
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2010

An Exploratory Study on Issues and Challenges of Agile Software An Exploratory Study on Issues and Challenges of Agile Software

Development with Scrum Development with Scrum

Juyun Joey Cho
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cho, Juyun Joey, "An Exploratory Study on Issues and Challenges of Agile Software Development with
Scrum" (2010). All Graduate Theses and Dissertations. 599.
https://digitalcommons.usu.edu/etd/599

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/599?utm_source=digitalcommons.usu.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

AN EXPLORATORY STUDY ON ISSUES AND CHALLENGES OF AGILE

SOFTWARE DEVELOPMENT WITH SCRUM

by

Juyun Joey Cho

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Education
(Management Information Systems)

Approved:

_____________________________ ______________________________
Dr. David H. Olsen Dr. Jeffery Johnson
Major Professor Committee Member

_____________________________ ______________________________
Dr. John D. Johnson Dr. Sherry Marx
Committee Member Committee Member

_____________________________ ______________________________
Dr. Karina Hauser Dr. Byron Burnham
Committee Member Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2010

ii

Copyright © Juyun Joey Cho 2010

All Rights Reserved

iii

ABSTRACT

An Exploratory Study on Issues and Challenges of Agile Software Development with
Scrum

by

Juyun Joey Cho, Doctor of Philosophy

Utah State University, 2010

Major Professor: Dr. David H. Olsen
Department: Management Information Systems

 The purpose of this dissertation was to explore critical issues and challenges that

might arise in agile software development processes with Scrum. It also sought to provide

management guidelines to help organizations avoid and overcome barriers in adopting

the Scrum method as a future software development method. A qualitative research

method design was used to capture the knowledge of practitioners and scrutinize the

Scrum software development process in its natural settings. An in-depth case study was

conducted in two organizations where the Scrum method was fully integrated in every

aspect of two organizations’ software development processes. One organization provides

large-scale and mission-critical applications and the other provides small- and medium-

scale applications. Differences between two organizations provided useful contrasts for

the data analysis.

Data were collected through an email survey, observations, documents, and semi-

structured face-to-face interviews. The email survey was used to refine interview

iv

questions; all of the interviews were audio-taped and transcribed, and later coded for

analysis. Triangulation in the data collection process provided useful information for

different perspectives on the issues, allowed for cross-checking, and yielded stronger

substantiation of concepts and common categories.

 In the first round of data analysis, an open coding technique was used to identify

possible concepts, along with their properties and dimensions. The open coding technique

is a form of content analysis where the data are read and categorized into concepts. In the

second round, the codes were reviewed, and the concepts were organized by recurring

themes. These themes were used later as a basis for creating a set of stable and common

categories. The final stage of data analysis was completed through axial coding, which

depends on a synthetic technique of making connections between categories and sub-

categories to build a more comprehensive scheme. In the process of data analysis,

grounded theory was employed with the aim of generating descriptive and explanatory

theory associated with an agile software development process.

 The research presented four common categories of issues and challenges of the

Scrum method, and management guidelines to help organizations that are already using

the Scrum method or planning to employ it in the future. The framework for a hybrid

software development model is then proposed as a future study.

 (236 pages)

v

ACKNOWLEDGEMENTS

 I wish to acknowledge the many people who have encouraged and supported me

during my work on the doctoral program and on this dissertation. First, I wish to

acknowledge the insightful suggestions and advice of my chair, Dr. David Olsen, in the

recent push to completion of my dissertation. Dr. Sherry Marx was instrumental in

exposing me to much of the essential research methodology and played a key role in

helping me establish the foundation of qualitative research skills and knowledge.

Through her two qualitative research methodology classes, I was able to perform a pilot

study and refine my initial research ideas and approach. The rest of my committee also

shared with me their unique insights from their particular fields of specialization - Dr.

John Johnson, Dr. Jeff Johnson, and Dr. Karina Hauser.

I wish to acknowledge the feedback and support from my colleagues at Colorado

State University at Pueblo (CSUP) and many other friends who have enriched my

thinking and invigorated my intellectual curiosity by sharing their different

interdisciplinary perspectives. I particularly want to mention Dr. Rick Huff at CSUP, who

offered unparalleled professional expertise and invaluable suggestions on my dissertation.

His contribution to the final stage of my dissertation was enormously helpful. I also thank

Dr. Jean Pratt at University of Milwaukee - Eau Claire, who initially led me to a Ph.D.

program and the academic world and remained as a role model in the teaching and

research field.

I wish to acknowledge two firms who allowed me to pursue my field research in

their software development environments. Particularly, I want to thank Dr. Dennis

vi

Phillips, who arranged research resources in his firm and facilitated surveys and

interview questions. I also want to thank all the development professionals and my co-

workers, who shared with me their expertise, insights, and precious time.

I acknowledge my parents, who raised me in good family environment and tried

to provide the best possible educational opportunity. Despite the immense geographical

distance that separate us, they have offered loving encouragement and support throughout

my academic years. My brother and sister were also supportive and took a huge

responsibility off of me in taking care of my mother, who passed away last year.

I finally acknowledge my wife and eternal soul mate, Dr. Inhae Kim, who

encouraged me to get into a Ph.D. program after working for several years in the software

industry, believed in my potential abilities, and has supported me with unconditional love

and confidence. She and my daughter Megan have brought me a new dimension of life.

Without their love and moral support, this dissertation would not have reached its

fruition.

Juyun Joey Cho

vii

CONTENTS

 Page

ABSTRACT .. III

ACKNOWLEDGEMENTS ... V

LIST OF TABLES ... X

LIST OF FIGURES ... XII

INTRODUCTION .. 1

The Problem .. 1

Problem Statement .. 4

REVIEW OF LITERATURE ... 5

Introduction and Purpose of the Review of Literature .. 5

Early Stage of Software Development Methods ... 6

Traditional Software Development Methods .. 7

Agile Software Development Methods ... 12

Overview of Agile Methods.. 12

Lean Manufacturing Principles and Agile Methods ... 17

Characteristics, Strengths, Weaknesses of TSDMs and ASDMs 20

Agile Methods for Large-Scale Projects ... 21

Scrum Software Development Method ... 24

The Philosophical Roots of Scrum ... 24

The History and Practices of Scrum ... 25

Empirical Process Control .. 27

Framework of Scrum .. 28

Flow of Scrum... 36

Rational Unified Process ... 37

The Inception Phase .. 42

The Elaboration Phase .. 42

The Construction Phase .. 43

The Transition Phase... 43

Quantitative Versus Qualitative Research Methods ... 43

viii

Qualitative Research Methods in Information Systems .. 47

Case Study Research ... 49

Action Research .. 50

Ethnography .. 50

Grounded Theory .. 51

RESEARCH METHODS AND PROCEDURES ... 52

Introduction ... 52

Rationale for Selecting Case Study Research ... 52

Type of Case Study Research ... 53

Unit of Analysis in Case Study ... 54

Site Selection ... 55

ABC Firm.. 56

XYZ Firm.. 57

Comparison of Two Firms .. 58

Data Sources .. 58

Grounded Theory .. 62

DATA ANALYSIS AND RESEARCH RESULTS ... 64

The Process of Data Analysis ... 64

ABC Firm .. 65

Human Resource Management Factor .. 66

Structured Development Process Factor ... 79

Environment Factor .. 89

Information Systems and Technology Factor ... 94

XYZ Firm .. 100

Human Resource Management Factor .. 101

Structured Development Processing Factor .. 108

Environmental Factor.. 120

Information Systems and Technology Factor ... 126

DISCUSSION AND MANAGEMENT GUIDELINES ... 130

Issues and Challenges of Scrum .. 130

Human Resource Management ... 130

Structured Development Process .. 135

ix

Environment .. 142

Information Systems and Technology .. 147

Management Guidelines .. 150

Guidelines for Co-located Scrum Teams .. 151

Additional Guidelines for Geographically Distributed Scrum Teams 154

A THEORETICAL MODEL, FUTURE STUDY, AND CONCLUSIONS 156

A Theoretical Model ... 156

Future Study: A Hybrid Model ... 164

Limitations of Present Study ... 168

Conclusions ... 169

REFERENCES ... 170

APPENDICES .. 178

APPENDIX A. PRODUCT BACKLOG .. 179
APPENDIX B. SPRINT BACKLOG ... 181

APPENDIX C. BURNDOWN CHART ... 183

APPENDIX D. C# CODING STANDARD ... 185

APPENDIX E. INTERVIEW QUESTIONS .. 200

APPENDIX F. CLASS DIAGRAM ... 204

APPENDIX G. SEQUENCE DIAGRAM .. 206

APPENDIX H. QUALITATIVE STUDIES... 208

CURRICULUM VITAE ... 216

x

LIST OF TABLES

Table Page

1. Waterfall Model Deliverables ... 8

2. List of ASDMs .. 13

3. Manifesto for Agile Software Development .. 14

4. Principles Behind the Agile Manifesto ... 14

5. Discriminator Between ASDMs and TSDMs ... 16

6. Principles of Lean Manufacturing .. 17

7. The Seven Wastes ... 18

8. Characteristics, Strengths, and Weaknesses of TSDMs and ASDMs 22

9. Six Principles of the New Product Development Process .. 25

10. Main Roles in Scrum .. 31

11. A Sample Product Backlog ... 33

12. A Sample Sprint Backlog.. 34

13. The Framework of Scrum ... 36

14. Scrum Lifecycle .. 37

15. History of Unified Process .. 39

16. Two Dimensions of RUP .. 40

17. Utilization of Disciplines in RUP phases.. 41

18. Differences between Quantitative and Qualitative Method .. 45

19. Strengths of Qualitative Methods ... 46

20. Weakness of Qualitative Methods .. 47

21. Six Different Types of Case Studies ... 53

xi

22. Differences Between ABC and XYZ Firm .. 59

23. Type and Number of Interviews Conducted at ABC Firm ... 61

24. Type and Number of Interviews Conducted at XYZ Firm ... 62

25. Categories, Concepts, and Data Related to ABC .. 67

26. C# Coding Standard .. 85

27. Categories, Concepts, and Data Related to the XYZ Firm 102

28. Human Resource Management Issues .. 131

29. Structured Development Process Issues ... 136

30. Environment Issues ... 142

31. Information Systems and Technology Issues ... 147

32. Disciplines of Hybrid Model and RUP ... 165

xii

LIST OF FIGURES

Figure Page

1. Waterfall model lifecycle .. 8

2. Original royce waterfall model (source: royce, 1970) .. 10

3. Project resolutions ... 11

4. Three legs of empirical process control .. 27

5. Burndown chart ... 35

6. Flow of scrum ... 38

7. Basic types of design for case studies ... 54

8. Multi-case design used for the research .. 55

9. Data analysis process .. 65

10. The theoretical model of a human resource management factor 157

11. The theoretical model of a structured development process factor 159

12. The theoretical model of an environmental factor .. 160

13. The theoretical model of an information system and information technology factor162

14. Theoretical model for the success of scrum .. 163

15. A new hybrid model.. 164

16. The inception phase of a hybrid model ... 167

CHAPTER I

INTRODUCTION

The Problem

Over the past four decades, many software development methods have been

created and utilized in the software industry. Each method has different features and

characteristics that distinguish it from other methods; in general, these methods can be

classified as either a heavyweight or a lightweight method. The heavyweight methods,

also considered traditional methods, usually focus on comprehensive planning, heavy

documentation, and big design up-front. In contrast, the lightweight methods, also known

as agile methods, concentrate (1) more on individuals and interactions than processes and

tools, (2) more on working software than comprehensive documentation, (3) value

customer collaboration more than contract negotiation, and (4) focus more on responding

to change than following a plan.

The traditional methods are still widely used in the software industry because of

their straightforward, methodical, and structured nature; they have proved that they can

provide high assurance, stability, and predictability. However, they have a number of key

shortcomings, including slow adaptation to constantly changing business requirements

and a tendency to be over budget and/or behind schedule, delivering fewer features and

functions than specified in the requirements. The need for a complete set of requirements

prior to design is also a major challenge for the traditional methods due to vague user

specifications.

As a remedy for the shortcomings of the traditional methods, agile software

development methods, including Scrum, eXtreme Programming (XP), Crystal, and

2

Adaptive Software Development (ASD), have been created and evolved by practitioners

since the 1990s; they are designed to embrace, rather than reject, high rates of change.

These new approaches focus mainly on iterative and incremental development, customer

collaboration, and frequent delivery through a light and fast development cycle. Many

researchers have reported that agile methods have the potential to provide a higher level

of customer satisfaction, lower bug rates, a shorter development cycle, and a quicker

adaptation to rapidly changing business requirements.

 In spite of the potential benefits of the agile methods, many organizations are

reluctant to throw their traditional methods away and jump into agile methods. Their

reluctance is the result of several issues, including: (1) the agile methods significantly

reduce the amount of documentation and rely heavily on tacit knowledge, (2) these

methods have not been sufficiently tested for mission/safety-critical projects, (3) belief

that these methods are not adequate for highly stable projects, (4) a concern that agile

methods can be successful only with talented individuals who favor many degrees of

freedom, and (5) that agile methods are not appropriate for large-scale projects.

 Although many positive benefits of the agile methods have been published, there

have been few empirical field studies on the negative aspects of various agile methods.

The negative aspects of the agile methods mentioned earlier imply that there are issues,

problems, and challenges faced in developing high-quality software products using these

methods. Identifying the issues, problems, and challenges of the agile methods should be

more beneficial to organizations considering them than merely showing their positive

benefits. Organizations can learn more lessons from the examining the negative aspects

and learning how to avoid the obstacles in adopting the agile methods. Another problem

3

of many published papers describing positive benefits is that most agile methods have

been primarily applied to small-scale and relatively simple projects. It is not clear

whether agile methods can provide end users with the desired quality, in a timely manner,

on large-scale and mission-critical projects. Therefore, it is worthwhile to conduct a

research project to identify the issues and challenges of agile methods and assess the

applicability of agile methods to large-scale and mission-critical projects.

For this research, two research sites were chosen for an in-depth case study. Both

organizations have produced several high-quality software products through an agile

software development methodology with one particular method, called Scrum. The

rationale for the selection of the Scrum method among the other available agile methods

was (1) Scrum is a widely used agile method in the software industry, in particular in the

United States, and (2) the Scrum method claims to be suitable to any size of project. This

study also investigated the framework (roles, ceremonies, and artifacts) and the empirical

process (visibility, inspection, and adaptation) of the Scrum method in both small- and

large-scale projects.

An exploratory research process using observations, surveys, documentation, and

interviews was conducted at two organizations. The contribution of this research is five-

fold: (1) it identifies critical issues and challenges that may affect the quality of the

application of agile methods, (2) it illustrates how agile methods can be adopted and

utilized to effectively support the development of small-scale, large-scale, and mission-

critical projects, (3) it provides lessons for using Scrum obtained from the field to assist

Scrum practitioners, (4) it provides management guidelines to help many organizations

avoid and overcome obstacles when adopting the Scrum method as a future software

4

development method, and (5) it suggests a new framework for further research on the

application of traditional and agile methods.

Problem Statement

 The few empirical field studies of the negative aspects of agile software

development methodologies have failed to identify how the methods can still be useful to

organizations and have not assessed their applicability for large-scale and mission-critical

projects.

5

CHAPTER II

REVIEW OF LITERATURE

Introduction and Purpose of the Review of Literature

The purpose of this literature review is to examine the existing literature to

determine if there are sufficient evidences on issues and challenges in agile software

development methods, in particular, in Scrum. This requires a review of the literature

related to the evolvement of software development methods. The first section describes

the first generation of software development methods and includes a review of the

rationale for the appearance of engineering-discipline-based software development

methods. The second section reviews the nature of traditional software development

methods and illustrates the development lifecycle of the waterfall method. This section of

the literature review also includes the shortcomings of the waterfall method and the

research results of the Standish Group on projects conducted with traditional software

development methods. The third section reviews the Manifesto for Agile Software

Development and the principles behind the Agile Manifesto. It includes a review of

discriminators between traditional methods and agile methods. It also reviews the agile

methods for large-scale projects. This section concludes with a review of a comparison

between traditional and agile methods on their characteristics, strengths, and weaknesses.

The fourth section reviews the origin of the Scrum method and the empirical process

theory that Scrum employs. This section also includes a framework of Scrum and

concludes with flow of the Scrum method. The fifth section reviews the Rational Unified

Process (RUP), which is used to propose a new framework for future study. This section

includes a history, the four phases, and the disciplines of RUP. The last section reviews

6

quantitative methods and qualitative methods and concludes with how qualitative

methods are utilized in Management Information Systems.

Early Stage of Software Development Methods

The early stages of software development can be summarized as “code and fix,

code-some-more, fix-some-more” (Fowler, 2005; Leffingwell, 2007). This very simple

scheme can be considered as the first generation in the history of software development

methods. The fundamental concept of the scheme is to write code first without putting

much effort on pre-planning and pre-designing, and to fix bugs later if any are found.

This illustrates that the early stage of software development processes did not include any

structured and disciplined software development methods. This kind worked very well

for small-scale and relatively simple projects. However, as the size of projects increased,

developers realized that they spent more time on fixing bugs than writing code. This led

to a dramatic decrease in efficiency and predictability of software development. The

more software developers worked on large projects, the more they recognized that they

needed a methodology with which to impose discipline on the process of software

development. The concept of the early structured software development methods were

borrowed from the engineering disciplines, which place heavy weight on precise planning

(Fowler).

Engineering-discipline-based development methods can be viewed as plan-driven

methods, where the documentation of a complete set of requirements precedes

architectural and high-level design, development, and implementation (Awad, 2005). The

plan-driven software development methods require extensive planning, codified

7

processes, and rigorous reuse (Boehm, 2002). The plan-driven methods also work best

when developers know all of the requirements in advance and when requirements are

relatively stable (Hickey & Davis, 2004; Schach, 2004). Due to these factors, these kinds

of methods came to be known as heavyweight methods and are also considered

traditional software development methods (TSDMs). The next section reviews the nature

of the traditional software development method.

Traditional Software Development Methods

 Many software development methods that control a software development project

have evolved. One well-known TSDM is the Waterfall model, which utilizes a structured

and sequential progression between defined phases: planning, analysis, design,

implementation, and maintenance. According to Dennis, Wixonm, and Tegarden (2005),

the planning phase, which occupies typically about 15% of the total Systems

Development Life Cycle (SDLC), is the fundamental process to identify the scope of the

new system, understand why a system should be built, and how the project team will go

about building it through technical, economical, and organizational feasibility analyses.

The analysis phase, about 15% of the SDLC, analyzes the current system, its problems,

and then identifies ways to design the new system through requirements gathering. The

design phase, 35% of the SDLC, decides how the system will operate in terms of

hardware, software, and network infrastructure. The implementation phase occupies

about 30% of SDLC and is the phase where actual coding occurs. The maintenance phase

occupies the remaining 5% of SDLC and focuses on going-live, training, installation,

8

support plan, documentation, and debugging. Figure 1 and Table 1 below show a typical

waterfall lifecycle and deliverables, respectively.

As we can see in the figure and the table, each phase must be accomplished before

the following phase can begin and each phase cannot go back to the previous phase just

as water in the waterfall cannot climb up once it reaches a lower position.

Figure 1. Waterfall model lifecycle.

Table 1

Waterfall Model Deliverables

Phases Deliverables
Planning Phase Planning Specifications
Analysis Phase Analysis Specifications
Design Phase Design Specifications
Implementation Phase Completed Product

The original waterfall model was formally described by Royce (1970). He

believed that managing a large software development should be an iterative process

rather than a sequential process. He argued that implementation without having an

iterative relationship between development phases would be risky and failure-prone.

Interestingly, the original Royce model emphasized heavy feedback and iterations but has

been extensively misinterpreted as a fixed sequential process that assumes one can get

Planning

Analysis

Design

Implementation

Maintenance

9

things right in a single pass (Leffingwell, 2007). Figure 2 shows the original Royce

waterfall model.

Over the past four decades, traditional waterfall-style software development

methods have been widely used for large-scale projects in the software industry and in

the government sector due to their straightforward, methodical, and structured nature as

well as their capability to provide predictability, stability, and high assurance (Boehm &

Turner, 2003; Fruhling & De Vreede, 2006). However, TSDMs have a number of key

shortcomings, including slow adaptation to constantly changing business requirements,

and a tendency to be over budget and behind schedule with fewer features and functions

than specified (Boehm, 2002; Boehm & Turner, 2003; Brooks, 1995; Schach, 2004;

Sommerville, 2004; Watson, Kelly, Galliers, & Brancheau, 1997). The conventional

methods also have failed to provide dramatic improvements in productivity, reliability,

and simplicity (Brooks, 1995). Boehm and Philip (1988), and Jones (1997), reported that

during their project development experience, requirements often changed by 25% or

more. Williams and Cockburn (2003) also mentioned that TSDMs were not initially

designed to respond to requirements change occurring in the middle of the development

process. They also mentioned that the ability to take appropriate action in response to a

change often determines the success or failure of a software product.

One interesting research study conducted by the Standish Group regarding 8,380

projects from 365 respondents representing companies across major industry segments,

shows that only a small percentage of projects (16.2%) with traditional methods were

completed on-time and on-budget with all features and functions specified. However,

Figure 2. Original Royce waterfall model. (Source: Royce, 1970)

10

11

52.7% of the projects were completed over-budget, over the time estimate, and/or

offering less features and functions; 31.1% of projects were canceled at some point

during the development cycle (Standish Group, 1994). Figure 3 displays the result of the

research. A more recent study by the same group (Standish Group, 2001) still showed

only 28 percent of IT projects were completed on time, on budget and with all the

features and functions originally specified. Further, the study found that 23% of the

projects failed and 49% of the projects were challenged.

Figure 3. Project resolutions.

In another study of 1,027 IT projects in the United Kingdom, Thomas (2001) also

reported that scope management related to attempting waterfall practices was the single

largest contributing factor for failure. Laffingwell (2007, p. 20) mentioned four key

assumptions with the waterfall model that simply turned out to be incorrect. The four

assumptions included (1) there exists a reasonably well-defined set of requirements if we

only take the time to understand them, (2) during the development process, changes to

requirements will be small enough that we can manage them without substantially

rethinking or revising our plans, (3) system integration is an appropriate and necessary

12

process, and we can reasonably predict how it will go based upon architecture and

planning, and (4) software innovation and the research and development that is required

to created a significant new software application can be done on a predictable schedule.

To address some of the traditional methods’ shortcomings, agile methods have

been proposed (Highsmith & Cockburn, 2001). The next section explains the

characteristics and principles of agile software development methods.

Agile Software Development Methods

Overview of Agile Methods

As a remedy for the traditional software development methods’ shortcomings,

agile software development methods (ASDMs) were developed. The movement to

ASDMs started in the mid-1990s, by many practitioners in parallel, in different

languages, different locations, and different project contexts (Leffingwell, 2007). William

and Cockburn (2003) mentioned that eXtreme Programming (XP), Scrum, Crystal, and

Adaptive Software Development (ASD) were developed in the U.S. by Ken Beck and

Eric Gamma, Ken Schwaber and Jeff Sutherland, Alistair Cockburn, and Jim Highsmith,

respectively. Dynamic Systems Development Method (DSDM) is a well-documented

agile method created by a European consortium of companies and was commercially

adopted in Europe (Leffingwell). Feature Driven Development (FDD) was developed in

Australia and has contributed to the scaling of agile methods. Table 2 shows country

names and founders associated with various agile methods.

The nutshell of ASDMs can be summarized as iterative and incremental

development, adaptability throughout the systems development life cycle, minimal

13

planning, light and fast development cycles, people-centric development, customer

collaboration, and frequent delivery. In 2001, seventeen practitioners met at Snowbird,

Utah, to discuss if there was anything in common among the various agile methods

(Cockburn, 2007), and they created the Manifesto for Agile Software Development (Beck

et al., 2001), which revealed what items were considered valuable by ASDMs. As shown

in Table 3, ASDMs concentrate (1) more on individuals and interactions than processes

and tools, (2) more on working software than comprehensive documentation, (3) value

customer collaboration more than contract negotiation, and (4) focus more on responding

to change than following a plan.

Table 2

List of ASDMs
Countries ASDMs Founders
U.S.A. • Extreme Programming (XP)

• Scrum Method

• Crystal Methods
• Adaptive Software

Development (ASD)
• Lean Software Development

• Kent Beck, Eric Gamma
• Ken Schwaber, Jeff

Sutherland
• Alistair Cockburn
• Jim Highsmith

• Tom and Mary Poppendieck

Europe

• Dynamic Systems

Development Method
(DSDM)

• Dane Faulkner

Australia • Feature Driven Development
(FDD)

• Peter Code, Jeff DeLuca

14

Table 3

Manifesto for Agile Software Development
More Valuable Items Less Valuable Items
Individuals and interactions Processes and tools
Working software Comprehesive documentation

Customer collaboration Contract negotiation

Responding to change Following a plan

Table 4

Principles Behind the Agile Manifesto (Source: Beck et al., 2001)
No. Principles
1 Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.
2 Welcome changing requiremts, even late in development. Agile processes

harness change for the customer’s competitive advantage.
3 Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.
4 Business people and devlopers must work together daily throught the project.

5 Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6 The most efficient and effective method of conveying informaiton to and within
a development team is face-to-face conversation.

7 Working software is the primary measure of progress.

8 Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9 Continuous attention to technical excellence and good design enhances agility.

10 Simplicity—the art of maximizing the amount of work not done—is essential.

11 The best architectures, requirements and designs emerge from self-organizing
teams.

12 At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

The twelve principles behind the agile manifesto also presented the characteristics

of ASDMs (Beck et al., 2001). As shown in Table 4, ASDMs (1) satisfy the customer

through early and continuous delivery of software, (2) embrace changing requirements,

15

even in late in the development cycle, (3) deliver working software frequently, (4) work

daily with business people, (5) facilitate motivated people, provide them with a good

environment and support, and trust them, (6) assist face-to-face conversation within a

development team, (7) use working software as a primary measure of progress, (8)

promote sustainable development and keep sponsors, developers, and users moving at a

constant pace, (9) pay attention to technical excellence and good design, (10) maintain

simplicity, (11) promote self-organizing teams, and 12) foster inspections and

adaptations. The Agile Manifesto and its supporting twelve principles provide the basic

philosophy of the agile methods, and all applied agile best practices can be directly

correlated to them (Leffingwell, 2007).

There are many different characteristics between ASDMs and TSDMs. Boehm

(2002), for example, reports nine agile and heavyweight discriminators as shown in Table

5. He believes the primary objective of using ASDMs is rapid value, whereas the primary

objective of TSDMs is on high assurance. He also believes that ASDMs are a better

choice when requirements are either not known at the beginning of the project, are

largely emergent as the project progresses, or change rapidly, whereas TSDMs are better

when requirements are known at the early stage of the project and largely stable

throughout the duration of the project. Regarding the involvement of customers, Boehm

thinks that ASDMs require dedicated, knowledgeable, and collaborated customers,

whereas TSDMs do not need co-located onsite customers; rather, they focus more on

contract provisions. In ASDMs, developers should be agile, knowledgeable, co-located,

and collaborative. In TSDMs, developers should be plan-oriented and have adequate

skills to access external knowledge. One more very noticeable difference is that re-

16

factoring in ASDMs is cheaper than TSDMs. ASDMs have unknown risks, which can

have a major impact on a project, whereas TSDMs have well-understood risks and their

impact on a project is known. Overall, as shown in the table, Boehm believes ASDMs

should be used for small teams and projects. If the size of the team and projects are large,

he suggests TSDMs.

Table 5

Discriminator Between ASDMs and TSDMs (Source: Boehm, 2002)

Project Characteristics Agile Discriminator Heavyweight
Discriminator

Primary objective Rapid Value High Assurance
Requirements Largely emergent, rapid

change, unknown
Knowable early, largely
stable

Size Smaller teams and projects Larger teams and projects
Architecture Designed for current

requirements
Designed for current and
foreseeable requirements

Planning and Control Internalized plans,
qualitative control

Documented plans,
quantitative control

Customers Dedicated, knowledgeable,
collaborated, collocated
onsite customers

As needed customer
interactions, focused on
contract provisions

Developers Agile, knowledgeable,
collocated, and
collaborative

Plan-oriented; adequate
skills access to external
knowledge

Refactoring Inexpensive Expensive
Risks Unknown risks, Major

Impact
Well understood risks,
Minor impact

The next section explains lean manufacturing principles which have a long history

of generating dramatic improvements in the field of manufacturing (Poppendieck &

Poppendieck, 2003) and describes how these principles were accepted into agile methods.

17

Lean Manufacturing Principles and Agile Methods

In addition to the nine discriminators listed earlier, ASDMs have several other

distinct attributes. These attributes come mainly from the basic principles of lean

industrial practices. As shown in Table 6, Poppendieck and Poppendieck (2003)

identified seven principles of lean manufacturing and explained how these principles

could be directly applied to software development. The seven disciplines include (1)

eliminate waste, (2) amplifying learning, (3) decide as late as possible, (4) deliver as fast

as possible, (5) empower the team, (6) build integrity, and (7) see the whole.

Some of these principles are actually embedded into ASDMs. The first significant

attribute of agile methods adopted from the lean principles is the elimination of waste.

This concept was first introduced by Taiichi Ohno, considered the father of the Toyota

Production System. This approach considers any activities that do not improve the quality

of a final product as waste. Shigeo Shingo (1981), one of the masterminds of the Toyota

Production System, listed seven types of manufacturing waste as shown in the left side of

Table 7, the right side represents the corresponding seven wastes of software

development. In following this principle, ASDMs avoid preparing heavy documents,

models, and diagrams. Instead, ASDMs suggest writing effective guidelines and a set of

rules.

Table 6

Principles of Lean Manufacturing
No. Principle Main concept
1 Eliminate waste • Remove any activities that do not improve the

quality of a final product.
• Avoid heavy documents, models, and diagrams.
• Write effective guidelines and a set of rules.

18

No. Principle Main concept
2 Amplifying learning • Create software through iterative and

incremental method.
• Gather productive feedbacks from each iteration

and apply them to the next iteration.
3 Decide as late as possible • Any process should provide a capacity for

change by delaying a decision as late as
possible.

4 Deliver as fast as
possible

• Deliver small but working subsystems as fast as
possible.

• Frequent delivery of working versions of a final
system is a key to rapid development.

• Early and frequent delivery of small software
components increases the potential of success.

5 Empower the team • Team is responsible for success or failure of the
project.

• Team should be autonomous in organization
and management of projects.

6 Build integrity in • A system should work smoothly and cohesively
7 See the whole • Experts should be able to see a whole system

• Overall performance should have more weight
than a local maximization.

Table 7

The Seven Wastes (Source: Poppendieck & Poppendieck, 2003)
No. The Seven Wastes of manufacturing The Seven Wastes of Software

Development
1 Inventory Partially Done Work
2 Extra Processing Extra Processes
3 Overproduction Extra Features
4 Transportation Task Switching
5 Waiting Waiting
6 Motion Motion
7 Defects Defects

The second significant attribute of agile methods is an adaptive development

process, which draws on the two lean principles of “amplifying learning” and “decide as

late as possible.” The lean principle “amplifying learning” is based on the concept that

19

“Development is an exercise in discovery while production is an exercise in reducing

variation, and for this reason, a lean approach to development results in practices that are

quite different than lean production practices.” (Poppendieck & Poppendieck, 2003, p.

xxv). The lean principle “decide as late as possible” provides a capacity for change by

delaying decisions as late as possible. ASDMs follow with these principles by

emphasizing adaptive software development, which requires iterative and incremental

development through productive feedback. Satzinger, Jackson, and Burd (2005)

mentioned that some projects were reasonably predictable and could be managed

sequentially but most projects are less predictable, demanding an iterative and adaptive

approach to development.

The third significant attribute of agile methods is rapid software development,

influenced by the lean principle “deliver as fast as possible.” The concept is based on the

fact that customers like rapid delivery, and rapid delivery can provide customers with

flexibility. ASDMs try to deliver small working subsystems as fast as possible rather than

waiting to show the customer the final product until it is complete. Fowler (2005)

mentioned that frequent delivery of working versions of a final system was a key to rapid

development. These working systems represent only a portion of the whole system, but

should be good enough to get customer feedback. The study of 23,000 projects conducted

by Standish Group International (1994) revealed that early and frequent delivery of small

software components increases the potential for success.

The fourth significant attribute of agile methods is an autonomous and self-

organizing team, which mirrors the lean principle “empower the team.” This concept is

based on the assumptions that (1) a mature organization looks at the whole system and

20

not on optimizing disaggregated parts, and (2) a mature organization focuses on learning

effectively and empowers the people who do the work to make decisions. ASDMs focus

more on team work than TSDMs. As a whole, the team is responsible for the success or

failure of the project. Teams should be autonomous in term of organization and

management of projects.

The last two lean manufacturing principles in the table did not directly affect the

attributes of the agile methods but these principles are somewhat embedded into agile

practices. Regarding the principle of “build integrity in,” Brooks (1995, p. 255) stated

“Conceptual integrity means that the system’s central concepts work together as a

smooth, cohesive whole, and it is a critical factor in creating perceived integrity.” The

“see the whole” principle puts more emphasis on maximizing over all system

performance than maximizing the performance any particular part of the system.

Characteristics, Strengths, Weaknesses of TSDMs
and ASDMs

The ASDMs have the potential to provide higher customer satisfaction, lower bug

rate, shorter development cycles, and quicker adaptation to rapidly changing business

requirements (Boehm, 2002; Boehm & Turner, 2003; Parnas, 2006). Parrish (2004)

argues that ASDMs provide increased quality, shorter time to market, better efficiency,

and greater customer satisfaction. Miller and Larson (2005) also believe that ASDMs

emphasize close collaboration between the users and developers of a project, and

relatively quick development cycles that can react to changing requirements. An

Australian group, Shine Technologies (2003) surveyed 131 respondents of teams and

companies that had employed agile methods and found that (1) 93% stated that

21

productivity was better or significantly better, (2) 49% stated that costs were reduced or

significantly reduced, (3) 88% stated that quality was better or significantly better, and

(4) 83% stated that business satisfaction was better or significantly better. Beck (2000)

reported that in the original XP project at Daimler Chrysler, it took 12 to 15 people 2

years to write and deploy a system that a team of 30 had failed to deliver in the prior 4

years. Spencer (2005) also stated that “our implementation of agile practices helps us find

bugs earlier, helps us achieve higher quality, and helps us work well with QA.”

According to a report by Forrester Research (2005), only 14% of North American

and European enterprises use agile software development processes, and another 19% are

either interested in adopting agile methods or already planning to do so.

So far, we have discussed various strengths, weaknesses, and characteristics of

both TSDMs and ASDMs. These were summarized in Table 8 and the next section

reviews the literature on agile methods for large-scale projects.

Agile Methods for Large-Scale Projects

Most agile methods have primarily been applied to small to medium size projects

such as internet and web-based information systems. It is not clear if agile methods are

used on large-scale projects that they can provide end-users with the desired quality in a

timely manner (Marrington, Hogan, & Thomas, 2005). However, some researchers have

reported that large-scale and complex projects have benefited from suitably tailored agile

development methods (Bowers, May, Melander, Baarman, & Ayoob, 2002; Lippert et al.,

2003; Cao, Mohan, Xu, & Ramesh, 2004; Lindvall et al., 2004). Bowers et al. (2002)

examined whether the XP method can handle large-scale and life-critical software

22

systems. The authors adopted the XP method to redesign their public safety

communication systems, which consists of over a million lines of C language code.

Table 8

Characteristics, Strengths, and Weaknesses of TSDMs and ASDMs
 TSDMs ASDMs

Characteristics • Extensive planning

• Codified process
• Rigorous reuse
• Heavy documentation
• Big design up front

• Iterative and incremental
• Customer collaboration
• Frequent delivery
• People centric
• Light and fast development

cycle

Strengths

• Straightforward,

methodical, and
structured nature

• Predictability, stability,
and high assurance

• Short development cycle
• High customer satisfaction
• Low bug rate
• Quick adaptation to rapidly

changing business
requirements

Weaknesses • A slow adaptation to

rapidly changing
business requirements

• A tendency to be over
budget

• A tendency to be
behind schedule

• Difficult to create a
complete set of
requirements up front

• Significant document
reduction and heavy
dependent on tacit
knowledge

• Not sufficient test for
mission/safety-critical
projects

• Not adequate for highly
stable projects

• Can be successful only with

talented individuals who
favor many degrees of
freedom

• Not appropriate for large-
scale projects

23

They used the XP method to mitigate risks with early, frequent feedback.

However, they did not use every part of the XP method. Instead, they adopted some

practices, dropped others and supplemented others with practices from other fields. This

paper revealed the possibilities for applying the XP method to large-scale and life-critical

projects if the XP method was modified to fit into the specific application development

environment. Lippert et al. (2003) also examined whether the XP method was appropriate

for large and long term projects. They indicated that a suitably adapted agile development

process (in particular XP) was ideal for long-term projects and the development of large

systems. This is contradictory to the preferences of many information technology (IT)

managers who often consider XP as a slightly chaotic methodology. Lippert et al.

mentioned that they followed the recommended practice of adapting XP to their specific

project. They also developed methodological extensions to XP for use in a number of

areas in which questions and problems frequently occur. The majority of studies on large-

scale projects have been conducted using the XP method, which was initially designed

for small-scale projects with less than 10 developers and a product that would not be

excessively complex (Beck, 2000).

Among the various agile methods, the Scrum method was selected for this study

because Scrum is one of the most widely adopted agile methods in the U.S. software

industry (Leffingwell, 2007; Williams & Cockburn, 2003), and Scrum is suitable for any

size of projects (Schwaber & Beedle, 2002). The next section explains the roots, a

history, the empirical process control, and the framework of the Scrum method.

24

Scrum Software Development Method

The Philosophical Roots of Scrum

The Scrum software development method is an agile process that can be used to

manage and control complex software and product development using iterative and

incremental practices (Advanced Development Methods, 2009; Schwaber, 2004, 2007,

2008; Schwaber & Beedle, 2002) and is an enhancement of the iterative and incremental

approach to delivering objected-oriented software (Schwaber, 1996). Leffingwell (2007,

p. 41) also defined the Scrum method as “. . . a lightweight agile project management

method based on small, empowered, self-organizing teams; complete visibility; and rapid

adaptation.” The origin of term scrum came from the popular sport rugby, in which

fifteen players on each team compete against each other. While the term scrum refers to

the strategy used for getting an out-of-play ball back into play in rugby, it was first used

to describe hyper-productive development processes in Japan (Takeuchi and Nonaka,

1986). Three strategies from rugby, including a holistic team approach, constant

interaction among team members, and unchanging core team members, are adopted into

Scrum’s management and control processes. Takeuchi and Nonaka (1986, p. 137) noted:

 This new emphasis on speed and flexibility calls for a different approach for
managing new product development. The traditional sequential or ‘relay race’
approach to product development - exemplified by the National Aeronautics and
Space Administration's phased program planning (PPP) system - may conflict
with the goals of maximum speed and flexibility. Instead, a holistic or ‘rugby’
approach - where a team tries to go the distance as a unit, passing the hall back
and forth - may better serve today's competitive requirements.

Takeuchi and Nonaka also described six principles that contribute substantially to

the Scrum philosophy. Each principle correlates directly to many of the principles of the

Agile Manifesto that we previously discussed. Their six principles are (1) built-in

25

instability, (2) self-organizing project teams, (3) overlapping development phases, (4)

multi-learning, (5) subtle control, and (6) organizational transfer of learning. Table 9

shows these principles with explanations.

Table 9

Six Principles of the New Product Development Process

(Source: Leffingwell, 2007, p. 43)
No. Principles Contents
1 Built-in

instability
A principle philosophy for management is to provide a vision
and challenge to the team but not to provide the specific steps
for how the team is to accomplish these objectives.

2 Self-organizing
project teams

Self-organizing teams exhibit three conditions: autonomy, self-
transcendence, and cross-fertilization.

3 Overlapping
development
phases

In Scrum, the lines between product definition, design, code,
and test are blurred. Product definition derives design, which
affects product definition

4 Multi-learning By organizing in an environment that offers multiple learning
opportunities, teams are in constant and close contact with
each other as well as with outside sources of information via
the customer proxy or direct involvement of the team with the
customer.

5 Subtle Control Scrum provides daily and monthly objective checkpoints for
each project. Management provides additional control by
creating a proper and open work environment, encouraging the
team to interact with customers, and establishing reward
systems based on team, rather than individual behavior.

6 Organizational
transfer of
learning

Scrum teams in particular, and agile teams in general, routinely
exhibit transfer of learning outside their project team. Learning
may be driven by the excitement generated by more effective
processes and self-empowered teams or by the objective
results, but in any case, good news spreads quickly.

The History and Practices of Scrum

The Scrum process was developed by Schwaber and Sutherland (Schwaber &

Beedle, 2002). The former developed and formalized the Scrum process for system

26

development while he was at his company, Advanced Development Methods (ADM), in

the early 1990s. The latter developed many of the initial thoughts and practices for Scrum

when he was at Easel Corporation as a vice president of Object Technology in 1994. By a

joint effort of both, the Scrum process was first introduced to the public at the conference

of Object-Oriented Programming, Systems, Languages and Applications (OOPSLA) in

1996 (Schwaber, 1996). The Scrum process looks simple, but is practical enough to

deeply influence the work experience and to capture key agile characteristics (Larman,

2007). Some key practices of Scrum (Laffingwell, 2007, p. 44; Larman, p. 109) include

the following point. (1) Self-managing, cross-functional, self-directed, self-organizing,

and collocated teams of eight or fewer team members develop software in Sprints. (2)

Sprints are iterations of fixed 30-day duration, where each sprint delivers incremental,

tested functionality of value to the user. (3) Work within a Sprint is fixed. Once the scope

of a Sprint is chosen, no external addition of work can be added except by the

development team. (4) The Scrum master mentors and manages the teams that are

responsible for delivery of successful outcomes at each sprint. (5) All work to be done is

carried as a Product Backlog, which includes requirements to be delivered, the defect

workload, as well as infrastructure and design activities. (6) The Product Backlog is

developed, managed, and prioritized by the product owner, who is an integral member of

the team and who has the primary responsibility of interfacing with the external

customers. (7) A daily stand-up meeting with special questions is a primary

communication method. (8) Scrum focuses heavily on time-boxing. Sprints, stand-up

meetings, release review meetings are all completed in prescribed times. (9) Scrum

allows requirements, architecture, and design to emerge over the course of the project.

27

(10) Scrum provides a demo to external stakeholders at end of each iteration, and each

iteration is client-driven adaptive planning.

The Scrum method consists of three main elements - the empirical process control

(visibility, inspection, and adaptation), the framework (roles, ceremonies, and artifacts),

and the workflow. The following sections describe in detail these three main elements.

Figure 4. Three legs of empirical process control.

Empirical Process Control

The co-founder of the Scrum process, Schwaber (2004, 2008), has argued that the

Scrum process employs an empirical process control which has three legs underlying all

of its implementations: Transparency (Visibility), Inspection, and Adaptation.

Transparency or visibility means that any aspects of the process that affect the outcome

must be visible and known to everybody involved in the project process. Inspection

requires that various aspects of the process be inspected frequently enough so that

28

unacceptable variances in the process can be detected. Adaptation requires that the

inspector should adjust the process if one or more aspects of the process are in an

unacceptable range. Figure 4 visualizes the empirical process.

Schwaber (2002, p. 24) introduced a noteworthy story, cited below, that points out

that the system development process is complex and unpredictable, hence it should be

managed by a process control model that is empirical.

I wanted to understand why my customers’ methodologies didn’t work for my
company, so I brought several methodologies to process theory experts at the
DuPont Experimental Station in 1995. These experts, led by Babatunde
Ogannaike, are the most highly respected theorists in industrial process control.
They inspected the system development processes that I brought them. I have
rarely provided a group with so much laughter. They were amazed and appalled
that my industry, system development, was trying to do its work using a
completely inappropriate process control model. They said systems development
had so much complexity and unpredictability that it had to be managed by a
process control model they referred to as “empirical”. They said this was nothing
new, and all complex processes that weren’t completely understood required the
empirical model.

Schwaber (2004) mentioned that a code review can be analyzed with the

empirical process control model described above. Any code written by developers should

be visible to everybody (transparency). The most experienced and knowledgeable

developers can review the code (inspection). If there is room to improve the code,

reviewers’ comments and suggestions should be reflected in the code (adaptation).

Framework of Scrum

The framework of Scrum consists of three components including roles,

ceremonies, and artifacts (Schwaber, 2004). There are three distinct roles in the Scrum

process: the Product Owner, the Team and the Scrum master.

29

Three Roles in Scrum. The Product Owner is responsible for getting initial and

on-going funding for the project by creating the project’s overall requirements, return on

investment (ROI) objectives, and release plan (Schwaber, 2004). The Product Owner is

also responsible for managing and controlling the Product Backlog, which is described in

the Scrum artifacts section. The Product Owner should be one person rather than a

committee. If any of items in the Product Backlog need to be changed or re-prioritized,

this should be done through the Product Owner. The reason for establishing a single

Product Owner is to avoid having multiple conflicting lists. The Product Owner should

make the Product Backlog visible to everyone so that everyone knows which item has the

highest priority. To finish the project successfully, everyone in the organization should

follow the decision made by the Product Owner. The Product Owner can be the product

manager for commercial development, or the project manager or the user department

manager in-house development.

The Team is responsible for implementing the functionality described in the

requirements. Teams should be self-managing, self-organizing, and cross-functional to

maximize team performance. All of the team members are responsible for both the

success and the failure of sub-systems and the entire system (Schwaber, 2004). Team

members decide what items should be accomplished over the next Sprint in the Sprint

planning meeting. The team should be autonomous so that it has the power to make a

decision, do whatever it needs to do, and ask for any impediments to be removed.

Although the team can make a decision on how to do its work, the team’s decision should

be conform to any existing organization’s charters, standard, conventions, architectures,

30

and technology. It is desirable to create a team with people who have different kinds of

skills necessary to meet the Sprint goal.

If the size of the team is larger than eight people, Schwaber and Beedle (2002)

strongly recommend breaking them into multiple teams to minimize the interaction and

dependencies between team members. They also believe that large teams generate too

much complexity for an empirical process. Team members are called pigs because they,

like the pigs in the following joke, are committed to the project. Other than team

members, everyone else is a chicken. Chickens can attend the Daily Scrum Meeting but

should be remain silent. Chickens cannot interfere with the meetings in any way.

A chicken and a pig are together when the chicken says, “Let’s start a restaurant!” The

pig thinks it over and says, “What would we call this restaurant?” The chicken says,

“Ham n’ Eggs!” The pig says, “No, thanks. I’d be committed, but you’d only be involved

(Schwaber & Beedle, 2002, p. 42).

The Scrum Master (SM) is a new management role introduced by Scrum.

According to Schwaber and Beedle (2002), the SM has various duties and

responsibilities. The SM is responsible for ensuring that Scrum values, practices, and

rules are enacted and enforced. The SM is the driving force behind all of the Scrum

practices. The SM sets them up and makes sure they happen. The SM represents

management and the team to each other. At the Daily Scrum, the SM listens closely to

what each team member reports. The SM compares what progress has been made to what

progress was expected, based on Sprint goals and predictions made during the previous

31

Daily Scrum. SM also tries to remove any impediments imposed on developers

(Schwaber & Beedle, 2002, p. 31). Table 10 shows the roles in Scrum.

Table 10

Main Roles in Scrum

Roles
The Product Owner

• creates the project’s overall
requirements, return on investment
(ROI) objectives, and release plan

• manages and controls the Product
Backlog

• can be the product manager, project
manager, or user development
manager

The Team

• is responsible for implementing the
functionality

• is responsible for both the success
and the failure of systems

• should be self-managing, self-
organizing, and cross-functional

• should be committed to the project

The Scrum Master

• is a new management role
introduced by Scrum

• is responsible for ensuring that
Scrum values, practices, and rules
are enacted and enforced

• is the driving force behind all of the
Scrum practices

• represents management and the
team to each other

• tries to remove any impediments
imposed on developers

Everyone Else

• is chicken
• cannot interfere with the meetings

in any way

Ceremonies in Scrum. There are several ceremonies in the Scrum process

including the Daily Scrum Meeting, the Daily Scrum of Scrums Meeting, the Sprint

Review Meeting and the Sprint Planning Meeting. The Daily Scrum Meeting (DSM) is a

15-minute status meeting to talk about what has been accomplished since the last

meeting, what items will be done before the next meeting, and what obstacles developers

32

have. DSMs facilitate communications, identify and remove impediments to

development, highlight and promote quick decision-making, and improve transparency

(visibility) as explained in the previous section. The Daily Scrum of Scrums Meeting

(DSSM) is another short daily meeting and follows the same format as a regular DSM.

The main reason for having a DSSM is to synchronize the work between multiple Scrum

teams.

The Sprint Planning Meeting (SPM) is a monthly meeting, where the Product

Owner and Team get together to discuss what will be done for the next Sprint which lasts

usually for 30 days. In a SPM, team members break a project into a set of small and

manageable tasks so that all the tasks can be completed in one Sprint. The Sprint Review

Meeting (SRM) is another monthly meeting which is held at the end of the Sprint. An

SRM is usually a four-hour time-boxed meeting, where team members present what was

developed during the Sprint to the Product Owner and stakeholders.

Three Artifacts in Scrum. In addition to the Scrum roles and ceremonies, the

Scrum process provides three artifacts, namely the Product Backlog, the Sprint Backlog,

and the Burndown Chart. The Product Backlog is a collection of functional and non-

functional requirements, which are prioritized in order of importance to the business. The

items in the Product Backlog are created and maintained by the Product Owner. A simple

version of Product Backlog is shown in Table 11. A complete Product Backlog can be

found in Appendix A. As shown in Table 11, the requirement column represents various

projects needing to be accomplished in the Sprint. The Num column places an internal

number for each project, which is used for referential purposes. Some of examples for the

33

Category column are feature, enhance, defect, and technology. The status column

represents “not started,” “underway,” or “complete.” The priority column ranges from

one to five and the smaller number represents the higher priority. The estimate column

represents the estimated hours needed to finish the project.

Table 11

A Sample Product Backlog
1 Product Backlog
2
3 Requirement Num Category Status Priority Estimate
4 Create login screen 12 Enhance Not started 5 100
5 PDA sale capture 117 Enhance Not started 5 300
6 Auto-size column 23 Enhance Complete 2 120
7 Create JLBBK

interface
120 Feature Underway 1 130

8 Create log entry 121 Feature Not started 3 500
9 Credit card

payment
26 Defect Complete 2 200

10 Commission
calculation

221 Feature Underway 4 700

11 Create intake
screen

124 Feature Not started 3 800

 The Sprint Backlog is created by team members from the Product Backlog in a

way that the high priority items in the Product Backlog are first selected and broken into

a set of smaller tasks. When the Product Backlog items are divided into small tasks, team

members estimate the completion time for each task. Team members try to make tasks as

small as possible so that every task can be accomplished within three days. The Sprint

Backlog consists of these small tasks. A simple version of Sprint Backlog is shown in

Table 12. A complete Sprint Backlog can be found in Appendix B. As shown in Table

34

12, the Task Description column represents a set of small tasks that needs to be

completed within one cycle of the Sprint.

Table 12

A Sample Sprint Backlog
1 Sprint Backlog
2
3 Task Description Orig

inat
or

Respo
nsible

Status Hours of work remaining

488 344 321 298 255

4 Add search
functionality

JS JJ/SS In progress 20 11 11 6 2

5 Create inmate
release

JC AN In progress 24 16 16 16 8

6 Update parameter
screen

JC BB Not started 23 23 23 23 23

7 Release screen
enhancement

JS PB Complete 24 17 10 6 0

8 Nested control
(Moved to next
Sprint)

JS SN Removed 20 20 20 20 20

9 Add incident tab
in inmate screen

JC SJ In progress 25 20 16 8 8

10 Format the tab in
inmate screen

JC AN In progress 24 24 16 8 8

11 Disable
medication tab in
inmate screen

JC TK Complete 23 23 16 8 0

These lists are created by team members from the Requirement listed in the

Product Backlog. The Originator column represents a name of person or people who

originate the task. The Responsible column shows a name of person or people who are

responsible for. The Status column shows several different status of each task including

“Not started,” “In progress,” “Complete,” and “Removed.” The last column shows the

hours of work remaining. At the end of the Sprint session the remaining hours for each

35

task should be zero. As shown in row #8, some of tasks in the Sprint Backlog cannot be

completed and are carried over to the next Sprint.

Figure 5. Burndown chart.

The Burndown Chart is a graphical presentation where work remaining is tracked

on the vertical axis and the time periods tracked on the horizontal axis. The chart should

be accessible by every member participating in the project. It is a good tool for providing

visibility (transparency) to the people who are involved in the project. In Scrum, the

Burndown Chart is considered the most critical project data to track (Larman, 2007). It is

recommended to post an updated version of the chart each day by the Scrum meeting so

that team members can see the current status of each task. An individual and team chart

can be used to show individual performance and team velocity respectively. Figure 5

shows a simple version of an individual Burndown Chart. A complete individual and

team Burndown chart can be found in Appendix C.

36

As mentioned at the beginning of this section, the framework of Scrum consists of

three components: Roles, Ceremonies, and Artifacts. Table 13 summarizes the three

components and major elements of each component.

Table 13

The Framework of Scrum
Roles Ceremonies Artifacts

• The Product Owner
• The Scrum Team
• The Scrum Master

• Daily Scrum
Meeting

• Daily Scrum of
Scrums
Meeting

• Sprint Review
Meeting

• Sprint Planning
Meeting

• Product Backlog
• Sprint Backlog
• Burndown Chart

Flow of Scrum
The Scrum process begins with a vision of the system and a simple plan on

Return on Investment (ROI) and release milestones. The vision is described in business

terms rather than technical terms. The vision may be unclear at first, but will become

more precise as the project moves forward. As mentioned earlier, the Product Owner is

responsible for getting initial funding, delivering the vision while maximizing ROI, and

creating the Product Backlog. The prioritized items in the Product Backlog are divided

into smaller tasks through the Sprint Planning Meeting and placed in the Sprint Backlog.

In the Sprint Planning Meeting, the Product Owner explains the content, purpose,

meaning, and intentions of each item in the Product Backlog. Team members can ask

questions if they do not understand any items in the Product Backlog. All the tasks in the

Sprint Backlog are undertaken in Sprints, which are done iteratively until the tasks are

37

completed. Daily Scrum Meetings are used to review task progress during each Sprint.

Figure 6 illustrates the flow of the Scrum process and Table 14 shows a Scrum lifecycle.

Table 14

Scrum Lifecycle

(Source: Larman, 2007, 113)

Pre-Game Development Release
 Planning Staging

P
ur

po
se

 Establish the vision,
set expectations, and
secure funding

Identify more
requirements and
prioritize enough
for first iteration

Implement a system
ready for release in
a series of 30-day
iteration (Sprints)

Operational
deployment

A
ct

iv
iti

es

Write vision, budget,
initial product
backlog and estimate
items.

Exploratory design
and prototype

Planning

Exploratory design
and prototypes

Sprint planning
meeting each
iteration, defining
the Sprint Backlog
and estimates

Daily Scrum
meetings

Sprint Review

Documentation

Training

Marketing &
Sales

Rational Unified Process

The Unified Process (UP) is a well-defined, object-oriented system development

process originally offered by IBM Rational Software and was developed by Booch,

Rumbaugh, and Jacobson (Satzinger et al., 2005).

38

Figure 6. Flow of Scrum.
(Source: Hodgetts, 2009)

39

The UP takes an iterative, requirements-driven, and architecture-centric approach,

based on sound engineering principles (Kruchten, 2004). Some of the universal principles

of UP includes: (1) adapt the process, (2) balance stakeholder priorities, (3) collaborate

across teams, (4) demonstrate value iteratively, (5) elevate the level of abstraction, and

(6) focus continuously on quality. The UP has a long and proven history and has clearly

evolved (Ambler, 2005).

Table 15

History of Unified Process
Year Event
1988 Objectory v1.0 is created by Jacobson’s Objectory AB company. Rational

Unified Process and Enterprise Unified Process came out from the Objectory
process.

1996 Rational Objectory Process (ROP) 4.0 is created. Iterative concept is
introduced.

1998 ROP is renamed into Rational Unified Process and RUP 5.0 is released.
1999 Rational Unified Process 5.5 is released with an enhancement of real-time and

web-based development.
2000 Rational Unified Process 2000 is developed with the addition of business

engineering techniques to the business modeling discipline and a more
enhanced requirements approach.

2003 Rational Unified Process 2003 is released with an enhanced test discipline.
2004 Enterprise Unified Process is developed with the expansion of the enterprise

management discipline.
2005 Agile Unified Process is developed

Table 15 depicts how the UP has evolved through several variations. Among the

many different versions, Rational Unified Process (RUP) 2003 was utilized in this study

as a framework. As shown in Table 15, RUP came from the Objectory process v1.0 and

evolved into RUP 2003 with various additions and enhancements. More recently, a

lighter UP called the Agile Unified Process (AUP) was developed for an agile software

40

development. The AUP utilizes a streamlined approach, which has fewer activities and

deliverables with a simplified method.

The structure of RUP is two dimensional: phases and disciplines. The phases

represent the four major stages that a project goes through over time. The major stages

include inception, elaboration, construction, and transition. The disciplines represent the

logical activities that take place throughout the project. The disciplines are divided into

main disciplines and support disciplines. The main disciplines include business modeling,

requirements, analysis and design, implement, testing, and deployment. The support

disciplines include configuration and change management, project management, and

environment. Table 16 shows the two dimensions of RUP.

Table 16

Two Dimensions of RUP
Dimensions RUP
Phases • Inception

• Elaboration
• Construction
• Transition

D
isciplines

Main
Disciplines

• Business Modeling
• Requirements
• Analysis & Design
• Implement
• Testing
• Deployment

Support
Disciplines

• Configuration & Change Management
• Project Management
• Environment

The nine disciplines can be employed across two or more phases during the RUP

development life cycle. For example, the business modeling discipline can be utilized in

41

both the inception and elaboration phases to understand the business environment. The

requirements, the design, the implementation, and the testing disciplines can be employed

across all four phases to classify requirements that the system must implement, to design

a solution for the system that satisfies the requirements, to write code that makes the

system actually work, and to conduct unit and integrated system testing. The deployment

discipline can occur during the elaboration, construction, and transition phases to place a

portion of the system, or the full system, into operation for users. The support disciplines

can also occur across all four phases for planning and controlling the project. Table 17

shows where the nine disciplines are used within the four phases, and also where

disciplines are mostly utilized. The next section describes the main objectives and

activities of each RUP phase, based on the explanations of Ambler (2005) and Satzinger

et al. (2005).

Table 17

Utilization of Disciplines in RUP phases
RUP Disciplines Phases
Business Modeling

Inception*, Elaboration

Requirements

Inception, Elaboration*, Construction, Transition

Analysis & Design

Inception, Elaboration*, Construction, Transition

Implement

Inception, Elaboration, Construction*, Transition

Testing

Elaboration, Construction*, Transition

Deployment Elaboration, Construction, Transition*

Configuration &
Change
Management

Inception, Elaboration, Construction*, Transition

42

RUP Disciplines Phases
Project
Management

Inception, Elaboration*, Construction, Transition

Environment Inception, Elaboration*, Construction, Transition

(* represents the most utilized phase for a certain discipline)

The Inception Phase

The primary objectives of the inception phase are to (1) identify the business

scope of the new system and the project, (2) develop preliminary cost and schedule

estimates based on the stakeholder concurrence, (3) identify the business need for the

project, (4) understand the requirements according to the business case for the project,

and (5) establish a vision for the solution. As shown in Table 17, the business modeling

discipline is highly utilized in the inception phase. The main activities of the business

modeling discipline in this phase include: (1) create a list of business benefits, system

objectives, and system capabilities, (2) describe the problem or need, (3) consider

business process, workflow, and interfaces to other systems, and (4) analyze the various

system stakeholders, existing system architecture, and system constraints.

The Elaboration Phase

During the elaboration phase, detailed information is gathered, hence the

requirements discipline is mostly utilized in this phase. Based on the gathered

information, functional and non-functional requirements are defined. The functional

requirements are activities and processes that the news system should carry out. The non-

functional requirements are characteristics of the new system other than the activities it

must perform. Some of non-functional requirements can include technical requirements,

performance requirements, usability requirements, reliability requirements, and security

43

requirements. All defined requirements are prioritized and evaluated with actual system

users. A structured walkthrough with users is an important process to make sure the

gathered and prioritized requirements are correct and appropriate. User interface dialogs

can also be developed in this phase.

The Construction Phase

The main focus in this phase goes to coding and testing the software. All the

system components and features, including user interfaces, business logics, data access

functions, and help functions, are implemented according to the specifications designed

in the previous phase. This phase should produce a releasable working system so that the

system can be deployed during the next phase. This phase can include several iterations

that continue the design and implementation of the system. In particular, for large

projects, several construction iterations can be involved in an effort to break the project

into small and manageable tasks.

The Transition Phase

During the transition phase, the system is delivered into production and becomes

available to end users. One or more iterations in this phase should involve end-user

training with a user’s manual, beta testing to validate the system functions against end-

users’ expectation, and corresponding modification and fine tuning. If all the

requirements are satisfied, the development cycle is closed.

Quantitative Versus Qualitative Research Methods

 Though various research methods exist, the most commonly used classification of

research methods is between quantitative and qualitative research methods. Quantitative

44

methods start with an assumption that variables can be identified and relationships can be

measured. Quantitative methods usually employ theories, hypotheses, and mathematic

models to generalize research findings to other people and places. Data collected in

quantitative methods are numeric indices that can be quantified for statistical analysis.

Generalization, causal explanation, and prediction are the main purposes of a research

conducted with quantitative methods. In contrast, qualitative methods seldom begin with

hypotheses and theories, and assume that variables are complex, interwoven, and difficult

to measure. Qualitative methods employ non-numeric data, such as field notes,

interviews, conversation, participant observations, questionnaires, documents and texts,

photographs, recordings, memos, and researcher’s reflection and reaction (Denzin &

Lincoln, 2000; Glesne, 2006; Myers, 2009). Qualitative researchers use multiple data

collection methods, called “triangulation,” to increase the trustworthiness of the data

(Glesne; Myers). The use of multiple methods can also secure an in-depth understanding

of the phenomenon in question (Denzin & Lincoln). Qualitative research can be found in

many disciplines and fields using a variety of approaches, methods, and techniques.

Qualitative research is an interdisciplinary, and sometimes counterdisciplinary, field

(Nelson, Treichler, & Grossberg, 1992). A qualitative researcher may be seen as

bricoleur, a jack-of-all-trades, a kind of professional do-it-yourselfer (Lévi-Strauss,

1966).

Qualitative research uses a small number of samples, rather than a large number

of random samples. The data is then categorized into patterns as the primary basis for

organizing and reporting results. Quantitative data can be measured, while qualitative

45

data normally cannot be put directly into contexts that can be graphed or displayed by

mathematical terms.

Table 18

Differences between Quantitative and Qualitative Method (Note. From Becoming

 Qualitative Researchers, by Glesne, C, 2006, Boston: Pearson. Copyright 2006 by

Pearson Education Inc. Adapted with permission)
 Quantitative Methods Qualitative Methods
Assumptions • Social facts have an

objective reality
• Variables can be

indentified and
relationships measured

• Reality is socially
constructed

• Variables are complex,
interwoven, and difficult to
measure

Research
Purposes

• Generalizability
• Causal explanations
• Prediction

• Contextualization
• Understanding
• Interpretation

Research
Approach

• Begins with hypothesis and
theory

• Uses formal instruments
• Experimental
• Deductive
• Component analysis
• Seeks the norm
• Reduces data to numerical

indices
• Uses abstract language in

write-up

• May result in hypothesis
and theory

• Researcher as instrument
• Naturalistic
• Inductive
• Searches for patterns
• Seeks pluralism, complexity
• Makes minor use of

numerical indices
• Descriptive write-up

Research
Role

• Detachment
• Objective portrayal

• Personal involvement
• Empathic understanding

Converting contextual data to quantifiable numeric data results in the loss of a

large portion of the understanding of the phenomenon from the point of view of the

participant and its particular social and institutional context (Kaplan & Maxwell, 1994).

Quantitative research focuses mainly on numbers, whereas qualitative research focuses

46

on context. Myers (2009) argued that losing many of the social and cultural aspects of

organizations is a major disadvantage of quantitative research. He also mentioned that

“the quantitative researcher trades context for the ability to generalize across a

population” (2009, p. 9).

Table 19

Strengths of Qualitative Methods
Merits

1. Qualitative research is useful for describing the complex phenomenon
2. Qualitative research can conduct cross-case comparisons and analysis
3. Qualitative research describes in rich detail phenomenon as they are situated and

embedded in local context
4. Qualitative research is useful for describing the complex phenomenon
5. Qualitative research is useful for studying a number of limited cases in depth
6. Qualitative research provides individual case information
7. Qualitative research is useful for describing the complex phenomenon
8.

9.

10.

11.

12.

13.

14.

15.

16.

Qualitative research can conduct cross-case comparisons and analysis
Qualitative research describes in rich detail phenomenon as they are situated and
embedded in local context
Qualitative research provides description and understanding of people’s personal
experience of phenomenon (i.e., emic or insiders’ viewpoint)
Qualitative research determines how participants interpret the constructs
Data are usually collected in naturalistic settings
Qualitative research is responsive for local situation and conditions
Qualitative researcher is responsive for the change that might occur during the study
Qualitative uses an important case to vividly demonstrate the phenomenon to
readers of a report
Qualitative research determines idiographic causation (i.e., determination of cause
of particular events)

Table 18 displays differences between quantitative methods and qualitative

methods. There are many different qualitative research approaches including action

research, case study research, anthropology, ethnography, grounded theory,

hermeneutics, semiotics, and phenomenology. All these qualitative research methods

47

have a number of strengths, as shown in Table 19. Qualitative research has also several

weaknesses as shown in Table 20.

Table 20

Weakness of Qualitative Methods
Weaknesses

1. Knowledge produced might not be generalized to other people in other places, and
at other times (i.e., the research results are applied to only particular people, in
particular places, and at particular time)

2. It is difficult to make quantitative prediction
3. It is more difficult to test hypothesis and theory with a large participant pool
4. It takes more time to collect data compare to quantitative methods
5. Data analysis is often time-consuming
6. Research results can be easily influenced by researcher’s personal biases and

idiosyncrasies

Qualitative Research Methods in Information Systems

Quantitative research methods have been dominant research methods in

Management Information systems (MIS). However, some prominent Information

Systems (IS) researchers recently recognized the strengths of qualitative research

methods and started to apply them to their research efforts. The interest on the qualitative

methods has increased among many research communities due to the dissatisfaction with

the type of research information produced by quantitative methods (Van Maanen, 1982).

As identified by Benbasat, Goldstein, and Mead (1987), the roots of the dissatisfaction in

quantitative methods include (1) complexity of multivariate methods, (2) the distribution

restrictions inherent in the use of quantitative methods, (3) the large number of samples

required, and (4) difficulty in understanding and interpreting the research outcomes

generated through complex quantitative methods. Another reason why IS researchers

48

turned their eyes to qualitative methods can be found in the research results published by

Baroudi and Orlikowski (1989). They conducted extensive research to discover the

statistical power of papers published in leading journals in MIS. The statistical power is

an important measure to any research using statistical inference testing. Their research

survey reveals that the statistical power of those papers is, on average, substantially

below accepted norms. Surprisingly, Baroudi and Orlikowski claimed that researchers in

MIS typically have a 40% chance of not recognizing the observable fact under study,

even though it, in fact, may exist.

There is much evidence that qualitative methods are considered as an appropriate

method in MIS research. In 1999, MIS Quarterly, one of leading MIS journals, published

a special issue on intensive research in information systems using qualitative,

interpretive, and case methods to study information technology. Markus and Lee (1999)

employed the term “intensive research” originally suggested by Weick (1984) to signal

the variety of methods that are commonly called qualitative research. As a result of this

special issue, nine articles related to qualitative methods were published. More recently,

MIS Quarterly published another special issue on action research in information systems

in September, 2004. In the forward of that special issue, Baskerville and Myers (2004)

believed that action research methods could improve practical relevance in IS research.

The lack of relevancy to practice found in many papers published in leading MIS journals

has been a big issue. Benbasat and Zumud (1999) addressed this issue and provided many

good suggestions to overcoming the lack of relevance to practice. It is noticeable that

qualitative methods are considered by prominent MIS researchers to be valid methods to

provide practical knowledge.

49

In 1997, Myers (1997) established a website to support novice and experienced

qualitative researchers in information systems. The qualitative research at that time was

still new within the information system field, so Myers thought creating a living scholarly

resource would provide a focal point for the emerging qualitative research community.

His website is filled with abundant information on how to conduct, evaluate, and publish

qualitative research. In 2000, the International Conference on Information System (ICIS)

held a panel discussion to assess the merits of Markus’ article (1983), which was one of

the most cited empirical examples of qualitative research in information systems. More

recently, the ICIS held in Milwaukee in December 2006 also established one separate

section just for qualitative research methods and provided panel discussions on

qualitative methods.

As mentioned earlier, there are various qualitative methods. Among them, four

qualitative research methods will be discussed here in terms of how they are utilized in

the MIS field.

Case Study Research

According to the study of Orlikowski and Baroudi (1991), case studies are the

most common qualitative method. Their study reveals that over 90% of 155 information

systems research articles published between 1983 and 1988 in leading MIS journals

(Communications of the ACM, MIS Quarterly, Proceedings of International Conference

on Information Systems, and Management Science) employed case studies, laboratory

experiments, or surveys. Among the three categories, the case studies account for 13% of

the whole papers. Alavi and Carson (1992) also examined and analyzed 908 MIS articles

published from 1968 to 1988 in eight core journals (Communications of the ACM, Data

50

Base, Decision Science, Harvard Business Review, Journal of Management Information

Systems, MIS Quarterly, Management Science, and Sloan Management Review). Their

research results showed that 146 articles or 33.4% of the sample were field studies and

among them, case studies account for a total of 40 articles. Some of MIS papers that

discuss or employ case studies are listed in Appendix H.

Action Research

 Baskerville and Wood-Harper (1996) explain how IS researchers might employ

action research in MIS. Avison, Lau, Myers, and Nielsen (1999) argue that researchers

should try out their theories with practitioners to make academic research more relevant.

A recent paper written by Fruhling and De Vreede (2006) demonstrates how action

research can be utilized in a real situation and in a real organization. A paper published

by Ytterstad, Akselsen, Svendsen, and Watson (1996) also shows a good empirical

example of action research. Appendix H lists some of papers related to action research.

Ethnography

Ethnography has become more broadly employed in the organization study in

information systems since early pioneering work by Wynn (1979), Suchman (1987), and

Zuboff (1988). Orlikowski (1991) applied the ethnographic method to study how

information technology deployed in work processes facilitates changes in forms of

control and forms of organizing. Preston (1991) also examined the problems in and of

management information systems using the ethnographic method. Davies and Nielsen

(1992) discussed the ethnographic study of configuration management and

documentation practices in an information technology center. Myers (1999, p.1) has

argued that “ethnographic research is well suited to providing information systems

51

researchers with rich insight into the human, social, and organizational aspects of

information systems.” Appendix H shows more published papers in the area of

ethnographic study.

Grounded Theory

Orlikowski’s (1993) paper is considered one of the best examples of grounded

theory in information systems. This paper was recognized as the best MIS Quarterly

paper of the year for 1993. In this paper, Orlikowski used a grounded theory research

approach to develop theoretical framework for conceptualizing the organizational issues

around the adoption and use of CASE (Computer Aided Software Engineering) tools.

Due to the usefulness in developing context-based, process oriented descriptions and

explanations of the phenomenon, grounded theory approaches are becoming common in

information systems research. Some of papers related to grounded theory are listed in

Appendix H.

52

CHAPTER III

RESEARCH METHODS AND PROCEDURES

Introduction

In this study, data was collected and analyzed using a qualitative method. In

particular, case study research was utilized as the research method and grounded theory

as the mode for analysis. After the rationale for selecting the case study research is

described, the type of case study and the unit of analysis are explained, followed by a

description of the site selection process, and an explanation of the data sources. Finally,

the methods and procedures for the case study research and grounded theory are

presented.

Rationale for Selecting Case Study Research

As mentioned in the introduction section, two in-depth case studies were

employed as a research method for two primary reasons. First, a case study has the

capability of scrutinizing a phenomenon in its natural settings and utilizing multiple data

collection methods to gather information from one or more people, groups, or

organizations (Benbasat & McFarlan, 1984; Bonoma, 1985; Kaplan, 1985; Stone, 1978;

Yin, 1989a). Second, a case study is known to be a well-suited method for capturing the

knowledge of practitioners and developing theories from it (Benbasat et al., 1987).

There are three well-known reasons why case study research can be considered as

a viable information systems research method (Benbasat et al., 1987). First, the research

is carried out in a natural setting, the current state of the art can be learned, and theories

can be generated from practice. Second, “how” and “why” questions can be answered;

53

that is, the nature and complexity of the process taking place can be understood. Third, a

case study is an appropriate way to research an area in which few previous studies have

been done. Based on the literature review, employing a case study is very appropriate to

explore the issues and challenges of the Scrum software development method, where

research and theories are at the early formative stages.

Type of Case Study Research

There are at least six main different types of case studies (Yin, 1993). The case

study research can be conducted with a single case or multiple cases. A single case study

concentrates on a single organization or situation, whereas a multiple case study includes

two or more instances within the same study. Further, a case study can be categorized as

an exploratory, explanatory, or descriptive study regardless of single or multiple cases.

An exploratory case study is typically employed to define the questions and hypotheses

for a subsequent study or to determine the feasibility of the research procedures. An

explanatory case study is used to identify cause-effect relationships. A descriptive case

study illustrates a case study may fall into one of at least six (3x2) basic types of case

studies as shown in Table 21. In this study, multiple-cases (two organizations) with an

exploratory and a descriptive point of view were selected.

Table 21

Six Different Types of Case Studies

Type Single-Case Multiple-Case
Exploratory Exploratory with Single-Case Exploratory with Multiple-Case
Explanatory Explanatory with Single-Case Explanatory with Multiple-Case
Descriptive Descriptive with Single-Case Descriptive with Multiple-Case

54

Figure 7. Basic types of design for case studies.
(Source: Yin, 203, p. 40)

Unit of Analysis in Case Study

 Defining a unit of analysis within a particular case is critical both in the design

and analysis phase of the case study (Yin, 2003). In the design phase, a well-defined unit

of analysis can give researchers boundaries for the study which lead to an appropriate

literature review and adequate data collection. In the analysis phase, research findings can

be generalized to specific theoretic propositions about the defined unit of analysis. In

addition, the unit of analysis becomes the main analytic level for the case being studied.

Yin has suggested four different types of designs for case studies (see Figure 7). Both

single-case and multiple-case study can have a unitary unit or multiple units of analysis.

55

Thus, the four types of suggested case studies are single-case holistic designs (Type 1),

single-case embedded designs (Type 2), multiple-case holistic designs (Type 3), and

multiple-case embedded designs (Type 4). Yin also mentions that there are five

rationales for launching single-case designs including (1) the case represents the critical

case in testing a well-formulated theory, (2) the case represents an extreme case or a

unique case, (3) the case is representative or typical case, (4) the case is revelatory case,

i.e., few researchers had previously investigated the case, and (5) the case is the

longitudinal case (studying the same single case at two or more different points in time).

In this study, the Type 3 design (multiple-case with a single unit) was used. Thus

the main unit of analysis was the entire software development process of Scrum (see

Figure 8). This main unit will include all of the organizational and technical activities

taking place over time.

Figure 8. Multi-case design used for the research.

Site Selection

Two research sites were selected for their similarities as well as their differences,

based on the technique of theoretical sampling (Glaser & Strauss, 1967). Both

56

organizations chosen for this study have used Scrum for the past few years in their

systems development processes. The Scrum method in both organizations was integrated

in every aspect of their software development processes, including planning, analysis,

design, coding, and testing. While one organization has been providing large-scale and

mission-critical applications, the other organization has been providing small- and

medium-scale applications. The two organizations also differ on size, industry, and

location. These differences between the organizations provide useful contrasts to be made

during data analysis. One organization produces large-scale and mission-critical

applications will be called the ABC firm, while the other organization will be called the

XYZ firm. The next section briefly describes the background of these two firms.

ABC Firm

The ABC firm has been providing mission-critical public safety software to police

departments, fire departments, 911 dispatch centers, sheriff’s offices, and airport

authorities since 1978. Due to the nature of software related to the public safety, a small

glitch in the company’s software can cause severe disasters or casualties. The ABC firm

has strived to meet the highest standard of robustness and reliability because of their great

impacts on the public safety. As of this paper, nearly 600 agencies and over 30,000 public

safety officials in the United States use the company’s software, which includes a records

management system, a computer-aided dispatch system, a fire/emergency medical service

management system, and a jail management system.

The jail management system was recently re-designed and developed using the

Scrum method, with five to eight software engineers working for more than two years.

The jail management system was mostly developed using the C sharp (C#) computer

57

programming language on the Microsoft .Net platform for front-end graphical user

interfaces and C UNIX programming language for the management of a UNIX-side

database system. The jail system consists of more than a million lines of code. The

company has a total of 30 software developers, product managers, and Quality Assurance

(QA) personnel in the software development division and has been using Scrum since

April, 2005.

About four months after the company decided to use the Scrum method, the main

part of the company moved to a different city which is about 100 miles away from the

original site. The company kept the two work places for about a year, with the software

development team divided between the two locations.

XYZ Firm

The XYZ firm has been providing internet-based database applications primarily

to clients in the government sector for over fifteen years, with products in vital

statistics/records, environmental water quality and human services. Some current clients

include the Environmental Protection Agency, the Federal Aviation Administration

(FAA), the States of Arizona and Montana, and the District of Columbia. The firm has

been using the Scrum software development method and has successfully completed

several projects, including a vital statistics, electronic birth and death registries system, a

Safety Programs Airmen Notification System (SPANS), and an emergency medical

system.

SPANS, which was built using Microsoft’s .NET framework, was re-designed

and developed to assist the Federal Aviation Administration Safety Team (FAAST) in

meeting their goals of providing airmen with safety program information and notification

58

in the timeliest manner possible, while providing an easy way for airmen to make

suggestions to the safety program for needed information. SPANS also allows the FAA to

keep in touch with airmen and alert them to safety seminars, events, and important

changes that affect them, both regionally and nationally.

Comparison of Two Firms

As discussed previously, ABC and XYZ operate in different markets. The

duration of a project at ABC firm is longer than one at XYZ, with the average duration of

projects at ABC being 1-2 year(s) and at XYZ 3-6 months. ABC utilizes various

computer programming languages, such as Java, C, C++, C#, and Perl, on both UNIX

and Windows operating systems. XYZ mainly uses Java and HTML-based web

programming languages on the Windows platform. Table 22 summarizes various

differences between the firms.

Data Sources

In an attempt to gather data, three types of data were collected from both firms to

triangulate findings and enhance trustworthiness (Gall, Gall, & Borg, 2003; Glesne,

2006). First, observations of software development process was conducted through on-

site visits and field notes were taken during the observation to make the strange familiar

(Erickson, 1973). Second, an email survey was developed and conducted among software

developers, QA personnel, and managers. The survey instrument was mainly used to

refine interview questions. Finally, a formal face-to-face interview was conducted with

executive officers, project managers, lead software engineers, and developers. All of the

formal interviews were audio-taped, transcribed, and later coded for analysis. This

59

triangulation in the process of data collection provides more useful information and

different perspectives on the issues, allows for cross-checking, and yields stronger

substantiation of constructs (Eisenhardt, 1989; Glaser & Strauss, 1967; Pettigrew, 1990).

Table 22

Differences Between ABC and XYZ Firm
Categories ABC Firm XYZ Firm
Main
Applications

• Jail Management System,
• Computer Aided Dispatch

System
• Fire/Emergency Medical

Service System
• Records Management

System

• Vital Statistics/Record
System

• Environmental Water
Service System

• Human Service System

Size of Projects Large-Scale Small/Medium-Scale

Mission-critical
Projects

All applications are mission-
critical

Some of applications are
mission-critical

Average
Duration of
Projects

1-2 year(s) 3-6 months

Computer
Languages

Java, C, C++, C#, Perl

Java, HTML

Development
Platform

Unix and Windows System Windows System

Data collection focused on issues and challenges of Scrum. It sought information

on: empirical process control (visibility, inspection, and adaptation) in Scrum; the roles of

the product owner, team members, and Scrum master; the daily Scrum meeting, the daily

Scrum of Scrums meeting, the Sprint review, and the Sprint planning meeting; the

product backlog, the Sprint backlog, and burndown charts; the flow of Scrum process;

user involvement; training; documentation; communication; individual and team

60

experience with Scrum; applicability of Scrum; bug tracking system; project estimation

and planning; and the working environment.

The first field study was conducted within the ABC firm. During the field study,

which lasted for about 8 months, daily systems development activities under the Scrum

process, such as the daily Scrum meeting, the Scrum of Scrums meeting, the Sprint

planning meeting, and the Sprint review meeting, were observed. In addition to the

observation, an email survey was conducted among 15 people including developers,

Quality Assurance (QA) personnel, and project managers. The following open questions

were used as survey questions:

1. What have worked and have not worked for you on a project since you began
using Scrum?

2. What are the most unique and interesting aspects of Scrum?
3. What have you learned from Scrum?
4. What would you do next time with Scrum?
5. What advices do you have for others involved in Scrum?
6. Do you have any comments or opinions on any of the following Scrum

process?
a. Daily Scrum meeting
b. Daily Scrum of Scrums
c. Sprint planning meeting
d. Sprint review meeting
e. Product backlog
f. Sprint backlog
g. Scrum master

Some of selected project team members, including developers, lead engineers,

project managers, and executive officers were interviewed both informally and formally.

Each informal interview took an average of a half an hour and summary notes were

taken. The formal interviews took an average of one hour and were audio-taped and

transcribed later. Table 23 shows the number of people, type, and amount of interviews

conducted at the ABC firm.

61

Table 23

Type and Number of Interviews Conducted at ABC Firm
Position (number of people) Informal Interview Formal Interview Total

VP in R & D Department (1) 2 1 3

Project Manager (2) 5 2 7

Lead Engineers (2) 4 2 6

Developers (7) 14 5 19

Total (12) 25 10 35

The second field study was conducted within the XYZ firm. The field study,

which started with an informal interview with an executive officer, took about 4 months.

The Scrum processes in 5 Scrum teams were observed and an email survey was

conducted among developers, QA personnel, and project managers. The same survey

questions used at ABC were utilized. Informal and formal interviews were conducted

among 10 people including developers, project managers, a director of operations, and a

senior vice president of operations. Table 24 shows number of people, type, and amount

of interviews conducted at XYZ.

At each site, the observation was conducted in both observe-only mode and in a

mode where a participant observer was allowed to talk. Various levels of individuals,

such as developers, lead engineers, project managers, and executive officers, were

selected to provide data from multiple levels and perspectives. This was done to answer

Leonard-Barton (1990, p. 249), “In order to understand all the interacting factors, it is

necessary that the research methodology slice vertically through organization, obtaining

data from multiple levels and perspectives.”

62

Table 24

Type and Number of Interviews Conducted at XYZ Firm
Position (number of people) Informal Interview Formal Interview Total

Sr. VP in Operations (1) 2 1 3

Director of operations (1) 2 1 3

Project Manager (2) 3 2 5

Developers (6) 6 6 10

Total (10) 11 10 21

While the primary unit of analysis was the Scrum software development process,

the collection of inter-related data at other levels of analysis (Pettigrew, 1990; Yin,

1989a, 1989b) was considered. All the formal interview questions were semi-structured,

and the complete list of interview questions was listed in Appendix E.

Grounded Theory

In the process of data analysis, grounded theory (Glaser & Strauss, 1967; Martin

& Turner, 1986; Turner, 1983) was employed with an aim of generating descriptive and

explanatory theory associated with Scrum software development process. This approach

has been effectively utilized in organizational research (Anacon, 1990; Elsbach & Sutton,

1992; Isabella, 1990; Kahn, 1990; Pettigrew, 1990; Sutton, 1987). Grounded theory is

“an approach to theory development that involves deriving constructs and laws directly

from the immediate data that the researcher has collected rather than drawing on an

existing theory” (Gall et al., 2003, p. 626). Sometimes, it would be better for researchers

to collect data and analyze them without conducting a review of the literature beforehand

63

(Glaser, 1978). The main purpose of grounded theory, which was initially developed by

Straus and Corbin (1988), is to “demonstrate relations between conceptual categories and

to specify the conditions under which theoretical relationships emerge, change, or are

maintained” (Charmaz, 2002, p. 675).

64

CHAPTER IV

DATA ANALYSIS AND RESEARCH RESULTS

This chapter describes the process of data analysis and empirical findings through

grounded theory study of two firms that implemented Scrum in their software

development processes. Concepts suggested by the open coding of raw data and recurring

themes identified from axial coding are also explained.

The Process of Data Analysis

In the first stage of data analysis, all the data produced by observations, email

surveys, documentations and interviews were examined and coded by focusing on the

issues and challenges of Scrum identified using the empirical processes controls and the

Scrum framework (roles, ceremonies, and artifact). In the first round of data analysis, an

open coding technique (Straus & Corbin, 1990) was used to identify possible concepts,

along with their properties and dimensions. The open coding technique involves a form

of content analysis where the data is read and categorized into concepts that are suggested

by the data rather than imposed from the outside (Agar, 1980).

In the second round, the codes were reviewed, and the concepts were organized

into recurring themes. These themes were used later as a basis for creating a set of stable

and common categories. During the second round of data analysis, the documents were

re-read, and analytic and self-reflective memos were created. The final stage of data

analysis was completed through an axial coding (Straus & Corbin, 1990) which depends

on a synthetic technique of making connections between categories and subcategories to

build a more comprehensive scheme. During this stage, all the codes were searched,

65

sorted, grouped, and compared to the original data. This process continued until a final

series of categories were identified, each having a high frequency of occurrence in the

data. Figure 9 illustrates the process of the data analysis. In the following section, each of

the concepts and categories found in the ABC and XYZ firm is presented and discussed.

Figure 9. Data analysis process.

ABC Firm

ABC has about 30 software engineers in five development teams in the software

division. ABC used a waterfall style traditional software development method for more

than 20 years before they changed to the Scrum method. To test the success of Scrum

method, all software engineers in the firm were invited to 2 days-long, 8 hours intensive

Scrum training sessions, which were conducted by one of leading training experts in this

66

field (AgileLogic, 2006). The firm then reorganized their development teams following

the Scrum model. Each team consists of four to seven software engineers, a Quality

Assurance (QA) person, a Scrum master, and a Product Line Manager (PLM). These

teams are specialized in the area of interface, jail, record, mobile, and architecture.

When Scrum was first introduced to the firm, most developers were reluctant to

adopt a new method due to their previous experience with traditional development

methods. However, they began to enjoy several unique features of Scrum as they

exercised its’ various elements. In general, most elements of Scrum were successfully

adopted and implemented with minor modifications dealing with meeting schedules and

the open working environment. The following sections explain sixteen concepts that

appeared in the data analysis process.

Table 25 lists the categories, concepts, and data related to ABC. As shown in the

table, the factors of human resource management, structured development process,

environmental, and information systems and technology were constructed. The concepts

comprising these categories are discussed in the following section.

Human Resource Management Factor

 The concepts of team management, collaboration, training, lack of accountability,

and trust and confidence constitute the human resource management factor. Each concept

is discussed in turn.

Table 25

Categories, Concepts, and Data Related to ABC
No. Common

Categories
Concepts Data

1 Human
Resource
Management
Factor

Team Management • Teams were reorganized without considering developers’ knowledge
and skills

• Self-managing team does not work well
• Team needs a supervisor who can see a big picture
• Small team size is more flexible and adaptable in defining and

applying a variant of Scrum
Collaboration • Developers and QA does not collaborate

• Developers do not try to get to know new developers in remote site
• Several teams simultaneously work on “look and feel” design that

should be implemented by a designated team
• Tools are used to reduce collaboration problems

Training • New employee training is one of the biggest problems
• Because of the complex nature of the system, new employees need

to spend a lot of time to be trained
• Employee training problem gets worse when two development sites

are involved
Lack of Accountability • Tasks in a Sprint backlog do not get completed

• Nobody takes responsibility on delayed tasks
• Self-managing Scrum team provokes the lack of supervision
• Project managers do not have any authority to control developers

Trust and Confidence • Scrum master does not remove developer’s impediments
• Trust and confidence are lost when people do not complete their

work
• It is important to know who you are talking to and what level of

information they have

(table continues) 67

2

Structured
Development
Process Factor

Scrum Framework • The Scrum model defines a product backlog, helps prioritize tasks,
keep track of task assignments, and helps monitor task progress

• Scrum increases our communication in the team. There seems to be
better team work using the SCRUM model.

• Daily Scrum meeting is utilized by team members to understand
what other members are working on and identify obstacles to
overcome

• Scrum master is selected from non-technical person
• A group of Scrum masters have a daily Scrum of Scrums meeting
• Daily Scrum meeting is held too often
• Sprint planning meeting occupies too much time

Unit and Integration
Testing

• A QA person needs to wait until developers finish their coding
• Developers do not want to review the code that they finished during

the previous Sprint
• QA people want developers to set aside some time for bugs
• QA people may not know what areas could be affected by the

changes made by developers
Coding Standard • Developers can understand other developer’s code better through

coding standards
• Too much coding standards may hamper developers performance

Documentation • Detailed design documents were reduced significantly
• (Example of documents: use cases, class diagram, sequencing

diagram, activity diagram, communication diagram)
• Quick implementation without creating a document can cause ripple

effects that damage other parts of the project
• No one takes time to think about inter-dependency
• Bug rate is increased because of reduced documents which lead to

the lack of standardization of features, field names, and error
messages

(table continues) 68

Formal Code Review • A web-based code review tool was created by a project manager
• Reviewers checked if there were any side and ripple effects to other

code
Formal code review was a vital and critical process for high-quality
applications

3

Environmental
Factor

Customer Involvement • Customers cannot participate in Scrum meetings due to the large
number of customers scattered in the U.S.

• Project managers spend lots of hours to visit customers
• The firm hosts a users’ conference where customers can vote for or

against a policy and a direction of new application development
• QA personnel cannot provide customers with quick turn around on

bug fixes
Working Environment • Open working environment promotes communications, facilitates

self-organization, and makes developers to get together easily
• We are constantly distracted by the person we work with in a cubicle

setting
• Putting every team member in one cubicle area increases

collaboration and teamwork
Interdependency among
Modules

• QA department has found twice as many bugs since the firm
switched to Scrum

• As the size of application grows, the dependencies and
interconnections among tasks increase

• Developers have a tendency to complete a task in a quick and dirty
way

• Developers do not think of how code will be maintained and the
code will be flexible enough for future needs

(table continues)

69

Social Facilitation,
Social Loafing, Group
Motivation, and
Evaluation
Apprehension

• Social facilitation effect and group motivational gains were observed
as factors that reduced development times and lowered bug rates

• Evaluation apprehension was observed when the company invited all
of developers, QA personnel, and people in other to the Sprint
review meeting

4

Information
Systems and
Technology
Factor

Communication System • The firm put a lot of efforts to establish a good communication
channel

• Video conference equipment was used only for team meetings
• Phone conferencing did not provide facial expression, gesture, and

body language
• A web demo tool together with a phone system worked very well
• Some of tools including instant messaging, email, virtual private

networking, and remote desktop were also used
• Multimedia systems did not work as optimally as face-to-face

conversation
• If data line is down employees cannot do anything

Information and
Knowledge Sharing
System

• Well-structured information and knowledge sharing systems are
needed between experienced developers and brand new developers

• A web-based Wiki program is used to facilitate the information and
knowledge sharing

• The Wiki program helps to mitigate the problem between two sites
Bug Tracking System
and Management Tool

• A Unix-based bug tracking system called MOM is utilized by
different departments

• The level of bug severity is assigned to each bug
• A commercial tool called JIRA is adopted
• JIRA is used to record defects found in alpha and beta testing and in

standard code
• JIRA provides filter functions and severity priority codes that rank

the level of severity of bugs
• JIRA does not provide a decent search engine

70

 71

Team Management. In terms of development times and costs, Scrum was not very

effective during the first two months after ABC switched to the Scrum method. They

attributed this undesirable fact to the inappropriate composition of the development

teams. The teams were reorganized without considering knowledge and skills of the

developers. Therefore, some team members had to learn business logic (how the

application works in a specific field) that they were not familiar with, and others needed

to learn new development tools and programming languages. As a result, it took longer

development times and more development costs. A project manager stated:

Teams cannot be thrown together. The team needs to be built. Without the right
mix of team members Scum development is much slower. You can still succeed
with Scum development. But without all members working together, building the
team, the interest, and the enjoyment, you are not going to have the success and
the energy from the team that the Scum development can bring.

 Some developers dislike a self-managing team though this is identified as one of

the unique aspects of Scrum. They prefer to have a team lead who can keep things going

in the right direction. They think the Scrum master might be a good candidate to do this

job. One developer added:

I’m not sure that I like having the group of developers run the team. I would still
prefer having a team lead type of person who can work with the team to help
focus and keep things going in the right direction. I think the Scrum master should
be doing this but I think this person needs to be more technical. I don’t think this
person should take the team over however, I think they should just help focus the
team on the right priorities.

Another developer also mentioned that, “Our teams aren’t very good at self-managing,

we’re more used to someone being in charge.” A QA person revealed another possible

problem with teams, developers given too much power to runs the team. He vented that

“our problem was when team members didn’t interact well with other members of the

 72

team.” One developer expressed that a self-managing team was strange to him, and he

wanted to have a supervisor who can see the big picture. He stated:

When we are going to take vacation/sick leave, we report to our team members
rather than a manager. I’m not sure if that’s good or bad, but it seems strange to
me. It sometimes feels like we don’t have much supervision, which I personally
like, but we seem to lack a person or group that is trying to see the big picture.

However, most of developers consider a self-managing and self-organizing team a

great idea. One developer stated that, “The part of Scrum that has worked the best for me

is the idea that the team decides how to do things based on the consensus of the team.”

Another developer mentioned, “There seems to be better team work using the Scrum

model. I like the idea that the team has more control over how the development is done

and completed.” A project manager added, “Team work is very important! The most

interesting and unique part of Scrum has been better team work.” The firm tried to keep

the size of Scrum team as small as possible, believing that teams can be more flexible and

adaptable in defining and applying an appropriate variant of Scrum. A vice president of

software R&D department stated:

It seems the Scrum method provides better team work through the Scrum
framework. We keep each team as small as possible as recommended by the
Scrum method, and it appears that a small Scrum team is more efficient when
implementing various components of Scrum.

Collaboration. When ABC first adopted the Scrum method, five Scrum teams

were organized and each team had a Quality Assurance (QA) person who was designated

to test the code created by his/her own team. Recently, the company pulled the QA

person from each Scrum team and created a QA personnel-only Scrum team so that a QA

person can test the code generated by any Scrum teams. Because the QA Scrum team is

located in one place, it sometimes causes collaboration problems between remote site

 73

developers and QA personnel. For example, when developers in a remote site pass the

code over to QA personnel through the Concurrent Versions System (CVS), QA

personnel may not know which part of code is affected by the changes that developers

made. A lead engineer noted:

The development was kind of passed over to QA and they took care of testing.
But the problem with that is QA may not know what particular area could be
affected. So, they cannot test the area which might be broken by the changes
made by developers.

This problem might be solved if developers take on some parts of QA’s testing or show

the QA personnel the potential areas that might be affected by the modification done.

Another collaboration problem arose when new developers of the Scrum team

were hired in one location. Developers in the other location did not try to get to know the

new developers. One developer put it this way:

When new members of the team were hired at the other site, it was easier for team
members here not to really put any effort into getting to know that person and
learning how best to work with them. This problem was especially bad when the
new members had some personality characteristics that made them a little
annoying or perhaps difficult to develop a desire to want to work with them.

This issue mainly resulted from the way the Scrum team is divided at two different sites.

It would be better for the company to reorganize the Scrum team so that team members

are located at the same place.

One notable observation occurred at a daily Scrum of Scrums meeting with the

firm’s vice president of software development. Duplicates works were found across

Scrum teams due to a lack of collaboration among the different teams. It was also noted

that ABC had a difficult time keeping the product output consistent across teams. For

example, several teams may simultaneously work on the “look and feel” design that

 74

should be implemented by a designated team (e.g., an architecture team). This implies

that there should be a person (possibly a Scrum master in each team) who is responsible

for checking the consistency of products across Scrum teams. It was noted that the

inconsistency and duplicates across different teams could negatively affect the efficient

product management.

Other collaboration problems arose when developers and support staff discuss

how to divide and assign tasks between the two sites in the Sprint planning meeting and

how to track bugs reported by QA personnel and customers. To reduce the collaboration

problems in this area, the firm has been using a web-based commercial tool called

VersionOne (http://versionone.com), which has provided an excellent project

management mechanism for both sites. Through VersionOne, developers at both sites can

actually see how each project is divided, what projects are going on, the status of each

project, who is working on each project, and when those projects are expected to be

completed.

Recently, the company picked another commercial tool called JIRA

(http://www.atlassian.com/software/jira/) to track information mainly on what kinds of

bugs exist, who is working on each bug, and the status of each bug. JIRA actually

replaced an old tool called MOM, which was developed internally and used to create

information for support problems. However, using JIRA has some downsides. A project

manager aired this issue:

But it (JIRA) also has drawbacks. We’ve now broken up for instances, the fixed
description, the problem, various fields, and who’s worked on it. But in JIRA, you
can’t search. If you are looking for some word in the problem somewhere, you
have to search each and every individual field. So, if you think, for instance, some
value is in there in fields other than the comments, summary, and description, you

 75

must put the value in each field and then search individually. And searching is not
near as good as MOM had. For instance, you can only search on whole words.
You have to have the beginning of word. You can’t search for the value within a
word.

Despite the downsides, JIRA has been providing developers with a useful bug tracking

mechanism for both sites. JIRA also has a special code, called the severity or priority

code, which enables support people to automate the choice on what bugs to work on next.

VersionOne and JIRA play a vital role in the company towards reducing collaboration

problems that can arise in tracking and managing projects and bugs.

Training. New employee training issues emerged when information and

knowledge-sharing issues and communication issues were brought up. A couple of

project managers mentioned that one of the biggest problems that the company has been

facing is new employee training. Because of the complex nature of the software program

that the firm has been creating, new employees need to be trained for an extended period

of time. A project manager noted that:

due to the complexity of our application, new software engineers need to spend a
good chunk of time to understand various aspects of the system. The typical
employee training program usually lasts six month.

Another project manager added:

“Right now, each Scrum team is in charge of training of new software engineers.
This involves a selection of a mentor who leads and guides the new employee.
The mentor spends a lot of his/her time with the new employee to provide the
necessary knowledge and skills for projects. I think this is a big waste of time
because the mentor in each Scrum team teaches some common parts of the system
that can be taught together with other employees who belong to other Scrum
teams.”

 76

The project manager suggested, “It would be more time-saving if one mentor teaches all

new employees together the common parts of the system, and then let each Scrum team

teach its new employee team-specific parts.”

It seems the problem gets worse when an employee who has expertise in one field

is at the remote site and the new employee needs to learn the new field from the remote

employee. A developer declared, “We often times have a situation where a new employee

needs to know some parts of the system and the person who knows about them is at

different location.” Another developer contributed, “We have some difficulties when we

are involved with other team members, part of the team is here and part of the team is at

the remote site. In particular, when we have a new member here and he/she needs to talk

to other members at a different site.”

To address this problem, the company used multi-media, such as phone/video

conferencing or web demos, but the training through these information technology has

limitations. A developer pointed out, “We use a phone or a video set whenever a new

employee needs to converse with an employee in remote site but it’s not efficient.”

Another developer explains it this way, “You have to have a face-to-face and one-on-one

training in order to make it efficient. You can do the training through the phone or video

conferencing, but it’s not efficient.”

Lack of Accountability. One of the interesting aspects of the Scrum method is the

ability to see the visibility of the progress of each project in every thirty or fifteen days,

depending on the duration of the Sprint. In the Sprint planning meeting, team members

divide items in the product backlog into a set of small and manageable tasks, which will

 77

be entered into Sprint backlog. Based on the estimated completion time for each task, the

set of all tasks in Sprint backlog is determined in such a way that they can be completed

within a month. However, the tasks in the Sprint backlog usually do not get completed as

estimated, and tasks are consistently carried over to the next Sprint Meeting. Moreover,

nobody takes responsibility for that. A project manager noted, “Some tasks just keep

getting carried over to the next month. There does not seem to be any responsibility on

the developer side to complete the task. If they do not, it is o.k. and they hope to do better

the next month in estimating their project.”

Another unique aspect of the Scrum method is self-managed teams, where the

team is managed by the team members without having too much supervision from

outside of the team. As part of the self-managing team, team members in the daily Scrum

meeting choose tasks that they will work on for the day and report what has been done

since the last daily Scrum meeting. However, this setting seems to be not working

properly due to the team member’s lack of accountability on the tasks they chose. This

seems to be a source of delayed projects. A project manager noted, “In the daily Scrum,

there seems to be some lack of ‘what did you do yesterday?’ accountability. And taking

on specific tasks for that day to work on is usually too generic. I believe we have become

too relaxed on what we accept and that encourages some projects to drag over time.”

Another issue is that project managers do not have any authority to urge

developers to work faster or harder. The managers do not take any accountability on

delayed tasks because they do not have any control over that. The project manager

contributed, “When we meet with the management team at the end of the month, no one

seems to take the responsibility for those items not completed. The project managers do

 78

not have any control on getting people to work faster or harder, so it is a little

frustrating.”

Trust and Confidence. Trust and confidence is an issue noticed between

developers and Scrum masters. A Scrum master is supposed to do administrative work,

mainly by helping developers focus on their work, by providing what the developers

need, or by removing developer’s roadblocks. It seems that developers badly want to

have a Scrum master who does the job. However, one Scrum master was unable to get

developers items or information they need and was unable to remove developer’s

impediments. He also did not follow up with developers to explain why he was unable to

help them. A developer mentioned, “We need somebody who is going to be able to get us

what we need and somebody telling us that ‘You’re going to get your information back.’

And we weren’t getting any information back and things weren’t followed up.” As

developers do not get what they need from the Scrum master, they quickly lose their trust

and confidence in the Scrum master. Another developer stated that, “I can’t trust people

who are not doing the job that they are supposed to do or that they said they are going to

do. I lose my confidence when things don’t get done.”

Trust and confidence as an issue was also noticed between developers when

developers worked together on the same project, and they did not see any progress on a

module that was assigned to a developer. A developer mentioned that, “I usually work on

a certain task with other developers, and sometimes I lose my trust if I don’t see any

progress from a task assigned to other developers.”

 79

 The same issue arose if developers were divided into two development sites. For

example, a Scrum team member asks a team member at the other site to do a certain task,

but no progress on the task is visible. It seems developers at one site had a hard time

establishing a feeling of trust in Scrum masters or developers at the other site when they

do not complete tasks, and the lack of trust led to a reduction in confidence. As a

developer stated, “People in one site didn’t trust people in the other site if they were not

able to get the job done. I think that was one of major problems we had. That really hurts

our confidence.” Another developer talks about the level of confidence and wants to

know the level of information that other developer has. He noted that, “I need to be able

to have a confidence level. I think it’s really important to know who you are talking to

and what level of information they have.” He also mentioned, “I work better with people

who I know better so I understand what they are really saying.”

Structured Development Process Factor

 As shown in Table 25, the structured development process factor consists of the

Scrum framework, unit and integration testing, coding standard, documentation, and

formal code review. Each concept is presented in the following section.

Scrum Framework. The majority of developers are in favor of a Scrum

framework. One developer expressed that, “I like how the Scrum model defines a product

backlog, helps us prioritize tasks, keep track of task assignments, and helps us monitor

task progress.” Another developer stated that, “Scrum increases our communication in

the team. There seems to be better team work using the Scrum model. Working in the

Scrum team provides motivation, excitement, and interest.” A project manager also

 80

mentioned that, “I think the Scrum model gives us all a goal to strive for each month.

This is motivating and helps us stay on task.”

In terms of daily Scrum meetings, a couple of teams had a standup meeting and

the rest of teams had a seated meeting. However, the principal of short daily Scrum

meeting time was well observed (less than 15 minutes) by all teams. Several developers

claimed, “it was not necessary to have Scrum meeting everyday when there were no

specific agenda to discuss”, but the majority of developers and QA personnel enjoyed this

daily-based meeting. The daily Scrum meeting also seems to be a good time for team

members to understand what other members were working on and identify obstacles to

overcome. For example, if a developer says, “I am stuck with a certain problem,” other

developers would typically respond with “I can help with that. Let’s get together after

the meeting” or “I don’t know the solution for that but I can look at your problem after

the meeting.” One developer noted that, “I like the daily status updates, especially on

high priority tasks.” Another developer stated, “Through the daily Scrum meeting, team

members are able to refine the goal for each Sprint and improve the quality of products.”

The firm appointed a Scrum master for each of the five development teams.

Because the company believed that the main role of the Scrum master is to provide the

administrative services for his or her team members, the company appointed non-

technical persons as Scum masters. The non-technical Scrum masters sometimes seemed

to be a problem for developers. One developer stated that, “Not having the correct Scrum

master was a problem. Team impediments were not taken care of and often needed to be

repeated, slowing or even stopping progress.” Another developer specified, “Our Scrum

masters don’t have enough technical backgrounds to understand the things that we’re

 81

dealing with. They sometimes had a hard time removing our roadblocks because of their

lack of understanding of our technical stuff.”

The firm also held the Sprint review meeting, called a “products fair”. The

products fair was unique in the sense that developers in all teams, QA personnel, and

people in other department (sales, marketing, customer support) were strongly

encouraged to attend. The firm expected that, given an opportunity to show their

accomplishments during the Sprint, developers would diligently work to make sure that

they are currently on the pre-determined development schedule with appropriate levels of

intermediate deliverables of the products.

The Sprint planning meeting seemed to provide smaller and manageable tasks to

developers. Several developers stated that, “I like the Sprint planning meeting where you

have to breakdown the projects into smaller tasks. This makes it easy to manage big

projects.” Also, the product backlog and burndown chart appeared to help developers to

organize and prioritize the schedule, and track the progress during the Sprint. Several

developers expressed similar opinions, like “I like having product backlog reviews to

organize and prioritize the schedule each month. I also like a burndown chart and its

ability to track our progress during the month.”

Though most of people liked the daily Scrum meeting, some of developers

expressed their worries. One developer stated:

We meet each day as opposed to weekly or bi-weekly. It is good to have
feedback, but sometimes it feels like too much time for not enough value. I don’t
think it is necessary for that much reporting and it takes too much time away from
programming. I think we could report 2 or 3 times a week and still have the
productivity level we now have in our team.

 82

Another developer also mentioned:

“While it is important to deliver quality products in a timely manner, it is also
important to not spend too much time in meetings that do not offer a good return
on their investment. Meetings are an investment for any company and keeping a
good balance requires input from all parties and honest evaluation of time spent.”

Several developers expressed their worries on the Sprint meeting. One of them thought

the meeting occupies too much time. He mentioned that, “on the negative side, I think it’s

a lot more overhead to have the Sprint meetings, which take all day at the end of each

month.”

Some QA personnel also wanted to have a streamlined planning session. One QA

person stated that, “We need to streamline the planning session as much as possible.

Going to meetings repeatedly is not productive.” Finally, one developer didn’t like Scrum

at all. He mentioned that, “Frankly, I don't like Scrum, I don’t think I'd do it given the

choice. I would prefer to simply adopt some of the Scrum methods into current

processes.”

Unit and Integration Testing. When regular teams were reorganized into Scrum

teams, a QA person was assigned to each Scrum team. However, the QA person in each

Scrum team needs to wait until developers in the team finish their coding during the

Sprint, which lasts usually for 30 days. This process causes a problem because the QA

person in each team is always behind the Sprint schedule. A QA manager mentioned:

I find that it's really hard to test code if there's no code to test. So, QA is
always behind the rest of the team. The programmers finish coding within the
Sprint, but QA isn't finished within the Sprint. So, QA is added to the next Sprint.

 83

Another problem with this setting is that when QA people work on the code that

developers just finished in the previous Sprint, they often times need to talk with

developers about the code and developers do not want to go back to the code that they

already checked in. One QA person stated that, “It's like pulling teeth to try to convince

the team that I'm going to find bugs with their code that they just threw together.” QA

people want developers to spend some time to talk about bugs with them. Developers just

want to keep writing code instead of revisiting the code created during the previous

Sprint. Another QA person mentioned that, “Developers really should set aside some

time to address the bugs in a timely manner so that I can continue with testing.”

To mitigate the problem, ABC pulled a QA person from each Scrum team and

created a QA-only Scrum team. The QA-only Scrum team covers all code created by

other Scrum teams. It seems this change has improved the efficiency in testing because

QA people usually have some code to test, and they do not need to wait for developers in

one Scrum team to finish their code. Associated with this setting, QA people were usually

in charge of both unit and integration testing. The firm changed the testing process in

such a way that developers took responsibility for unit testing, because QA people

sometimes do not have the detail picture of the particular area where a developer worked.

An executive officer offered:

QA people are asking for developers to do some testing. In the past, the
development was kind of passed over to QA and they took care of testing. The
problem with that is a QA person may not know what particular areas could be
affected by the changes made by developers.

One developer also mentioned that, “If you know what could be affected, you may focus

your testing just on those areas. But sometimes, QA people do not realize that there is

 84

another area also affected by some of the changes.” Another developer shared his

personal experience:

One time I made some changes in UU command which updates a unit. It turned
out that my change broke UC command which updates call and broke other
commands. But QA people did not do any tests on those areas because they did
not know they were related.

Due to the issues described above, ABC asked developers to do some portion of the

testing that QA people usually cover, but this may not a good move economically for

ABC because developers usually get paid more than QA people.

 Coding Standards. ABC has utilized coding standards. They have very specific

coding standards in many areas to facilitate easily maintainable and expandable code.

ABC’s document on C# coding standards describes comprehensive rules and conventions

that developers should follow. Table 26 displays two coding standard examples

associated with headers and naming conventions. Other coding standard examples are

listed in Appendix D.

By using the coding standard, developers agree that they can understand other

developer’s code better without spending much time. One developer stated that, “I like a

formal coding standard. It gives the same style and format, and this consistency helps me

a lot in understanding other developer’s code.” However, one developer worried about

putting too many coding standards on developer’s shoulders. He stated, “Having coding

standards is good, but too much coercion to the standards may hamper our performance

because we need to look at coding documents back and forth while we are coding to

conform to standards.”

 85

Table 26

C# Coding Standard
Area Sub Area Description
Headers File The copyright notice and the CVS

information are all that will appear
at the top of a .cs file. These will
account for the first 4 lines of each
file.

Class/Delegate/Interface Class headers will be in xml format
to facilitate the automatic
documentation feature. If the class
description is longer than one line,
add a remarks section.

Method/Event Handler Function headers will be in xml
format to facilitate the automatic
documentation feature. If there are
any exceptions thrown in the
function, they must be documented
inside the exception tag in the
function folder.

Properties Class properties should be
documented through ‘summary’
and ‘value’ tag. A remark tag may
be used for more detailed
explanations, but generally will not
be found in properties.

Naming
Conventions

Capitalization Rules Class, Enum type, Event, Interface,
and Method should use Pascal type.
Parameter, Variables, and Protected
should use camel type.

Abbreviations Do not use abbreviations or
contractions as parts of identifier
names. Do not use acronyms that
are generally accepted in the
computing field.

Type Name Confusion Different programming languages
use different terms to identify the
fundamental managed types. Class
library designers must avoid using
language-specific terminology.

 86

 Documentation. After the firm adopted the Scrum process, the amount of

documentation was reduced significantly. For example, detailed design documents

including class diagrams (see Appendix F), sequencing diagrams (see Appendix G),

activity diagrams, communication diagrams, and use cases were reduced or eliminated. A

developer mentioned that, “Before we went agile, we required that detail design

documents were prepared before code was written. But we are not creating detail design

documents anymore.” A QA manager also uttered that, “The detail design documents

were routed to the QA manager, development manager, document manager, and

sometimes to others.” She also explained how detailed design documents were utilized:

As the QA Manager, I read though those documents with a red pen in hand. I
verified that we were standardizing things. If I had questions that were not
addressed in the design about how something should work given a certain
scenario, then I made sure that those questions were answered and the design
document updated. The documentation manager also reviewed the document to
make sure that the error messages, field prompts, reports, etc. were grammatically
correct and that everything was spelled correctly.

A certain amount of documentation seems to be very useful when developers work on a

complex project, try to find and turn around fixes and problems, or need some ideas and

questions for the project. One project manager said:

When we were working on a complex project where we would make one change
and have QA test, then work on the next change, test was very
successful. Documentation was there and notes were taken as we went. We were
able to find and turn around fixes and problems quickly using a document.
Documentation, the input of QA, and others who were familiar with the project,
gave us a wider range of ideas and questions for the project.

Several subjects noticed that the reduced amount of documentation is a big

headache. A project manager worries about quick implementations without creating

detailed design documents. The quick implementations seem to cause ripple effects that

 87

damage other parts of the project. She noted, “One drawback is that there are no detailed

design documents. Whatever the idea is, it's just implemented. No one is taking the time

to think about what effects it may have on others parts of the program.” Another problem

is the increased number of bugs due to the lack of standardization of features, field

names, and error messages. This kind of standardization would have been easily

implemented if the documents had been created. A software tester stated, “There's no

thought put into the standardization of features, field names, error messages, or

anything. It appears that code is just thrown together. So, when I go to test it, it falls

apart.” A QA manager confirmed this statement as she mentioned that, “I'm finding twice

as many bugs since we went to agile as I did before we went agile. Once I have the basic

bugs resolved, then I can really start testing it. And the system doesn't work the way that I

anticipated.” The increase in bugs requires a lot of developer working hours to fix, and

this is a major issue because the code should be re-written. The QA manager cited this

example:

I go to the programmer and they didn't even address the issue because it wasn't
part of the design and they don't know how it should work. I end up calling a
meeting with part of the team to discuss design issues that should have been
addressed prior to the project even being coded. And most of these are not little
design issues that a couple lines of code can fix. These are major issues and
major code re-writes. And then once it's done, I've got to start testing everything
again.

Several developers agreed that design and documentation should be a necessary

part of completing a project. Developers are not in favor of reducing the amount of

documents. A developer explicitly expressed his opinion when he said, “I don’t like the

fact that our design and documentation requirements have lost their focus in Scrum.”

 88

 Formal Code Review. ABC has utilized formal code reviews since they started

producing high-quality software applications. A web-based, formal-code review tool was

created by a project manager in the firm and it has evolved to the current version through

several revisions. When developers write or modify the code, they are required to go

through a formal code review process before they check the code into the central code

repository. Developers need to choose two code reviewers, and one of them is usually a

senior software engineer or a developer who knows the area well. Once the code is

delivered to the reviewers through the web portal, the reviewers provide feedback about

if there is a side effect, a ripple effect to other code, or the code looks good. Developers

and code reviewers sometimes have a meeting to discuss code changes that have a heavy

impact on other modules. In this case, other senior developers or project managers are

invited to the meeting.

 All interviewees agreed that the formal code review was a necessary and essential

step to construct robust applications. One developer declared, “I think the formal code

review keeps us in the right track. We can find inaccurately written code in the initial

development phase and fix mistakes overlooked by a developer.” Another developer

commented, “The formal code review can keep our code from being exposed to

vulnerabilities such as buffer overflows and memory leaks. This process makes our code

more robust and secure.” A project manager expressed the following:

We go through a very thorough code review. Often times, our code review
requires a line by line review. We can avoid a lot of common mistakes by having
two or more people examine the same code though it sometimes takes more effort
and time. It has been proven that our code review process is effective at finding
defects in the code under review. I think the formal code review is a vital and
critical process in creating high-quality software applications.

 89

Environment Factor

 Four identified elements of the environmental factor include 1) customer

involvement, 2) working environment, 3) interdependency among modules, and 4) the

group of social facilitation, social loafing, group motivation, and evaluation appreciation.

They are discussed in the following section.

 Customer Involvement. One of characteristics of agile methods is a constant

customer involvement in every aspect of the software development process. As part of

the customer involvement, a customer representative is required to attend meetings.

However, ABC could not invite customers to all of the meetings, such as the daily Scrum

and the Sprint planning/review meetings, because there are so many customers scattered

across the United State. Instead, product managers visit customers on site or talk to

clients through WebEx to gather the project requirements, to show the progress of the

products, and to obtain feedback from them. A project manager related:

We spend almost a half of our work time in talking to our clients. Through the
conversation with clients, we gather project specifications, show them the
progress of our products, and receive their feedback. If possible, we use WebEx to
show features of the products and some charts and graphs, otherwise, we visit
them on site.

Another project manager spends many of hours visiting agencies and comes back with

project requirements. He then creates a to-do list and a graphical user interfaces for

developers. He mentioned that

I go out to meet our clients and conduct research on what we need in a product. I
come back to company with lots of requirements that our clients want. I produce a
list of things we need to create and talk with developers to develop the product for
our clients. I spent about 9 months last year doing research, going out to visit each
agency. That is my job, just going out and gathering requirements, keeping track

 90

of equipments, putting together wire frames of what the screen should look like,
what kind of data should be on it, and how it should be presented, and then take it
back and review it.

ABC also hosts users’ conference once a year to get feedback from the customers. At

this conference, customers vote for or against a new direction of application

development. A project manager articulated that, “We’ve been hosting users’ conference

for several years, and it has been very successful. One of the important events in this

conference is that customers can vote for or against a policy and a direction of new

application development.”

 One interesting notice associated with the customer involvement is that QA

people have a hard time providing customers with a quick turn around on bug fixes

because of Scrum settings. A QA manager stated that, “Going to agile has been a hard

adjustment for most of our customers. We’re unable to give them the quick turn around

on bug fixes like they used to get. We can’t give them a quick turn around on bug fixes

because we can’t interrupt the Sprint.” She continued to explain it by saying that, “Before

we adopted Scrum, we had been able to fix customer’s bugs quickly. But now, we focus

more on the code created during the Sprint and place less priority on customer’s bugs

because we don’t want to interrupt the Sprint process.”

Working Environment. An open working environment is recommended by the

Scrum method because it promotes communications, facilitates self-organization, and

helps developers get together easily. Before ABC started the Scrum process, most

developers had their own office. After adopting the Scrum process, all the developers

were reorganized into cubicles in such a way that all the team members are placed inside

 91

the same cubicle area. Most developers do not like this new work environment and

consider the cubicle settings less efficient because they cannot concentrate on their work

while their coworkers talk to other coworkers. One developer complained:

We share cubicles with a coworker. I think this is a bad thing, because we are
constantly distracted by the person we work with. Cubicle-partners are often
having conversations with other coworkers about their tasks, and it is hard not to
get drawn into their conversations, even if you don’t have anything pertinent to
add to it. Overall, I feel it is distracting and generally less efficient.

Another developer stated, “Don’t pair developers up in a cubicle with someone else.

Place them near team members, but give them enough space that they can concentrate

when necessary.” A QA person also mentioned, “I was more productive when I had my

own office. I was not distracted by my coworker’s phone conversation or other noise

going around me.”

 However, some developers think that cubicle settings increase the amount of

communication between team members. One developer mentioned, “I like the open-

space-working environment. It promotes our communication. I can easily grab one of my

team members and discuss issues and problems.” Another developer stated, “I feel I can

talk to our team members easily and ask questions quickly.” One developer proclaimed,

“I like the idea of placing every team member inside one cubicle area because I think it

fosters collaboration and teamwork.”

Interdependency among Modules. In the first stage of the projects, the Scrum

method was not very effective in terms of bug rate. During the first three months, for

example, the QA department found almost twice as many bugs after the firm switched to

the Scrum method. A QA manager confirms, “I’m finding twice as many bugs since we

 92

went to agile as I did before we went agile.” They attributed the finding to the complexity

of the project. As the size and complexity of the application grew, the dependencies and

interconnections among tasks in the application increased. However, the developers were

not able to fully consider all the dependencies and interconnections among modules

because of their narrow-minded planning and design in each Sprint planning meeting. A

developer explained:

Team members seem not to take enough time to think about interdependencies
and interconnections between modules. After several Sprint cycles, we realized
that we didn’t think about what effects this module may have on other part of the
project or how this module may be interrelated with other tasks in the product
backlog.

It was also noticed that when developers had to complete a set of tasks,

determined in each Sprint planning meeting, they had a tendency to complete tasks in a

quick and dirty way rather than to think of how the code will be maintained, and how

each task in the current Sprint planning meeting can be flexible for future changes. A

developer stated, “We have a tendency to do things in a quick and dirty way rather than

to think into the future. (How will we maintain the code, and will it be flexible enough

for future needs?)” Another developer noted, “Sometimes things are rushed into the

Sprint meeting and the team doesn’t take the time to add such tasks into the Sprint

backlog.” Further, the developers often found that their monthly work schedules for

producing intermediate deliverables were optimistically estimated, failing to finishing all

the tasks in the Sprint backlog. A developer mentioned that, “When we plan things in our

monthly Sprint planning session, we underestimate how long things will take, and that

leads to the failure of finishing all the tasks in Sprint backlog.” A project manager also

 93

stated that, “Some tasks just keep getting carried over to the next Sprint backlog. They

hope to do better the next month in estimating their project.”

Social Facilitation, Social Loafing, Group Motivation, and Evaluation

Apprehension. This section is quite different from the other sections because it was

developed through observations based on social facilitation, social loafing, and group

motivation. Social facilitation indicates that in the presence of other people, performance

is focused on a simple task, whereas performance on a difficult task is hampered (Aiello

& Douthitt, 2001). Social loafing is the tendency to take advantage of others’ efforts

when working in groups, while group motivational gain is obtained when people increase

their effort to help co-workers whose performance is poor.

Social facilitation effect and group motivational gains were observed as factors

that reduced development times and lowered bug rate. In particular, evaluation

apprehension (Bond, 1982; Cottrell, 1972) was observed when the firm invited all

developers, QA personnel, and people in other departments (sales, marketing, customer

support) to the Sprint review meeting. In the Sprint review meeting, all developers had a

chance to show what they had done in an interdepartmental environment and they were

concerned about how they were evaluated by these people. Group motivational gains

were also obtained as a social compensation effect (Williams, Harkins & Karau, 1991)

when a team member helped other team members who were not familiar with new

development tools or programming languages. At the same time, ABC did not have ways

to evaluate individual performance, leaving room for individuals seeking to free-ride.

 94

Information Systems and Technology Factor

 The information systems and technology factor is comprised of communication

system, information and knowledge sharing system, and bug tracking system and

management tool. These concepts are discussed in the following section.

Communication System. It seems ABC realized and understood the important role

of communication in the software development process because they have put a lot of

efforts into establishing good communication channels. As mentioned in the third

chapter, ABC had two development sites for about a year and developers were divided

into two geographic locations. With the two development sites, they set up devices to

have video conference capabilities between the two sites. However, due to the time and

use constraint, the video conference was not always available for each individual

software developer. Rather, the video conference was usually used for team meetings

between sites once or twice a month. Because of the unavailability of video conferencing,

phone conferencing was used a lot.

It seems that phone conferencing has problems as well. A lead engineer stated:

When we have the daily Scrum meeting in the morning we did it in a couple of
different ways. One was video conferencing and that was actually quite good. We
also did phone conferences, which were not as good as video conferencing,
mostly because when somebody made a comment, you couldn’t see their face,
which gives the background. Of course, the Scrum master couldn’t do anything
about that. That was counter-productive. If you have two groups video
conferencing, that is much better. You can see face-to-face and if somebody is
upset, you know about it. You can’t hear people making faces over the phone.
That did happen.

Other developers also mentioned in the survey that video conferencing helped them to

see the other person’s facial expressions, gestures, and body language. One developer

 95

stated that, “it’s still hard to know whether they understand what I am explaining to

them”.

 Though video conferencing is much better than phone conferencing, there are

still limitations to using video conferencing. The daily Scrum meeting and the daily

Scrum of Scrums meeting have mostly been done through phone conferencing. The

monthly Sprint planning and Review meeting have been done through video

conferencing. Other than video and phone conferencing, software developers have been

using a tool called web demo (http://www.beamyourscreen.com) to show people in

remote sites things on someone’s screen. This tool, together with a phone system, seems

to work very well, as a developer mentioned,

Actually we used web-demo which worked out very well for us when we are
going to do code reviews and we used that web demo with phone conferencing.
And it was like being in a media-room. Actually, it was much better than being in
a media-room in a lot of cases because we were able to scroll to where we want to
look at. It was very efficient.

The last multi-media that the company has been using are an Instant Message

(IM) and an email system. All of the developers mentioned that they were using the

instant message and email system much more than before they were divided into two

groups. It seems the instant message system is used more effectively than the email

system for a short and quick question and answer. The instant message system was also

used more by new employees. Several developers agreed on the following statement:

Yea, a lot more when you are working with a new person. You are using it (IM
tool) all the time because he’s asking questions back and forth over an IM session.
You are using it a lot with a new person when, if he would have been here, he
would have come in the office to show to him instead email him back and forth,
or you would have been looking at it together. You could have used web demos to
do that but in most cases it is short questions. We didn’t feel like we had to do
something like that.

 96

One developer, who used to use VPN mentioned, “Sometimes, the VPN is too

slow, which causes frustration.” It was obvious that people did not use VPN once they

found it was not fast enough. Though the video/phone system, web-demo system, and

instant message/email system help software developers reduce the geographic distance

between two sites, it seems those multimedia systems have not been working as optimally

as face-to-face conversation. Several developers mentioned that, “It would so much

easier to be able to work with somebody right here in my office.” An executive officer

also mentioned, “Well, in some ways it would be better to be down there at times.” He

went on to explain that

it hasn’t been that big of a disadvantage but once in a while, we just get two or
three guys together, if there’s an issue and somebody wants to talk about options
or kind of brainstorm on the idea. For me to join that group from this remote site
is more difficult.

The company seemed to suffer a lot when a communication line was down because of

their heavy dependence on it. A lead engineer mentioned that, “We had a few problems

last month with phone systems not working very well. When the phone systems were

down it was a big deal, plus when phone systems were down the data line went down

too.” Because the telephone systems and data systems share the same physical line,

employees could not do anything, as a project manager stated:

For example, you’re working on a summarizer or something like that, all of
sudden, the screen is closed down. And if you are in the middle of some debugger
and the data line is gone, you will lose everything and you have to start it from the
beginning. That’s why one of our programmers went over home. She’s working
out of her home now.

Information and Knowledge Sharing System. When the main part of ABC moved

to a different location, the firm went through major changes. One of them was a change

 97

in staff. The vice president of the software development division related that, “There was

a change when we moved to a different location with new staff, and I think we lost about

15% of our staff, including software developers.” To fill the empty positions, ABC hired

several new software developers. These newly hired people created more bugs; a project

manager said, “There are a lot more bugs now because people are not always

knowledgeable about the software that they are working on” and “often they change

some code, something like a radio log which is very complex piece of code and slight

changes to that have a lot of impacts in lots of areas. It takes a time to be familiar with

our complex systems.”

Because of the complexity of ABC’s software system, it is important to have

well-structured information- and knowledge-sharing systems between experienced

software developers and brand new software developers. In particular, it is critical to

have such a knowledge sharing system if new software developers in one location need

some of the expertise of software developers in another location. One developer stated,

“It is a little difficult to share information and explain ideas over those large distances.”

Another way to get around this problem might be placing new developers with senior

developers within the same Scrum team in one location. But this solution is not always

feasible for ABC because of the complexity of software systems and the situation that

developers often need expertise from other developers in a different Scrum team and in a

different location. So, to facilitate the knowledge and information-sharing, the firm has

been using a web-based Wiki program (http://www.wiki.org) that enables developers to

add and edit items that might be critical to other developers. For example, the section

called “gotcha” in the company’s Wiki includes the most frequent mistakes that

 98

developers can make in many different parts of the company’s software system. Due to

easy access to the Wiki program, the information stored on the Wiki database mitigated

the problems between the two sites.

Bug Tracking System and Management Tool. ABC has been using a bug tracking

system called MOM, which was developed by the firm on the UNIX platform. The MOM

bug tracking system is shared by many groups, including support people at the help desk,

developers, and QA personnel. A brief description about a bug and the step-by-step

procedures to duplicate the bug are entered into the system. One developer mentioned

that

we use our own bug tracking system called MOM. QA personnel and support
people usually describe the nature of a bug, the place where it is found, and the
procedures to duplicate the bug if possible. Once the description is entered into
the system, it can be viewed by developers, QA personnel, support people, and
managers.

Based on the level of severity, each bug is labeled with a number between zero and three.

The number zero represents very urgent and the highest level of severity, whereas the

number three represents the lowest level of severity. A person who is assigned to a zero

level bug is required to stop all the current tasks and work full-time on the bug until it is

resolved. One developer mentioned:

All bugs are entered into MOM and are assigned to an appropriate developer or
group of developers. A zero level bug is uncommon but when it happens it is very
critical to solve the problem as soon as possible using all possible resources
because the zero level bugs could stop some parts of or the entire operation.

As mentioned earlier, the firm adopted a commercial bug tracking system called

JIRA (http://www.atlassian.com/software/jira/). A vice president in the software

development department stated:

 99

Well, recently we moved away from the MOM system. We used to create support
problems and then create a duplicate for development in the MOM support
system. We have now moved to JIRA. I think in MOM you didn’t have fields for
certain information. Everything was pretty much put into a narrative environment
or a report.

JIRA is used to record defects found in alpha and beta testing and in other areas. A

manager stated that, “JIRA only logs defects that we found in alpha and beta testing and

also defects in standard code that a customer told us about. It’s just a tracking tool for the

development division for defects in products.” It seems JIRA has filter functions that

MOM does not provide. The manager mentioned that, “JIRA has a lot of information that

used to be found in MOM. But it has important filter functions which we couldn’t do in

MOM. It has some advantages so that I don’t want to go back to MOM.” Another

advantage of using JIRA seems to be that it provides priority codes that rank the level of

the severity of bugs. This function automates the selection of a next bug to be tackled by

listing the bugs in sequential order based on the priority. The VP in software

development stated:

Well, one of benefits of JIRA is that it has severity priority codes. It was a part of
BETA test, and there’s a number of other fields that down the road we will be
using to divide the information. We are working a way to try to determine as
efficiently as possible what bugs to work on next. JIRA can still automate the
choice versus having a person just look at and say what you need to fix or not. We
try to use that information to do that.

One of disadvantages of using JIRA appears to be that it does not offer a decent search

function on the bug information already typed into the system. This is mainly caused by

the JIRA interface, which requires a user to enter the narrative bug information into

separate text boxes.

 100

In order to further improve the effectiveness of project management, ABC used

two different managing tools: Microsoft Excel and VersionOne. Microsoft Excel was

used first, but was replaced by VersionOne because of Excel’s limited capability for

efficient project management. VersionOne, as mentioned earlier, is a web-based

commercial management tool that provided various functions, such as simplifying project

planning and management, enhancing business and project adaptability, improving

project visibility, and increasing project predictability and confidence. Some developers

expressed difficulties in using three different bug tracking and management tools. One

developer complained that

. . . it’s hard because we are using MOM for part of our tasks, we are using JIRA
for another portion, and we are using VersionOne to track the development cycle
and Scrum cycle. So, it makes difficult that way. We can’t use one product for
everything.

XYZ Firm

 The XYZ firm had five Scrum teams, and each team consisted of three or four

developers, a project owner, and a Scrum master. Due to the small size of the firm, only

one quality assurance person, and one database administrator were designated to provide

services for all Scrum teams. Every Scrum team worked on a new project except for a

team that worked on on-going maintenance. Table 27 summarizes the common

categories, concepts, and data related to XYZ. As shown in the table, the factors of

human resource management, structured development process, environmental, and

information systems and technology were constructed for XYZ. The concepts comprising

these categories are discussed in the following section.

 101

Human Resource Management Factor

The concepts of training, collaboration, and multiple responsibilities constitute

human resource management factor. Each concept is discussed in turn.

Training. It seems that XYZ needs to provide developers with more formal step-

by-step training. Most developers feel that they did not have enough training on the

Scrum development method. Due to the lack of training, some of developers do not see

the big picture and the benefits of Scrum as a whole. One developer mentioned, “I don’t

think our whole team buys-in to Scrum development in general because we are not

getting a whole picture of how Scrum is working and how it benefits us.” Another

developer confessed that he had a misconception on the relationship between a project

and a Sprint. He thought he should complete a full project within a single Sprint. In

reality, a project is usually completed through multiple Sprints.

Table 27

Categories, Concepts, and Data Related to the XYZ Firm
No. Common

Categories
Concepts Data

1 Human
Resource
Management
Factor

Training • Developers need more formal step-by-step training
• Some of developers do not see the benefits of Scrum
• Company provides brown back lunch training and a

“luncheon learn” meeting
Collaboration

• Scrum provides good collaboration mechanism between
developers

• Collaboration between developers and product managers
should be improved

• Scrum helps developers to be aware of other developers’
tasks.

Multiple Responsibilities • One person is responsible for many tasks in different field
• Product manager is a bottleneck in the development process
• Developers have a communication problem with a product

owner
2

Structured
Development
Processing
Factor

Scrum Framework • Scrum ceremonies force developers to be on the same page
• Daily Scrum meeting, Sprint planning meeting, and Sprint

review meetings are sometimes inefficient
• Setting up the meeting time is difficult

Formal Code Review • Company employs informal code review
• The formal code review can impose accountability to

developers
Unit and Integration Testing • Company uses a N-unit testing

• Testing self-created code is not efficient
• Legacy code is not suitable for unit or integration testing
• Wide range of testing skills are needed

(table continues)

102

Coding Standard • The coding standard can provide easy maintainable code
• Company has a verbal coding standard
• The coding standard can hamper developer’s creativity and

reduce the efficiency
Documentation • Less documentation

• More comments on the code
• Hard to complete the system without having any documents
• Equally shared skills and knowledge among team members

Project Estimation and Planning
Poker

• Developers have difficulties to estimate legacy code related
project

• Planning poker reduces estimation difficulties
• Breaking big tasks into smaller ones helps developer have

good estimation
Use Cases • Developers realize the importance of creating use cases

• Use cases help developers understand the system they are
going to build

• Users do not know what user cases are
3

Environmental
Factor

Customer Involvement • Not involved in the decision making process
• Biggest roadblock in the development process
• Customers do not know what they really want
• Customers give unclear system requirements

Working Environment • Open working space makes developers to be easily
accessible

• Open working space fosters communication
• Open working space distracts developers

Common Tools and Problems
between Teams

• Similar technologies can be used between teams
• Common problems between teams can be resolved through

collaboration
• The role of liaison between teams is needed

(table continues)

103

Government Project and Scrum
Method

• Government project requires a big planning and a big design
up front

• Developers work with many unfamiliar jargons and
acronyms

• Company needs a new hybrid development method
Social Loafing • Everyone is fairly motivated and quick to point out if

anyone is not doing his share
• Individual hard work is not recognized
• Accurate measurement of individual performance is needed

4

Information
Systems and
Technology
Factor

Communication • Daily scrum meetings improve communication within a
team

• Lack of communication between teams
• Work is being duplicated
• Lack of communication with customers

Bug Tracking System • A web-based bug tracking system is helpful in prioritizing
bugs and keeping track of bugs.

• Mantis, a free bug tracking system works well except for
some cases

• Developers want customers to report their bugs in Mantis
Version Control Systems • Open source revision control system called Subversion is a

main system
• Subversion provides a decent tagging and branching method
• Subversion rebuilds the system automatically if code

changes

104

105

 When developers first began to work on Scrum projects, their project manager

demonstrated the concepts of Scrum projects and how they related to the existing

systems. After that, developers were to learn the Scrum concepts and working

environments all by themselves. One developer commented, “We are usually taught

briefly by a project manager how the system works the first time and then kind of go

from there, I guess.” Another developer stated, “I did not have formal training. I looked

up Scrum in the Wiki to get an idea what the working environment looked like.” Many

developers want to have a continuous formal set of training. One developer noted that, “It

would be helpful if we have a class that trains us, more than just an overview or just a

kind of tour around.”

 To mitigate problems caused by the lack of a formal training program, the

company recently began hosting regular brown-bag lunch meetings to provide more

training. A Scrum Master affirmed that, “Recently, we have been hosting more formal

lessons on how things should work through a brown-bag lunch. I have been attending BB

lunch regularly. It’s really helpful. Other than that, it’s really been just a brief overview.”

In addition to the BB lunch meeting, the company offers a “lunch-and-learn” program.

An operations director explained, “We do have pretty frequent lunch-and-learns where

the company buys us lunch and then we have someone like a operation director go

through and explain how Scrum works.” One advantage of having the lunch-and-learn

program is that everyone including developers, Scrum Masters, Product Owners, Project

Managers, and other staff members can attend the meeting and provide feedback. The

operations director said, “The whole company can attend, not just some people, so that

everyone can provide feedback. It also helps people to be reminded how to do tasks as

106

well, because sometimes through the day-to-day we forget certain aspects of Scrum, so

it’s helpful to be reminded of them and remember to do it right.”

 Collaboration. It appears that the Scrum method has provided the company with a

good collaboration mechanism. Most developers feel that they have good collaboration

between developers within the same team. One developer mentioned that, “I think it’s

really good. I have often seen a team member go to another to ask about coding practices

and methodology. I have seen that several times so I think that’s really good.” Another

developer stated:

Whenever I have a problem or issue to discuss with other developers, I am very
comfortable talking to any of my team members. I think Scrum practices promote
collaboration between team members. For example, throughout the daily Scrum
meeting, we can identify what roadblocks we have to complete tasks specified in
a Sprint backlog and what items need to be done together.

Further, it seems the Scrum method has helped developers be aware of other developers’

tasks and be interested in other developers’ success. This atmosphere seems to make

developers self-motivated. One developer stated:

It seems everyone is involved and they are interested in everyone’s success.
Everyone is very self motivated. So, if they don’t have something to do, they go
in and look at our Sprint backlog and choose the next thing. So, it’s more reach
out and get than assigned to us.

However, some developers think the collaboration needs to be improved between

developers and the product manager. One developer stated that,

“There has been great collaboration between developers, but there has not been
enough collaboration between developers and the product manager. He has been
busy with many tasks and has not been able to allocate enough time to discuss
problems and issues with developers.”

107

The collaboration issue between developers and a particular product manager is

elaborated in the multiple responsibilities section.

Multiple Responsibilities. The Scrum method does not recommend that

developers be involved in multiple projects at the same time. At XYZ, all developers

work on a single project. The one person with multiple responsibilities acts as the

product manager, product owner, and accounting manager. Due to his multiple

responsibilities, he is too busy and overloaded. Developers have a tendency not to talk

with him enough outside of Scrum meetings or ask him to deal with other issues when

they come up. One developer stated, “He tends to be a bottleneck for the rest of team

members. We’ve been waiting on him giving us feedback. Sometimes it tends to be a

little bit of lag in getting any questions answered.” Another developer mentioned:

You know we have a product owner, but he is overworked and he has too many
other responsibilities so he can’t dedicate himself to the product and can’t get all
kinds of tasks done. It hinders our progress, and he doesn’t have enough time to
find what exactly we have to do. So, we need to get someone else to help with
that.

Developers have also a communication problem with him. One developer articulated:

The only sort of communication problem we have is with the product owner. He
is overloaded with too many other tasks throughout the company, so he is rarely
available, and we have a lack of communication with him. So, that hurt us, but
when he is available, the communication is fine.

It seems the company needs to release some of this person’s responsibilities so he can

concentrate on a single project and make himself available to other developers for more

decent communications.

108

Structured Development Processing Factor

 As shown in Table 27, structured development process factor consists of Scrum

framework, formal code review, unit and integration testing, coding standard,

documentation, project estimation and planning poker, and use cases. Each concept is

presented in the following section.

Scrum Framework. It seems that Scrum has been well adopted and has brought

big improvement to XYZ. One developer stated, “Scrum agile has been working quite

well for us on all of our projects. It has been a huge improvement over the waterfall

method.” Another developer mentioned, “Scrum really helps team members to get

involved in the project.” One project manager also noted, “The Scrum method helps team

members to be aware of everyone’s progress, and in Scrum, nobody can fall behind

without people taking notice.” Another project manager mentioned, “The Scrum

framework prevents a scope creep because tasks can only be dropped from a Sprint, and

Scrum also prevents the project from going too far off course if client’s requirements are

not accurate.”

Scrum ceremonies including the Daily Scrum Meeting, the Sprint Planning

Meeting, and the Sprint Review Meeting, seemed to help developers focus on producing

quality applications. Most developers testified that the Scrum ceremonies have been very

useful and very productive. One developer mentioned that “The 15-minute standup Daily

Scrum meeting has allowed us to be on the same page because we can talk to each other

and everybody knows what other members are working on.” Another developer

expressed a similar opinion on the Daily Scrum meeting. He mentioned:

This is a great way to make sure everyone is on the same page regarding work
accomplished and work to be done. This allows quick assessment of those people

109

who are already behind from the beginning and forces the team to make an
adjustment and compensate.

A project manager noted that, “The daily Scrum meeting is valuable and essential. We try

to include clients in these meetings as much as possible.”

 Regarding the Sprint planning meeting, most developers considered it as an

imperative and critical meeting. One developer noted:

Time spent in elaboration during the Sprint planning meeting significantly helps
estimating and scope planning because we are able to determine the number of
employee working hours for the next 30 days and how much work we will be able
to accomplish. Additionally, we have 3 or more developers estimate each
development task which promotes in-depth planning discussions when estimates
vary widely. This creates a more accurately defined Sprint backlog.

One developer regarded the Sprint review meeting as a bridge meeting which leaded

people into the next Sprint. He stated that, “The Sprint review meeting is important for

transitioning into the next Sprint. Depending on the project, this may be a good time to

plan a short (around 5 days) Sprint to develop post-launch patches that may be critical for

the client.” Another developer also mentioned that, “This is very advantageous as long as

all team members, including the client, are open-minded enough to have a candid

discussion. It allows all team members to discuss the items that did not work well and

what can be done to address them in future Sprints.”

 Regarding a product backlog and Sprint backlog, one developer stated:

The master product backlog is invaluable in long-term planning as well as quickly
ascertaining the next tasks. With our clients, we hold a master product backlog
reorganizing meeting every few months to make sure the priorities are still
specified accurately. The Sprint backlog is the key to knowing what everyone is
working on, how much time is left, and what tasks are left to do. Keeping the
Sprint backlog in priority order and working on tasks in that order assures that the
most important stuff is done first.

110

Another developer also mentioned:

Product backlog is important, especially for a project that is going to span
multiple Sprints. It will help keep track of remaining tasks, help you prioritize
them, and prevent them from falling through the cracks between Sprints. Be sure
to update it as new feature requests come in. Having a product backlog makes
Sprint planning much easier. Sprint backlog is the output of your Sprint planning
meeting, and an essential tool for the daily Scrum.

However, some developers talked about inefficient Sprint planning and review

meetings. One developer argued that, “Some of our Sprint meetings are so simple and it

seems to be a waste of time spending a whole day just for planning and review. I think it

needs to be adjusted based on the complexity of the project that we are working on.” One

senior developer noted that, “Keeping daily Scrum meetings to 15 minutes was difficult.

Some of this is caused by just gabbing a little too long, but valid reasons for taking too

long are the amount of material we needed to discuss, and also because we hold Scrums

for 2 or 3 projects at once.” Another developer mentioned:

Our daily standup Scrum meetings sometimes go on a little longer just because
everybody is talking about what they did last night. I think there probably is some
good advice on trying to keep your daily standup meetings consistent and short so
that people are not distracted and they can go back to work quickly as most
people would rather work productively than waste time.

Another issue is related to setting up the meeting time. Due to the flexible work schedule

among developers, it is difficult to get all developers together at one time without

interrupting their work. One developer stated:

I think the hard things for us in Scrum is when to do it because some of us get in
at 7:30 am and some of us at 9:30 am. So, as a team, we just have the Scrum as
soon as everyone gets in. That’s usually at ten or eleven. The problem is that
those who get in early are interrupted from their work because they’ve been
working very well for two or three hours. They are in the grove or zone so being
interrupted is frustrating. We talked about doing it at the end of the day but that
also has a problem because some people come in at 6:30 am and leave at 3:30 pm,

111

and some people come in at 9:30 am and leave at 6:30 pm. It makes it hard for our
team to get together all at one time.

Some of developers feel that Scrum might not be appropriate for large-scale projects

because it is not easy to make a large team be agile. One developer stated:

Agile is difficult with really large projects. It’s hard for large teams to be agile. It
is necessary to split the large project up into teams of 8 with common goals. Let
team of 8 Scrum self-manage. Project Managers can facilitate communication,
and check status between teams.

Another developer made a suggestion about tasks on the Sprint backlog. He suggested

that tasks on the backlog should be updated dynamically and that tasks taking more than

a day should be divided into small sub-tasks. He suggested:

When updating the Sprint backlog every day, if the tasks you are working on
don’t match the granularity of the tasks on the backlog, update the tasks on the
backlog and redistribute the hours among the tasks. This is to prevent treating a
group of tasks as a single bucket of hours that you are working against, which
makes it more difficult to see exactly where the progress is. If a task is more than
a day of work, try to break it up into sub-tasks.

A developer noticed that some of Scrum team members were not flexible and did not

spend enough time to create a detailed Sprint backlog. He stated, “I would like to suggest

that people participating in Scrum be flexible. Rigidity seems to be the bane of Agile.

Also, when we generate a detailed Sprint backlog we need to spend as much time as

possible.” One last comment from a developer showed that some managers tried to

manage the Scrum teams instead of coaching them. He asserted, “Managers – avoid

managing! Let the team self-manage. Managers/Project managers should act as coach

only – it doesn’t work if the project manager is running the Scrum like a status meeting.

Project manager – step back and let the team run the Scrum meeting.”

112

 Formal Code Review. Developers have not set aside a time for a formal code

review, but they have been having informal code reviews. Due to the informal code

reviews, tools that facilitate formal code review have not been developed and utilized. In

addition, the informal code reviews has not been employed frequently. One developer

stated that, “We don’t incorporate proper tools in our code review.” Another developer

mentioned that, “We have an informal code review occasionally. We don’t do it very

often and probably should do it more. We talk about it a lot but just never have the time

to do it.” It seems developers are aware of the benefits of having a formal code review

though they do not use it. One developer stated that, “Other people can offer feedback on

how a developer is doing and how the particular code can fit into the rest of a project.”

Another developer also mentioned that, “Through a formal code review, other people in

the team can look at the assumptions and choices that I made and say this is a good work

for that situation or not good for the situation.” Another benefit of having the formal code

review is to impose accountability on developers because they know their code will be

reviewed by other people. One developer stated:

I think it’s really useful. It gives you accountability because you know at some
point somebody else will go back and look at your code. In the short term,
developers may not pay extra attention to their code because a lot of developers
just take an assignment and write the code with the belief that no one will look at
it again. Formal code reviews would solve this problem.

Most developers agreed that visiting the code retrospectively is important in terms of

improving the quality of code and enhancing developer’s coding skills.

The Scrum master mentioned a problem that might be caused by the lack of

formal code reviews. He stated that, “There is a chance that a developer writes code

which is already built in, for example, in the Dot Net framework or ASP Dot Net

113

framework.” If a developer tries to write code which is already written, tested, and

proved to be efficient by a third party, it would be a big waste of time and money. It

appears that developers are good at looking at other developer’s code and giving good

feedback. It seems it is just a matter of setting a time aside for a formal code review and

selecting an appropriate tool to facilitate the code review.

 Unit and Integration Testing. The company has been using a unit testing tool

called “N-Unit,” which provides a unit-testing framework for all Dot Net languages. Each

developer tests their own code, but they try not to because they think testing their own

code is not effective. One developer mentioned that, “We test our own code but we try

not to because it’s not effective to test one’s own code, and developers usually have an

assumption that their code always works.” When developers test their own code they also

consider an integration test. One developers stated, “Everybody tests their own stuff just

to make sure it works and also making sure it works with the big picture and everything

else works with it.“ It appears that several quality assurance personnel can help other

developers in testing regardless of team boundaries. A quality assurance person stated

that, “We have a few people who do help out with testing. They are technically on the

team but they are just available for everybody to help testing.” In addition to internal

testing done by in-house people, clients are also involved in testing by visiting a test site

and conducting a test. A project manager stated that, “Generally, when the application is

getting ready for clients, the clients get into a test site and test. They do track and test,

and enter bugs that they find.”

114

 It appears that the firm has a large legacy code base and the legacy code was not

designed for unit or integration testing. This is a big challenge for the firm. A project

manager stated that, “We’ve got all legacy code and it wasn’t written really for test cases.

It would be nice if we can figure out someway of going back and kind of cleaning some

of those things up. In terms of quality assurance, that’s really about biggest challenge

right now.” The firm also has code, called “code behind,” which is difficult for

developers to test because that code works behind the curtain and there is no efficient

way to test the code.

Developers wish to have a wider range of testers. One developer stated:

Probably, we would get managed better if we had more people who have a wider
range of software testing skills. Right now, usually, one person is testing,
sometimes someone who is technical and sometimes someone who is non-
technical. They usually catch different types of bugs.

Another developer uttered that developers could not test everything because clients did

not have enough budget to cover one hundred percent testing. He also explained the

process of a unit and product owner level testing.

Our developers create their own unique tests. But we don’t have one hundred-
percent coverage because our client doesn’t have the budget to make us test
everything. We do create a unit test, then we have our product owner-level
testing, then developers test their own code as well, and then from there we put
everything in to MANTIS, which is our bug tracking system.

Coding Standard. Several coding standards for different computer programming

languages exist. For example, Sun Microsystems provides the standard conventions for

the programming language and Microsoft proposes coding guidelines for the C++ and C#

programming languages. In addition to Sun Microsystems and Microsoft, other

organizations such as GNU Free Software Foundation and CERT at Carnegie Mellon

115

University also suggest standard coding styles and guidelines. The main benefits of

having coding standards is that developers can provide easily maintainable code, and that

developers can decipher other people’s code without difficulties.

It seems developers are aware of the main benefit of following the coding

standard even though they do not have a formal coding standard. One developer stated,

“There is no formal coding standard; probably a coding standard could be of good benefit

to us.” Another developer mentioned that, “There is no written coding standard, but we

are close enough to propose to a person who is not following a norm or our verbal coding

standard.” Some of the developers employ coding standards provided by the tools they

are using or modify suggested guidelines to suit their environment. One developer stated

that, “The coding standard is dictated pretty much by MS Visual Studio.” Another

developer mentioned that, “I took the Borland coding standard and changed it and

updated it for what I thought it would be best for us.”

All interviewed developers think that they are doing fine without having a coding

standard. One developer stated, “Most people have their coding styles, which are decent

enough you can follow them pretty well. So, it’s not a big deal.” On the contrary, one

project manager thinks that forcing the coding standard can hamper developer’s creativity

and reduce their efficiency. He stated that, “There are definitely cons to different styles of

code being everywhere. People are creative where they can work the most efficiently.

The problem with enforcing a coding standard is that it limits creativity.” Another project

manager mentioned that, “I think it is not worth to it force coding standards that hinder

our performance if a lot of people have to relearn how to code in a lot of places.

116

Documentation. The Scrum method, like other agile software development

methods, significantly reduces the amount of documentation. In fact, the agile methods

claim that the code itself should be a document. That is why developers who are

accustomed to agile methods place more comments in the code. Several developers

mentioned they placed more explanations in any tricky piece of code and for any changes

that they made. However, many developers agree that without having any documents, it

is very difficult to complete tasks for those developers who are working on parts of the

system they never worked on before and also for new developers who do not have much

experience with the project. For both cases, developers who do not understand the project

ask a lot of questions, which takes time away from developers who do understand the

project. One developer mentioned that, “When I first got here, of course, I was

overwhelmed. It would have been nice to have some documents that explain why certain

things were done in a particular way and what they were.” One more developer

mentioned that, “Agile methods do not use specification documents. I think that might be

a weakness in agile methods. The agile methods allow you to go much quicker as long as

whoever is specifying has a very good idea of what clients want. If this is not the case,

the agile methods are just as slow as anything else because you are going to have to get

clarification.”

Another developer also raised the issue of the lack of documentation. He stated

“Right now, we have one guy who is the main guy. He knows all of the systems and I

think, personally, that might be a mistake. Not because he is not good at it, but because it

just makes one gigantic point of failure if he is hit by a bus or if he leaves for another

company.” It would take several months for the firm to recover the knowledge that one

117

main developer has. The idea behind reducing documents in the agile methods is to keep

every team member equal by sharing skills and knowledge on the systems. In that way, if

one person leaves, there is still a lot of shared knowledge that has gone around among

other team members, so it is not a big deal. However, in reality at XYZ, this is not

feasible.

Project Estimation and Planning Poker. The developers at XYZ had a hard time

estimating how long a particular project should take. The level of project estimation

difficulty increases when developers need to deal with legacy code or when developers

do not have the experience required to finish a project. One developer said, “It’s hard to

get estimation on legacy code.” Another developer stated, “We are just doing the first

project and the accuracy of estimation is hard to determine because we just don’t have

much experiences on this kind of project.”

To resolve or reduce the difficulties, developers were introduced to a new project

estimation method called “Planning Poker.” In Planning Poker, all developers are

required to pick a card, each of which has an estimation number to express their estimate

of a particular task. If there is a big gap among developers’ estimation, developers discuss

the task and try to narrow down the gap. One developer explained the procedure for

Planning Poker as:

For each task, we discuss for a minute or two and call the vote from the planning
porker card. Everyone holds up their estimates and then if they are pretty close
then we just take an average of them and put them as an estimate. If they are very
far apart, if someone says two hours and someone says 20 hours then we pause
and re-discuss it to find out why the estimates are so different. As soon as
everyone has a thorough understanding of the problem, then we go again until we
get closer.

118

Another developer commented:

I guess the idea is to kind of narrow down the numbers. In the past we just made
an educated guess, which is O.K. All the people on the product made a guess.
There are usually three guesses, which result in three estimates on a task. If they
are too different, then we talk about the task and figure out why we have different
estimates. In Planning Porker, I guess there are ranges of numbers. I think 1, 2, 3,
5, 8, and then 13, 20, 40, and 100. So, when someone chooses 40 and someone
else chooses 8, then we need to discuss about the task. If we are not sure about the
task, then we talk about it and do something on the whiteboard to lay it out, and
discuss what could be done.

Developers think that there are many merits to using Planning Poker. One developer

stated, “You can get the opportunity to say why you think it’s going to take so long, why

you think it’s going to take not nearly as long, and then you can actually work out some

of the issues.” Another developer mentioned:

I think the advantage is that we can have a lot of discussion. That’s an advantage.
A few times I come through…because I don’t know the whole systems as well as
they do. I give some number and they give some other number. I think it
eventually gets close together, but at least a project manager can tell me an
overview about the things that are involved and make sure we are on the same
page.

A project manager also stated:

It is kind of nice to just have some sort of anonymous way we can throw cards up
and discuss it rather than writing it down and be coerced into thinking by
something or by whatever everyone else thinking. So it is nice…it helps us to
have each developer have their own opinion.

It is noticed that breaking big tasks into smaller ones helps developers have better

estimates. One developer commented:

I think one of the things that really help is that everyone here seems to be
conditioned to breaking their tasks down into the smallest possible measurable
tasks and then to say, this field needs to be changed to accept this variable, or
something like that. Very small tasks…you could say that yeah that task by itself
will take me an hour or two. And so it’s a lot easier to make the good estimates
that way if you break it down into a small element.

119

Another developer also expressed the importance of breaking tasks into small one. He

said, “We already have our tasks from our product backlog. We break them up into small

ones first in the Sprint backlog so that we can have more accurate estimates.”

It is noticed that that every developer thinks Planning Poker is very useful,

effective, and pretty reasonable as well because it gives developers a chance to express

their honest estimation. However, experience, pre-knowledge, and skills are noted to be

important factors in good estimation. One developer stated, “I think Planning Poker

provides a more accurate estimation. That’s part of it. But I really think it’s just matter of

experience for good estimation.” He also mentioned that, “I think it’s a good thing to

have Planning Poker, even if it brings big differences in estimation numbers the first time

around.” Another developer reiterated:

It works well in the middle to the end of a project because now you have a very
good idea of what you’re working with and the technology you’re working with.
But initially, it got to be horrendous unless you’re working with technology that
you’re extremely familiar with. Also, you know the technology is only half the
battle. It’s the logic and the system itself that you have to figure out and
sometimes it takes a lot more time then you think.

This developer argued that, though Planning Poker can help your estimation, the bottom

line is you need to be familiar with the technologies that you are going to use, the

business logic, and the system itself. Otherwise the estimation will be horrendous.

 Use Cases. It is noticed that all developers agree that use cases can help them

better understand what needs to be built and that they have the most success when they

have use cases. One developer mentioned that, “In our Sprint planning session we did a

fair amount of documentation in terms of creating use cases. When we had use cases we

had the best success.” He continued to explain what his team did. He stated, “We first

120

received a list of items that we needed to build and then we wrote out specifics, maybe a

couple of paragraphs for each item.” Another developer added, “I think it really helps us

figure out the system that we are going to build.”

However, there are several problems in creating use cases. A developer who was not

familiar with the system had a hard time creating use cases. He stated, “I felt I was a little

unprepared to write use cases for a web site that I was not really familiar with.” Another

problem is that clients usually do not know the systems that they want to have and what

use cases are. One developer stated, “They don’t know really what use cases are. So,

basically you need to come up with something you think makes sense and write it down

and then go back to review it. The idea is that it’s really difficult to come up with

specifics for it.”

Though clients do not know about use cases, it seems that they are comfortable

with revising them. A project manager stated, “It’s a lot easier for them to revise

something we’ve written.” Based on this description, it would be better if clients knew

what they really want to have in their system and understand use cases. If this were the

situation, developers could communicate better with clients and would create better use

cases, which then leads to success of the project.

Environmental Factor

The environmental factors including customer involvement, working

environment, common tools and problems between teams, government project and Scrum

method, and social loafing were identified and are discussed in the following section.

121

Customer Involvement. Customer involvement in the software development

process is very critical to the success of the project. The agile methods state that the

customer should be part of the development process from analysis and design to

implementation and maintenance. However, at XYZ, developers have difficulty working

with customers on the projects. A project manager commented that, “Customers are not

involved in the decision making process until it is all done.” He added, “We don’t get as

much customer involvement as we want. Our customers are busy and they have other

things to do than to talk to programmers all day.” One developer complained that, “We

request our customers to talk to us every day and at a minimum once a week, but they are

not very involved. We end up with talking with them maybe twice per Sprint.” Another

developer stated,

“Our customers did not give us specification documents. We basically had an
hour-long meeting to make a specification. So it was vague when we started it. It
was up to us to make specifics and estimations. I think the biggest roadblock in
our development process was in the customer involvement. Though we did not
have enough customer involvement, our customers accepted most parta of the
system that we created and asked us for minor changes. But I think it would be
much better if we get together more often with our customers.”

It appears that, most of the time, customers do not know what they really want in

their future system and it becomes a roadblock for customers to get involved in the

project development process. Said one developer, “Customers think they have a clear

idea but they do not. For example, the customer wants to track people’s credit. To them,

that’s clear and precise. But to us, we need to know who the people are, what the credits

are, when they expire, how long we track them, what rewards are earned for many

credits.” Due to unclear customer requirements, developers have a hard time figuring out

what exactly the customer wants to include in their system. One Scrum Master

122

mentioned, “We need to get out a lot of information from unclear statements, which takes

more time, which causes us to get involved less because it takes too much time. But we

don’t have any other way to do it because we don’t have information.”

Working Environment. Most agile methods, including Scrum, recommend

removing the cubicles and setting up collocated team space because cubicles promote

isolation, and the Scrum process relies heavily on high-bandwidth, face-to-face

communication, and networking. Open space is considered better than the cubicles and

private offices in the Scrum process. Many developers like the idea of an open-space

working environment. One developer mentioned, “I feel like I am little closer to other

developers in open space. It’s really nice to be able to look across the room and talk to

somebody else in the team and ask questions quickly. I don’t feel like I am shouting over

the cubicle wall to get to them.” Another developer stated that, “Open space is good

because everyone is easily accessible. I like it because I think it fosters communication.

It’s very easy to say hey, I need some help, information, or come, look at this. Everyone

is just kind of open, and it seems to work very well.”

Though some developers enjoyed the open-space-working environment, other

developers did not like the open space, and they mentioned downsides and some

problems. One developer stated that, “the open areas are very nice to communication but

it does hurt when you try to concentrate because there are a lot of distractions. For

example, when co-workers are having a conversation with somebody or having a phone

conversation, it’s very distracting.” Another developer groused that, “I am less productive

because a lot of noises are going all around. Without having cubicle walls or private

123

offices, the distractions are pretty high which is hard to work with.” A team lead stated,

“You know the best working environment is an office. In your private office, you can do

things your way, and focus on things without being distracted by other noises.”

To cancel out the noises, most developers use headphones. The director of

operations noted that, “Everybody has headphones and they can just put those on and

listen to something. That pretty much drowns everything else out.” However, several

developers complained that, “We developers, are usually working while listening to

music. We all have nice headphones. Everything is going under that. But if I need to

focus on something, that’s really difficult just because I have headphones on.”

Common Technologies and Problems between Teams. One observation is that one

team’s members could spend a lot of hours finding the right tools or technologies suitable

for their project without knowing that the team next door is already using tools or

technologies that could be used for their project. There are many similar technologies can

be utilized between teams. One developer mentioned, “A lot of things are similar

between teams who are working on different projects, there are even some versions of

technologies that we use.” He continues by saying that “One is driven by the other so I

think it makes sense that we can solve each other’s problems using the same tools in

many cases.” Another developer voiced this thought, “I think that the technologies we

use between teams are similar enough that if we do our level best, we are able to

cooperate.” It is also noticed that some problems that separate teams have are similar.

One developer noticed, “I think when problems come up, even though we may not know

the languages used in another team’s project, a lot of problems are the same.”

124

One of the teams sometimes uses a quite different setup in a different

environment, as reported by a project manager, “They are doing things quite differently.”

He also added, “I think they will eventually move to some of the technologies we are

using. Then we will be able to cooperate more. But now it does make sense that we use a

different environment.”

It is noticed that having a person who can play the role of a liaison between teams

is important because of the similar technologies used in multiple teams and the similar

problems arising with the teams. The person should be able to inform a team whether

there are similar technologies that other teams already take advantage of and whether

there are similar problems that other teams faced and resolved.

Government Project and Scrum Method. Government projects usually require

heavy documentation, big planning, and big design up front. Due to the bureaucratic

nature of the government, a government project seems not to conform to the principles of

the Scrum method. Developers consider that working on a government project is

challenging because government itself is not agile. One developer expressed:

You know here we are really struggling with a government project because they
think they are doing agile. But government tends to be very bureaucratic because
it tends to be a lot of red-tape and tends to have many layers of accountability
inside their organizational structure. It takes a long time for decisions to get made.
They are very not agile just by default. And so, trying to get them to function that
way can be a challenge.

Another issue in dealing with a government project is that there are many jargons and

acronyms used in the descriptions of the government project. Developers have to learn all

these unfamiliar terms. They think the government project is complicated. One developer

stated, “Of course, it’s affiliated with government and anything with affiliated with

125

government has a tendency to be complex and then there’s a lot of acronyms and there’s

a lot of vocabulary that I know nothing about.” Conflicts between the bureaucratic nature

of a government and the principles of Scrum method seem to create a big hurdle in

fulfilling the government project. To lower the hurdle, XYZ tries to use the Scrum

method with a Unified Process (UP) method, which conforms more to the requirements

of a government project. But the hybrid of the Scrum method and the Unified Process

method has not been fully developed in the firm.

Social Loafing. As explained in ABC’s social loafing section, social loafing is an

observed fact that people are less productive and less motivated when they work in a

group than when they work alone. Also, social loafing is the tendency to take advantage

of other’s effort when working in groups. It is noticed that most developers feel there has

not been much social loafing in their projects. One developer stated, “I don’t really see

that happening now so much. There are three of us on our team. I think everybody does

their fair share of work.” Another developer held that social loafing is, “…really not in

our team. Everyone is fairly motivated and quick to point out if anyone is not doing his or

her share.” However, one developer thinks there has been social loafing in his project. He

held that, “In our particular project, that’s been true to a certain extent.” Another

developer stated that, “I think that’s true sometimes, but I have never been involved in

that kind of situation in my project. I haven’t got a credit that I think I don’t deserve.” He

also thinks the firm has been very fair in recognizing developers’ hard work. He felt that,

“They are very good about it. Actually, they are very good at giving credit toward

developers who worked hard on a project.”

126

 Overall, most developers think social loafing has not been a problem, but some

developers expressed an interesting issue. One of them stated:

I don’t think there is so much individual recognition, whereas there is team
recognition. So for example, in an XYZ team, when we get the project done, then
we recognize the team, rather than ‘Oh, John did the most, Amy did the second.’
Most stuff like that. As a team, we are all respected as doing an equal amount of
work. If you are not part of it, you will get fire.

Information Systems and Technology Factor

The information systems and technology factor is comprised of these concepts:

communication, bug tracking system, and version control systems. These concepts are

discussed in the following section.

Communication. The Scrum process recognizes the important role of

communications in the software development process and provides an excellent means of

communication. All interviewees agree that the Daily Scrum Meetings improve

communications between team members. However, each team in the firm is fairly

separated and generally there is not much communication between teams. The lack of

communication between teams could cause problems, such as duplicated work. This

problem can be solved, or at least mitigated, if the firm holds daily Scrum of Scrums

meetings so that the Scrum masters from each Scrum team can make sure no work is

being duplicated.

Good within-team and between-team communication can be accomplished

through the framework of Scrum, but communication with the customer can be

problematic. Several developers observed that, “the biggest area of communication issues

that we have is with the customer more than anything else, because they tend to not give

127

us a lot of feedback.” Part of the reason that the customer does not provide feedback is

that, in most cases, they have other daily jobs to take care of in addition to the work with

developers. This is related to the customer involvement issue, which is explained in the

customer involvement section.

 Bug Tracking System. All developers agree on that any web-based bug tracking

system can assist them in the task of prioritizing bugs and keeping track of bugs. The

company has been using a bug tracking system called “Mantis,” which is a free web-

based bug tracking system. Most developers think Mantis has been working well for the

bug tracking and auditing. One developer mentioned that, “It does a good job as far as

bug tracking and auditing.” Another developer states that, “I have been pleased with

Mantis. We use it very effectively, and it’s very customizable.”

Mantis also has a search function so that developers can do a key word search.

One developer observed that, “Mantis has a good search engine. You can use any

subsidiary field, which is a track list, and it can categorize very well.” However, some

developers think they could use Mantis more effectively by integrating features, tasks,

and burn-down charts into Mantis. One developer stated, “We only put bugs into Mantis

instead of features and tasks. I want to incorporate burn-down charts into Mantis.” A

couple of developers also think there is a bug in the software. One developer noted,

“There are couples of weird things it does occasionally, but it’s nothing catastrophic.”

The other developer uttered, “Mantis is supposed to send an email whenever a new bug is

entered in and sometime it sends false notification. It seems to be a bug in the software.”

128

 One interesting thing found in the interviews is that developers want their clients

to report bugs into Mantis. A project manager affirmed that, “It would be nice if our

clients could get into Mantis and report bugs there.” In fact, a project manager stated that,

“Basically, two teams had their clients enter bugs into Mantis. That can be helpful for

them.” However, the client in one of the projects does not like using Mantis as a bug

report system, so they use an email system instead. This seems to be a problem for

developers, because one noted, “they [the client] email the bugs to somebody and often

we don’t follow up on them.”

Another issue is that clients’ bug reports are often vague and difficult to

understand. One developer mentioned,

“Usually, their reports are a little vague and hard to understand. They say, ‘I did
this and enter the information and then save and then the page went blank.’
Sometimes, you don’t know exactly what page they were in the website and
sometimes you don’t know which information didn’t get saved.”

To solve the issue, developers ask clients for more feedback on their reports. One

developer stated that, “We can ask our client to put more feedback directly in Mantis and

hope our client sees it or sends an email, or we can give them a call if we have any

questions on the feedback. It seems that Mantis works well as a bug tracking system for

the firm, though it has a little glitch. However, it seems that more effort is needed to

integrate features, tasks, and burn down charts into Mantis.

Version Control System. The company has been using an open-source revision

control system called “Subversion”. All developers commented that Subversion would be

a great tool in any environment where a version control system is needed. One developer

stated, “We use Subversion and it works very well for us.” Another developer added,

129

“I’ve been really impressed with Subversion.” Another developer claims that Subversion,

“. . . works very well for small teams and for large teams as well.” A project manager

who used another revision control system thinks Subversion provides various functions

and is superior in many ways. He claimed that, “It has great utility, great tagging and

branching. I can only think of pros for it. It has been great for us and you know especially

compared to SourceSafe. It’s superior in every way.” Another developer claimed that

Subversion makes revision control easy, especially when creating and utilizing a branch.

He stated, “I came from using the Concurrent Versions System. Subversion just makes a

lot of things easier. We are using Subversion and it has an advantage when you want to

create a branch with some project. That‘s the biggest advantage of using it.”

In addition to the advantages mentioned above, Subversion periodically checks if

there are any changes made. If there are any changes made in the repository, it rebuilds

the system. One developer stated, “We use Subversion. It just polls every five minutes I

think and whenever there’s change, it checks out the code and rebuilds it, and make sure

everything is still working.”

Some developers think they can use it better by creating more branches. One

developer commented, “We need to use it better and do more branching.” Another

developer talked about a recent mistake, “Some code got checked in recently into the

main branch and got deployed. It caused a problem because it was in a half-ready state. It

should have been checked into a branch.” Other than the problem caused by human error,

it seems that Subversion is a well-chosen revision control system for the firm, and the

firm just needs to expand its use.

130

CHAPTER V

DISCUSSION AND MANAGEMENT GUIDELINES

This chapter discusses the discoveries from an in-depth agile software

development study of two firms utilizing the Scrum software methodology. The

discussion covers the following topics: critical issues and challenges found by adopting

the Scrum method in both of the study firms and management guidelines for avoiding and

overcoming obstacles when adopting the Scrum method.

Issues and Challenges of Scrum

 This section discusses issues and challenges identified in two firms by comparing

concepts which emerged from the data. The issues and challenges discussed suggest

lessons that Scrum practitioners can learn and provide a basis for management guidelines.

Human Resource Management

 Human resource management comprises in-house people related issues. Table 28

presents issues identified from the two firms. These issues reveal the challenges of the

Scrum method.

Team Management. When an organization decides to employ the Scrum method,

the organization needs to reorganize their existing development teams into Scrum teams.

The ABC results indicate that when Scrum teams are created, they must be composed

based on the knowledge and skills necessary for the projects in order to reduce the time to

learn business logic, development tools, and programming languages. In addition, each

Scrum team needs a team leader who can see the big picture and guide the team in the

131

right direction, even though self-managing team are one of the unique aspects of Scrum.

The Scrum master might be a good candidate for this job and selected from a group of

technical people, rather than a group of non-technical people like at ABC. Some

developers like the idea that the team decides how to do things based on the consensus of

the team and that the team has more control over how to complete the development

project. When organizing Scrum teams, the organization needs to balance management

between a pure self-managing team and a heavy leader-guided team. Another lesson from

ABC is that small sized teams are more flexible and adaptable in defining and applying

variants of Scrum. Interestingly, team management was not an identified issue at XYZ.

Table 28

 Human Resource Management Issues
Category ABC Firm Issues XYZ Firm Issues
Human
Resource
Management

• Team Management
• Collaboration
• Training
• Lack of Accountability
• Trust and Confidence

• Multiple responsibilities
• Collaboration
• Training

 Collaboration. The research identified several collaboration problems at ABC

when the firm kept two geographically separated development teams. These problems

could also apply to co-located teams. The first collaboration problem occurred between

developers at one site and QA personnel at the other site; developers were checking code

into CVS without telling QA personnel the potential areas of code that might be affected

by the changes made. To mitigate this problem, developers should take some

responsibility in testing code, or collaborate with QA personnel by showing the potential

areas of code that might be broken by their changes. The cause of the second

132

collaboration problem was a divided team with members in two different development

locations. When the team hired new members at one site, it was difficult for team

members at the other site to work with them. This incident indicates that when new

members are hired, assign them to a co-located Scrum team instead of a remote-site

Scrum team. The third collaboration problem arose between Scrum teams due to the lack

of a designated person responsible for checking the consistency of products across Scrum

teams. The solution to this problem consists of appointing a Scrum master in each team

and having them discuss any common issues across Scrum teams. The fourth

collaboration problem concerned dividing and assigning tasks between two sites in the

Sprint planning meeting, as well as how to track bugs reported by QA personnel and

customers. The mitigation of this problem is to use commercial tools designed to address

these issues, such as VersionOne (which offers good project management mechanisms)

or JIRA (which provides excellent bug tracking mechanisms).

 At XYZ, no major collaboration problems were noticed. On one occasion at XYZ,

a situation developed between developers and a particular project manager. Due to

insufficient human resources, one person had multiple responsibilities as product

manager, product owner, and accounting manager. The first problem was that developers

did not try to talk with the individual about issues that came up outside of the Scrum

meeting because they knew he was too busy and overloaded with too many other tasks.

The second problem was that developers had to wait to get any questions answered. The

third problem was the developers had the notion that the overloaded manager was a

bottleneck for the rest of team. A fourth problem was that developers had communication

issues with him because he was rarely available to people. This situation might be

133

beneficial to XYZ for a short time. In the long run, however, the firm will lose a lot more

than it gains with a manager trying to fulfill multiple conflicting responsibilities.

 Training. One of the biggest problems ABC faced was in new employee training.

Due to the complexity embedded in the system, new employees need to spend a lot of

time becoming familiar with the system. ABC deemed training new employees separately

in each Scrum team a big waste of time. A more efficient method is to appoint a mentor

to train all new employees in the basic practices of the firm, with each team giving task

specific training. The problem with new employee training gets worse when the

employee who has expertise in an area is at a different site than the new employee. One

observation noted that the use of multimedia may help the firm mitigate this problem, but

is not a complete solution. The indication is that co-located Scrum team members should

do employee training.

 XYZ also had a training problem. However, the problem there is with the Scrum

development method itself, rather than the existing systems. Some developers did not see

the big picture and the benefits of Scrum. One developer had a misconception that he

thought he should complete a full project within a single Sprint, instead of multiple

Sprints. XYZ’s case indicates that it is important to have all new developers go through

thorough, step-by-step, formal training and occasional follow-up training after that.

Brown bag lunch training or the “lunch-and-learn”-type training offered by the firm to all

employees is an excellent way to make up for the lack of formal training and to get

feedback from everyone.

Lack of Accountability. ABC revealed that tasks in the Sprint backlog often did

not get completed as estimated, and were consistently carried over to the next Sprint.

134

Then, nobody took responsibility for the delayed tasks. The initial intention of a self-

managed team is to allow developers to run the team and have ownership of the projects;

this seems to have been a big hole at ABC. If not operating correctly, self-managed teams

promote a lack of supervision, which can lead to a lack of accountability and

commensurate project delays. It appears that it would be helpful for the firm to confer the

necessary authority to either project managers or Scrum masters to supervise developers.

In that way, project managers or Scrum masters may influence developers to work faster

and harder, while allowing developers a certain degree of self-management.

It is also a downside of distributed Scrum that developers do not take ownership

of task completion, due to the lack of relevant control at both sites. Batra, Sin, and Tseng

(2006) suggested setting up a coordinator in one site and ambassador in the other site to

ensure control. A lack of accountability issue was not found at XYZ.

Trust and Confidenc.: Trust and confidence arose as an issue between a Scrum

master and developers when the Scrum master was unable to get developers items or

information they needed and was unable to remove developer’s impediments. The same

issue arose between developers when developers worked together on the same project

and they did not see any progress on a module assigned to another developer or group.

The trust issue got worse in the case of two development sites, causing confidence

levels with other developers to degrade. The fifth principle of the agile manifesto

(http://agilemanifesto.org/principles.html) says, “Build projects around motivated

individuals. Give them the environment and support they need, and trust them to get the

job done.” This implies developers should work in an environment that suits them and

135

should have the support that they need, and at the same time they should give other team

members trust to attain high confidence levels.

It takes a lot of time and effort to regain trust and confidence among developers. It

is critical to prevent trust and confidence problems before they happen. To resolve a trust

and confidence problem, the organization should foster collaboration and have project

managers keep monitoring the situation. Also, when there are team members at different

sites, it would be helpful if each member of the team at one site would take the time to

get to know members at the other site. The trust and confidence was not an identified

issue at XYZ.

Structured Development Process

 The structured development process consists of systematic process related issues.

Table 29 shows the structured development process issues identified in the research.

They are discussed below.

Scrum Framework. Most developers at ABC were in favor of the Scrum

framework. They thought the Scrum model promoted communication and team work,

and helped them keep track of task assignments and monitor task progress. They also

thought that working in the Scrum team provided motivation, excitement, and interest.

Some developers, however, did not like the frequent daily Scrum meeting. They felt that

having the daily Scrum meeting was too much time for not enough value, and that the

various Scrum meetings took too much developer’s time away from programming, even

though the Scrum meetings helped team members refine the goals for each Sprint and

improved the quality of products. Some developers and QA personnel also thought

monthly Sprint planning meetings took too much time and they want to streamline the

136

planning session. As ABC indicates, any organization should have streamlined Scrum

meetings and monitor whether or not various Scrum planning sessions take too much

time for not enough value.

Table 29

Structured Development Process Issues
Category ABC Firm Issues XYZ Firm Issues
Structured
Development
Process

• Scrum Framework
• Unit and Integration

Testing
• Coding Standard
• Documentation
• Formal Code Review

• Scrum Framework
• Unit and Integration Testing
• Coding Standard
• Documentation
• Formal Code Review
• Project Estimation and

Planning Poker
• Use Cases

The Scrum method works quite well for developers at XYZ and is a big

improvement over the waterfall method. Developers thought the Scrum method helped

team members get involved in projects, be aware of everyone’s progress, contain scope

creep, and prevent projects from going too far off course. Like ABC, some developers

did not like inefficient Sprint planning and review meetings. They felt that keeping daily

Scrum meetings to 15 minutes was difficult because people gab a little too long, there is

an excessive amount of material that needed discussed, and taking care of 2 or 3 projects

at once.

Another problem was setting up the meeting time. It was difficult to get all

developers together at one time without interrupting their work because of the flexible

work schedule. The research noted that some project managers actually managed the

137

Scrum team rather than let the team self-manage, and that developers did not spend

enough time generating a detailed Sprint backlog.

Unit and Integration Testing. When ABC first adopted the Scrum method, the

firm placed a QA person on each Scrum team. This caused a problem because the QA

person is always behind the Sprint schedule. This problem was resolved by creating a

QA-only Scrum team that covered all code generated by other Scrum teams. This

solution created another problem that when developers made a change and passed the

code to the QA team, the QA personnel sometimes did not know the other areas that

affected by the changes. To resolve this problem, the firm asked developers to do some

portion of the testing themselves that the QA people usually cover. This may not be a

good move economically for ABC firm because developers usually are paid more than

QA personnel; this might be a sensitive issue that any organization needs to resolve

wisely.

 XYZ utilized a tool called “N-Unit” for unit testing, and each developer tested

his/her own code. Interestingly, the firm also invited their clients to the test site and had

them track, test, and enter bugs that they found. However, having developers test their

own code had two issues. First, developers usually assume that their code always worked.

Second, developers could not as thoroughly test their code as third-party testers.

Another issue was related to large legacy code not designed for unit or integration

testing. Developers had a difficult time testing the legacy code. The legacy code and the

code working behind the curtain were a big challenge to the firm. The firm also needed to

hire more people who had a wide range of testing skills in software. Insufficient client

budget also made it difficult to test everything covering one hundred-percent of the code.

138

It seems that the firm utilized the unit test well, but it did not cover all possible

combinations of issues due the short client budget and lack of wide range of skilled QA

personnel. In addition, the firm needed to rewrite the legacy code or find out an efficient

way to make the legacy code unit-testable.

Coding Standard. ABC utilized coding standards. They have very specific coding

standards in many areas in order to have easily maintainable and expandable code. Most

developers agree that having a formal coding standard enables them to understand other

developer’s code, but some developers worry about putting too many coding standards on

developer’s shoulders. Some developers actually think that heavy coercion to the

standard may hamper their performance because they have to look at coding documents

back and forth to see if their code conforms to the standard.

 XYZ did not have a formal coding standard but had a verbal coding standard;

developers felt that they were close enough to comment when a person who did not

follow the norm. Developers had their own coding style, which was influenced by several

commercial software packages, such as Microsoft Visual Studio and Borland. Most

developers and project managers thought forcing a coding standard might hamper

developer’s creativity and hinder performance because they had to relearn how to code in

many places.

Documentation. After ABC started the Scrum method, many detail documents,

such as class diagrams, sequence diagrams, activity diagrams, communication diagrams,

and use cases were significantly reduced, or disappeared. The lack of detailed design, as

indicated at ABC, caused many problems in complex projects. One main area affected

139

considerably was testing, because QA personnel depend heavily on documentation to find

problems.

Another problem with a lack of detailed documentation was the tendency to write

code without taking time to think about what effects the code may have on other parts of

the application. These resulted in an increased number of bugs, which then required a lot

of developer working hours to fix. This was a major issue and caused major code re-

writes. It’s obvious from ABC that if any organizations deal with complex and large

projects, they need to tailor the Scrum philosophy on reducing the amount of

documentation.

 XYZ also reduced the amount of documentations significantly. Developers tried

to place more comments and explanations for any tricky logic in the code, along with

explanations for any changes that they made, to compensate for the lack of

documentation. However, it turned out that many developers had a hard time completing

tasks without any documentation, especially developers who needed to work on parts of

the system they had never worked on before and new developers who did not have much

experience with XYZ’s projects. Further, those developers asked a lot of questions,

which took much time away from developers who did understand the project. As XYZ

indicates, no documents at all are a very dangerous idea that leads to many problems,

including causing the agile method to be as slow as anything else.

In the agile methods, the code itself is regarded as all the documentation that

developers need. However, it is apparent that zero documents are not always the right

way for large-scale and complex projects, especially, in a distributed Scrum environment.

The amount of documentation should be decided based on the context of the development

140

environment, though Parnas (2006) suggests a wordy document and Simon (2006)

suggests no more than a two page long document.

An additional problem was that only one main developer had extensive

knowledge about the firm’s systems, rather than every developer on the Scrum team

having shared skills and knowledge of the systems. If that main person leaves the firm for

any reason, it would be a big problem because it may take several months to recover the

knowledge lost. Keeping all team members equal by sharing skills and knowledge on the

systems is not easy, and not feasible in reality.

Formal Code Review. ABC has utilized a web-based formal code review, and

developers think the formal code review is a vital and critical process in creating high-

quality software applications. Any issues and challenges were not identified at ABC.

 Developers at XYZ did not have a formal code review, but they had an occasional

informal code review. Not having a formal code review invoked some issues. First,

developers did not pay extra attention to their code, because they believed no one would

look at it again. If they believed that at some point somebody would go back and look at

their code, they would have more accountability. Second, developers lost opportunities to

improve the quality of their code and enhance their coding skills through feedback from

other developers. Third, there was a high chance that developers wasted time and money

by trying to re-invent the wheel from scratch because there are many code examples

already written, tested, and proved efficient by the Dot Net framework or other

commercial builders. Most developers knew the benefits of having a formal code review,

but they just never had the time to do it. XYZ needs to set a time aside for a formal code

review and select an appropriate tool to facilitate the code review.

141

Project Estimation and Planning Poker. This issue came up only at XYZ, though

having an accurate project estimate was an important part of projects for both firms.

Developers at XYZ had a hard time estimating the duration of a project, and the level of

hardness increased when developers needed to deal with legacy code or when they did

not have the experience required to finish a project. However, it seems they mitigated this

issue by introducing a new project estimation method called “Planning Poker”. A lot of

comments from developers revealed that the Planning Poker method provided developers

with the opportunity to throw out their honest opinion without being biased or coerced by

other developers. Also, Planning Poker helped developers have a chance to discuss

estimation gaps between developers, and guided them to reaching better estimates. One

noticeable benefit was when developers were able to break big tasks into the smallest

measurable segments, they were easily able to make good estimates. The researcher

noticed that every developer thought Planning Poker was very useful, effective, and

produced reasonable estimates. However, though Planning Poker could help estimation,

the bottom line was developers needed to be familiar with the technologies that they were

going to use, the business logic, and the system itself. Otherwise, estimation will still be

one of the most difficult parts of a project.

Use Cases. This issue was identified only at XYZ. Developers at XYZ knew that

they could understand the system better with use cases and that they had the best success

when they had use cases. Though the firm has reduced the amount of specification

documents a lot since the firm adopted Scrum, one Scrum team created a fair amount of

use case documentation based on a list of items that team members needed to build.

Three issues were identified related to creating use cases. First, some developers were not

142

well prepared to write use cases because they were unfamiliar with a system. Second,

clients did not have a clear and precise idea what they really wanted to have in their

system. Third, clients did not know what use cases are or how to use them.

The first issue is an in-house issue and the other two are client-related issues. The in-

house issue can be resolved through a well-organized employee training program. The

client-related issues were resolved by having developers come up with some

specifications and having clients review it. It would be better if clients know what they

really want to have in their system and understand use cases. If clients have a notion of

use cases and have a clear idea of their system, developers can communicate with clients

better and create better use cases, which can lead to successful projects.

Environment

Table 30 shows issues belong to the environmental factor. The issues and

challenges related to the environmental factor are discussed below.

Table 30

Environment Issues
Category ABC Firm Issues XYZ Firm Issues
Environment • Customer Involvement

• Working Environment
• Interdependency among

Modules
• Social Loafing

• Customer Involvement
• Working Environment
• Common Tools and

Problems between Teams
• Government Projects and

the Scrum Method
• Social Loafing

Customer Involvement. Due to the large number of customers scattered across the

United States, ABC needed to come up with a different solution to incorporate customer

feedback. One way that the firm employed was to send out product line managers to the

143

customer and have them collect project requirements. The project line managers also

utilized WebEx to show features of the products and some charts and graphs to reduce

the number of onsite visits. Another way the firm employed to get customer feedback

was to host a user conference once a year. At the conference, the firm demonstrated new

policies and directions of product development. The customers then voted for or against

the policies and new development direction.

One issue associated with the customer involvement at ABC was that QA people

had a difficult time providing the customers with quick bug fixes. This resulted from the

Scrum method principles, which required the QA people to focus more on the code

generated during the Sprint process than on responding to customer problems.

 Though each project at XYZ was only for one customer, developers at XYZ had

difficulties getting customers involved in the decision making process. The customers did

not willingly participate in the process because they were busy and had other things to do.

Poor customer involvement in projects caused problems for the firm because developers

needed to create specifics without conversing with clients. Often times it took a lot of

hours to figure out what exactly customers really wanted to include in their system,

because they did not know what they want in their future system. This was a big

roadblock for developers as they went through the development process.

Though XYZ did not have enough customer involvement, most final products

were accepted by their customers with minor changes requests. XYZ’s case indicates that

if developers get together more often with their customers, organizations can deliver a

software product to customers sooner with better features and functions. Organizations

144

may also reduce maintenance fees by delivering a more correct product that customers

want.

Working Environment. There were mixed feelings among developers about the

open-space working environment. Some developers liked a cubicle setting because they

thought it increased the number of communications between team members and fostered

collaboration and the teamwork. However, most developers did not like the open-space

working environment because they could not concentrate on their work while their

coworkers talked to one another. It was apparent that most developers liked having their

own office rather than a cubicle in order to be productive.

 Many developers at XYZ liked the open-space working environment because it

provided easy access to other developers and it fostered communication. Though some

developers enjoyed the open-space working environment, other developers did not like it

and thought it brought some downsides and problems. First, developers were easily

distracted when their co-worker’s talked to other co-workers or when they had a phone

conversation with someone. Second, developers were less productive when they could

not concentrate because of a lot of background noise. To cancel out the noise, developers

utilized headphones, which they put on to drown everything else out. Though this helped

most developers, some could not focus on their works just because they have the

headphones on.

Interdependency among Modules. At ABC, as the size and complexity of the

project grew, the dependencies and interconnections among tasks in the application

increased. However, developers were not able to fully consider all the dependencies and

interconnections among modules because of their narrow-focused planning and design in

145

each Sprint planning meeting. The developers also had a tendency to do things in a quick

and dirty way without thinking whether the code would be flexible enough for future

needs. As ABC indicates, any organizations should support and encourage developers to

spend more time on considering the dependencies and interconnections among modules.

The issue of interdependency among modules was not identified at XYZ because XYZ’s

projects were relatively small and less complex compared to ABC’s projects.

Common Tools and Problems between Teams. Though XYZ did not show any

signs of interdependencies among modules due to the firm’s small size of projects, the

firm did have issues with common tools and problems between teams. It appeared that

one Scrum team’s members could spend many hours finding the right tools or

technologies suitable for their project without knowing that other Scrum teams already

employed similar tools or technologies. This is a big waste of precious developer’s time

if two Scrum teams can utilize the same or similar tools or technologies.

The research also noted that each Scrum team had similar problems, which might

be resolved using similar solutions. Teams spent time resolving similar problems, each in

their own way, which is another waste doing duplicate work if the same solution can be

applied to both problems. The firm should appoint a person to inform teams if there are

similar technologies that other teams already took advantage of and whether there are

similar problems that other teams faced and resolved successfully.

Government Project and the Scrum Method. This issue was identified only at

XYZ because the firm has been dealing with many government projects. A government

project usually requires heavy documentation, big planning, and big design up front. This

does not conform to the philosophy of the Scrum method. It is a big challenge to

146

complete government projects with the Scrum method because the government itself is

not agile, and the nature of government is bureaucratic. An additional issue is that

developers have to learn the jargon and acronyms used in the descriptions of government

projects, adding unproductive time to complete a government project. To overcome these

hurdles, XYZ wants to combine the Scrum method with a Unified Process (UP) method

in order to conform more to the requirements of government projects. This hybrid of

Scrum and the Unified Process has not been developed in the firm. The author of this

paper developed a possible hybrid method as a part of this research, which is explained in

the Future Study section.

Social Loafing. The social loafing issue was identified at ABC because the firm

did not have ways to evaluate individual performance. In addition, social facilitation,

group motivational gain, and evaluation apprehension were also found. Social facilitation

and group motivational gain contributed to reduced development time and to lower bug

rates. When the firm invited all developers, QA personnel, and people in other

departments to the Sprint review meeting, developer evaluation apprehension was

observed.

Social loafing was generally not an issue at XYZ, though it was present to a

certain extent in some projects. Though XYZ has been very fair in recognizing

developers’ hard work, some developers did not think there was much individual

recognition, rather they thought there was more team recognition.

If the firm does not provide a way to accurately measure an individual’s

performance, and the performance is measured only by the unit or team, a social loafing

issue within the team might be raised. It is import to eliminate social loafing by making

147

each individual’s contribution verifiable (Balijepally, 2005) and to offset its possible

negative impact on development time and cost. It might be a good idea to invite all

developers, QA personnel, and staff in other departments to the Sprint review meeting,

where developers present what they implemented. In this way, developers might gain an

evaluation appreciation of how others view their work.

Information Systems and Technology

 Table 31 shows issues associated with information systems and technology.

Those issues and challenges are discussed below.

Table 31

Information Systems and Technology Issues
Category ABC Firm Issues XYZ Firm Issues
Information
Systems and
Technology

• Communication System
• Information and Knowledge

Sharing System
• Bug Tracking System and

Management Tool

• Communication
• Bug Tracking System
• Version Control Systems

Communication System. Ineffective communication is the root of most failures in

software products (Parnas, 2006; Simon, 1990). ABC utilized a lot of communication

devices to set up good communication channels when they kept two geographically

different development sites. Some of the multimedia tools utilized by the firm included

video conference systems, phone conference systems, a web-demo system, an instant

message system, and an email system. A virtual private network system was also utilized

at the beginning, but it was discarded because it was not fast enough. Of the different

multimedia tools used, the video conference system was most effective because people

could see facial expressions, gestures, and body language as issues were discussed.

148

However, none of the multimedia systems worked as optimally as face-to-face

conversation. Beck et al. (2001) stated that the most efficient and effective method of

conveying information to and within a development team is face-to-face conversation. A

contributing problem was unstable communication and data lines. When the phone

systems were down, the data line went down with it because they shared the same

physical line.

 Overall, the Scrum method provided an excellent communication mechanism at

XYZ. Developers believed that the Scrum method improved communications

considerably between team members. Each team in the firm was fairly separated and

generally there was not much communication between teams. The lack of communication

between teams caused problems as explained in the issues of common tools and problems

section. This problem might be easily resolved by holding a daily Scrum of Scrums

meeting and having Scrum masters of each Scrum team communicate with each other.

Another communication issue was with customers. More than anything else, this

was the biggest communication issue the firm had. As described in the issues of customer

involvement section, customers tended not to communicate with developers and not to

give a lot of feedback because they usually had other pressing work to do.

Information and Knowledge Sharing System. At ABC, newly hired developers

created a lot of bugs because they were not knowledgeable about the software that they

were working on. Some parts of the application were very sensitive to changes, so a

slight modification on these parts had a lot of impact in other areas. It is important to

have well-structured information and knowledge-sharing systems between experienced

software developers and brand new software developers. In particular, it was very critical

149

to have a knowledge sharing system if new software developers in one location need

some of the expertise of software developers in another location. To resolve this problem,

the firm utilized a web-based Wiki program which enables developers to add and edit

items that might be critical to other developers. Another issue was assigning newly hired

developers to Scrum teams. Though the firm maintained two geographically different

development sites, each Scrum team’s members should be co-located in only one site. In

that way, new developers can have face-to-face communication with other team

members.

Bug Tracking System and Management Tool. ABC developed a bug tracking

system called MOM, which ran on a UNIX platform. Later, the firm adopted a

commercial bug tracking system called JIRA because of its additional functionalities,

such as filter functions and severity priority code functions. The firm also utilized a

commercial web-based management tool called VersionOne to provide useful

functionalities, such as simplifying project planning and management, enhancing

business and project adaptability, improving project visibility, and increasing project

predictability and confidence. The problem associated with these tools was that the firm

could not use one product for both bug tracking and management of a Scrum cycle.

Developers had a difficult time using all three products at the same time.

 XYZ utilized a free, web-based bug tracking system called “Mantis,” which

worked very well for bug tracking and auditing purposes. However, developers thought

they could use Mantis more effectively by integrating features, tasks, and burn-down

charts into Mantis. Mantis sometimes also sent out false email notifications when a new

bug was entered in the system. Customers associated with two Scrum teams entered bugs

150

into Mantis, which was very helpful for developers because every bug could be managed

by one tool.

Customers associated with other Scrum teams reported their bugs through an

email system. This sometimes caused a problem because developers needed to deal with

two systems to track bugs, and they did not follow up on customer’s emails. Another

problem was vague customer bug reports, which developers had a difficult time

understanding. This took a lot of developer time because they had to take extra steps

deciphering the customer report. Developers usually asked customers to put in a more

detailed description, sent an email, or called directly to get more feedback on the report.

Version Control Systems. XYZ utilized a version control system called

“Subversion,” a well-know version control system in the open source community. It has

been a great utility for the firm because of its superior tagging and branching capability

and a functionality that checks periodically to see if there are any changes made in code

and then rebuilds whole system if any changes are detected in the repository. In addition

to the automatic rebuild capability, it also makes sure every piece of code is still working

properly. Some developers think they can use it better by creating more branches and

expanding its use. Other than a human error problem that checked some code into the

wrong branch, the firm picked a good revision control system.

Management Guidelines

 This section provides management guidelines to help organizations that are

already utilizing Scrum or planning to implement Scrum in the future. The guidelines

explained here also help organizations avoid stumbling blocks in their Scrum

151

implementation. The issues and challenges identified and discussed in the previous

section provide the basis of the guidelines. The first set of guidelines is for co-located

Scrum teams, and the second ones for geographically scattered Scrum teams.

Guidelines for Co-located Scrum Teams

1. When a new Scrum team is organized, managers must consider whether each

team member’s knowledge and skills are pertinent to the project the team

members are going to work on.

2. Each Scrum team needs a team leader who can show team members the big

picture and guide them in the right direction. The Scrum master might be a good

candidate for the team leader. The team leader should not manage the team, but

should instead coach the team. The Scrum master should be a technical person

able to easily remove technology-related developer impediments.

3. When developers check code into a code repository, they should inform QA

personnel, in addition to the direct code that the developers modified or added,

about any other code sections that need to be tested as a result of the

modifications.

4. The project manager should not be a bottle neck to Scrum teams due to his/her

multiple responsibilities in other areas that are not directly related to the team

project.

5. Formal step-by-step new employee training should be a requirement, and

managers should monitor if the training is efficient.

6. New employees should be given enough time to understand both the existing

systems and the Scrum method before they get into a project.

152

7. Brown bag lunch training or “Lunch-and-learn” type training should be

implemented often to refresh developers on Scrum and to exchange information.

8. A self-managing Scrum team still needs a supervisor who has authority to get

developers to work faster and harder.

9. Project managers should monitor if there are any trust and confidence issues

among developers, and between Scrum masters and developers.

10. The duration and rules of the daily Scrum meeting should be strictly observed; the

duration of other Scrum meetings should be dynamically adjusted based on the

agenda for efficiency.

11. Project managers should foster collaboration between developers and QA

personnel. Developers should be able to do a unit test of other developer’s code

and work closely with QA people on integration testing.

12. Organizations should educate developers that every piece of code should be

testable and designed for ease of testing.

13. Formal coding standards increase readability and understanding of other

developer’s code; too many coding standards hamper developer performance.

14. Lack of documentation is a source of problems, especially for large-scale and

complex projects. The philosophy of the Scrum method which reduces

documentation significantly should be tailored. Organizations need to determine

how much documentation is adequate for their projects.

15. Along with documentation, organizations need to promote each Scrum team

member having an equal amount of skill and knowledge relative to the project

they are working on.

153

16. Formal code review is a vital and critical process for quality applications.

Organizations should establish an efficient way to do formal code reviews.

17. Planning poker is a very easy, useful, and efficient way to evaluate projects.

Developers should break a big project into the smallest possible tasks to get better

estimates on those tasks.

18. Use cases are important specifications that elevate a developer’s understanding of

the project that they are working on; both developers and clients need to be

educated in how to write good use cases.

19. Customer involvement is very critical for the success of a project. Organizations

should invite customers to participate in the decision making process and find out

a good way to include them in the various Scrum meetings.

20. If any organizations have a large number of scattered customers, they should

consider the use of an annual or semi-annual user conference to explain their new

products, collect user feedback, and have them vote for or against the

organization’s new product direction.

21. Open-space working environments promote teamwork and communication, but

organizations should come up with methods to help developers deal with

environmental distractions.

22. For large-scale and complex projects, organizations should encourage and support

developers spending sufficient time thinking about dependencies and

interconnections between modules.

154

23. If any projects require heavy documentation, big planning, and/or big design up

front, the Scrum method might not work well unless combined with another

method, such as a Unified Process.

24. Organizations should provide a fair way to measure individual performance to

prevent social loafing being an issue.

25. A product fair, which invites people in other departments to a Sprint review

meeting and have developers present their works, is an excellent way to boost

developer performance.

26. Bug tracking systems and project management tools should be combined into one

piece of software to improve efficiency.

27. If possible, invite customers to a test site and have them test code and enter their

bugs into the organization’s bug tracking system, rather than letting them email

bugs to developers.

28. Good version control systems should be established and utilized to maintain

various branches of each product.

29. A person should be selected in each team to work as a liaison between Scrum

teams to discuss any common issues and common tools that can be shared among

Scrum teams. The Scrum master of each team might be a good candidate, and

daily Scrum of Scrums meetings need to be utilized for this purpose.

Additional Guidelines for Geographically
Distributed Scrum Teams

1. When developers check code into a code repository, they should inform QA

personnel at the other site, in addition to the direct code that the developers

155

modified or added, about any other code sections that need to be tested as a result

of the modifications.

2. Scum team members should be co-located at one site, rather than having a team

comprised of team members from two different sites.

3. There should be a person to work as the liaison between sites. This person should

facilitate collaboration when dividing and assigning tasks between sites. The

project manager at each site might be a good candidate.

4. There should be good bug tracking tools and project management tools, accessible

and shared by multiple sites.

5. New employee training should be performed through members at the same

development site.

6. Project managers at each site should pay extra attention to trust and confidence

issues between developers at different sites.

7. Trust and confidence issues are reduced if each Scrum team member at one site

takes time to get to know members at the other site.

8. A video conference system between sites works best for communication between

sites, but does not work as optimally as face-to-face conversation.

9. Tools like a web-based wiki program should be utilized to share information and

knowledge between developers at different sites.

156

CHAPTER VI

A THEORETICAL MODEL, FUTURE STUDY, AND CONCLUSIONS

This chapter suggests a theoretical model for the adoption and utilization of agile

methods in the development of mission-critical, small- and large-scale projects and a new

hybrid model for further research on the application of traditional and agile methods. This

chapter also presents limitations of the present research and lastly some final conclusions.

 A Theoretical Model

In the previous chapter, four critical factors for the success of Scrum were

described. This section addresses relationships among the four factors and managerial

insights to maximize the benefits of software development with Scrum. This section also

provides a theoretical model to explain how agile methods can be adopted and utilized to

effectively support the development of mission-critical, small- and large-scale projects.

The first factor was human resource management to reflect the importance of the

team composition, collaboration, training, accountability, trust and confidence and

multiple responsibilities. In terms of human resource management, the organization

should consider what would be the optimal allocation of a limited number of developers.

It was obvious that it took more development time and cost when new team members did

not interact well with other members of the team (Williams & Kessler, 2000) or if team

members needed more learning and training to complete their tasks. The organization

should foster collaboration between developers and QA people so that QA people can test

changed code and other areas of code that might be affected by code changed.

157

Assigning an appropriate and technical Scrum master is also important for the

success of the Scrum method. Sometimes team impediments were not taken care of and

often needed to be repeated, slowing or even stopping the progress of the Sprint. Scrum

masters should elevate trust and confidence levels among developers and between

developers and themselves.

Figure 10. The theoretical model of a human resource management factor.

Scrum masters also need to have authority to urge developers to work faster or

harder. It may not be a good idea to have developers run the team without having a team

158

leader (Marrington et al., 2005) to make right decisions in a timely manner when team

members do not know which way to take among several alternatives.

New employee training should not be treated lightly. The organization should

provide step-by-step formal training with the organization’s systems and software

development method to new employees. If developers need to do other projects asked by

other departments or project managers have multiple responsibilities, they cannot focus

on current project tasks and Scrum won’t work. In conclusion, human resource

management issues can directly affect the performance of Scrum teams. Figure 10 show

the theoretical model of the human resource management factor. All of the issues and

challenges related to the factor should be reduced or resolved to successfully manage

human resources.

The second factor is a structured development process to reflect the importance of

the Scrum framework, unit and integration testing, coding standards, documentation,

formal code review, project estimation and Planning Poker, and use cases. In terms of a

structured development process, all Scrum frameworks, including Scrum ceremonies and

Scrum artifacts, should work together smoothly. The organization should also carefully

examine the role of a QA person on each Scrum team or on a QA-only Scrum team. QA

people can conduct unit and integration testing, and relieve the burden of developers

testing their own code. Having a formal code review and coding standards are critical, but

organizations should not put too much weight on developer shoulder. The organization

should identify how much documentation is appropriate for each project based on the

context of the development environment. The amount and utilization of use cases should

also be determined on the same context. Project estimation using Panning Poker can be

159

easily implemented, but the results will be outstanding. Figure 11 displays the theoretical

model of a structured development process factor. Each process should be properly

established and wisely used.

Figure 11. The theoretical model of a structured development process factor.

The third factor is the environmental factor, reflecting the importance of customer

involvement, working environment, interdependency among modules, social loafing, and

common tools and problems. In Scrum, the autonomous nature of Scrum team allows

160

developers to have more control over how and when the development is completed,

depending on the consensus of the team, and to have more ownership of the projects they

are working on. Therefore, it is tempting to state that an autonomous Scrum team has

better control and efficient product management. However, often the developers are not

able to fully consider all the dependencies and interconnections among modules, resulting

in inconsistent product outputs across team members within the same Scrum team.

Figure 12. The theoretical model of an environmental factor.

Further, due to limited communication between different Scrum teams, it is

difficult to keep the overall product output consistent across teams. The lack of

161

communication results in them solving common problems, each in their own style and

way, though the same solution can be applied to common problems across teams. The

inconsistency and duplication across teams negatively affects efficient product

management.

Regarding the large number of customers scattered in broad areas, a better model

should be developed for collecting user requirements and feedback. The research noted

that while sharing cubicles with a co-worker improves the opportunity to communicate

among team members, it is possible for developers to be constantly distracted by cubicle

partners often having conversations with other coworkers. If the organization provides a

way to accurately measure the individual’s performance, a social loafing issue within a

team might be diminished. Figure 12 illustrates the theoretical model of the

environmental factor.

The fourth factor is information systems and information technology, to reflect

the importance of communication system, information and knowledge sharing system,

bug tracking system and management tools, and version control systems. These systems

and tools are indispensable for the success of Scrum.

The Scrum method envisions autonomous teams who are given a strong

motivation to iteratively and continuously monitor the progress of their projects through

interactions and discussions in the daily Scrum meeting and Sprint review meetings.

Communication systems, bug tracking systems, and management tools are beneficial in

the sense that they help developers visually see and remember what needs to be done on a

daily and monthly basis. Figure 13 shows the theoretical model of the information

systems and information technology factor.

162

The final theoretical model, which combines the critical factors, is presented in

Figure 14. As explained in the previous sections, all of the issues and challenges in each

category should be resolved, or at least mitigated, and the four factors should be balanced

and support each other to have success when Scrum is applied to mission critical, small-

and large-scale projects.

Figure 13. The theoretical model of an information system and information technology
factor.

Figure 14. Theoretical model for the success of Scrum.

163

164

Future Study: A Hybrid Model

As described in the literature review section, agile methods have mainly been

utilized in relatively small-scale and simple projects and have not been sufficiently tested

in large-scale projects, although researchers have reported that large-scale and complex

projects also benefited from suitably tailored agile development methods (Bowers et al.,

2002; Cao et al., 2004; Lindvall et al., 2004; Lippert et al., 2003). Both agile methods and

traditional methods have strengths and weaknesses as shown in the literature review

section. It would be very beneficial if we can come up with a new method that

accommodates the strengths while suppressing the weaknesses of both methods.

Figure 15. A new hybrid model.

165

One solution for this issue is to create a new hybrid method by combining the

Scrum method with the Rational Unified Process (RUP) method. The rationale of the

selection of the Scrum method from among other agile methods is: (1) Scrum is a widely

used agile method in the software industry, in particular in the United State (Leffingwell,

2007; Williams & Cockburn, 2003), (2) Scrum is powerful and easy to learn (Willson,

2009), and (3) the Scrum method claims to be suitable to any size of projects (Schwaber

& Beedle, 2002). Also, RUP is relatively easy to streamline (Ambler, 2005). As a part of

the research, the author created a new hybrid model of RUP with Scrum. Figure 15

displays the new hybrid model.

Table 32

 Disciplines of Hybrid Model and RUP
Dimensions RUP Hybrid
Phases • Inception

• Elaboration
• Construction
• Transition

• Inception
• Elaboration
• Construction
• Transition

D
isciplines

Main
Disciplines

• Business Modeling
• Requirements
• Analysis & Design
• Implement
• Testing
• Deployment

• Business Modeling
• Analysis & Design
• Implement
• Testing
• Deployment

Support
Disciplines

• Configuration &
Change
Management

• Project Management
• Environment

• Configuration &
Change Management

As shown in Figure 15, the four major phases and disciplines of RUP provide the

skeleton of the new method. The nine principles of RUP are reduced into seven

166

disciplines to streamline the process. All of the seven disciplines can be utilized in each

phase, but only the main disciplines are displayed in Figure 15. The business modeling

discipline is the main player in the inception phase. The analysis and the design

disciplines are mostly utilized in the elaboration phase.

The implementation and testing disciplines focus on the construction phase,

whereas, the deployment and configuration disciplines are in the transition phase. Table

32 shows the seven disciplines of the hybrid model along with the original nine RUP

disciplines

The ceremonies (Daily Scrum meeting and Sprint meeting) and roles (SM, team,

product owner), and artifacts (product backlog, Sprint backlog, and burndown chart) of

Scrum can be embedded into the RUP phases without causing any trouble. The daily

Scrum meeting, the daily Scrum of Scrums, the Sprint planning meeting, and the Sprint

review meeting can be conducted iteratively in each RUP phase. The product owner can

create the product log as a part of the business modeling discipline. A Scrum master also

can play the usual role defined in the Scrum process. The tasks defined in the product

backlog and the Sprint backlog can be accomplished and monitored through the daily

Scrum meeting and the Sprint meeting.

Figure 16 illustrates a typical phase of the hybrid model. As shown in the figure,

the left-most column contains the product backlog and burndown chart. These Scrum

artifacts can be shared by multiple Sprints, which are displayed on the top of each

column. Each Sprint starts with the Sprint planning meeting and ends with the Sprint

review meeting. The seven RUP disciplines can be monitored through the daily Scrum

meeting. Based on the progress of a project, the usage of the seven RUP disciplines will

167

vary in each Sprint. For example, in the inception phase, the first Sprint may focus more

on the business modeling discipline than the other disciplines. However, the second and

third Sprint may utilize the analysis/design and the implementation/test disciplines.

Figure 16 illustrates the inception phase, which consists of multiple Sprints, but each

phase can contain only one or two Sprints according to the size of a project.

As shown in both Figure 15 and Figure 16, we can still provide a straightforward,

methodical, and structured process in our hybrid method by keeping the four major

phases of RUP. However, the hybrid method will lose some degree of predictability,

stability, and high assurance because of the agility of Scrum embedded into RUP.

Figure 16. The inception phase of a hybrid model.

However, the hybrid model is capable of handling rapidly changing business

requirements. It is expected that over-budget and delayed-schedule issues will be reduced

due to the increased adaptability of the hybrid method. As explained, the four major

phases and six disciplines of RUP provide a method platform, and the ceremonies, roles,

168

and artifacts of Scrum offer management and tracking mechanism in the new hybrid

model.

Limitations of Present Study

 There are several limitations of this study. First, the most important limitation of

this research is that the unit of analysis of this research was narrowed down to the Scrum

software development process as utilized by the two study firms. Hence, the finding of

this research may not be directly generalizable to the larger population and cannot be

extended to wider populations. Second, interviewees were selected from various roles,

levels of experience, and positions, including developers, lead software engineers, Scrum

masters, project managers, and executive officers. Selection bias may have affected the

process of selection. Third, critics may argue that the number of interview subjects is too

small to be representative of the population. Interviews with a non-random sample of a

few dozen members of the target population may not meet the statistical assumptions

necessary to project the results accurately or reliably to the total population. Fourth, some

interviewees might not want to present themselves negatively, and this research may not

have recorded interviewees’ actual opinions. Finally, because the quality of data

collection and the research results is highly dependent on the skills of the researcher and

on the rigor of data analysis, the quality of the research might be influenced by skills and

experience of the researcher.

169

Conclusions

This research identified the four main categories of critical issues and challenges

that may affect the quality of the application of agile methods and illustrated a theoretical

model which showed how agile methods can be adopted and utilized to effectively

support the development of mission-critical, small- and large-scale projects. This paper

also provided management guidelines to help organizations avoid and overcome

obstacles in adopting the Scrum method as a future software development method. The

lessons about Scrum obtained through the two case studies will be valuable assets to

many Scrum practitioners, and the suggested new framework for further research on the

application of traditional and agile methods will provides a basis for further research for

those who want to further explore hybrid software development methods.

170

REFERENCES

Advanced Development Methods, Inc. (2009). Scrum, Retrieved February 2, 2009, from
http://www.controlchaos.com.

Agar, M. H. (1980). The professional stranger: An informal introduction to ethnography.

New York: Academic Press.

AgileLogic. (2006). Agile logic. Retrieved March 20, 2009, from
http://www.agilelogic.com.

Aiello, J. R., & Douthitt, E. A. (2001). Social facilitation from Triplett to electronic
performance monitoring, Group Dynamics, 5(3), 163-180.

Alavi, M., & Carlson, P. (1992). A review of MIS research and disciplinary development.

Journal of Management Information Systems, 8(4), 45-62.

Ambler, S. (2005). A manager’s introduction to the Rational Unified Process (RUP).

Retrieved Feb 20, 2009, from
http://www.ambysoft.com/downloads/managersIntroToRUP.pdf

Anacon, D. (1990). Outward bound: Strategies for team survival in an organization.
Academy of Management Journal, 33(2), 334-365.

Avison, D., Lau, F., Myers, M., & Nielsen, P. A. (1999). Action research.
Communications of the ACM, 42(1), 94-97.

Awad, M. A. (2005). A comparison between agile and traditional software development
methodologies. Unpublished doctoral dissertation, The University of Western
Australia, Australia.

Balijepally, V. (2005). Collaborative software development in agile methodologies –
Perspectives from small group research. Proceedings of the Eleventh Americas
Conference on Information Systems, August 11-14, Omaha, NE.

Baroudi, J. J., & Orlikowski, J. W. (1989). The problems of statistical power in MIS

research. MIS Quarterly,13(1), 87-106.

Baskerville, R., & Myers, M. D. (2004). Special issues on action research in information

systems: Making IS research relevant to practice – Forward. MIS Quarterly,
28(3), 329-335.

Baskerville, R.L., & Wood-Harper, A.T. (1996). A critical perspective on action research
as a method for information systems research. Journal of Information Technology,
11, 235-246.

171

Batra, D., Sin, T., & Tseng, S. (2006). Modified agile practices for outsourced software
projects. Proceedings of the Twelfth Americas Conference on Information
Systems, Acapulco, Mexico, August 4-6, 2006, 3872-3880.

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA:
Addison-Wesley.

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et al.
(2001). Manifesto for agile software development. Retrieved December 10, 2008,
from http://www.agilemanifesto.org/

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et al.
(2001). Principles behind the agile manifesto. Retrieved January 19, 2009, from
http://www.agilemanifesto.org/principles.html

Benbasat, I., & McFarlan, W. (Eds.). (1984). An analysis of research methodologies in
the information systems research challenge. Boston: Harvard Business School
Press.

Benbasat, I., Goldstein, K., & Mead, M. (1987). The case research strategy in studies of
information systems. MIS Quarterly, 27(2), 369-368.

Benbasat, I., & Zmud, W. R. (1999). Empirical research in information systems: The
practice of relevance. MIS Quarterly, 23(1), 3-16.

Boehm, B. (2002, January). Get ready for agile methods with care. Computer, 35(1), 64-
69.

Boehm, B., & Philip, P. (1988). Understanding and controlling software costs. IEEE
Transactions on Software Engineering, 14(10), 1462-1477.

Boehm, B., & Turner, R. (2003, June). Using risk to balance agile and plan-driven
methods. Computer, 36(6), 57-66.

Bond, C. F. (1982). Social facilitation: A self-presentational view. Journal of Personality
and Social Psychology, 42, 1042-1050.

Bonoma, T. V. (1985). Case research in marketing: Opportunities, problems, and a

process. Journal of Marketing Research, 22(2), 199-208.

Bowers, J., May, J., Melander, E., Baarman, M., & Ayoob, A. (2002). Tailoring XP for

large systems mission critical software development. Proceedings of the Second
XP Universe and First Agile Universe Conference on Extreme Programming and
Agile Methods, 100-111.

Brooks, F. P. (1995). The mythical man-month. Reading, MA: Addison-Wesley.

172

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2004). How extreme does extreme
programming have to be? Adapting XP practices to large-scale projects.
Proceedings of the 37th Hawaii International Conference on System Sciences, 1-
10.

Charmaz, K. (2002). Qualitative interviewing and grounded theory analysis. In J. F.
Gubrium & J.A. Holstein, Handbook of qualitative research (2nd ed., pp. 675-
694). Thousand Oaks, CA: Sage.

Cockburn, A. (2007). Agile software development: The cooperative game. Upper Saddle
River, NJ: Addison-Wesley.

Cottrell, N. B. (1972). Social facilitation, in C.G. McClintock (Ed.). Experimental Social
Psychology, Holt, New York, 185-236.

Davies, L.J., & Nielsen, S. (1992). An ethnographic study of configuration management

and documentation practices in an information technology centre. In K.E.
Kendall, K. Lyytinen, & J. I. De Gross (Eds.), The impact of computer supported
technology on information systems development.. Amsterdam: Elsevier/North
Holland.

Dennis, A., Wixom, B. H., & Tegarden, D. (2005). Systems analysis and design with

UML version 2.0. Hoboken, NJ: Wiley.

Denzin, N. K., & Lincoln, Y. S. (Eds.). (2000). Handbooks of qualitative research (2nd
ed.). Thousand Oaks, CA: Sage.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of
management review, 14(4), 532-550.

Elsbach, K. D., & Sutton, R. I. (1992). Acquiring organizational legitimacy through
illegimate actions: A marriage of institutional and impression management
theories. Academy of Management Journal, 35(4), 699-733.

Erickson, F. (1973). What makes school ethnography ‘ethnography’? Council on
Anthropology and Education Newsletter, 4(2), 10-19.

Forrester Research, Inc. (2005). Corporate IT leads the second wave of agile adoption.
Cambridge, MA.

Fowler, M. (2005). The new methodology. Retrieved December 10, 2008, from
http://martinfowler.com/articles/newMethodology.html

Fruhling, A., & De Vreede, G. J. (2006). Field experiences with extreme programming:
Developing an emergency response system. Journal of Management Information
Systems, 22(4), 39-68.

173

Gall, D. M., Gall, P. J., & Borg, R. W. (2003). Educational research: An introduction.
Boston: Allyn and Bacon.

Glaser, B. G. (1978). Theoretical sensitivity: Advances in the methodology of grounded
theory. Mill Valley; CA: Sociology Press.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for
qualitative research. New York: Aldine.

Glesne, C. (2006). Becoming qualitative researchers. Boston: Pearson.

Hickey, A. M., & Davis, A. M. (2004). A unified model of requirements elicitation.
Journal of Management Information Systems, 20(4), 65-84.

Highsmith, J., & Cockburn, A. (2001, September). Agile software development: The
business innovation. IEEE Computer, 34(9), 120-122.

Hodgetts, P. (2009). Product development with Scrum. Retrieved February 1, 2009, from
http://www.agilelogic.com.

Isabella, L. A. (1990). Evolving interpretations as a change unfolds: How managers
construe key organizational events. Academy of Management Journal, 33(1), 7-
41.

Jones, C. (1997). Applied Software Measurements. Highstown, NJ: McGraw-Hill.

Kahn, W. A. (1990). Psychological conditions of personal engagement and
disengagement at work. Academy of Management Journal, 33(4), 248-266.

Kaplan, B., & Maxwell, J. A. (1984). Qualitative research methods for evaluating
computer information systems. Thousand Oaks, CA: Sage.

Kaplan, R. S. (1985). The role of empirical research in management accounting. Boston:
Harvard Business School.

Kruchten, P. (2004). The rational unified process: An introduction (3rd ed.). Reading,
MA: Addison-Wesley Longman.

Larman, C. (2007). Agile and iterative development. Boston: Addison-Wesley.

Leffingwell, D. (2007). Scaling software agility: Best practices for large enterprises.
Upper Saddle River, NJ: Addison-Wesley.

Lévi-Strauss, C. (1966). The savage mind (2nd ed.). Chicago: University of Chicago
Press.

174

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., et al.
(2004). Agile software development in large organizations. Computer, 37(12), 26-
34.

Lippert, M., Becker-Pechau, P., Breitling, H., Koch, J., Kornstadt, A., Roock, S., et al.
(2003). Developing complex projects using XP with extensions. Computer, 36(6),
67-73.

Leonard-Barton, D. A. (1990). A dual methodology for case studies: Synergistic use of a
longitudinal single site with replicated multiple sites. Organization Science, 1(3),
248-266.

Markus, M. L. (1983). Power, politics, and MIS implementation. Communications of the
ACM, 26(6), 430-444.

Markus, M. L., & Lee, S. A. (1999). Special issues on intensive research in information
systems: Using qualitative, interpretive, and case methods to study information
technology – forward. MIS Quarterly, 23(1), 35-38.

Marrington, A., Hogan, J. M., & Thomas, R. (2005). Quality assurance in a student-
based agile software engineering process. Proceedings of the 2005 Australian
Software Engineering Conference, 324-331.

Martin, P. Y., & Turner, B. A. (1986). Grounded theory and organizational research. The
Journal of Applied Behavioral Science, 22(2), 141-157.

Miller, K., & Larson, D. (2005, winter). Agile software development: Human values and
culture. Technology and Society Magazine, IEEE, 24(4), 36-42.

Myers, M. D. (1997). Qualitative research in information systems. MIS Quarterly, 21(2),
241-242.

Myers, M. D. (1999). Investigating information systems with ethnographic research.
Communication of the AIS, 2(23), 1-20.

Myers, M. D. (2009). Qualitative research in business and management. London: Sage.

Nelson, C., Treichler, P. A., & Grossberg, L. (1992). Cultural studies: An introduction.
New York: Routledge.

Orlikowski, W. J. (1991). Integrated information environment or matrix of control? The
contradictory implications of information Technology. Accounting, Management
and Information Technologies, 1(1), 9-42.

Orlikowski, W. J. (1993). CASE tools are organizational change: Investigating
incremental and radical changes in systems development. MIS Quarterly, 17(3),
309-340.

175

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in
organizations: Research approaches and assumptions", Information Systems
Research, 2(1), 1-28.

Parnas, D. (2006). Agile methods and GSD: The wrong solution to an old but real
problem. Communication of the ACM, 49(10), 29.

Parrish, A., Smith, R., Hale, D., & Hale, J. (2004). A field study of developer pairs:
Productivity impacts and implications. IEEE Software, 21(5), 76-79.

Pettigrew, A. M. (1989). Issues of time and site selection in longitudinal research on
change. In J. I. Cash, & P. R. Lawrence (Eds.). The information systems research
challenge: Qualitative research methods, (pp. 13-19). Boston: Harvard Business
School Press.

Pettigrew, A. M. (1990). Longitudinal field research on change: Theory and practice.
Organization Scrience, 1(3), 267-292.

Poppendieck, M., & Poppendieck, T. (2003). Lean software development. An agile
toolkit. Upper Saddle River, NJ: Addison-Wesley.

Preston, A. M. (1991). The 'Problem' in and of management information systems,
Accounting, Management and Information Technologies, 1(1), 43-69.

Royce, W. (1970). Managing the development of large software systems. Proceedings of
IEEE WESCON, 1-9.

Satzinger, J. W., Jackson, R. B., & Burd, S. D. (2005). Object-oriented analysis & design
with unified process. Boston: Thomson Course- Technology.

Schach, S. R. (2004). An introduction to object-oriented systems analysis and design with
UML and the unified process. Boston: McGraw-Hill.

Schman, L. (1987). Plans and situated actions: The problem of human-machine
communication. Cambridge: Cambridge University Press.

Schwaber, K. (1996). SCRUM development process. Proceedings of ACM SIGPLAN on
Objected-Oriented Programming, Systems, Languages, & Applications (OOPSLA
’96), San Jose, CA.

Schwaber, K. (2004). Agile project management with Scrum. Redmond, WA: Microsoft
Press.

Schwaber, K. (2007). The enterprise and Scrum. Redmond, WA: Microsoft Press.

Schwaber, K. (2008). What is Scrum? Retrieved March 5, 2008, from
http://www.scrumalliance.org/system/resource/file/275/whatIsScrum.pdf.

176

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum, Upper
Saddle River, NJ: Prentice Hall.

Shine Technologies. (2003). Agile methodologies survey results. Vitoria, Australia.

Shingo, S. (1981). Sstudy of ‘Toyota’ production system from industrial engineering
viewpoint. Osaka, Japan: Japan Management Association.

Simon, M. (2006). Global software development: A hard problem requiring a host of
solutions. Communication of the ACM, 49(10), 32-33.

Sommerville, I. (2004). Software Engineering. Boston: Addision-Wesley.

Spencer, J. (2005). There has to be a better way! Proceedings of Agile United, Experience
Report.

Standish Group International. (1994). The Chaos report. Retrieved March 20, 2007, from
http://www.standishgroup.com/sample_research/chaos_1994_1.php

Standish Group International. (2001). Extreme Chaos, Retrieved July 10, 2009, from
http://www.smallfootprint.com/LinkClick.aspx?fileticket=XJyTlOiQ1Zw%3D&t
abid=63&mid=519

Stone, E. (1978). Research methods in organizational behavior. Glenview, IL: Scott,
Foresman.

Straus, A. L., & Corbin, J. M. (1988). Basics of qualitative research: Techniques and
procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage.

Straus, A L., & Coribin, J. M. (1990). Basics of qualitative research: Grounded theory,
procedures, and techniques. Newbury Park, CA: Sage.

Suchman, L. (1955). Making work visible. Communications of the ACM, 38(9), 56-64.

Suchman, L. (1987). Plans and situated actions: The problem of human-machine
communication. Cambridge: Cambridge University Press.

Sutton, R. I. (1987). The process of organizational death: Disbanding and reconnecting.
Administrative Science Quarterly, 32(4), 542-569.

Takeuchi, H., & Nonaka, I. (1986, January- February). The new new product
development game. Harvard Business Review, 137-146.

Thomas, M. (2001). It projects sink or swim. British Computer Society Review.

Turner, B. A. (1983). The use of grounded theory for the qualitative analysis of
organizational behavior. Journal of Management Studies, 20(34), 333-348.

177

Van Maanen, J. (1982). Introduction in varieties of qualitative research. Beverly Hills,
CA: Sage.

Watson, R. T., Kelly, G., Galliers, D., & Brancheau, C. (1997). Key issues in information
systems management: An international perspective. Journal of Management
Information Systems, 13(4), 91-115.

Weick, K. (1994). Theoretical assumptions and research methodology selection. Boston:
Harvard Business Press.

Williams, L., & Cockburn, A. (2003, June). Agile software development: It’s about
feedback and change. Computer, 36(6), 39-43.

Williams, K. D., Harkins, S. G., & Karau, S. J. (1991). Social loafing and social
compensation: The effects of expectation of co-worker performance. Journal of
Personality and Psychology, 61(4), 570-581.

Williams, L., & Kessler, R. (2000). All I really need to know about pair programming I

learned in kindergarten. Communication of the ACM, 43(5), 108-114.

Willson, C. D. (2009). A brief introduction to SCRUM: An agile methodology. Matincor

Inc. Information Technology Management Consulting.

Wynn, E. (1979). Office conversation as an information medium. Unpublished doctoral

dissertation, University of California, Berkeley.

Yin, R. K. (1989a). Case study research: Design and methods. Beverly Hills, CA: Sage.

Yin, R. K. (1989b). Research design issues in using the case study method to study
management information systems. In J. I. Cash, Jr. & P. R. Lawrence (Eds.), The
information systems research challenge: Qualitative research methods. Boston:
Harvard Business School Press.

Yin, R. K. (1993). Applications of case study research. Newbury Park, CA: Sage.

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks,
CA: Sage.

Ytterstad, P., Akselsen, S., Svendsen, G., & Watson, R.T. (1996). Teledemocracy: Using
information technology to enhance political work, MISQ Discovery, 1.

Zuboff, S. (1988). In the age of the smart machine. New York: Basic Books.

178

APPENDICES

179

APPENDIX A. PRODUCT BACKLOG

180

181

APPENDIX B. SPRINT BACKLOG

182

183

APPENDIX C. BURNDOWN CHART

184

185

APPENDIX D. C# CODING STANDARD

186

C# Coding Standards

Introduction
The following is a paragraph from a Microsoft design guideline found in Microsoft
Visual C# .NET.

"The .NET Framework's managed environment allows developers to improve their
programming model to support a wide range of functionality. The goal of the .NET
Framework design guidelines is to encourage consistency and predictability in public
APIs while enabling Web and cross-language integration. It is strongly recommended
that you follow these design guidelines when developing classes and components that
extend the .NET Framework. Inconsistent design adversely affects developer
productivity. Development tools and add-ins can turn some of these guidelines into de
facto prescriptive rules, and reduce the value of nonconforming components.
Nonconforming components will function, but not to their full potential."

Though this statement refers specifically to library development, it applies just as well to
all our C# development. Our goal is to create code that is easily maintainable, expandable
and conforming to standards that help us interoperate with other systems, code pieces or
applications.

File, Class and Method headers

File Headers
The copyright notice and the CVS information are all that will appear at the top of a .cs
file. These, along with top and bottom separator bars, will account for the first 4 lines of
each file.
//==
// Copyright 2004 ABC Technologies Inc. All Rights Reserved.
// Version $Id: $
//==

Class/Deleqate/lnterface Headers
Class headers will be in xml format to facilitate the automatic documentation feature.
Some of this header may be entered automatically if you are using Visual Studio. This is
the general format:

/// <summary>
/// Short description of the Class
/// </summary>
public class MyClass
{…

187

If the class description is longer than one line, add a remarks section. The remarks section
may be as many lines as needed to fully describe the class. Here is an example:

/// <remarks>
/// This is a full description of the class ...
/// ...
/// </remarks>

Method/Event Handler Headers
Function headers will be in xml format to facilitate the automatic documentation feature.
Some of this header may be entered automatically if you are using Visual Studio. This is
the general format:

/// <summary>
/// Short description of the Class
/// </summary>
/// <param name="row">Row we're looking for</param>
/// <returns>description of return value</returns>
public bool rowExists(DataRow row)
{
 …

If there is a need for a description longer than one line, use the remarks tag as described
above, in the File Headers section.

Exceptions - if there are any exceptions thrown in the function, they must be
documented inside the exception tag in the function header:

/// <exception> exception name </exception>

Properties Headers
Class properties should be documented in the following manner:

/// <summary>
/// Name property
/// </summary>
/// <value>
/// A value tag is used to describe the property va lue
/// </value>
public string Name
{

get
{ …

188

A remarks tag (as described above) may be used for more detailed explanations, but
generally will not be found in properties.

Documenting Code

The following points are recommended commenting techniques.

• When modifying code, always keep the commenting around it up to date.
• Avoid adding comments at the end of a line of code; end-line comments make

code more difficult to read. However, end-line comments are appropriate when
annotating variable declarations, in which case, align all end-line comments at a
common tab stop.

• Avoid clutter comments, such as an entire line of asterisks. Instead, use white
space to separate comments from code.

• Prior to deployment, remove all temporary or extraneous comments to avoid
confusion during future maintenance work.

• If you need comments to explain a complex section of code that you are writing,
examine the code to determine if you should rewrite it. If at all possible, do not
document bad code — rewrite it. Although performance should not typically be
sacrificed to make the code simpler for human consumption, a balance must be
maintained between performance and maintainability.

• Use complete sentences when writing comments. Comments should clarify the
code, not add ambiguity.

• Comment as you code because you will not likely have time to do it later. Also,
should you get a chance to revisit code you have written, that which is obvious
today probably will not be obvious six weeks from now.

• Use comments to explain the intent of the code. They should not serve as inline
translations of the code.

 Comment anything that is not readily obvious in the code.
• Use comments on code that consists of loops and logic branches. These are key

areas that will assist source code readers.
• Throughout the application, construct comments using a uniform style with

consistent punctuation and structure.
• Separate comments from comment delimiters with white space. Doing so will

make comments obvious and easy to locate when viewed without color clues.

Naming conventions

Capitalization Rules

The following table summarizes the capitalization rules and provides examples for the

different types of identifiers.

•

189

 Identifier Case Example
Class Pascal AppDomain
Enum type Pascal ErrorLevel
Enum values Pascal FatalError
Event Pascal ValueChange
Exception class Pascal WebException

Note Always ends with the suffix Exception.
Read-only Static Pascal RedValue
field
Interface Pascal IDisposable

Note Always begins with the prefix I.
Method Pascal ToString
Namespace Pascal System.Drawing
Parameter Camel typeName
Variable Camel fourLeafCIover
Property Pascal BackColor
Protected Camel redValue
instance field Note Rarely used. A property is preferable to

using a protected instance field.
Public instance Pascal RedValue
Field Note Rarely used. A property is preferable to

using a public instance field.

Name Guidelines

The following points are recommended naming techniques.

Routines

• Avoid elusive names that are open to subjective interpretation, such as
AnalyzeThis () for a routine, or xxK8 for a variable. Such names contribute to
ambiguity more than abstraction.

• In object-oriented languages, it is redundant to include class names in the name of
class properties, such as Book.BookTitle . Instead, use Book.Title.

• Use the verb-noun method for naming routines that perform some operation on a
given object, such as CalculatelnvoiceTotal () .

Variables

• Append computation qualifiers (Avg, Sum, Min, Max, Index) to the end
of a variable name where appropriate.

• Use complementary pairs in variable names, such as min/max, begin/end, and
open/close.

190

• Since most names are constructed by concatenating several words, use mixed-
case formatting to simplify reading them. In addition, to help distinguish between
variables and routines, use Pascal casing (CalculatelnvoiceTotal) for
routine names where the first letter of each word is capitalized. For variable
names, use camel casing (documentFormatType) where the first letter of each
word except the first is capitalized.

• Even for a short-lived variable that may appear in only a few lines of code, still use
a meaningful name. Use single-letter variable names, such as i , or j , for short-
loop indexes only.

• Do not use literal numbers (magic numbers) or literal strings, such as For i =
l To 7 . Instead, use named constants, such as For i = 1 To
NUM_DAYS_IN _WEEK for ease of maintenance and understanding.

Miscellaneous

• Minimize the use of abbreviations, but use those that you have created
consistently. An abbreviation should have only one meaning and likewise, each
abbreviated word should have only one abbreviation. For example, if you use min
to abbreviate minimum, do so everywhere and do not use min to also abbreviate
minute.

• When naming functions, include a description of the value being returned, such as
GetCurrentWindowName{).

• Avoid reusing names for different elements, such as a routine called
ProcessSales() and a variable called iProcessSales.

• Avoid homonyms, such as write and right, when naming elements to prevent
confusion during code reviews.

Abbreviations
To avoid confusion and guarantee cross-language interoperation, follow these rules
regarding the use of abbreviations:

• Do not use abbreviations or contractions as parts of identifier names. For
example, use GetWindow instead of GetWin .

• Do not use acronyms that are not generally accepted in the computing field.
• Where appropriate, use well-known acronyms to replace lengthy phrase names.

For example, use UI for User Interface and OLAP for On-line Analytical
Processing.

• When using acronyms, use Pascal case or camel case for acronyms more than two
characters long. For example, use HtmlButton or htmlButton. However, you
should capitalize acronyms that consist of only two characters, such as
System. IO instead of System. Io.

• Do not use abbreviations in identifiers or parameter names. If you must use
abbreviations, use camel case for abbreviations that consist of more than two
characters, even if this contradicts the standard abbreviation of the word.

191

Avoiding Type Name Confusion

Different programming languages use different terms to identify the fundamental
managed types. Class library designers must avoid using language-specific terminology.
Follow the rules described in this section to avoid type name confusion.

Use names that describe a type's meaning rather than names that describe the type. In the
rare case that a parameter has no semantic meaning beyond its type, use a generic name.
For example, a class that supports writing a variety of data types into a stream might have
the following methods.

void Write{double value);

Do not create language-specific method names, as in the following example.

void Write(double doubleValue);

Case Sensitivity
To avoid confusion and guarantee cross-language interoperation, follow these rules
regarding the use of case sensitivity:

• Do not use names that require case sensitivity. Components must be fully usable
from both case-sensitive and case-insensitive languages. Case-insensitive
languages cannot distinguish between two names within the same context that
differ only by case. Therefore, you must avoid this situation in the components or
classes that you create.

• Do not create two namespaces with names that differ only by case. For example, a
case insensitive language cannot distinguish between the following two
namespace declarations.

namespace ee.cummings;
namespace Ee.Cummings;

• Do not create a function with parameter names that differ only by case. The
following example is incorrect.

void MyFunction(string a, string A)
• Do not create a namespace with type names that differ only by case. In the

following example, Point p and POINT p are inappropriate type
names
because they differ only by case.

System.Windows.Forms.Point p
System.Windows.Forms.POINT p

• Do not create a type with property names that differ only by case. In the following
example, int Color and int COLOR are inappropriate property
names
because they differ only by case.

int Color {get, set}
int COLOR {get, set}

192

• Do not create a type with method names that differ only by case. In the following
example, calculate and Calculate are inappropriate method names
because they differ only by case.

void calculate()
void Calculate()

Namespace Naming Guidelines
The general rule for naming namespaces is to use the company name followed by the
technology name and optionally the feature and design as follows.

CompanyName.TechnologyName[.Feature][.Design]

For example:
ABC.
Microsoft.Media.Design

• Prefixing namespace names with a company name or other well-established brand
avoids the possibility of two published namespaces having the same name. For
example, Microsoft.Office is an appropriate prefix for the Office Automation
Classes provided by Microsoft.

• Use a stable, recognized technology name at the second level of a hierarchical
name. Use organizational hierarchies as the basis for namespace hierarchies.
Name a namespace that contains types that provide design-time functionality for a
base namespace with the .Design suffix. For example, the
svstem.windows.Forms.Desian Namespace contains designers and related classes
used to design Svstem.windows.Forms based applications.

• A nested namespace should have a dependency on types in the containing
namespace. For example, the classes in the Svstem.Web.UI.Design depend on the
classes in Svstem.Web.UI. However, the classes in System.Web.UI do not
depend on the classes in System.Web.UI.Design.

• You should use Pascal case for namespaces, and separate logical components with
periods, as in Microsoft.Office.PowerPoint . If your brand employs
nontraditional casing, follow the casing defined by your brand, even if it deviates
from the prescribed Pascal case. For example, the namespaces NeXT.Webobjects
and ee.cummings illustrate appropriate deviations from the Pascal case rule.

• Use plural namespace names if it is semantically appropriate. For example, use
System.Collections rather than System.Collection . Exceptions to this
rule are brand names and abbreviations. For example, use System.IO
rather than System.IOs.

• Do not use the same name for a namespace and a class. For example, do not
provide both a Debug namespace and a Debug class.

• Finally, note that a namespace name does not have to parallel an assembly name.
For example, if you name an assembly MyCompany.MyTechnology.dll , it

193

does not have to contain a MyCompany.MyTechnoiogy namespace.

Additional Class Naming Guidelines
The following rules outline the guidelines for naming classes:

• Use a noun or noun phrase to name a class.
• Use Pascal case.
• Use abbreviations sparingly.
• Do not use a type prefix, such as C for class, on a class name. For example, use

the class name Filestream rather than CFileStream .
• Do not use the underscore character (_).
• Occasionally, it is necessary to provide a class name that begins with the letter I,

even though the class is not an interface. This is appropriate as long as I is the first
letter of an entire word that is a part of the class name. For example, the class
name Identitystore is appropriate.

• Where appropriate, use a compound word to name a derived class. The second
part of the derived class's name should be the name of the base class. For
example, ApplicationException is an appropriate name for a class derived
from a class named Exception , because ApplicationException is a
kind of Exception . Use reasonable judgment in applying this rule. For
example, Button is an appropriate name for a class derived from Control .
Although a button is a kind of control, making Control a part of the class
name would lengthen the name unnecessarily.

Additional Parameter Naming Guidelines
It is important to carefully follow these parameter naming guidelines because visual
design tools that provide context sensitive help and class browsing functionality display
method parameter names to users in the designer. The following rules outline the naming
guidelines for parameters:

• Use camel case for parameter names.
• Use descriptive parameter names. Parameter names should be descriptive enough

that the name of the parameter and its type can be used to determine its meaning
in most scenarios. For example, visual design tools that provide context sensitive
help display method parameters to the developer as they type. The parameter
names should be descriptive enough in this scenario to allow the developer to
supply the correct parameters.

• Use names that describe a parameter's meaning rather than names that describe a
parameter's type. Development tools should provide meaningful information
about a parameter's type. Therefore, a parameter's name can be put to better use
by describing meaning. Use type-based parameter names sparingly and only
 where it is appropriate.

• Do not use reserved parameters. Reserved parameters are private parameters that
might be exposed in a future version if they are needed. Instead, if more data is
needed in a future version of your class library, add a new overload for a method.

194

• Do not prefix parameter names with Hungarian type notation.

Format

Formatting makes the logical organization of the code obvious. Taking the time to ensure
that the source code is formatted in a consistent, logical manner is helpful to you and to
other developers who must decipher the source code.

The following points are recommended formatting techniques.

Braces

• Align open and close braces vertically where brace pairs align, such as:

for(i = 0; i < 100; i++

) {

…

}

else

{

 …

}

This is the default behavior of Microsoft tools and the common coding style for
all public C# files.

• Braces are required on all constructs that allow the possibility of braces.

White Space

• Use tabs for indenting lines. This allows different users to set tabs in whatever
manner they choose.

• Indent code along the lines of logical construction. Without indenting, code
becomes difficult to follow. Indenting the code yields easier-to-read code, such
as:

If ... Then

If ... Then
 ...
Else
 ...
End

If Else

195

...
End If

• Lines of code and comments shall not exceed 100 columns. Lines that are longer
than 100 columns should be extended to a new line at a reasonable, readable
location.

• Use spaces before and after most operators when doing so does not alter the intent

of the code.
For example: x = y * x; instead of x=y*x ;

• Use white space to provide organizational clues to source code. Doing so creates
"paragraphs" of code, which aid the reader in comprehending the logical
segmenting of the software.

• When a line is broken across several lines, make it obvious that it is incomplete
without the following line by placing the concatenation operator at the end of
each line instead of at the beginning.

• Where appropriate, avoid placing more than one statement per line. An exception
is a for loop, such as for (i = 0; i < 100; i++).

Horizontal Spacing
Horizontal spacing for keywords/methods followed by a parenthesis use the following
format. The engineer can use their own discretion for adding a space between the
keyword/method name and the opening parenthesis and between the closing parenthesis
and the opening brace. The coding standard does require a space to be present after an
open parenthesis and a before a closing parenthesis. Any expression between the
parenthesis follows the above rule for horizontal space.

Correct Examples:
classMethod(oneParameter);
classMethod (oneParameter);
if((screenWidth <= 80) && (screenHeight > 20)){
if ((screenWidth <= 80) && (screenHeight > 20)) {

Incorrect Examples:
classMethod(oneParameter);
if((screenWidth<=80)&&(screenHeight>20)){

Modules

Break large, complex sections of code into smaller, comprehensible modules.

Exception Handling
• Developers are responsible for what do in response to exceptions.

196

• In case of exceptions, give a friendly message to the user only if:
• The message can be understood by the user.
• The message conveys useful information to the user.

• Do not write try-catch in all your methods. Use it only if there is a possibility that
a specific exception may occur. For example, if you are writing into a file, handle
only FileIOException.

• You may write your own custom exception classes, if required in

your application. Do not derive your custom exceptions from the base
class SystemException. Instead, inherit from ApplicationException.

Commenting

C# provides a mechanism for developers to document their code using XML. This
document contains the standard keywords and formats we will use to ensure the help files
are universally useful.

In source code files, lines that begin with /// and that precede a user-defined type such as

a class, delegate, or interface; a member such as a field, event, property, or method; or a
namespace declaration can be processed as comments and placed in a file.

Items that are documented in this fashion are
• Classes
• Delegates
• Interfaces
• Members

o Field
o Property
o Event
o Method

The summary tag is the most basic of tags. The list below is the complete set currently
supported by VS.NET. The ones marked with a * are the ones I feel are the most useful.

• The c tag gives you a way to indicate that text within a description should be
marked as code. Use code to indicate multiple lines as code.

• code*
The code tag gives you a way to indicate multiple lines as code. Use <c> to
indicate that text within a description should be marked as code.

• example*
The example tag lets you specify an example of how to use a method or other
library member. Commonly, this would involve use of the code tag.

• exception*
The exception tag lets you specify which exceptions a class can throw.

197

• include
The include tag lets you refer to comments in another file that describe the types
and members in your source code. This is an alternative to placing documentation
comments directly in your source code file.

• para
The para tag is for use inside a tag, such as <remarks> or <returns>, and lets you
add structure to the text.

• param*

The param tag should be used in the comment for a method declaration to
describe one of the parameters for the method.

• paramref
The paramref tag gives you a way to indicate that a word is a parameter. The
XML file can be processed to format this parameter in some distinct way.

• permission*
The permission tag lets you document the access of a member. The
System.Security.PermissionSet lets you specify access to a member.

• remarks*
The remarks tag is where you can specify overview information about a class or
other type. <summary> is where you can describe the members of the type.

• returns
The returns tag should be used in the comment for a method declaration to
describe the return value.

• see
The see tag lets you specify a link from within text. Use <seealso> to indicate text
that you might want to appear in a See Also section.

• seealso*
The seealso tag lets you specify the text that you might want to appear in a See
Also section. Use <see> to specify a link from within text.

• summary*
The summary tag should be used to describe a member for a type. Use <remarks>
to supply information about the type itself.

• value*
The value tag lets you describe a property. Note that when you add a property via
code wizard in the Visual Studio .NET development environment, it will add a
<summary> tag for the new property. You should then manually add a <value>
tag to describe the value that the property represents.

Here are my suggestions for what to include for each of the types we will be
commenting:

Classes, Delegates and Interfaces
I suggest we include the summary and optionally, remarks to further clarify or provide
more detail of the type's behavior.

198

Required: summary Optional: remarks
What about: permission?

/// <summary>
/// This is a short description of the class Sample
/// </summary>
/// <remarks>If more needs to be said about this cl ass,
place those comments
/// in the remarks section.

/// </remarks>
public class Sample
{

We may also want to require the permission flag to indicate the visibility of the type. Do
you feel this would be valuable to have this show in the documentation?

Member fields
Required: summary
Optional: remarks
Question: permission?

public class Sample
{

/// <summary>
/// short description of value
/// </summary>
/// <permission>private</permission>
private int value;

Member properties
Required: summary

value
Optional: remarks

/// <summary>
/// Name property
/// </summary>
/// <value>
/// A value tag is used to describe the property va lue
/// </value>
public string Name
{

get

199

{

Member methods and event handlers
Required: summary

returns
params (only if present)
exceptions (only if any are thrown)

Optional: remarks
Question: permission?

/// <summary>
/// Short description
/// </summary>
/// <param name="sender">description of sender</par am>
/// <param name="e">description of e</param>
/// <returns>void</returns>
private void toolBar_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)

{

These are only my suggestions. Any of this is up for debate, so please share your
opinions. I suggest we require the returns field, but let it be known if you disagree.

What do you think about having the permission included? Necessary? Not enough need?

And what about formatting? There are 3 different types shown here - do you have a
preference? I use the one line method when the lines are short. But on multi-line entries,
which of the 2 outlined above work for you?

Since .Net was release, MS added the ability to use /** */ to surround multi-line text.
This is not put in automatically, so I suggest that for now we use the /// method. But
maybe you disagree??

Note: We are able to define any tags we want as the output is XML. But in order to take
advantage of some cool features, I suggest we use the predefined tags.

200

APPENDIX E. INTERVIEW QUESTIONS

201

Interview Questions for Developers and Quality Assurance
Personnel

Team
• How many teams are involved in the project?
• When a team is composed, what kinds of characteristics (programming skills,

knowledge, experiences, etc.) of developers are considered?
• How many people are working on the project in each team? (specify by title)

o Software Developer:
o Quality Assurance Personnel:
o Product Manager:

• Who else was on the team?
• What are the main issues and challenges in composing a team and working with

other team members?

Version Control

• What kinds of version control systems are used?
• How often build (or integration) is done?

Customer

• Did customers attend any team meetings, if so, what kind of meeting and how
often do they attend?

• How do you get feedback from customers?
• How often do you get feedback from customers?
• How do you reflect customer feedback on you project?

Working environment

• What is your working environment? (Open environment, cubicle, or personal
office)

• What are the pros and cons of your environment?

Debugging

• What methods were used for debugging? (Unit testing, system wide testing, etc.)?
• How often do you integrate the changes?
• Who are responsible for testing (developers, Quality Assurance personnel, etc.)?

Management Tools

• What tools do you use to manage and track projects?
• How do you share knowledge and skills with other developers?

Scrum
• Please describe the pros and cons on each item.

202

a. Daily Scrum meeting
b. Sprint planning meeting
c. Sprint review meeting
d. Product backlog
e. Sprint backlog
f. Scrum Master

• How often and how long do you have the following meeting?
a. Daily Scrum meeting
b. Spring planning meeting
c. Sprint review meeting

• Who usually attend the following meeting?

d. Daily Scrum meeting
e. Spring planning meeting
f. Sprint review meeting

• Who creates a product backlog and a sprint backlog?
• How do you estimate the time for each task in sprint backlog?
• How much time is allocated to design?
• How much time is allocated to documentation?
• What is Scrum Master’s responsibility?

Unified Process

• What are the roles of Unified Process in your software development process?
• How does Unified Process help to implement Scrum?
• Are there any issues and challenges in using Scrum with Unified Process?

General Issues

• What things did and did not work for you on a project?
• What are the most interesting and unique aspects of Scrum with Unified Process?
• What did you learn, what would you do next time, and what advice do you have

for others?

203

Interview Questions for Executive Managers

Project description:

• What projects were you involved and are you working on?
• What’s the nature of project?
• How long does each project take to be completed?

Bug Rate, Development Time and Cost

• What is your bug rate in terms of per line of code, per working hours, and per
module?

• What is your development time per module and per project?
• What is your development cost per module and per project?
• Compare to a similar project that you completed using traditional method, is you

bug rate/development time/development cost increased or decreased?
• What are the factors that attribute to increasing/decreasing bug rate and

development time and development cost?

204

APPENDIX F. CLASS DIAGRAM

205

206

APPENDIX G. SEQUENCE DIAGRAM

207

208

APPENDIX H. QUALITATIVE STUDIES

209

List of Papers Related to Case Studies:

Author Title Publisher Volume/Year/

Page
Walsham, G.
and Waema, T.

Information Systems Strategy
and Implementation: A Case
Study of a Building Society

ACM
Transactions on
Information
Systems

(12:2), April
1994, pp. 150-
173.

Sillince, J.A.A.
and Mouakket,
S.

Varieties of Political Process
During Systems
Development,"

Information
Systems
Research

(8:4), December
1997, pp. 368-
397.

Shanks, G. The Challenges of Strategic
Data Planning: an Interpretive
Case Study

Journal of
Strategic
Information
Systems

6, 1997, pp. 69-
90.

Sauer, C. Why Information Systems Fail:
A Case Study Approach

Alfred Waller
Ltd, Henley-on-
Thames

1993.

Robey, D. and
Sahay, S.

Transforming Work through
Information Technology: A
Comparative Case Study of
Geographic Information
Systems in County
Government

Information
Systems
Research

(7:1), 1996, pp.
93-110.

Paré, G. Investigating Information
Systems with Positivist Case
Study Research

Communication
s of the
Association for
Information
Systems

(13:1), 2004, pp.
233-264.

Orlikowski,
W.J.

Improvising Organizational
Transformation Over Time: A
Situated Change Perspective

Information
Systems
Research

(7:1), 1996, pp.
63-92.

Markus, M.L. Finding a Happy Medium:
Explaining the Negative
Effects of Electronic
Communication on Social Life
at Work

ACM
Transactions on
Information
Systems

12,2, April 1994,
pp. 119-149.

Markus, M.L. Power, Politics and MIS
Implementation

Communication
s of the ACM

26, 1983, pp. 430-
444.

Manning, P.K. Information Technology in the
Police Context: The "Sailor"
Phone

Information
Systems
Research

(7:1), 1996, pp.
52-62.

Levine, H.G.
and Rossmore,
D.

Diagnosing the Human Threats
to Information Technology
Implementation: A Missing

Journal of
Management
Information

(10:2), Fall 1993,
pp. 55-73.

210

Factor in Systems Analysis
Illustrated in a Case Study

Systems

Author Title Publisher Volume/Year/
Page

Lee, A.S. Electronic Mail as a Medium
for Rich Communication: An
Empirical Investigation Using
Hermeneutic Interpretation

MIS Quarterly (18:2), June 1994,
pp. 143-157.

Kaplan, B. and
Duchon, D.

Combining Qualitative and
Quantitative Methods in
Information Systems Research:
A Case Study

MIS Quarterly (12:4) 1988, pp.
571-587.

211

List of Papers Related To Action Research:

Author Title Publisher Volume/Year/

Page
Wood Harper,
A.T.

Viewpoint: Action Research Journal of
Information
Systems

(2), 1992,
pp.235-236.

Warmington,
A.

"Action Research: Its Methods
and its Implications

Journal of
Applied Systems
Analysis

(7), 1980, pp.
23-39.

Street, C.T.,
and Meister,
D.B.

Small Business Growth And
Internal Transparency: The
Role Of Information Systems

MIS Quarterly (28:3) 2004, pp
473-506.

Mårtensson, P.,
and Lee, A.S.

Dialogical Action Research At
Omega Corporation

MIS Quarterly (28:3) 2004, pp
507-536.

Mansell, G. Action research in information
systems development

Journal of
Information
Systems

(1), 1991, pp.
29-40.

Lindgren, R.,
Henfridsson,
O., and
Schultze, U.

Design Principles For
Competence Management
Systems: A Synthesis Of An
Action Research Study

MIS Quarterly (28:3) 2004, pp
435-472.

Lee, A.S.,
Baskerville,
R.L. and
Davies, L.

A Workshop on Two
Techniques for Qualitative
Data Analysis: Action
Research and Ethnography

Proceedings of
the Thirteenth
International
Conference on
Information
Systems

1992, p. 305-
306.

Kohli, R., and
Kettinger, W.J.

Informating The Clan:
Controlling Physicians' Costs
And Outcomes

MIS Quarterly (28:3) 2004, pp
363-394

Markus, M.L. Power, Politics and MIS
Implementation

Communications
of the ACM

26, 1983, pp.
430-444.

Kock, N.F., Jr.,
McQueen, R.J.
and Scott, J.L.

Can Action Research be Made
More Rigorous in a Positivist
Sense? The Contribution of an
Iterative Approach

Journal of
Systems and
Information
Technology

(1:1), 1997, pp.
1-24.

212

List of Papers Related To Ethnographic Research:

Author Title Publisher Volume/Year/

Page
Suchman, L. Making Work Visible Communications

of the ACM
(38:9), 1995, pp.
56-64.

Simonsen, J.
and Kensing,
F.

Using Ethnography in
Contextual Design

Communications
of the ACM

(40:7), 1997, pp.
82-88.

Randall, D.,
Hughes, J. and
Shapiro, D.

Steps towards a partnership:
Ethnography and System
Design. In M. Jirotka & J.
Goguen (Eds.), Requirements
Engineering: Social and
Technical Issues.

London,
Academic Press

1994.

Prasad, P. Systems of meaning:
ethnography as a methodology
for the study of information
technologies. In A.S. Lee, J.
Liebenau, & J.I. De Gross
(Eds.), Information Systems
and Qualitative Research.

Chapman and
Hall, London

1997, pp. 101-
118.

Ngwenyama,
O.K., Harvey,
L., Myers,
M.D. and
Wynn, E.

Ethnographic Research in
Information Systems: An
Exploration of Three
Alternative Approaches to
Ethnography.

Proceedings of
the Eighteenth
International
Conference on
Information
Systems

14-17 December,
1997.

Myers, M.D.
and Young, L.
W.

Hidden Agendas, Power, and
Managerial Assumptions in
Information Systems
Development: An
Ethnographic Study.

Information
Technology &
People

(10:3), pp. 224-
240.

Myers, M.D. Critical Ethnography in
Information Systems. In A.S.
Lee, J. Liebenau and J.I.
DeGross (Eds.), Information
Systems and Qualitative
Research.

Chapman and
Hall, London,

1997, pp. 276-
300.

Klein, H. K.
and Myers,
M.D.

A Set of Principles for
Conducting and Evaluating
Interpretive Field Studies in
Information Systems.

MIS Quarterly,
Special Issue on
Intensive
Research

(23:1), 1999, pp.
67-93.

Harvey, L. and
Myers, M.D.

Scholarship and practice: the
contribution of ethnographic

Information
Technology &

(8:3), 1995, pp.
13-27.

213

research methods to bridging
the gap.

People

Author Title Publisher Volume/Year/
Page

Benson, D.H. A field study of end-user
computing: Findings and
issues.

MIS Quarterly December, 1983,
pp. 35-45.

214

List of Papers Related To Grounded Theory:

Author Title Publisher Volume/Year/

Page
Urquhart, C. An Encounter with Grounded

Theory: Tackling the Practical
and Philosophical Issues. In E.
Trauth (Ed.), Qualitative
Research in IS: Issues and
Trends.

Idea Group
Publishing,
Hershey

2001, pp. 104-
140.

Urquhart, C. Exploring Analyst-Client
Communication: Using
Grounded Theory Techniques
to Investigate Interaction in
Informal Requirements
Gathering. In A.S. Lee, J.
Liebenau, & J.I. DeGross
(Eds.), Information Systems
and Qualitative Research.

Chapman and
Hall, London

1997, pp. 149-
181.

Smit, J. Grounded Theory
Methodology in IS Research:
Glaser versus Strauss

South African
Computer
Journal

(24:November),
1999, pp. 219-
222.

PriesHeje, J. Three barriers for continuing
use of computerbased tools: a
grounded theory approach

Scandinavian
Journal of
Information
Systems

(4), 1992, pp.
119-136.

Pettigrew,
A.M.

Contextualist Research and the
Study of Organizational
Change Processes. In E.
Mumford, R. Hirschheim, G.
Fitzgerald, & A.T. Wood-
Harper (Eds.), Research
Methods in Information
Systems.

Amsterdam,
North Holland

1985, pp. 53-78

Pandit, Maresh
R. ",",

The Creation of Theory: A
Recent Application of the
Grounded Theory Method

The Qualitative
Report

2(4), 1996

Pace, S. A grounded theory of the flow
experiences of Web users

International
Journal of
Human-
Computer
Studies

(60:3) 2004, pp
327-363.

Hughes, J. and
D, H.

Grounded Theory: Never
Knowingly Understood

Information
Systems Review

(1), 2000, pp.
181-197.

De Vreede, Exploring the Application and Journal of (15:3), 1999, pp.

215

G.J., Jones, N.
and Mgaya, R.

Acceptance of Group Support
Systems in Africa

Management
Information
Systems

197-212.

Author Title Publisher Volume/Year/
Page

Bowker, G.,
Timmermans,
S. and Star,
S.L.

Infrastructure and
Organizational
Transformation: Classifying
Nurses' Work. In W.
Orlikowski, G. Walsham, M.
Jones, & J.D. DeGross (Eds.),
Information Technology and
Changes in Organizational
Work.

London:
Chapman and
Hall

1995, pp. 344-
370.

216

CURRICULUM VITAE

217

Juyun Joey Cho

Assistant Professor
Computer Information Systems
Colorado State University – Pueblo
2200 Bonforte Blvd. joey.cho@colostate-pueblo.edu
Pueblo, CO 81001

EDUCATION

• Ph.D. Management Information Systems, (2009), Utah State University.
• Second Master of Computer Science (2000), Utah State University.
• Second Bachelor of Computer Science (1995), Utah State University.
• Master of Computer Engineering (1990), Chungbuk National University,

Korea.
• Bachelor of Computer Engineering, (1988), Chungbuk National University,

Korea.

REFEREED JOURNAL ARTICLES

• Cho, J. (2009). A hybrid software development method for large-scale projects:
rational unified process with Scrum. Issues in Information Systems, X(2), 340-
348.

• Cardon, P., Marshall, B., Norris, D., Cho, J., et al. (2009). Online and offline
social ties of social network website users: an exploratory study in eleven
societies. Journal of Computer Information Systems, 50(1), 54-64.

• Cho, J. (2008). Issues and challenges of agile software development with scrum.
Issues in Information Systems, IX(2),188-195.

• Cho, J., Jones, S., & Olsen, D. (2008). An exploratory study on factors
influencing major selection. Issues in Information Systems, IX(1),168-175.

• Cho, J. (2007). Globalization and global software development. Issues in
Information Systems, VIII (2), 287-290.

CONFERENCE PPROCEEDINGS

• Cho, J., Marjanovi, B., Chi, T., Vogl, M., & Bechtoldt, C. (2009). What can
Yahoo! do to be more competitive?. Proceedings of 8th ISOneWorld
International Conference, Las Vegas, Nevada, 66: 1-12

• Cho, J. (2007). Distributed Scrum for large-scale and mission-critical projects.
Proceedings of 13th Americas Conference on Information Systems (AMCIS-
07), Keystone, Colorado, amcis-508-2007 (8 pages).

218

• Cho, J., Couraud, J., & Olsen, D. (2007). IS curriculum recommendations for
web courses based on current technology use by fortune 400 companies.
Proceedings of 13th Americas Conference on Information Systems (AMCIS-
07), Keystone, Colorado, amcis-506-2007 (10 pages).

• Cho, J. (2007). An exploratory study on management of virtual teams in
distributed scrum software development method for large-scale and complex
projects. Proceedings of 13th Americas Conference on Information Systems
(AMCIS-07), Keystone, Colorado (submitted to Doctoral Consortium).

• Marshall, B., Cho, J., & Harris, M. (2006). Application of recent trends in web

technologies. Proceedings of 46th International Association for Computer
Information Systems (IACIS-06), Reno, Las Vegas, 34 (abstract only).

• Cho, J., Kim, Y., & Olsen, D. (2006). A case study on the applicability and
effectiveness of scrum software development in mission-critical and large-
scale projects. Proceedings of 12th Americas Conference on Information
Systems (AMCIS-06), Acapulco, Mexico, 3705-3711.

TECHNICAL PAPERS

• Cho, J. (2000)
“An Interactive Computer and Literacy Instruction System” (Funded by NSF &
U.S. Department of Education)

 Master’s report, Computer Science, Utah State University, 2000.

• Cho, J. (1990)
“A Study on the Optimal Fixed-Size Window Scheme in RISC (Reduced
Instruction Set Computer) system”

 Master’s thesis, Computer Engineering, Chungbuk National University, 1990.

CONFERENCE PRESENTATIONS
• “A Hybrid Software Development Method for Large-Scale Projects: Rational

Unified Process with Scrum”, the 49th International Association for Computer
Information Systems (IACIS), Pittsburgh, Pennsylvania, 2009.

• “What can Yahoo! do to be more Competitive?”, the 8th of ISOneWorld
International Conference, Las Vegas, Nevada, 2009.

• “Issues and Challenges of Agile Software Development with Scrum”, the 48th
International Association for Computer Information Systems (IACIS),
Savannah, Georgia, 2008

• “An Exploratory Study on Factors Influencing Major Selection”, the 48th
International Association for Computer Information Systems (IACIS),
Savannah, Georgia, 2008

219

• “Globalization and Global Software Development”, the 47th International

Association for Computer Information Systems (IACIS), Vancouver, Canada,
2007.

• “Distributed Scrum for Large-Scale and Mission-Critical Projects”, the 13th
Americas Conference on Information Systems (AMCIS-07), Keystone,
Colorado, 2007.

• “IS Curriculum Recommendations for Web Courses Based on Current
Technology Use By Fortune 400 Companies”, Proceedings of 13th Americas
Conference on Information Systems (AMCIS-07), Keystone, Colorado, 2007

• “An Exploratory Study on Management of Virtual Teams in Distributed Scrum
Software Development Method for Large-Scale and Complex Projects”, the
13th Americas Conference on Information Systems (AMCIS-07), Keystone,
Colorado, 2007.

• “Agile Software Development Methods in Distributed Software Development
Environment”, 10th Annual Graduate Research Symposium, Utah State
University, 2007.

• “A Case Study on the Applicability and Effectiveness of Scrum Software
Development in Mission-Critical and Large-Scale Projects”, the 12th Americas
Conference on Information Systems (AMCIS-06), Acapulco, Mexico, 2006.

• “Agile Software Development Methods for Large-Scale Projects”, 9th Annual
Graduate Research Symposium, Utah State University, 2006.

TEACHING EXPERIENCE
Colorado State University - Pueblo, Colorado

• MGMT 565 Management Information Systems, spring 2009
• CIS 411 Internet Server Side Programming, spring 2009
• CIS 311 Introduction to Web Development, fall 2008
• CIS 271 Advanced Program Design with Java, fall 2008, 2009
• CIS 171 Introduction to Java Programming, fall 2008, 2009
• MGMT 365 Introduction to MIS, summer 2008, 2009
• BUSAD 265 Inferential Statistics, summer 2008, 2009
• CIS 240 Object Oriented Analysis and Design, spring 2008, 2009, fall 2009
• CIS 4/561 IT Security Management, spring 2008

Utah State University, Logan, Utah

• BUS 3510 Business Programming (Satellite distance education), spring 2007

220

• BIS 5450/6450 Designing Graphical User Interfaces for E-Commerce, spring
2007

• BIS 2100 Principles of Management Information Systems, fall 2006 & fall 2007
(two sections)

• BIS 5450/6450 Designing Graphical User Interfaces for E-Commerce, fall 2006
(Real-life project for RCF Inc.)

• BIS 6500 Developing Business Information Systems with Advanced
 Software Concepts (Satellite distance education), summer 2006
• BIS 3500/6500 Management Information Systems Development, fall 2005

PROFESSIONAL ACTIVITIES & AFFILIATIONS

• Reviewer
o Issues in Information Systems, 2007,2008, 2009
o Americas Conference on Information Systems (AMCIS) 2007
o Pacific Asia Conference on Information Systems (PACIS) 2007
o International Association for Computer Information Systems (IACIS)

2007, 2008
o AMCIS Doctoral Consortium, 2007

• Track Chair:

o Systems Analysis and Design, ISOneWorld 2009, Las Vegas, USA, 2009.
o Systems Analysis and Design, ISOneWorld 2008, Las Vegas, USA, 2008.

• Session Chair:

o Software Engineering, International Association for Computer
Information Systems (IACIS), Savannah, Georgia, 2008.

o Expert systems, International Association for Computer Information
Systems (IACIS), Vancouver, Canada, 2007.

• Student Representative for Doctoral Advisory Committee in Interdisciplinary
Department Program, Utah State University, 2006-2007.

• Professional Membership
o International Association for Computer Information Systems (2006-

present)
o Association for Information Systems (2005-2007)
o ACM Special Interest Group on Knowledge Discovery & Data Mining

(SIGKDD) 2003-2008.

HONORS & REWORDS

• Faculty Development Grant, Colorado State University-Pueblo, 2008 & 2009.
• Accepted to AMCIS 2007 Doctoral Consortium.

221

• Travel Funds Award, Graduate Student Senate (GSS), Utah State University,
2006 & 2007.

• Travel Funds Award, Management Information Systems Dept, Utah State
University, 2006.

• Korean President’s Scholarship (IL-HAE scholarship foundation, full-tuition &
living expenses), 1985-1987.

• Chungbuk National University President's Scholarship (Full tuition), 1984.

WORK EXPERIENCE

• Assistant Professor, January 2008-Present
o Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO 81001

• Graduate Instructor, September 2005-September, 2007

o Utah State University, Logan, UT 84322

• Software Engineer II, December 2003-January, 2006
Spillman Technologies Inc., 4625 West Lake Park Blvd. Salt Lake City, UT
84120 (provides complicated public safety software solutions such as 911
dispatch system, jail management system, and fire/emergency medical system.
http://www.spillman.com/)

o Performs product design and system analysis.
o Researches, develops, designs and maintains application software.
o Establishes standards, procedures, and specification for software

development and maintenance.
o Implements changes, corrects problems to modify, develop, and enhance

functionality.
o Analyzes software requirement to determine feasibility of design.
o Consults with customer concerning design issues.
o Organizes and participates in software design and code reviews.
o Participates in the definition of technical requirements, software

procedures, software installation, upgrade issues, and user documentation
for application software.

o Performs code verifications, release testing, and beta support for assigned
products.

o Researches problems discovered by Quality Assurance for product
support.

o Develops solutions to problems.
o Researches and understands the marketing requirements for a product,

including target environment, performance criteria and competitive issues.

• Software Engineer II/Project Manager, February 2000-September, 2003

222

Global Mart / PickSend Inc., 517 W. 100 N. Providence, UT 84332 (E-Commerce
retail/whole sale company selling products through an internet
http://www.picksend.com)

o Supervised 4-6 web programmers.
o Implemented GUI using Borland C++ Builder for order processing

system, product management system, purchasing system, receiving
system, inventory management system, credit card transaction system,
accounting system, retail store management system (Cash sales, layaway
and rental system), vendor management system, and RMA system.

o Set up interface between our order processing system and remote site drop
shippers database system using ODBC.

o Implemented database-enabled Shopping Cart and Cashpad system using
CGI for globalmart.com, escapeoutdoors.com, globalmartoutlet.com, and
poweredmarket.com.

o Implemented Server Monitor system using Client-Server TCP/IP Socket
program between Windows and Linux Machines. (When server goes down
Windows machine calls out manager’s cell phone)

o Implemented Interface between our database and UPS/Fedex shipping
system using ODBC in Windows NT system.

o Implemented various reporting systems using Perl.
o Designed Database driven dynamic web site using Perl , Perl DBI, and

PHP. (http://www.globalmart.com, http://www.picksend.com)
o Implemented cron jobs for automated ftp and data dump using Perl.
o Set up search engine strategies for company’s web site.
o Implemented Linux Raid System.
o Set up Web Statistics Program.
o Set up and Maintained Linux Gateway Server(Sangome Card for T1 frame

relay server), Firewall Server(IPCHAINS), Proxy Server, Email Server,
Apache Web Server, Fax Server, DNS Server, File/Printer Server,
Database Server(MySQL), Backup Server.

• Software Engineer II, September 1999-Feburary 2000

Intermountain Transcription Services Inc., 570 Research Parkway, North Logan,
UT 84341 (provides medical transcription services)
Designed, implemented, tested, and debugged the following

o Object Oriented Windows Program using Borland C++ Builder.
o Relational Database System.
o GUI for medical transcription system.
o Set up/Maintain Linux Server.

• Software Engineer, September 1997-September 1999

Digitran System Inc., 2176N. Main, Logan, UT (makes sophisticated computer
simulated software for mining, petroleum, vehicle, and maritime crane industries)
Analyzed, designed, implemented, maintained the following

223

o TCP/IP, UDP/IP Networking, Low Level Socket Networking, and Serial
Communication for Win95/NT and UNIX.

o Graphical User Interface for Win95/NT and X Motif for SGI
IRIX/LINUX using MS visual C++ and Dataview Xdesigner.

o Motion, Hardware Interfacing.
o Simulation Logic for Crane, Oil, and Truck Simulator.
o Multi-Channel Sound System Control for Win95 and Linux.
o OpenGL Graphics Program.
o Converting code from SGI IRIX to Linux.
o Set up Email/Web Server, LAN, CVS(Concurrent Version System) and

Firewalls.

• Research Assistant in Multimedia Lab, June 1996-September 1997
Computer Science Department, Utah State University, Logan, UT

o Participated in the research project called “Computer Literacy” -- A multi-
media computer based instructional system that teaches college student
how to use Word Processor, Spread Sheet, VAX/VMS Email, Windows95
Systems, UNIX Systems and Internet. (ToolBook and Paradox database
were used, Funded by National Science Foundation & the United
States Department of Education)

• Teaching Assistant, March 1996-June 1996

Computer Science Department, Utah State University, Logan, UT
o Helped students with C and C++ program problems.
o Graded CS410. (Operating Systems)

• Research Assistant, September 1995-March 1996

Computational Sciences Division, Space Dynamics Lab, Logan, UT
o Tested software and data of NASA projects using IRIS "Explorer" in

SGI workstation.

• Assistant Technician, October 1994-September 1995
Merrill Library, Utah State University, Logan, UT

o Dumped data and maintained MDAS of Merrill & Sci-Tech Libraries.
o Retrieved and analyzed statistical data to see how the Libraries databases

are being accessed and used.

• Teaching Assistant, 1988-1990
Dept. of Computer Engineering, Chungbuk National University, Chungbuk,
Korea.

o Taught architecture of Z-80 micro processor and Assembly Language.
o Helped students build Analogue/Digital Converter.

• Computer Lab Consultant, March 1988-February 1989

224

Dept. of Computer Engineering, Chungbuk National University, Chungbuk,
Korea.

o Maintained Software program and hardware equipment.
o Helped students with computer problems.

PROFESSIONAL SKILLS

• Computer Programming Languages:
C/C++, C#, PHP, Java, Java Script, Perl script, Perl DBI , UNIX shell script,
HTML, PHP, PVM, Lisp, Prolog, Assembly Language, Pascal, FORTRAN,
BASIC, Visual Basic.

• Software Packages:
MS Visual Studio .NET, MS Visual C++/J++, Borland C++ Builder, dBaseIV,
Paradox, MySQL, Asymmetric Toolbook, Matlab, NeualWare, SLAM II.

• Operating Systems:
Windows3.1/95/98/2000/XP/NT, Linux, SunOS, IBM AIX, HP-UX, SGI-IRIX,
VAX/VMS, DEC ULTRIX, MS-DOS.

• Platforms:
HP-UX 9000/700, SunSPARC, SGI, DEC 5000, VAX 11/780, IBM
PC/Compatibles, Macintosh.

	An Exploratory Study on Issues and Challenges of Agile Software Development with Scrum
	Recommended Citation

	Microsoft Word - $ASQ47594_supp_7E584814-5145-11DF-8BD4-6B46D352ABB1.doc

