
within the framework of the project resources

12. Over-scoping Bjarnason et al., 2012

17O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
phases of the traditional software project life cycle, while loading
the software project with unnecessary features (terms 1 to 5) and
determining a project scope that exceeds its available resources
(terms 11 and 12) can take place at any phase of the project, the rest
take place during the development phase and on. The similar
practices are consolidated in Categories A to C in the third column
of Table 3 and Sub-sections 3.1 to 3.3 detail their commonalities,
causes and penalties. Sub-section 3.4 then compares and contrasts
these twelve practices, drawing the boundaries and the overlapping
zones.

3.1. Beyond needs (Category A)

The tendency to specify, design and develop a software
system beyond the actual needs of the customer or the market,
namely loading the software with extra, completely unnecessary
or nice-to-have features and capabilities (Ronen and Pass, 2008;
Shmueli et al., 2015a), is common to the over-requirement (Pass
and Ronen, 2014; Shmueli et al., 2015a), over-specification,
over-design, gold-plating, and bells-and-whistles practices of
Category A. Shmueli et al. (2015a) define over-requirement as a
synonym to over-specification and gold-plating and as specifying
a product or a service beyond the actual needs of the customer or
the market. Ronen and Pass (2008) define over-design as
designing a product or a service beyond its specification.5

Abrahams (1988) associates the over-specification practice with
the unlikely-ever-to-be-needed capabilities. Boehm and Papaccio
(1988) refer to gold-plating as extra software which not only
consumes extra effort, but also reduces the conceptual integrity of
the product while others define gold-plating as the addition of
unnecessary whistles and bells (Markus and Keil, 1994;
Ropponen and Lyytinen, 2000). While the term gold-plating is
often used in the academic literature (Boehm and Papaccio, 1988;
5 See Appendix A for explanations of the software engineering terms.
Kaur et al., 2013; Schmidt et al., 2001), over-specification is the
term usually used in industry (Coman and Ronen, 2010). Worth
mentioning is that the term over-specification is also used to
describe another phenomenon, whereby specifications of a
product or a feature are too elaborate and constrain the later life
cycle phases (Boehm and Hansen, 2001; Boehm and Turner,
2003; Palshikar, 2001).

Already in the early 1990s, NASA (1992) included
gold-plating among the eight “don't do” warnings in the
software-development context and Boehm (1991) listed it among
the top ten risks in software development projects. Others
repeatedly mentioned, as a major risk and a major concern in
software-development projects, not only gold-plating (Bernstein,
2012; Kaur et al., 2013; Khanfar et al., 2008; Malhotra et al., 2012;
Schmidt et al., 2001;Wheatcraft, 2011) but also over-specification,
over-design (Belvedere et al., 2013; Pass and Ronen, 2014), and
over-requirement (Pass and Ronen, 2014; Shmueli et al., 2014;
Shmueli et al., 2015a). Nevertheless, the five excessive software
development practices in Category A, manifested as excessive
functional requirements, excessive performance requirements or
excessive scalability requirements, are still prevalent (Boehm et al.,
2000a, 2000b; Boehm and Hansen, 2001; Boehm and Lane,
2010b; Buschmann, 2009).

Potential damages associated with these beyond-needs
practices include delayed launch, high complexity, cutting off
core features due to project time constraints, devoting human
and machine resources to developing functionality that is of no
real value, project overruns, and even demise of an entire
company (Buschmann, 2009; Coman and Ronen, 2009b, 2010;
Ronen et al., 2012; Westfall, 2005). These practices may also
lead to highly complex software, with increased risk of defects
and reliability problems (Coman and Ronen, 2010; Westfall,
2005) and to larger systems that are difficult to manage and
costly to maintain (Battles et al., 1996; Buschmann, 2010). The
supplier is at risk as well since the customer will prefer another
supplier in the future (Kautz, 2009).

18 O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
As elaborated next and presented in Table 4, the list of causes
related to beyond-needs excessive practices is quite long and
diverse. Professional interest or pride of developers and demands
of users are considered to be the main reasons for beyond-needs
practices (Ropponen and Lyytinen, 2000). Developers often
ignore business requirements for the sake of introducing advanced
technology (Buschmann, 2009; Schmidt et al., 2001), or pursue
unauthorized features to satisfy their own interest (Coman and
Ronen, 2010; McConnell, 1997). In many cases they wish to
achieve the best possible solution (Rust et al., 2006; Westfall,
2005) or aim to fulfill all future needs and add just-in-case
functionality (Buschmann, 2010; Coman and Ronen, 2010),
especially when they do not know which features will be more
important (Anton and Potts, 2003; Boehm, 1996). Users as well
often opt for advanced technology, ignoring business require-
ments, or exhibit an all-or-nothing attitude (Cule et al., 2000),
adding costly unneeded features to system requirements (Markus
and Keil, 1994). Sometimes they even try to coax individual
developers into incorporating their favorite features (McConnell,
1997). Lack of a time constraint or a budget constraint may also
cause such practices, as work tends to fill the time available
(Kemerer, 1987) and money allocated becomes money spent
(Miranda and Abran, 2008). Other causes are misconceptions
during the specification phase that the development effort is free
(Koopman, 2010, 2011), that each added feature has the same
marginal effort (Coman and Ronen, 2010) or low cost (Boehm and
Papaccio, 1988). Behavioral biases such as the I-designed-
it-myself effect and the planning fallacy have been demonstrated
to impact over-requirement, since software professionals may
perceive features as more valuable and beneficial for the software
system than they really are (Shmueli et al., 2015a, 2015b, 2015c).
In an outsourced software-development project, a contract type of
time and material might be behind practices in Category A (Gary,
2009; Kautz, 2009). DeMarco and Lister (2003) describe a case
where politics may cause some of the stakeholders who are
adversaries to overload the project with excessive functionality.
For off-the-shelf software or a large system developed for a variety
of users, the desire to build one system that fits all (Coman and
Ronen, 2010; Rust et al., 2006) or to release improved versions on
a continuous basis (Coman and Ronen, 2010) can lead to Category
A practices.
Table 4
Causes and stakeholders of beyond needs category.

1 Professional interest
2 Wishing for best possible solution
3 Aim to fulfill all future needs
4 Just-in-case functionality
5 Lack of knowledge (not knowing which features will be more importan
6 All-or-nothing attitude
7 Lack of time/budget constraint
8 Time and material contract type
9 Politics — adversaries overload the project
10 One system that fits all
11 The misconception that development effort is free
12 The I-designed-it-myself effect
13 The planning fallacy
Table 4 summarizes the above, lists the causes and indicates
the specific stakeholder, of the three main stakeholders
involved in software project development (developer, user/
customer, manager), reported to be affected by each cause in
the inclusion of beyond-needs content.

It can be seen from the foregoing, that of the three main
stakeholders involved in software projects, the developer is most
likely and most motivated to include beyond-needs content,
whether for his/her own professional interest or due to his/her
good intentions to achieve the best solution. However, the other
two stakeholders, the user, who wants as much as possible, and
the management, who have to be aware of these tendencies and
avoid being drawn into going along with them, are responsible as
well. Reviewing the list of causes, it seems that at least six causes
(1–4, 6–7, 10) are overall derived from good intentions, without
counting the negative effects of developing beyond needs
software. Only two causes (8, 9) can be associated with the
deliberate inclusion of beyond needs content. The rest are such
that stem from knowledge shortage (5, 11) or human biases (12,
13). Considering these causes, without the two of deliberate
intention, strongly implies a lack of awareness regarding the
penalties of beyond needs development. The main recommenda-
tion, thus, is to enhance awareness of the beyond-needs excessive
development phenomenon and the penalties it imposes on project
outcome. Another recommendation is, especially for the
manager, to be aware of the behavioral biases that interfere with
and affect decision making and objectivity of the subordinates
and as well as of the manager.

Future research on beyond-needs excessive practices should
address the following issues, whether as independent direc-
tions, or as sequential stages. First, the extent and volume of
this phenomenon needs empirical exploration and measure-
ment, since the current numbers reported in the literature are
based on evaluations and speculations. This research direction
should consider plan-based and agile development methodol-
ogies. Second, in order to set a solid base for deciding on which
causes to focus on, it is important to explore the prevalence of
the various causes presented here. Again, agile practices
should be included. Third, and most important, remedies
should be developed and empirically evaluated. Apart from
one study (Shmueli et al., 2015c) that empirically demonstrates
Developer User/customer Manager None

×
× ×
×
×

t) ×
×

×
×
×
×

× × ×
×
× ×

19O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
how remedies of the planning fallacy can mitigate over-
requirement and over-scoping, no other empiric research was
found.

3.2. Beyond plans (Category B)

The tendency to continuously change and add features and
functionality, once the software development project is under
way, loading the project with extra features (Elliott, 2007;
Wheatcraft, 2011), is common to the mission creep, feature creep,
scope creep, requirements creep and featuritis practices of
Category B. As in Category A, the boundaries between these
five terms are vague in the literature, with practically no clear
distinctions among them. Elliott (2007) mentions mission creep,
scope creep, requirements creep and featuritis as synonyms to
feature creep, defined as changes in features while a product is
still in development. Similarly, according to Feiler (2000), scope
creep occurs “when additional activities are added once the
project is under way” (p.49), while Buschmann (2009) complains
that due to “a steady increase of the system's scope” the software
system “becomes a jack of all trades and master of none” (p.68).
Buschmann (2010) defines featuritis as the tendency to trade
functional coverage for quality, denoting it as the disease that
afflicts development when software professionals seek to deliver
as many functions as soon as possible while quality issues such as
reliability, performance and maintainability are postponed to
“when functionality is stabilized” (p.10).

Excessive software development practices in Category B are
considered a software development risk (Bartlett, 2008;
Buschmann, 2010; McConnell, 1997; Murphy, 2001; Naz and
Khokhar, 2009). McConnell (1996, 1997) counts feature creep as
one of the most common sources of cost and schedule overruns, a
major factor in project cancelations and a source of destabilization.
Changes in requirements were identified by managers in a large
software development company focused on security applications
as themost prevalent risk associated with its projects (Shalev et al.,
2014). Frequent requests for requirements changes was identified
as a major cause for failing to accurately predict development time
and budget (Lederer and Prasad, 1992). Loading a project with
features and capabilities eventually lowers value from a user
perspective, besides increasing the risks associated with project
size (Rust et al., 2006).

Software type, whether enterprise system, web application or
data warehouse, seems to make no difference in terms of the
negative impact of excessive beyond-plans practices (Chen and
Yang, 2009; Connor, 2003; Lang and Fitzgerald, 2005; Momoh
et al., 2010). Scope creep has been identified as one of the reasons
for the high failure rate of enterprise projects (Chen and Yang,
2009; Momoh et al., 2010). Internet developers consider scope
creep and feature creep as most troubling (Lang and Fitzgerald,
2005), and data warehousing projects have been reported to miss
deadlines due to scope creep (Connor, 2003). Software systems
suffering from scope creep tend to be overly generic or offer a list
of functions that is too long (Buschmann, 2009).

Wishing to continuously improve the developed software, a
tendency for perfection, and changes in actual business conditions
seem to be major causes of excessive software development
practices in Category B (Elliott, 2007; Jones, 1996). Accepting the
first specification change request opens the door for additional
ones to creep into scope, whether at the request of users or the
initiative of developers (Murphy, 2001). External factors over
which one has no control, such as changes in tax laws or in
commercial software due to competitive pressures, have been
reported as well as causes of beyond-plans software development
practices (Jones, 1996). Outsourcing is also mentioned as a cause
of scope creep, since vendors usually expect to gain extra profit
from incremental scope changes (Davison, 2003; Zhao and
Watanabe, 2010). Human behavior is noted as causing featuritis
when using flexibility to cover for uncertainty, adding extra
functionality just in case, or adding functionality just because it is
so simple to do (Buschmann, 2010). Table 5 summarizes the
above, lists the causes and indicates the specific stakeholder, of the
threemain stakeholders involved in software project development,
reported to be driven by each cause in introducing beyond-plans
practices.

Hence, apart from external factors which can be unpredictable
and represent a force majeure, beyond-plans practices are
primarily manifested due to the seemingly positive desire for
continuous improvement and an outsourced supplier who gains
profit from such a dynamic. Thus, among the main three
stakeholders involved (developer, user/customer, manager) such
practices should be controlled and governed by the project
management. Considering these causes, without the two external
causes, the implication is low awareness regarding the penalties
of beyond-plans development and/or lack of management
control.

Future research on beyond-plans excessive practices should
address the following issues, whether as independent directions,
or as sequential stages. First, here as well, the extent of this
phenomenon needs empirical exploration and measurement,
since the current numbers reported in the literature are based on
evaluations. Second, it is important to examine which causes are
most influential, especially with regard to the external ones.
Finally, remedies should be developed and empirically evaluated.
An interesting exploration would be to examine how the agile
philosophy of embracing the change cope with or avoid the
negative consequences.

3.3. Beyond resources (Category C)

The tendency to set the scope of a software system to include
more functionality than can be implemented within the limits of
project resources (Bjarnason et al., 2010; Shmueli et al., 2015c) is
common to the scope-overload and over-scoping practices of
Category C. Developing a project with a scope overload, or
over-scoping a software project, means exceeding the available
resources (Shmueli et al., 2015c), and “biting off more than one
can chew” (Bjarnason et al., 2010, 2012). These practices are
considered a top software development risk (Buschmann, 2010;
Coman and Ronen, 2009b; Elliott, 2007; Flyvbjerg and Budzier,
2011) since the more the project is over-scoped, the higher the
probability of failure. Due to the need to reduce the scope when it
becomes clear in later development phases that project resources
cannot permit the extra scope, system requirements must be

Table 5
Causes and stakeholders of beyond plans category.

Developer User/customer Manager None (external)

1 Wishing for best possible solution × ×
2 Just-in-case functionality ×
3 Wish to continuously improve the developed software ×
4 Accepting the first specification change ×
5 Outsourcing (provider interest) ×
6 Changes in laws / regulation ×
7 Competitive pressures ×

20 O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
changed and all work already invested in developing the extra
requirements goes to waste (Bjarnason et al., 2012). Category C
practices may burden the developers with too much work which,
in turn, may hurt overall software quality and customer
satisfaction (Bjarnason et al., 2012). These excessive,
beyond-resources, software development practices involve in-
clusion of both required and over-required software features,
whether introduced during the initiation phase of the project
lifecycle or that crept in during the construction phase (Zwikael
and Smyrk, 2011). Applying agile methods for requirements
engineering does not prevent beyond-resources practices, though
the load becomes more manageable and is perceived to result in
less wasted effort due to the principle of continuous scope
prioritization (Bjarnason et al., 2011, 2012).

The root causes of scoping beyond resources relate mainly
to poor management of continuous requirements inflow,
compounded by unclear overall project goals (Bjarnason et
al., 2010, 2012). In addition, the cognitive bias of the planning
fallacy impacts this tendency to load the project with extra
functionality exceeding available resources (Shmueli et al.,
2015b, 2015c). Due to the planning fallacy, which leads to
underestimating the time needed for development and, as a
result, overestimating how much can be accomplished within a
given period of time, the software professional tends to load
the scope with more features than can be completed on time.
Table 6 summarizes the above, lists the causes and indicates
the specific stakeholder, of the three main stakeholders
involved in software project development, reported to be
driven by each cause in including beyond-resources content.

So, beyond-resources practices mainly stem from manage-
ment mistakes, whether in failing to set clear project goals and
keeping to them or in failing to obtain correct estimates of time or
other required resources. Aside from the obvious need for clear
project goals and management control, the main recommendation
is, especially for the manager, to be aware of the planning fallacy,
a behavioral bias that leads to under estimation of time needed to
develop software and over estimation of what can be accom-
plished by specific resources.
Table 6
Causes and stakeholders of beyond resources category.

Deve

1 The planning fallacy ×
2 Poor management of continuous requirements inflow
3 Unclear overall project goals
Future research on beyond-resources excessive practices
should measure the extent of this phenomenon, considering
plan-based and agile development methodologies. It is also
important to recognize the extent of over-scoping beyond the
scope set at the beginning of the project and added to the
project along the way (due to one of the beyond-plans
practices).

3.4. Excessive software development categories compared and
contrasted

The various excessive software development practices overlap
and are often confused. Buschmann (2009) describes scope creep
in terms of over-requirement, where the developed system is
overly generic and offer functions that do not contribute to the
system's purpose. Markus and Keil (1994) associate scope creep
with adding more and more costly bells-and-whistles to system
requirements. Keil et al. (1998) claim that scope creep can be
prevented by educating the customer on its negative impact and
recommend that managers draw a line between desirable and
absolutely necessary functionality, hence relating actually to
over-requirement. Zwikael and Smyrk (2011) associate over-
scoping with the inclusion of over-required, redundant or
superfluous features within scope (Zwikael and Smyrk, 2011).
This mix up is understandable since the boundaries between the
various excessive development practices are indeed vague and
blurred. In addition, one excessive development practice might
be a consequence of another. Feature creep, for example, which
involves expanding the project beyond its initial plans, may
include addition of over-required features and scope-overload,
meaning features beyond needs or beyond available resources.
Scope overload may emerge from including in the project scope,
beyond-needs, bells-and-whistles functionality and vice versa,
from setting a scope beyond available resources; some extra
beyond-needs functionality may be included as well.

Figs. 1 and 2 depict (in the inner circle) the actual essential
needs necessary for a software project to provide using the
assigned project resources (marked by a dashed line). Fig. 1
loper User/customer Manager None (external)

×
×
×

Fig. 1. The project scope and the various excessive development practices zones
(actual needs are feasible within the limits of available resources).

21O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
refers to the situation in which the actual essential needs are
feasible within the limits of available resources while Fig. 2
refers to the less prevalent situation where essential needs
exceed available resources, dooming the whole project to
failure. Beyond the actual needs is the Category A zone (the
gray areas), that is, the over-requirement practice by definition
of being beyond the actual needs of the customer or the market.
As can be seen in both Figs. 1 and 2 this gray zone lies beyond
as well as within the assigned resources, as features introduced
under these practices usually exceed project resources, but can
sometimes be developed within their limits.

The zone of Category C (in the lighter gray), representing
requirements beyond project resources, partially covers in Fig. 1
the Category A zone, since by depicting all essential needs within
the available resources means that requirements which are
beyond resources are necessarily beyond needs.

In Fig. 2 as well, the zone of Category C (the lighter gray),
partially covers the Category A zone. However, since in Fig. 2 not
all essential needs lie within the available resources, Category C
also partially covers some of the actual needs. This demonstrates
an anomaly whereby the project scope includes unnecessary
requirements while lacking some essential ones. This paradoxical
situation may have several causes. For example, it might be a
result of the project dynamic, where during the development
phase, upon realizing that the project is about to exceed its planed
schedule, due to the limited scoping freedom at that stage, core
Fig. 2. The project scope and the various excessive development practices zones
(actual needs exceeding available resources).
features are discarded while less essential or nice-to-have ones are
kept in scope (Coman and Ronen, 2009a, 2009b, 2010). It might
also be a result of the specific mix of available resources, versus
the resources needed for the development of the different
requirements. The underlying argument here is that although
these two figures present a two-dimensional schema, in reality it is
a multi-dimensional situation, since in referring to time, human
and budget constraints under project resources, three dimensions
are already at play. So, there might be a situation in which an
essential feature exceeds budget while a nice-to-have one does
not. Finally, Figs. 1 and 2 present practices in Category B (the
brick texture), that is, feature creep, requirements creep, scope
creep and mission creep, where extra features are added after the
project has already begun, and may include required as well as
beyond-needs requirements, whether within the limits of the
assigned resources or beyond, hence overlapping with all other
zones.

Thus, as can be graphically seen in Figs. 1 and 2, the three
categories of excessive software development practices overlap.
Requirements which are beyond needs, introduced by Category A
practices, may lie within the limits of the available project
resources but also beyond them, overlappingwith Category C, and
they can be introduced into the project at the initial phase or creep
in later on during the development, overlapping the excessive
development practices in Category B. Similarly, requirements
added during development under beyond-plans practices of
Category B might be unnecessary, thus overlapping Category A,
or they may lie beyond the limits of the assigned resources, thus
overlapping Category A. Finally, requirements introduced into the
project scope by Category C practices, which are beyond available
resources, may include requirements that are beyond needs, thus
overlapping Category A, or requirements included after the initial
phase, thus overlapping Category B. So, each of the three
categories actually overlaps the other two.

Relating to the project phase or phases in which each
excessive development practice introduces its burden, Fig. 3
schedules graphically all practices in a typical traditional software
development life cycle schema, while Table 7 presents this
information in rows and columns.
Fig. 3. Excessive software development practices along project development
phases.

Table 7
Excessive software development practices along project development phases.

System
requirements

Software
requirements

Preliminary and
detailed design

Code and
debug

Test and
pre-operations

Operations and
maintenance

Category A:
Beyond needs

√ √ √ √ √ √

Category B:
Beyond plans

√ √ √ √

Category C:
Beyond resources

√ √ √ √ √ √

22 O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
The excessive beyond-plans practices of changing and adding
features and functionality once the project is under way occur, by
definition, mainly during the development phase (specification,
design and coding). Similarly, by definition, over-design practice
takes place mainly during the design phases (preliminary or
detailed) but also later on. However, the other beyond-needs and
beyond-resources software development practices can be intro-
duced into the project at any stage, though of course the early
project phases are more prone to such faults.

4. Discussion, conclusion, limitation and future research

We focus on three excessive software development practices
that are addressed in the literature by a variety of terms, which
sometimes overlap and are sometimes used in a confusedmanner.
The study addresses these issues, describes and categorizes the
various terms and points out causes and penalties of excessive
practices, as well as their scope and boundaries. The following
sub-sections discuss some of the data and findings of this study
from other aspects, such as the role and relevance of various
stakeholders, and the role and relevance of different software
development methodologies, in triggering or mitigating these
excessive development practices. Overall, the findings and
discussion of this study pave the way for the future research
directions suggested next.

4.1. Literature search findings

The literature search presented in this study, demonstrates the
overwhelming scarcity of relevant research in IS, PM and SD, top
rated journals, identifying only 12 relevant publications. Focusing
the search on topic, abstract and keywords of publications, aimed
at finding those studies in which the excessive development
practice is the main issue and not just mentioned marginally. This
finding is surprising since the penalties and negative impact of
these excessive practices have been acknowledged for decades,
and, at least regarding beyond-needs practices, have been
recognized as top software development risks since the late
1980s (Boehm and Papaccio, 1988; NASA, 1992). Moreover, the
literature search reveals the lack of research on beyond-needs
practices, with only four papers on this problematic issue, three of
which were written by us (Coman and Ronen, 2010; Shmueli et
al., 2015a, 2015c). As we see it, these Category A excessive
development practices, where project resources are devoted to the
development of software with no added value, is the most wasteful
one. The excessive development practices that receive the highest
attention (seven out of the 12 papers) are the beyond-plans
Category B practices (Buschmann, 2010; Elliott, 2007; Feiler,
2000). However, looking at the year of publication of the studies
identified by our literature search, the trend seems to be positive
over time, with two publications till 1999, five in the decade
2000–2009 and also five just over the last six years.

4.2. Causes and stakeholders

The causes of excessive software development practices are
diverse in nature, specifically in terms of which stakeholder is at
fault, in which project phase it takes place and whether it can be
avoided, just mitigated or is a force majeure. Table 8 presents a
consolidated list of the various causes presented in the specific
‘beyond’ category sub-section, and relates to the three main
stakeholders involved in software project development. The first
three columns indicate the ‘beyond’ category that stems from each
cause, marked by “A”, “B” and “C” accordingly. The next three
columns refer to the three main stakeholders, where “×” indicates a
specifically documented relevancy, similarly to Tables 4, 5 and 6.
Besides documented relevancy, Table 8 also includes, an assumed
relevancy as we evaluate it, indicated by the “.” sign added here.
The last column (‘none’) is for causes driven by no direct
stakeholder and representing an indication of external causes.

As can be easily seen most causes are internal ones,
explicitly related to one of the stakeholders. The two external
causes however, are related to the beyond-plans excessive
practice category. It is also clear that some causes are reported
to cause more than one type of ‘beyond’ category. Thus, for
example ‘wishing for best possible solution’ is reported to
cause the beyond-needs and beyond-plans categories, and ‘the
planning fallacy’ is reported to be a cause of the beyond-needs
and beyond-resources categories. Since the three beyond-needs,
beyond-plans and beyond-resources excessive practices overlap
and one triggers another, it is reasonable to assume a larger
group of mutual causes.

Of the threemain stakeholders, the user is the one with the least
influence, so, the developer and, of course, the management are
responsible for most causes. Comparing the last two, regarding
the causes that were specifically documented as relevant (“×”)
or regarding all causes that were marked as relevant here
(“×” and “.”) it reasonably turns out that management is the
stakeholder mainly responsible for excessive software develop-
ment practices. Moreover, regarding causes triggered by one of
the other stakeholders, such as “professional interest” of
developers or the “I-designed-it-myself” manifestation, it is the

Table 8
Causes of excessive software development practices and stakeholders.

Beyond category Stakeholder None (ext.)

A B C

Needs Plans Resources Developer User/customer Manager

1 Professional interest A ×
2 Wishing for best possible solution A B × ×
3 Aim to fulfill all future needs A ×
4 Just-in-case functionality A B ×
5 Lack of knowledge (not knowing which features will be more important) A ×
6 All-or-nothing attitude A × .
7 Lack of time/budget constraint A . ×
8 Time and material contract type A . ×
9 Politics – adversaries overload the project A ×
10 One system that fits all A . ×
11 The misconception that development effort is free A × × ×
12 The I-designed-it-myself effect A × .
13 The planning fallacy A C × ×
14 Wish to continuously improve the developed software B . ×
15 Accepting the first specification change B ×
16 Outsourcing (provider interest) B . ×
17 Changes in laws / regulation B ×
18 Poor management of continuous requirements inflow C ×
19 Unclear overall project goals C ×
20 Competitive pressures B ×

23O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
role of management to govern and control the scope and project
dynamics. Nevertheless, it is important for each stakeholder to
acknowledge, first, the negative consequences of excessive
development practices and, second, to consider how he/she can
avoid them in his/her own area of influence. Worth mentioning is
that some causes are a result of a human bias, which if one is
aware of it may not eliminate the bias but can mitigate its impact
(Stacy and MacMillian, 1995; Shmueli et al., 2015a). However,
management should keep the whole picture in focus.

4.3. Software development methodologies

This study focuses primarily on traditional plan-based software
development methods, such as the waterfall approach. Recent
agile software development methodologies have aimed at
resolving traditional waterfall pitfalls. However, they are consid-
ered weak in the area of requirement engineering, which is the
focus of this article, and research regarding their evaluation is still
sparse (Cao and Ramesh, 2008; Dyba and Dingsyr, 2008, 2009;
Maiden and Jones, 2010). While some principles of the agile
manifesto (www.agilemanifesto.org) and techniques, like the
continuous scope prioritization and the guidance for simplicity
(“the art of maximizing the amount of work not done”), are
sensible for reducing excessive software development, others, like
welcoming changes in requirements even late in development, can
definitely triggers excessive software development.

Moreover, considering the generality of some of the causes
described here, especially those derived from human aspirations or
cognitive biases, such as the professional interests of developers or
biased stakeholder evaluation, excessive development practices
may be manifested in agile development projects as well. It is
reasonable that due to the I-designed-it-myself effect, under agile
development too, attachment to a specified feature will influence
one's judgment, leading to the tendency to perceive the feature as
more important than it really is and affecting its prioritization. It is
also reasonable that due to the planning fallacy, while assessing
features planned for a current agile iteration, time underestimation
and benefit overestimation might influence the iteration planning,
in the direction of including more scope than can be included with
iteration resources. Indeed, regarding over-scoping for example,
Bjarnason et al. (2012) observed that applying agile methods does
not necessarily prevent over-scoping, although due to the
continuous scope prioritization principle, the load is more
manageable and perceived to result in less wasted effort.
4.4. Conclusions and limitations

Excessive software development practices that over-load
software projects with extra, excessive functionality and
capabilities have long been considered major software devel-
opment risks (Boehm, 1991; Brooks, 1975; Jones, 1994).
Despite the various overlapping and sometimes inconsistent
terminology used in the literature to describe these problematic
practices, their negative consequences and prevalence are well
documented and acknowledged. However, as evident from a
literature search of top-rated IS, PM and SD publications,
research of these excessive development practices, their causes
and mitigation is spare, and the studies which are completely
devoted to these problems are limited in number. Indeed, we
can say that the main finding of this literature search is the
enormous scarcity of research on excessive software develop-
ment practices. In particular, there is lack of research on
beyond-needs development practices. This guides us to the
conclusion that excessive software development in general and
the specific problematic practice of specifying, designing and

http://www.agilemanifesto.org

24 O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
developing a software system beyond the actual needs are
neglected phenomena that are yet to be explored.

The list of documented causes of excessive software
development practices reveals their heterogeneous nature. It
also clarifies that no stakeholder is blameless, even though the
issue is always the responsibility of managers. Most causes are
rooted in human nature and behavior and it thus seems essential
that the negative consequences of excessive development
practices should be constantly kept in mind by all stakeholders,
throughout the different project phases. Managers obviously
should ensure the implementation of good old requirements
engineering practices, such as having and utilizing a change
control board, assessing the impact of each requested change on
cost and schedule, and stabilizing requirements and specifica-
tions as early as possible (Khanfar et al., 2008). However, the
prevalence of excessive software development practices despite
the acknowledgment of these good managerial tools implies
that other directions and remedies besides technical ones should
be considered. Managers should particularly recognize the
existence of the human biases that affect them and their
employees, and should seek ways to mitigate them. For
example, hiring an uninvolved consultant to get an outsider
resource evaluation has the potential of mitigating the impact of
the planning fallacy (Shmueli et al., 2015c).

The move away from plan-based development methodologies
toward agile ones aims, inter alia, to improve requirement
definition. Yet, our literature review did not reveal any evidence
of this and recent studies indeed identify a research gap here that
needs to be bridged (Maiden and Jones, 2010; Inayat et al., 2015a,
2015b). Moreover, it seems that agile project development does
not eliminate the persistent excessive development practices, as
specifically noted in one of the papers dealing with scope overload
(Bjarnason et al., 2012). So, the influence of agile development on
the extent and mitigation of excessive software development
practices is yet to be explored.

This paper touches on the mechanisms that drive problematic
excessive development. Yet further research is needed, especially
on beyond-needs development. Acquiring knowledge of their
scale, causes and roots will enhance the ability to develop effective
remedies for the mitigation of excessive software development
and improvement of the software development process.

The main limitation of this study is in referring to software
development as a uniform practice while actually there are
different software development domains with different character-
istics and dynamics. Although excessive development practices
are shown to be relevant within various software development
contexts, the scope and consequences might differ for the different
software domains. Being an initial research, this study looks at
software development as a whole and leaves the differentiation to
future research.

4.5. Contribution, implications and proposed research agenda

This study, via a systematic focused literature search of specific
top-rated journals, confirms our notion of a problematic phenom-
enon that is yet to be explored, and then provides a broad view of
the various excessive software development practices, and
organizes and categorizes the various relevant terms. Recognizing
the poor state of research on these issues, and the analysis of the
knowledge regarding each practice, we propose here a research
agenda for future exploration of excessive software development
practices. This agenda refers to several research avenues that can
be explored independently but together compose a broad picture of
excessive software development practices, their extent, their
manifestation, their root causes, and remedies. First, the current
prevalence and extent of the various practices should be addressed
in a systematic manner, measuring their scale and impact. While
current numbers of around 30% beyond needs and beyond plans
software are based on conservative assessments, with a suspicion
of much higher numbers, a systematic measure will clarify the
picture and may confirm speculations. Addressing different
domains will also provide a differentiation regarding the state of
excessive software development practices in each domain. In
addition, considering both plan-based and agile development
environments will provide a comparison between the two methods
and will examine the promises of agile development for
overcoming these excessive practices. Second, the causes of
excessive software development practices should be explored for
their prevalence, dynamics and the stakeholder that most
influences them. This will clarify the picture and identify the root
causes to focus on. Earlier in this section we presented a long list of
20 different causes together with the excessive-development
practice and the specific stakeholder that are documented to be
relevant to each cause. However, we added above some
assumptions for a richer table, where the same cause affects
more stakeholders than documented. Also, keeping in mind the
relations and the overlapping zones between the various excessive
development practices, it is reasonable to assume that the same
cause may lead to several practices, or at least to additional
practices besides the documented one. This should be examined to
complete the table of causes with relevant practices and
stakeholders. Again, agile practices should be included, perhaps
adding a third dimension of development methodology, to the
same table. Third, and most important, remedies should be
developed or found, relating to the complete table of causes and
their classifications. Perhaps other research contexts such as
behavioral economics should be considered, borrowing remedies
proven to be effective in mitigating behavioral effects for empirical
evaluation of their influence on causes with a behavioral
component. Such a direction seems promising since it reflects a
new research direction which previous research, until recently
(Shmueli et al., 2015a, 2015c), did not explore regarding excessive
development practices. Previous research focused mainly on
techniques and methodologies but it seems to have failed to
improve the situation. Moreover, the behavioral characteristics of
many of the causes suggest a path to explore.

Notwithstanding its limitation, this study contributes to both
research and practice, providing immediate implications to both.
First, based on its findings and analysis it proposes a research
agenda to follow. It delineates several research directions which
can be addressed systematically or sporadically; either way will
enhance the little knowledge on this extremely important issue.
Its contribution and implications for practice are in focusing on
these neglected negative practices, pointing to the extent to which

25O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
they have been evaluated and the penalties each of them impose
on the software project. Providing a consolidated picture of the
causes and various stakeholders that play a role in introducing
excessive-development practices highlights their broad nature
and scope. This should alert management to the need to increase
awareness of the issue throughout the development group
hierarchy and the need for a tight management control on project
scope along all stages of the software project lifecycle.

Conflict of interest

There is no conflict of interest.

Appendix A. Software engineering terms

The following explanations taken from the fields of
requirement engineering and information systems refer to the
specific terms used in this paper. For each of the terms, a simple
clarification (a) is presented, followed, for some terms, by a
formal definition (b).

1. Needs
a. The benefits to the user if implemented within the

software system.
b. Definition: “As the solution space is explored and

solution classes are characterized, stakeholder needs are
developed and transformed into stakeholder requirements
(from a user perspective)” (SEBoK — System Engineer-
ing Body of Knowledge).

2. Requirement
a. The translation of a user need (or some other needs) into

an unambiguous, clear, unique, consistent statement. An
unambiguous, clear, unique, consistent statement of what
the user needs (directly or indirectly, like infrastructure
and performance aspects).

b. Definition: “A statement that identifies a system, product or
process characteristic or constraint, which is unambiguous,
clear, unique, consistent, stand-alone (not grouped), and
verifiable, and is deemed necessary for stakeholder
acceptability” (INCOSE, Systems Engineering Handbook:
A Guide for System Life Cycle Processes and Activities.
Version 3.2.1, 2010).

3. Specification
a. The translation and elaboration of the requirements into

unambiguous, clear, unique, consistent guidance, algo-
rithms and instructions describing how the target software
will fulfill the user needs.

4. Features
a. An intentional distinguishing characteristic of a piece of

software, especially in terms of functionality, but also in
terms of performance, or redundancy.

5. Capabilities

a. The set of outcomes that the software system provides or
enables the user to gain through its use.

b. Definition: “An outcome or effect which can be achieved
through use of features of a system of interest and which
contributes to a desired benefit or goal” (SEBoK —
System Engineering Body of Knowledge).

Appendix B. Description of the literature search

The search targeted the 12 terms relating to excessive
software development practices, in various forms: Over
requirement/Over-requirement; Overspecification/Over speci-
fication/Over-specification; Overdesign/Over-design/Over de-
sign; Gold plating/Gold-plating; Bells and whistles/Whistles
and bells; Mission creep/Mission-creep; Feature creep/
Feature-creep; Scope creep/Scope-creep; Requirements creep/
Requirements-creep; Featuritis; Scope overload/Scope-over-
load/Scopeoverload; and Over scoping/Over-scoping/
Overscoping. To make the search more comprehensive, we
added to the list of terms, other phrases and expressions which
imply and may also be associated with excessive software
development practices: Over doing/Over-doing/Over do/
Over-do; Over killing/Over-killing/Over kill/Over-kill; Un-
necessary features; Unnecessary requirements; and nice-to-
have features. All terms and phrases, except for bells and
whistles and nice-to-have features, were searched for enclosed
by quotation marks for their exact appearance in the text. Bells
and whistles and nice to have were openly searched to capture
any relevant appearance of the phrases (e.g. “the bells and the
whistles” (Meyer, 1999)).

The search, which yielded 20 hits, came down to 12 articles,
indicating the scarcity of research on these problems. This
downsizing occurred after manually scanning the content of each
hit for relevancy and excluding articles that did not relate in their
abstract to software development or mentioned the searched term
under a different meaning. To judge the relevance of these 12
papers beyond the abstract alone (Brereton et al., 2007), we read
each article and confirmed its acceptability. The total number of
searched articles was over 50,000. Thus, the proportion of
publications dealing with the excessive software development
practices (n = 12) out of the total in our literature search is less
than 0.001%.

Table 2 in this paper presents the acceptable yield and various
aspects regarding their distribution are discussed. The research
method column in Table 2 is based on the taxonomy developed
by Palvia et al. (2007) and also used by several other researchers
(Avison et al., 2008; Fleischmann et al., 2014): 1) Speculation/
commentary; 2) Frameworks and conceptual model; 3) Library
research; 4) Literature analysis; 5) Case study; 6) Survey; 7) Field
study; 8) Field experiment; 9) Laboratory experiment; 10)
Mathematical model; 11) Qualitative research; 12) Interview;
13) Secondary data; and 14) Content analysis.

References

Abrahams, P., 1988. President's letter. Commun. ACM 31, 480–481.
AIS, 2011. Senior Scholars' basket of journals. available at http://start.aisnet.

org/?SeniorScholarBasket (accessed September 9 2015).
Anton, A.I., Potts, C., 2003. Functional paleontology: the evolution of user-

visible system services. IEEE Trans. Softw. Eng. 29 (2), 151–166.
Avison, D.E., Dwivedi, Y.K., Fitzgerald, G., Powell, P., 2008. The beginnings

of a new era: time to reflect on 17 years of the ISJ. Inf. Syst. J. 18 (1), 5.

http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0005
http://start.aisnet.org/?SeniorScholarBasket
http://start.aisnet.org/?SeniorScholarBasket
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0015
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0015
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0020
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0020

26 O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
Bakalova, Z., Daneva, M., 2011. Agile requirements prioritization: what
happens in practice and what is described in literature. Lecture Notes in
Computer Science Ed. Springer-Verlag, Berlin Heidelberg, pp. 181–195.

Barki, H., Rivard, S., Talbot, J., 1993. Toward an assessment of software
development risk. J. Manag. Inf. Syst. 10 (2), 203–225.

Bartlett, R., 2008. 17 Project Pitfalls and how to Avoid them. Iseries News,
pp. 38–44.

Battles, B.E., Mark, D., Ryan, C., 1996. An open letter to CEOs: how otherwise
good managers spend too much on information technology. McKinsey Q.
1996 (3), 116–127.

Beck, K., Boehm, B., 2003. Agility through discipline: a debate. Computer 36
(6), 44–46.

Belvedere, V., Grando, A., Ronen, B., 2013. Cognitive biases and overdesign:
an investigation on the unconscious mistakes of industrial designers and on
their effects on product offering. In: Giannoccaro, I. (Ed.), Behavioral Issues
in Operations Management. Springer-Verlag, London, pp. 125–140.

Bernstein, L., 2012. Things I learned from taming software development. ACM
Sigsoft Softw. Eng. Notes 37 (6), 5–6.

Bjarnason, E., Wnuk, K., Regnell, B., 2010. Overscoping: reasons and
consequences — a case study on decision making in software product
management. Proceedings of the 4th International Workshop on Software
Product Management (IWSPM), September 27, Sydney, NSW, Australia.

Bjarnason, E., Wnuk, K., Regnell, B., 2011. A case study on benefits and side-
effects of agile practices in large-scale requirements engineering. Proceed-
ings of the 1st Agile Requirements Engineering Workshop (AREW), July
26, Lancaster, United Kingdom.

Bjarnason, E., Wnuk, K., Regnell, B., 2012. Are you biting off more than you
can chew? A case study on causes and effects of overscoping in large-scale
software engineering. Inf. Softw. Technol. 54 (10), 1107–1124.

Boehm, B., 1991. Software risk management: principles and practices. IEEE
Softw. 8 (1), 32–41.

Boehm, B., 1996. Anchoring the software process. IEEE Softw. 13 (4), 73–82.
Boehm, B., 2006. A view of 20th and 21st century software engineering.

Proceedings of the 28th International Conference on Software Engineering,
Shanghai, China.

Boehm, B., Hansen, W., 2001. The spiral model as a tool for evolutionary
acquisition. J. Def. Softw. Eng. 14 (5), 4–11.

Boehm, B., Lane, J.A., 2010a. New processes for new horizons: the incremental
commitment model. 32nd ACM/IEEE International Conference on
Software Engineering (ICSE), Cape Town, South Africa, May 1–8.

Boehm, B., Lane, J.A., 2010b. Evidence-based software processes. Proceedings
of the International Conference on Software Process (ICSP), July 8–9,
Paderborn, Germany.

Boehm, B., Papaccio, P., 1988. Understanding and controlling software costs.
IEEE Trans. Softw. Eng. 14 (10), 1462–1477.

Boehm, B., Turner, R., 2003. Using risk to balance agile and plan-driven
methods. IEEE Comput. 36 (6), 57–66.

Boehm, B., Turner, R., 2005. Management challenges to implementing agile
processes in traditional development organizations. IEEE Softw. 22 (5), 30–39.

Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Madachy,
R., Reifer, D., Steece, B., 2000a. Software Cost Estimation with Cocomo II.
Prentice-Hall, Upper Saddle River, New Jersey.

Boehm, B., Port, D., Al-Said, M., 2000b. Avoiding the software model-clash
spiderweb. Computer 33 (11), 120–122.

Boehm, B., Lane, J., Koolmanojwong, S., Turner, R., 2010. Architected agile
solutions for software-reliant systems. Agile Software Development.
Springer, Berlin-Heidelberg, pp. 165–184.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007.
Lessons from applying the systematic literature review process within the
software engineering domain. J. Syst. Softw. 80 (4), 571–583.

Brooks, F.P., 1975. The Mythical Man-Month. Adison-Wesley Publishing
Company, Reading, Massachusetts.

Buschmann, F., 2009. Learning from failure, part 1: scoping and requirements
woes. IEEE Softw. 26 (6), 68–69.

Buschmann, F., 2010. Learning from failure, part 2: featuritis, performitis, and
other diseases. IEEE Softw. 27 (1), 10–11.

Cano, J.L., Lidón, I., 2011. Guided reflection on project definition. Int. J. Proj.
Manag. 29 (5), 525–536.
Cao, L., Ramesh, I., 2008. Agile requirements engineering practices: an
empirical study. IEEE Softw. 25 (1), 60–67.

Charette, R.N., 2005. Why software fails. IEEE Spectr. 42 (9), 42–49.
Chen, L., Yang, S., 2009. Managing ERP implementation aailure: a project

management perspective. IEEE Trans. Eng. Manag. 56 (1), 157–170.
Choi, K., Bae, D., 2009. Dynamic project performance estimation by

combining static estimation models with system dynamics. Inf. Softw.
Technol. 51 (1), 162–172.

Coman, A., Ronen, B., 2009a. Focused SWOT: diagnosing critical strengths
and weaknesses. Int. J. Prod. Res. 47 (20), 5677–5689.

Coman, A., Ronen, B., 2009b. Overdosed management: how excess of
excellence begets failure. Hum. Syst. Manag. 28 (3), 93–99.

Coman, A., Ronen, B., 2010. Icarus' predicament: managing the pathologies of
overspecification and overdesign. Int. J. Proj. Manag. 28 (3), 237–244.

Connor, 2003. Report: data warehouse failures commonplace. Netw. World 20
(3), 24.

Cule, P., Schmidt, R., Lyytinen, K., Keil, M., 2000. Strategies for heading off
IS project failure. Inf. Syst. Manag. 17 (2), 65–73.

Damian, D., Chisan, J., 2006. An empirical study of the complex relationships
between requirements engineering processes and other processes that lead to
payoffs in productivity, quality, and risk management. IEEE Trans. Softw.
Eng. 32 (7), 433–453.

Davison, D., 2003. Top 10 risks of offshore outsourcing. META Group Report.
DeMarco, T., Boehm, B., 2002. The agile methods fray. IEEE Comput. 35 (6),

90–92.
DeMarco, T., Lister, T., 2003. Risk management during requirements. IEEE

Softw. 20 (5), 99–101.
Dominus, M., 2006. Creeping featurism and the ratchet effect. available at

http://blog.plover.com/prog/featurism.html (accessed September 9 2015).
Dyba, T., Dingsyr, T., 2008. Empirical studies of agile software development: a

systematic review. Inf. Softw. Technol. 50 (2008), 833–859.
Dyba, T., Dingsyr, T., 2009. What do we know about agile software

development? IEEE Softw. 26 (5), 6–9.
Elliott, B., 2007. Anything is possible: managing feature creep in an innovation

rich environment. Proceedings of the IEEE International Engineering
Management Conference, July 29–Aug 1, Piscataway, New Jersey.

Feiler, E., 2000. Evaluating accounting software consultants. CPA J. 70 (6), 46–51.
Fleischmann, M., Amirpur, M., Benlian, A., Hess, T., 2014. Cognitive biases in

information systems research: a scientometric analysis. Proceedings of the
22nd European Conference on Information Systems (ECIS), June 9–11, Tel
Aviv, Israel.

Flyvbjerg, B., Budzier, A., 2011. Why your IT project may be riskier than you
think. Harv. Bus. Rev. 89 (9), 23–25.

Gary, M., 2009. Poor industry consultancy threatens data center constructions.
available at http://www.businesscomputingworld.co.uk/poor-industry-
consultancy-threatens-data-centre-constructions/ (accessed September 9
2015).

Glass, R., 1998. Editor's corner: software runaways – some surprising findings.
J. Syst. Softw. 41 (2), 75–77.

Hendrix, T.D., Schneider, M.P., 2002. NASA's TReK project: a case study in
using the spiral model of software development. Commun. ACM 45 (4),
152–159.

Houston, D.X., Mackulak, G.T., Collofello, J.S., 2001. Stochastic simulation of
risk factor potential effects for software development risk management.
J. Syst. Softw. 59 (3), 247–257.

Inayat, I., Moraes, L., Daneva, M., Salim, S.S., 2015a. A reflection on agile
requirements engineering: Solutions brought and challenges posed.
Proceedings of the 16th International Conference on Agile Software
Development, May 25–29, Helsinki, Finland.

Inayat, I., Salima, S.S., Marczakb, S., Danevac, M., Shamshirbandd, S., 2015b.
A systematic literature review on agile requirements engineering practices
and challenges. Comput. Hum. Behav. 51 (Part B), 915–929.

Jones, C., 1994. Assessment and Control of Software Risks. Yourdon Press,
Upper Saddle River, New Jersey.

Jones, C., 1996. Strategies for managing requirements creep. Computer 29 (6),
92–94.

Jones, C., 2007. Estimating Software Costs: Bringing Realism to Estimating.
McGraw-Hill, New York.

http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0025
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0025
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0025
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0030
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0030
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0035
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0035
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0040
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0040
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0040
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0045
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0045
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0050
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0050
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0050
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0050
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0055
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0055
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0060
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0060
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0060
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0060
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0065
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0065
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0065
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0065
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0070
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0070
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0070
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0075
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0075
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0080
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0085
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0085
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0085
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0090
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0090
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0095
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0095
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0095
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0100
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0100
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0100
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0105
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0105
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0110
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0110
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0115
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0115
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0120
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0120
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0125
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0125
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0130
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0130
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0130
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0135
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0135
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0140
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0140
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0145
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0145
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0150
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0150
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0155
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0155
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0160
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0160
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0165
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0170
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0170
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0175
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0175
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0175
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0180
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0180
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0185
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0185
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0190
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0190
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0195
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0195
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0200
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0200
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0205
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0205
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0205
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0205
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0210
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0215
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0215
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0220
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0220
http://blog.plover.com/prog/featurism.html
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0230
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0230
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0235
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0235
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0240
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0240
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0240
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0245
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0250
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0250
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0250
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0250
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0255
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0255
http://www.businesscomputingworld.co.uk/poor-industry-consultancy-threatens-data-centre-constructions/
http://www.businesscomputingworld.co.uk/poor-industry-consultancy-threatens-data-centre-constructions/
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0265
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0265
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0270
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0270
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0270
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0275
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0275
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0275
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0280
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0280
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0280
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0280
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0285
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0285
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0290
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0290
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0295
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0295
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0300
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0300

27O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13–27
Karlsson, L., Dahlstedt, A.G., Regnell, B., Dag, J.N., Persson, A., 2007.
Requirements engineering challenges in market-driven software development
— an interview study with practitioners. Inf. Softw. Technol. 49 (6), 588–604.

Kaur, K., Jyoti, B., Rani, R., 2013. Analysis of gold plating: a software
development risk. Int. J. Comput. Sci. Commun. Eng. 2 (1), 51–54.

Kautz, K., 2009. The impact of pricing and opportunistic behavior on information
systems development. J. Inf. Technol. Theory Appl. 10 (3), 24–41.

Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C., 1998. A framework for
identifying software project risks. Commun. ACM 41 (11), 76–83.

Kemerer, C.F., 1987. An empirical validation of software cost estimation
models. Commun. ACM 30, 416–429.

Khanfar, K., Elzamly, A., Al-Ahmad, W., El-Qawasmeh, E., Alsamara, K.,
Abuleil, S., 2008. Managing software project risks with the chi-square
technique. Int. Manag. Rev. 4 (2), 18–29.

Kliem, R.L., 2000. Risk management for business process reengineering
projects. Inf. Syst. Manag. 17 (4), 71–73.

Koopman, P., 2010. Risk areas in embedded software industry projects.
Proceedings of the Workshop on Embedded Systems Education (WESE),
October 24, Scottsdale, Arizona.

Koopman, P., 2011. Avoiding the top 43 embedded software risks. Proceedings
of the Embeded Systems Conference, May 2, Carnegie Mellon University.

Lang, M., Fitzgerald, B., 2005. Hypermedia systems development practices: a
survey. IEEE Softw. 22 (2), 68.

Lederer, A.L., Prasad, J., 1992. Nine management guidelines for better cost
estimating. Commun. ACM 35 (2), 50–59.

Lee-Kelley, L., Sankey, T., 2008. Global virtual teams for value creation and
project success: a case study. Int. J. Proj. Manag. 26 (1), 51–62.

Longstaff, T.A., Chittister, C., Pethia, R., Haimes, Y.Y., 2000. Are we
forgetting the risks of information technology? Computer 33 (12), 43–51.

Lucia, A., Qusef, A., 2010. Requirements engineering in agile software
development. J. Emerg. Technol. Web Intell. 2 (3), 308–313.

Maguire, S., 2002. Identifying risks during information system development:
managing the process. Inf. Manag. Comput. Secur. 10 (2/3), 126–134.

Maiden, N., Jones, S., 2010. Agile requirements — can we have our cake and
eat it too? IEEE Softw. 27 (3), 87–88.

Malhotra, N., Bhardwaj, M., Kaur, R., 2012. Estimating the effects of gold
plating using fuzzy cognitive maps. Int. J. Comput. Sci. Inf. Technol. 3 (4),
4806–4808.

Markus, M.L., Keil, M., 1994. If we build it, they will come: designing information
systems that people want to use. Sloan Manage. Rev. 35 (4), 11–25.

McConnell, S., 1996. Avoiding classic mistakes. IEEE Softw. 13 (5), 111–112.
McConnell, S., 1997. Achieving leaner software. IEEE Softw. 14 (6), 127–128.
McFarlan, F.W., 1981. Portfolio approach to information systems. Harv. Bus.

Rev. 59 (5), 142–150.
Meyer, B., 1999. Every little bit counts: toward more reliable software. IEEE

Comput. 32 (11), 131–133.
Miranda, E., Abran, A., 2008. Protecting software development projects against

underestimation. Proj. Manag. J. 39 (3), 75–85.
Momoh, A., Roy, R., Shehab, E., 2010. Challenges in enterprise resource planning

implementation: state-of-the-art. Bus. Process. Manag. J. 16 (4), 537.
Murphy, L., 2001. Using software project “should-cost” models. Trans. AACE

Int. 4, 1–4.3.
NASA, 1992. Recommended Approach to Software Development. Goddard

Space Flight Center, Greenbelt, Maryland.
Naz, H., Khokhar, M.N., 2009. Critical requirements engineering issues and
their solution. Proceedings of the International Conference on Computer
Modeling and Simulation (ICCMS), February 20–22, Macau.

Palshikar, G.K., 2001. Applying formal specifications to real-world software
development. IEEE Softw. 18 (6), 89–97.

Palvia, P., Pinjani, P., Sibley, E.H., 2007. A profile of information systems
research published in information and management. Inf. Manag. 44 (1), 1–11.

Pass, S., Ronen, B., 2014. Reducing the software value gap. Commun. ACM 57
(5), 80–87.

Ronen, B., Pass, S., 2008. Focused Operations Management: Achieving More
with Existing Resources. John Wiley & Sons, Hoboken, New Jersey.

Ronen, B., Lechler, T.G., Stohr, E.A., 2012. The 25/25 rule: achieving more by
doing less. Int. J. Prod. Res. 50 (24), 7126–7133.

Ropponen, J., Lyytinen, K., 2000. Components of software development risk:
how to address them? A project manager survey. IEEE Trans. Softw. Eng.
26 (2), 98–112.

Rust, R.T., Thompson, D.V., Hamilton, R.W., 2006. Defeating feature fatigue.
Harv. Bus. Rev. 84 (2), 98–107.

Schmidt, R., Lyytinen, K., Keil, M., Cule, P., 2001. Identifying software project
risks: an international Delphi study. J. Manag. Inf. Syst. 17 (4), 5–36.

Shalev, E., Keil, M., Lee, J.S., Ganzach, Y., 2014. Optimism bias in managing
IT project risks: a construal level theory perspective. Proceedings of the
22nd European Conference on Information Systems (ECIS), June 9–11, Tel
Aviv, Israel.

Shmueli, O., Pliskin, N., Fink, L., 2014. Behavioural effects in software
development: an experimental investigation. Proceedings of the 22nd European
Conference on Information Systems (ECIS), June 9–11, Tel Aviv, Israel.

Shmueli, O., Pliskin, N., Fink, L., 2015a. Explaining over-requirement in
software development projects: an experimental investigation of behavioral
effects. Int. J. Proj. Manag. 33 (2), 380–394.

Shmueli, O., Pliskin, N., Fink, L., 2015b. A position paper proposing
behavioral solutions to challenges in software development projects.
Proceedings of the Advanced Information Systems Engineering (CAiSE)
Workshops, June 8–9, Stockholm, Sweden.

Shmueli, O., Pliskin, N., Fink, L., 2015c. Can the outside-view approach improve
planning decisions in software development projects? Inf. Syst. J. (Available
online at: http://onlinelibrary.wiley.com/doi/10.1111/isj.12091/full).

Stacy, W., Macmillian, J., 1995. Cognitive bias in software engineering.
Commun. ACM 38 (6), 57–63.

Westfall, L., 2005. The what, why, who, when and how of software
requirements. Proceedings of the ASQ World Conference on Quality and
Improvement, May 16–18, Seattle, Washington.

Wetherbe, J.C., 1991. Executive information requirements: getting it right. MIS
Q. 15 (1), 51–65.

Wheatcraft, L.S., 2011. Triple your chances of project success risk and
requirements. INCOSE International Symposium, Denver, CO, June 23.

Zhao, W., Watanabe, C., 2010. Risk management in software outsourcing — a
portfolio analysis of India's case based on software export market
constitution. J. Serv. Res. 10 (1), 143.

Zmud, R., 1980. Management of large software efforts. MIS Q. 4 (2), 45–55.
Zwikael, O., Smyrk, J., 2011. An engineering approach for project scoping.

Proceedings of the IEEE 18th International Conference on Industrial
Engineering and Engineering Management, September 3–5, Changchun,
China.

http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0310
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0310
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0315
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0315
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0320
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0320
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0325
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0325
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0330
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0330
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0335
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0335
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0340
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0340
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0345
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0345
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0345
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0350
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0350
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0355
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0355
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0360
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0360
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0365
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0365
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0370
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0370
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0375
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0375
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0380
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0380
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0385
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0385
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0390
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0390
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0390
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0395
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0395
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0400
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0405
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0410
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0410
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0415
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0415
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0420
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0420
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0425
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0425
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0430
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0430
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0435
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0435
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0440
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0440
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0440
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0445
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0445
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0450
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0450
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0455
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0455
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0460
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0460
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0465
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0465
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0470
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0470
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0470
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0475
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0475
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0480
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0480
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0485
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0485
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0485
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0485
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0490
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0490
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0490
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0495
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0495
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0495
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0500
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0500
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0500
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0500
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0510
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0510
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0515
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0515
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0515
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0520
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0520
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0525
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0525
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0530
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0530
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0530
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0535
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0540
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0540
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0540
http://refhub.elsevier.com/S0263-7863(16)30182-X/rf0540

	Excessive software development: Practices and penalties
	1. Introduction
	2. The state of research on excessive software development practices
	3. Review and analysis of excessive software development practices
	3.1. Beyond needs (Category A)
	3.2. Beyond plans (Category B)
	3.3. Beyond resources (Category C)
	3.4. Excessive software development categories compared and contrasted

	4. Discussion, conclusion, limitation and future research
	4.1. Literature search findings
	4.2. Causes and stakeholders
	4.3. Software development methodologies
	4.4. Conclusions and limitations
	4.5. Contribution, implications and proposed research agenda

	Conflict of interest
	Appendix A. Software engineering terms
	Appendix B. Description of the literature search
	References

