Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2010

An Exploratory Study on Issues and Challenges of Agile Software
Development with Scrum

Juyun Joey Cho
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Cho, Juyun Joey, "An Exploratory Study on Issues and Challenges of Agile Software Development with
Scrum" (2010). All Graduate Theses and Dissertations. 599.

https://digitalcommons.usu.edu/etd/599

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for

inclusion in All Graduate Theses and Dissertations by an /[x\

authorized administrator of DigitalCommons@USU. For /\

more information, please contact IQ‘ .()Al UtahStateUniversity
digitalcommons@usu.edu. ‘e~ MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/599?utm_source=digitalcommons.usu.edu%2Fetd%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

AN EXPLORATORY STUDY ON ISSUES AND CHALLENGES OF AGILE

SOFTWARE DEVELOPMENT WITH SCRUM

Approved:

by

Juyun Joey Cho

A dissertation submitted in partial fulfilment
of the requirements for the degree

of
DOCTOR OF PHILOSOPHY
in

Education

(Management Information Systems)

Dr. David H. Olsen
Major Professor

Dr. Jeffery Johnson
Committee Member

Dr. John D. Johnson
Committee Member

Dr. Sherry Marx
Committee Member

Dr. Karina Hauser
Committee Member

Dr. Byron Burnham
Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2010

Copyright © Juyun Joey Cho 2010

All Rights Reserved

ABSTRACT

An Exploratory Study on Issues and Challenges of Agile Software Deweldpwith
Scrum

by

Juyun Joey Cho, Doctor of Philosophy
Utah State University, 2010

Major Professor: Dr. David H. Olsen
Department: Management Information Systems

The purpose of this dissertation was to explore critical issues and challeaiges t
might arise in agile software development processes with Scrulso B@ught to provide
management guidelines to help organizations avoid and overcome barriers in adopting
the Scrum method as a future software development method. A qualitativelresearc
method design was used to capture the knowledge of practitioners and sctinéinize
Scrum software development process in its natural settings. An in-depthuchse/as
conducted in two organizations where the Scrum method was fully integrated in every
aspect of two organizations’ software development processes. One otigarpravides
large-scale and mission-critical applications and the other provides amailnedium-
scale applications. Differences between two organizations provided usetfiiasts for
the data analysis.

Data were collected through an email survey, observations, documents, and semi-

structured face-to-face interviews. The email survey was usefirte imrgerview

guestions; all of the interviews were audio-taped and transcribed, andlderfor
analysis. Triangulation in the data collection process provided useful information f
different perspectives on the issues, allowed for cross-checking, atedysttonger
substantiation of concepts and common categories.

In the first round of data analysis, an open coding technique was used to identify
possible concepts, along with their properties and dimensions. The open coding technique
is a form of content analysis where the data are read and categorized infiiscdndbe
second round, the codes were reviewed, and the concepts were organized by recurring
themes. These themes were used later as a basis for creating dadd¢ @firel common
categories. The final stage of data analysis was completed throughaaired, which
depends on a synthetic technique of making connections between categories and sub-
categories to build a more comprehensive scheme. In the process of data,analysi
grounded theory was employed with the aim of generating descriptive and explanat
theory associated with an agile software development process.

The research presented four common categories of issues and challenges of the
Scrum method, and management guidelines to help organizations that are already usin
the Scrum method or planning to employ it in the future. The framework for a hybrid
software development model is then proposed as a future study.

(236 pages)

ACKNOWLEDGEMENTS

| wish to acknowledge the many people who have encouraged and supported me
during my work on the doctoral program and on this dissertation. First, | wish to
acknowledge the insightful suggestions and advice of my chair, Dr. David Olsen, in the
recent push to completion of my dissertation. Dr. Sherry Marx was instrunrental
exposing me to much of the essential research methodology and played a key role i
helping me establish the foundation of qualitative research skills and knowledge.
Through her two qualitative research methodology classes, | was ablediorpabilot
study and refine my initial research ideas and approach. The rest of mytmmnaiso
shared with me their unique insights from their particular fields of alweation - Dr.
John Johnson, Dr. Jeff Johnson, and Dr. Karina Hauser.

| wish to acknowledge the feedback and support from my colleagues at Colorado
State University at Pueblo (CSUP) and many other friends who have enmghe
thinking and invigorated my intellectual curiosity by sharing their ciffie
interdisciplinary perspectives. | particularly want to mention Dr. Rigk at CSUP, who
offered unparalleled professional expertise and invaluable suggestions on ntgtitisse
His contribution to the final stage of my dissertation was enormously helpfsb treink
Dr. Jean Pratt at University of Milwaukee - Eau Claire, who initiatiyrtee to a Ph.D.
program and the academic world and remained as a role model in the teaching and
research field.

| wish to acknowledge two firms who allowed me to pursue my field research in

their software development environments. Particularly, | want to thank Dr. Dennis

Vi

Phillips, who arranged research resources in his firm and facilitated suanedy
interview questions. | also want to thank all the development professionals and my co
workers, who shared with me their expertise, insights, and precious time.

| acknowledge my parents, who raised me in good family environment and tried
to provide the best possible educational opportunity. Despite the immense ge@draphic
distance that separate us, they have offered loving encouragement and support throughout
my academic years. My brother and sister were also supportive and took a huge
responsibility off of me in taking care of my mother, who passed away last year

| finally acknowledge my wife and eternal soul mate, Dr. Inhae Kim, who
encouraged me to get into a Ph.D. program after working for several ydagssiftivare
industry, believed in my potential abilities, and has supported me with uncoadliove
and confidence. She and my daughter Megan have brought me a new dimension of life.
Without their love and moral support, this dissertation would not have reached its

fruition.

Juyun Joey Cho

Vii

CONTENTS
Page
F Y = S Y I 2 ¥ AN O PP PP PP TTPPRP 1]
ACKNOWLEDGEMENTSiitiiiiiiiiiiieeee ettt e e e e e e e e e e e eeee s Vv
LIST OF TABLES ... oo e e e et e e et e e e e e e e e e eenns X
LIST OF FIGURES ... oottt et e e e e e e e e e aa s Xl
LN I @ 1 1 L O I 1\ U 1
THE ProBIEM ..t e e e e e e e e e e e e aarrraaaaa 1
Problem STatEMENToeiiiiiii e e e e 4
REVIEW OF LITERATURE ..ottt e et e et e e e e eaan s 5
Introduction and Purpose of the Review Of Literature.............cooovvviiiiiiiiiiiiiiiii e 5
Early Stage of Software Development MethodsS ..o, 6
Traditional Software Development Methodsouviiiiiiii e 7
Agile Software Development MethOUSuuuiiiiiiiiii e 12
Overview Of Agile MethOS.........ccooiiiiiieeec e e e 12
Lean Manufacturing Principles and Agile Methods ... 17
Characteristics, Strengths, Weaknesses of TSDMs and ASDMSccccceeeeeeeeennn. 20
Agile Methods for Large-Scale ProjecCtS.......ccooviiieeeeiiiiieeeeeiceee s e e e e e 21
Scrum Software Development Method..........c.ooooe e 24
The Philosophical ROOtS Of SCIUMuuuiiiiiiiie e 24
The History and PractiCes Of SCIrUMuuuuuiiiiiiiieie e e e e e 25
Empirical ProCess CONMIOluuiiiiiiee e e e e e 27
Framework OF SCIUMooo i 28
FIOW OF SCIUM. ...ttt e e e e e e e e e e e e s s s abeaeees 36
RatioNal UNIfIE PrOCESSuuiiiiiiiiiiiiiiiiiieee et r e e e e e e e e e e e e e e e 37
The INCEPLION PRASEot e e e e e e e e e e e e eeeaeaaannes 42
The Elaboration PRASEooiiiiiiii e 42
The ConStrUCtION PRASEcoiiiiiiiiiiee e 43
The Transition PRase........cooiiiiiii e 43

Quantitative Versus Qualitative Research Methodsccoooovviiiiiiiiiiiii e, 43

viii

Qualitative Research Methods in Information SyStems.............uueiiiiiiiiiiieeiiiiiiiceeiiiiis 47
Case Study RESEAICN ... 49
ACLION RESEAITI ...t e e e e e e e e eaes 50
EtNNOQrapnyo 50
(€T doT0] oo [=To I N e T=To] oY SRR 51

RESEARCH METHODS AND PROCEDURES. ..ottt 52

1 goTo (3 {ox 1 o] o [T RPPPPPPPTTIN 52

Rationale for Selecting Case Study RESEarChcccevviiiiiiiiiiiiiieeerre e 52

Type of Case Study RESEAICHccooiii i e e e e 53

Unit of ANAlYSiS iN CaSE STUAYuoiiiiiee e a e e e e e 54

Y| (IS (=T ot 1 [o PP PPPPPPPPPPP 55
Y =] O T 1 1 o P PP TP TRPTPPPPP 56
D A 1 11 PP PPPPPPPPPPPPPPP 57
Comparison Of TWO FIMMScceviiiiiiiiiiiiie st s e e e e e e e e e e e e eeeeeneeennnnn 58

2= 1= B 010 o L PP 58

(€T (o T0]o [=To I I 1= To Y2 62

DATA ANALYSIS AND RESEARCH RESULTS ...ttt 64

The Process of Data ANAIYSISeuiiiiiiiiiiiieie e 64

Y =] O 1 1 1 o PP PPPPPRRPR 65
Human Resource Management FACIONviiiiiiiiiiiiie e 66
Structured Development ProCess FaCIOruuiiiiiiiiieeeeeceieeeeeeiire e e e e e 79
ENVIFONMENT FACTONuiiiiiiiiiiiiiiieeee e 89
Information Systems and Technology Factor.............coouiiiiiiiiiiiii s 94

D A 1 11 1 PP U PP PP PP 100
Human Resource Management FACIOrvviiuiiiiiiiiieeciiee e 101
Structured Development Processing Factor........ccooovveeeeiiiiiieceevcciee e 108
ENVIrONMENTAl FACTON.......coiiiiiiiiieie e 120
Information Systems and Technology Factor................uveiiiiiiii e 126

DISCUSSION AND MANAGEMENT GUIDELINES...........coooiiiiiiiiieiieeeeeeeee e 130

Issues and Challenges Of SCrUMoveiiiiiiiiceee e e e e e e 130

Human Resource ManagemeNnT.........coueuuiiiiiiiiiiiiie ettt eenas 130

Structured DevelopmeENt PrOCESSoovvvvviiiiiiiiei e e e e e 135

[)Y T 0]] 41T o | PSP 142
Information Systems and TEChNOIOQYcccooviiiiiiiiiiiii s 147
Management GUIAEIINES..........uuuuiiiiiiee e e e as 150
Guidelines for Co-located SCrum TEAMScuuuiiuuiiiiiii et 151
Additional Guidelines for Geographically Distributed Scrum Teams................... 154
A THEORETICAL MODEL, FUTURE STUDY, AND CONCLUSIONS 156
A TheoretiCal MOAEloouuei e 156
Future Study: A Hybrid MOdel ... 164
Limitations Of PreSent STUAYcoooo oo 168
(0] o (o1 11153 [o PRSPPI 169
REFERENGCESottt e e e e e e e e e e e aaaaaas 170
APPENDICES ...ttt e e e e e e e e e e e e e e et e e et e e e e e e e e e aaaaaeeaaaaaaaaa 178
APPENDIX A. PRODUCT BACKLOG ..ot 179
APPENDIX B. SPRINT BACKLOGcuititiiiiiiieee e eeeeeeeeeeeeetinns s e e e e e eeaeaaaaeenennnnnnes 181
APPENDIX C. BURNDOWN CHART ...t 183
APPENDIX D. C# CODING STANDARDcuutiiiiiiiieieeeeeeeeeee et e e e e e e aaaeeees 185
APPENDIX E. INTERVIEW QUESTIONS ...t 200
APPENDIX F. CLASS DIAGRAM ...ttt 204
APPENDIX G. SEQUENCE DIAGRAMoiiiiiiii i 206
APPENDIX H. QUALITATIVE STUDIES. ... 208

CURRICULUM VITAE ...ttt 216

LIST OF TABLES
Table Page
1. Waterfall Model DeliVerabIes.............e i 8
2. LISE Of ASDIMS ...ttt a e e e e e e e e 13
3. Manifesto for Agile Software Development............coovvvvviiiiiiiiiiii e 14
4. Principles Behind the Agile ManifeStovvuviiiiiiiiiiie e 14
5. Discriminator Between ASDMS and TSDMS........coooiiiiiiiiiiiieiieeee e 16
6. Principles of Lean ManuUfaCtUMNNGccooooeeioiiiiiiiiiiiiiir e 17
7. THE SEVEN WASEES ...ttt ettt e et e e e e e e e e e e e e e e e e e e e 18
8. Characteristics, Strengths, and Weaknesses of TSDMs and ASDMSccccceeveeennn.. 22
9. Six Principles of the New Product Development ProCessccccooveevieeeeiiiiiveveeeiiiinnnnns 25
10. MAIN ROIES 1N SCIUM ...t r e e e e e e e e e e e e e e e e e 31
11. A Sample Product BackIOgccooiiiiiiiiiiiiii e 33
12. A Sample SPrint BACKIOG. i 34
13. The FrameWork OF SCIUMcooiiiiiiiii et 36
S Yod U =03 [P 37
15. History Of UNIfied PrOCESS.......cuuuiiiiiiiiiiii ettt 39
16. TWO DIMENSIONS OF RUPoiiiiiiiiiiiiiiee ettt 40
17. Utilization of Disciplines in RUP PhaSes............uiiiiiiiiiiieececceeeeeeesnn e 41
18. Differences between Quantitative and Qualitative Method..............ccccoeeeeiiiiiiieneenn, 45
19. Strengths of Qualitative Methodsccoooiiiiiiiiiiie e 46
20. Weakness of Qualitative Methodsc.oouuiiiiiiiiiii e 47
21. Six Different Types Of Case StUAIEScccoeiiiiiiiiiiiiiieiieiire e 53

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.

Xi

Differences Between ABC and XYZ FilMuuuiiiiiiiiiieiieeeeeeiiii e 59
Type and Number of Interviews Conducted at ABC Firmcccooovvviiiiieieiveiieneeen, 61
Type and Number of Interviews Conducted at XYZ Firmcccceevviiiiieieeiiiiieeeieninnns 62
Categories, Concepts, and Data Related to ABC............oovvvviiiiiiiiiiiiee e eeeeeeeeeeeiieanns 67
C# CodiNg STANAAIdoooiiiiiiiieii e e e e e e e e e 85
Categories, Concepts, and Data Related to the XYZ Firmccccoooeviiiiiiiiiiieinnnnnnn. 102
Human Resource Management ISSUESoiiiiiiiiiiiiiieiei e 131
Structured Development ProCeSS ISSUESccvvvvviiviiiiiiiiiieiee e e e e e e eeeeeeeeaeeane s 136
ENVIFONMENT ISSUBS ...ttt e e e e e e e e e e e e e e e e e s e nnaes 142
Information Systems and Technology ISSUEScooiiiiiiiiiiiiiiiiiii e 147
Disciplines of Hybrid Model and RUP ... 165

Xii

LIST OF FIGURES

Figure Page

1. Waterfall model [IfECYCIE ..o 8
2. Original royce waterfall model (source: royce, 1970)cceeeieeeeerieiiiiiieieeeiiiiiein 10
3. PrOJECE FESOIULIONS ...t e e et e e e e e e e e e e e et et e ee e et r s e e e e e aeeaeeeaeeeeenennnnes 11
4. Three legs of empirical ProCess CONLIOluuuuuiiiiiiiiie e 27
5. BUMAOWN CRAIT......eeiiiiiiiieie et e e s s e e e e 35
6. FIOW OF SCIUIM ..t e e e e e e e e eee s 38
7. Basic types of design for CASe StUdIESuuuiiiiiiiieee e eeeeeaeeees 54
8. Multi-case design used for the reSearChcceeeeiiiiiii e 55
9. DAta @NAIYSIS PrOCESS ...uuiiieeeeeeeeeeee et ettt a e e e e e e e e e eaaeeeeeeeesaaasss s s aaeaeaaaaeaaeeeeeeennnrnes 65
10. The theoretical model of a human resource management factorcccceevvvneenes 157
11. The theoretical model of a structured development process factorcccceeuueeeee 159
12. The theoretical model of an environmental factor............cccccceeiiiiiiiiiiiiiii 160
13. The theoretical model of an information system and information technology factor162
14. Theoretical model for the SUCCESS Of SCIUMuviiiiiiiii e 163
15. A new hybrid MOEL..........cooo e 164
16. The inception phase of a hybrid model...............ooo s 167

CHAPTER |
INTRODUCTION

The Problem

Over the past four decades, many software development methods have been
created and utilized in the software industry. Each method has different featdres
characteristics that distinguish it from other methods; in general, thélsedaean be
classified as either a heavyweight or a lightweight method. The heawwegghods,
also considered traditional methods, usually focus on comprehensive planning, heavy
documentation, and big design up-front. In contrast, the lightweight methods, also known
as agile methods, concentrate (1) more on individuals and interactions than pracdsses
tools, (2) more on working software than comprehensive documentation, (3) value
customer collaboration more than contract negotiation, and (4) focus more on responding
to change than following a plan.

The traditional methods are still widely used in the software industry because of
their straightforward, methodical, and structured nature; they have proved theahey
provide high assurance, stability, and predictability. However, they have a nohkiey
shortcomings, including slow adaptation to constantly changing business reausreme
and a tendency to be over budget and/or behind schedule, delivering fewer features and
functions than specified in the requirements. The need for a complete set of reqtsrem
prior to design is also a major challenge for the traditional methods due to vague us
specifications.

As a remedy for the shortcomings of the traditional methods, agile software

development methods, including Scrum, eXtreme Programming (XP), Crystal, and

Adaptive Software Development (ASD), have been created and evolved by prastitione
since the 1990s; they are designed to embrace, rather than reject, high rategef cha
These new approaches focus mainly on iterative and incremental developmentecust
collaboration, and frequent delivery through a light and fast development cyclg. Man
researchers have reported that agile methods have the potential to proviuer éelig

of customer satisfaction, lower bug rates, a shorter development cycle, and a quicke
adaptation to rapidly changing business requirements.

In spite of the potential benefits of the agile methods, many organizations are
reluctant to throw their traditional methods away and jump into agile methods. Their
reluctance is the result of several issues, including: (1) the agile metyoiicantly
reduce the amount of documentation and rely heavily on tacit knowledge, (2) these
methods have not been sufficiently tested for mission/safety-criticacsp(8) belief
that these methods are not adequate for highly stable projects, (4) a ¢batagile
methods can be successful only with talented individuals who favor many degrees of
freedom, and (5) that agile methods are not appropriate for large-suaietsr

Although many positive benefits of the agile methods have been published, there
have been few empirical field studies on the negative aspects of variousetlitals.

The negative aspects of the agile methods mentioned earlier imply thatrthssuas,
problems, and challenges faced in developing high-quality software productshesiag t
methods. Identifying the issues, problems, and challenges of the agile nstbalikbe
more beneficial to organizations considering them than merely showing theiveposit
benefits. Organizations can learn more lessons from the examining the negatiots a

and learning how to avoid the obstacles in adopting the agile methods. Another problem

of many published papers describing positive benefits is that most agile mietiveds

been primarily applied to small-scale and relatively simple projidssnot clear

whether agile methods can provide end users with the desired quality, in a timely,manne
on large-scale and mission-critical projects. Therefore, it is worthwhidenduct a

research project to identify the issues and challenges of agile methoaissard the
applicability of agile methods to large-scale and mission-critical gije

For this research, two research sites were chosen for an in-depth case attudy. B
organizations have produced several high-quality software products through an agile
software development methodology with one particular method, called Scrum. The
rationale for the selection of the Scrum method among the other available eilitem
was (1) Scrum is a widely used agile method in the software industry, ioutarin the
United States, and (2) the Scrum method claims to be suitable to any size df progec
study also investigated the framework (roles, ceremonies, and artifactts)eaempirical
process (visibility, inspection, and adaptation) of the Scrum method in both small- and
large-scale projects.

An exploratory research process using observations, surveys, documentation, and
interviews was conducted at two organizations. The contribution of this reseaveh is f
fold: (1) it identifies critical issues and challenges that mayaffe quality of the
application of agile methods, (2) it illustrates how agile methods can be adogdted a
utilized to effectively support the development of small-scale, large; stalanission-
critical projects, (3) it provides lessons for using Scrum obtained from tteadiassist
Scrum practitioners, (4) it provides management guidelines to help mamyzatgans

avoid and overcome obstacles when adopting the Scrum method as a future software

development method, and (5) it suggests a new framework for further research on the

application of traditional and agile methods.

Problem Statement

The few empirical field studies of the negative aspects of agile seftwa
development methodologies have failed to identify how the methods can still be useful to
organizations and have not assessed their applicability for large-scatessimh-critical

projects.

CHAPTER Il

REVIEW OF LITERATURE

Introduction and Purpose of the Review of Literature

The purpose of this literature review is to examine the existing literature t
determine if there are sufficient evidences on issues and challenges so#tgikre
development methods, in particular, in Scrum. This requires a review of the lgeratur
related to the evolvement of software development methods. The first sectiohefescr
the first generation of software development methods and includes a review of the
rationale for the appearance of engineering-discipline-based softexa®mpment
methods. The second section reviews the nature of traditional software development
methods and illustrates the development lifecycle of the waterfall methadsddtion of
the literature review also includes the shortcomings of the waterfall metddtiea
research results of the Standish Group on projects conducted with traditionaleoftwar
development methods. The third section reviews the Manifesto for Agile Software
Development and the principles behind the Agile Manifesto. It includes a review of
discriminators between traditional methods and agile methods. It also revieagsl¢he
methods for large-scale projects. This section concludes with a revievooipaigson
between traditional and agile methods on their characteristics, stremgtivgeaknesses.
The fourth section reviews the origin of the Scrum method and the empirical process
theory that Scrum employs. This section also includes a framework of Scrum and
concludes with flow of the Scrum method. The fifth section reviews the Rationa¢tUnifi
Process (RUP), which is used to propose a new framework for future study. Tilois sec

includes a history, the four phases, and the disciplines of RUP. The last secBarsrevi

guantitative methods and qualitative methods and concludes with how qualitative

methods are utilized in Management Information Systems.

Early Stage of Software Development Methods

The early stages of software development can be summarized as “code and fix,
code-some-more, fix-some-more” (Fowler, 2005; Leffingwell, 2007). Thig siemple
scheme can be considered as the first generation in the history of softwelopoeent
methods. The fundamental concept of the scheme is to write code first without putting
much effort on pre-planning and pre-designing, and to fix bugs later if afgusre.
This illustrates that the early stage of software development procedses diclude any
structured and disciplined software development methods. This kind worked very well
for small-scale and relatively simple projects. However, as the sp®jetts increased,
developers realized that they spent more time on fixing bugs than writing codéedrhis
to a dramatic decrease in efficiency and predictability of softwarelof@ment. The
more software developers worked on large projects, the more they recognizedythat the
needed a methodology with which to impose discipline on the process of software
development. The concept of the early structured software development metheds we
borrowed from the engineering disciplines, which place heavy weight onepdaiming
(Fowler).

Engineering-discipline-based development methods can be viewed as plan-driven
methods, where the documentation of a complete set of requirements precedes
architectural and high-level design, development, and implementation (Awad, 2005). The

plan-driven software development methods require extensive planning, codified

processes, and rigorous reuse (Boehm, 2002). The plan-driven methods also work best
when developers know all of the requirements in advance and when requirements are
relatively stable (Hickey & Davis, 2004; Schach, 2004). Due to these factams kines

of methods came to be known as heavyweight methods and are also considered
traditional software development methods (TSDMs). The next section revienattine

of the traditional software development method.

Traditional Software Development Methods

Many software development methods that control a software development project
have evolved. One well-known TSDM is the Waterfall model, which utilizes astealct
and sequential progression between defined phases: planning, analysis, design,
implementation, and maintenance. According to Dennis, Wixonm, and Tegarden (2005),
the planning phase, which occupies typically about 15% of the total Systems
Development Life Cycle (SDLC), is the fundamental process to identifycibye of the
new system, understand why a system should be built, and how the project team will go
about building it through technical, economical, and organizational feasibilitysasa
The analysis phase, about 15% of the SDLC, analyzes the current system, @ésngrobl
and then identifies ways to design the new system through requirements gafftezing
design phase, 35% of the SDLC, decides how the system will operate in terms of
hardware, software, and network infrastructure. The implementation phase occupies
about 30% of SDLC and is the phase where actual coding occurs. The maintenance phase

occupies the remaining 5% of SDLC and focuses on going-live, training, itistalla

support plan, documentation, and debugging. Figure 1 and Table 1 below show a typical
waterfall lifecycle and deliverables, respectively.

As we can see in the figure and the table, each phase must be accomplished before
the following phase can begin and each phase cannot go back to the previous phase just
as water in the waterfall cannot climb up once it reaches a lower position.

Planning
Analysis
Design

Implementatior

Maintenance

Figure 1 Waterfall model lifecycle.

Table 1

Waterfall Model Deliverables

Phases Deliverables
Planning Phase Planning Specifications
Analysis Phase Analysis Specifications
Design Phase Design Specifications
Implementation Phase Completed Product

The original waterfall model was formally described by Royd970). He
believed that managing a large software development should berativéteprocess
rather than a sequential process. He argued that implementatiooutvhaving an
iterative relationship between development phases would be riskyadode-prone.
Interestingly, the original Royce model emphasized heavy fekdimatiterations but has

been extensively misinterpreted as a fixed sequential procdsasthanes one can get

things right in a single pass (Leffingwell, 2007). Figure 2 shtwes original Royce
waterfall model.

Over the past four decades, traditional waterfall-style softwareajsneht
methods have been widely used for large-scale projects in the softwareyiahasin
the government sector due to their straightforward, methodical, and structunexasat
well as their capability to provide predictability, stability, and high asseréBaehm &
Turner, 2003; Fruhling & De Vreede, 2006). However, TSDMs have a number of key
shortcomings, including slow adaptation to constantly changing business reaqug,eme
and a tendency to be over budget and behind schedule with fewer features and functions
than specified (Boehm, 2002; Boehm & Turner, 2003; Brooks, 1995; Schach, 2004;
Sommerville, 2004; Watson, Kelly, Galliers, & Brancheau, 1997). The conventional
methods also have failed to provide dramatic improvements in productivity, refiabilit
and simplicity (Brooks, 1995). Boehm and Philip (1988), and Jones (1997), reported that
during their project development experience, requirements often changed by 25% o
more. Williams and Cockburn (2003) also mentioned that TSDMs were not initially
designed to respond to requirements change occurring in the middle of the development
process. They also mentioned that the ability to take appropriate action in response to a
change often determines the success or failure of a software product.

One interesting research study conducted by the Standish Graurdingg8,380
projects from 365 respondents representing companies across majaryisggsnents,
shows that only a small percentage of projects (16.2%) with imaitmethods were

completed on-time and on-budget with all features and functionsfispediowever,

SYSTEM
REQUIREMENTS
(UPDATE)

SYSTEM
REQUIREMENTS
GENERATION

SOFTWARE

REQUIREMENTS

N

PRELIMINARY
PROGRAM
DESIGN

PRELIMINARY
SOFTWARE
REVIEW

ANALYSIS

N

PROGRAM
DESIGN

CRITICAL
SOFTWARE
REVIEW

CODING

N 77

TESTING

FINAL
SOFTWARE
ACCEPTANCE
REVIEW

OPERATIONS

Figure 2. Original Royce waterfall model. (Source: Royce, 1970)

0T

11

52.7% of the projects were completed over-budget, over the time estimate, and/or
offering less features and functions; 31.1% of projects were canceled at some poi
during the development cycle (Standish Group, 1994). Figure 3 displays the result of the
research. A more recent study by the same group (Standish Group, 2001) still showed
only 28 percent of IT projects were completed on time, on budget and with all the
features and functions originally specified. Further, the study found that 238 of t

projects failed and 49% of the projects were challenged.

16%

M Project Successed
539, H Project Failed

31% Project Challenged

Figure 3 Project resolutions.

In another study of 1,027 IT projects in the United Kingdom, Thomas (2001) also
reported that scope management related to attempting waterfall @sagtis the single
largest contributing factor for failure. Laffingwell (2007, p. 20) mentioned four key
assumptions with the waterfall model that simply turned out to be incorrect. The four
assumptions included (1) there exists a reasonably well-defined set of requsrdme
only take the time to understand them, (2) during the development process, changes to
requirements will be small enough that we can manage them without substantially

rethinking or revising our plans, (3) system integration is an appropriate assapc

12

process, and we can reasonably predict how it will go based upon architecture and
planning, and (4) software innovation and the research and development that is required
to created a significant new software application can be done on a predicheolelsc

To address some of the traditional methods’ shortcomings, agile methods have
been proposed (Highsmith & Cockburn, 2001). The next section explains the

characteristics and principles of agile software development methods.

Agile Software Development Methods

Overview of Agile Methods
As a remedy for the traditional software development methods’ shortcomings,

agile software development methods (ASDMs) were developed. The movement to
ASDMs started in the mid-1990s, by many practitioners in parallel, in different
languages, different locations, and different project contexts (Leffihg2@€7). William
and Cockburn (2003) mentioned that eXtreme Programming (XP), Scrum, Crystal, and
Adaptive Software Development (ASD) were developed in the U.S. by Ken Beck and
Eric Gamma, Ken Schwaber and Jeff Sutherland, Alistair Cockburn, and Jim Highsmit
respectively. Dynamic Systems Development Method (DSDM) is a wellkdented
agile method created by a European consortium of companies and was cortynercial
adopted in Europe (Leffingwell). Feature Driven Development (FDD) was dedelope
Australia and has contributed to the scaling of agile methods. Table 2 shows country
names and founders associated with various agile methods.

The nutshell of ASDMs can be summarized as iterative and incremental

development, adaptability throughout the systems development life cycle, tinima

13

planning, light and fast development cycles, people-centric development, customer
collaboration, and frequent delivery. In 2001, seventeen practitioners met at Snowbird,
Utah, to discuss if there was anything in common among the various agile methods
(Cockburn, 2007), and they created the Manifesto for Agile Software DeveloBeeht (

et al., 2001), which revealed what items were considered valuable by ASDMs. As shown
in Table 3, ASDMs concentrate (1) more on individuals and interactions than processes
and tools, (2) more on working software than comprehensive documentation, (3) value
customer collaboration more than contract negotiation, and (4) focus more on responding

to change than following a plan.

Table 2
List of ASDMs
Countries ASDMs Founders
U.S.A. e Extreme Programming (XP) e Kent Beck, Eric Gamma
e Scrum Method e Ken Schwaber, Jeff
Sutherland
e Crystal Methods e Alistair Cockburn
e Adaptive Software e Jim Highsmith
Development (ASD)
e Lean Software Development e Tom and Mary Poppendieck
Europe e Dynamic Systems e Dane Faulkner
Development Method
(DSDM)
Australia e Feature Driven Development e Peter Code, Jeff DeLuca

(FDD)

14

2Ct.

thin

ers,

jility.

Al

Zi

Table 3
Manifesto for Agile Software Development
More Valuable Items Less Valuable ltems
Individuals and interactions Processes and tools
Working software Comprehesive documentation
Customer collaboration Contract negotiation
Responding to change Following a plan
Table 4
Principles Behind the Agile ManifesSource: Beck et al., 2001)
No. Principles
1 Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.
2 Welcome changing requiremts, even late in development. Agile processes
harness change for the customer’s competitive advantage.
3 Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.
4 Business people and devlopers must work together daily throught the projg
5 Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.
6 The most efficient and effective method of conveying informaiton to and wi
a development team is face-to-face conversation.
7 Working software is the primary measure of progress.
8 Agile processes promote sustainable development. The sponsors, develop
and users should be able to maintain a constant pace indefinitely.
9 Continuous attention to technical excellence and good design enhances ag
10 | Simplicity—the art of maximizing the amount of work not done—is essentié
11 | The best architectures, requirements and designs emerge from self-oggani
teams.
12 | Atregular intervals, the team reflects on how to become more effebgve, t
tunes and adjusts its behavior accordingly.

The twelve principles behind the agile manifesto also presented the chstiaste

of ASDMs (Beck et al., 2001). As shown in Table 4, ASDMs (1) satisfy the customer

through early and continuous delivery of software, (2) embrace changing requseme

15

even in late in the development cycle, (3) deliver working software frequéhihywork

daily with business people, (5) facilitate motivated people, provide them with a good
environment and support, and trust them, (6) assist face-to-face conversation within a
development team, (7) use working software as a primary measure of pr¢gyes

promote sustainable development and keep sponsors, developers, and users moving at a
constant pace, (9) pay attention to technical excellence and good desigraifit@mm
simplicity, (11) promote self-organizing teams, and 12) foster inspectighs a

adaptations. The Agile Manifesto and its supporting twelve principles provide fbe bas
philosophy of the agile methods, and all applied agile best practices can Hg direct

correlated to them (Leffingwell, 2007).

There are many different characteristics between ASDMs and TSBdésm
(2002), for example, reports nine agile and heavyweight discriminators as shoaiole
5. He believes the primary objective of using ASDMs is rapid value, whereasntagpr
objective of TSDMs is on high assurance. He also believes that ASDMs arera bette
choice when requirements are either not known at the beginning of the project, are
largely emergent as the project progresses, or change rapidly, Wwhe2sls are better
when requirements are known at the early stage of the project and largldy sta
throughout the duration of the project. Regarding the involvement of customers, Boehm
thinks that ASDMs require dedicated, knowledgeable, and collaborated customers,
whereas TSDMs do not need co-located onsite customers; rather, they focus more on
contract provisions. In ASDMs, developers should be agile, knowledgeable, co-located,
and collaborative. In TSDMs, developers should be plan-oriented and have adequate

skills to access external knowledge. One more very noticeable differehe is-

16

factoring in ASDMs is cheaper than TSDMs. ASDMs have unknown risks, which can
have a major impact on a project, whereas TSDMs have well-understood risks and their
impact on a project is known. Overall, as shown in the table, Boehm believes ASDMs
should be used for small teams and projects. If the size of the team and prejé&tgear

he suggests TSDMs.

Table 5
Discriminator Between ASDMs and TSDMs (Source: Boehm, 2002)
Project Characteristics Agile Discriminator Heavyweight
Discriminator
Primary objective Rapid Value High Assurance
Requirements Largely emergent, rapid | Knowable early, largely
change, unknown stable
Size Smaller teams and projects Larger teams and projects
Architecture Designed for current Designed for current and
requirements foreseeable requirements
Planning and Control Internalized plans, Documented plans,
gualitative control guantitative control
Customers Dedicated, knowledgeableAs needed customer
collaborated, collocated interactions, focused on
onsite customers contract provisions
Developers Agile, knowledgeable, Plan-oriented; adequate
collocated, and skills access to external
collaborative knowledge
Refactoring Inexpensive Expensive
Risks Unknown risks, Major Well understood risks,
Impact Minor impact

The next section explains lean manufacturing principles which have a Idoiy his
of generating dramatic improvements in the field of manufacturing (Poppendieck &

Poppendieck, 2003) and describes how these principles were accepted into &gitls met

17

Lean Manufacturing Principles and Agile Methods
In addition to the nine discriminators listed earlier, ASDMs have several other

distinct attributes. These attributes come mainly from the basic principlesn
industrial practices. As shown in Table 6, Poppendieck and Poppendieck (2003)
identified seven principles of lean manufacturing and explained how these principles
could be directly applied to software development. The seven disciplines include (1)
eliminate waste, (2) amplifying learning, (3) decide as late asijp@sgl) deliver as fast
as possible, (5) empower the team, (6) build integrity, and (7) see the whole.

Some of these principles are actually embedded into ASDMs. The firsicaghif
attribute of agile methods adopted from the lean principles is the eliminaticastd.w
This concept was first introduced by Taiichi Ohno, considered the father obyoéaT
Production System. This approach considers any activities that do not improve ttye quali
of a final product as waste. Shigeo Shingo (1981), one of the masterminds of the Toyota
Production System, listed seven types of manufacturing waste as shown inglueleft
Table 7, the right side represents the corresponding seven wastes of software
development. In following this principle, ASDMs avoid preparing heavy documents,

models, and diagrams. Instead, ASDMs suggest writing effective guidahdes set of

rules.

Table 6

Principles of Lean Manufacturing

No. Principle Main concept

1 | Eliminate waste e Remove any activities that do not improve the

quality of a final product.
e Avoid heavy documents, models, and diagrams.
e Write effective guidelines and a set of rules.

18

No. Principle

Main concept

2 Amplifying learning

Create software through iterative and
incremental method.

Gather productive feedbacks from each iterat
and apply them to the next iteration.

ion

3 Decide as late as possik

e

Any process should provide a capacity for
change by delaying a decision as late as
possible.

4 Deliver as fast as
possible

Deliver small but working subsystems as fast
possible.

Frequent delivery of working versions of a fin
system is a key to rapid development.

Early and frequent delivery of small software
components increases the potential of succe

as

5S.

5 Empower the team

Team is responsible for success or failure of
project.

Team should be autonomous in organization
and management of projects.

the

6 Build integrity in

A system should work smoothly and cohesive

D

y

7 See the whole

Experts should be able to see a whole syster
Overall performance should have more weigh

it

than a local maximization.

Table 7

The Seven Wastes (Source: Poppendieck & Poppendieck, 2003)

No. | The Seven Wastes of manufacturii The Seven Wastes of Software
Development

1 Inventory Partially Done Work

2 Extra Processing Extra Processes

3 Overproduction Extra Features

4 Transportation Task Switching

5 Waiting Waiting

6 Motion Motion

7 Defects Defects

The second significant attribute of agile methods is an adaptive development

process, which draws on the two lean principles of “amplifying learning” araidelas

late as possible.” The lean principle “amplifying learning” is based on thepbtitat

19

“Development is an exercise in discovery while production is an exercise inngduc
variation, and for this reason, a lean approach to development results in practiaes that
quite different than lean production practices.” (Poppendieck & Poppendieck, 2003, p.
xxV). The lean principle “decide as late as possible” provides a capacityange by
delaying decisions as late as possible. ASDMs follow with these prinbiples
emphasizing adaptive software development, which requires iterative andentaem
development through productive feedback. Satzinger, Jackson, and Burd (2005)
mentioned that some projects were reasonably predictable and could be managed
sequentially but most projects are less predictable, demanding an itaratiagaptive
approach to development.

The third significant attribute of agile methods is rapid software development,
influenced by the lean principle “deliver as fast as possible.” The concepets drashe
fact that customers like rapid delivery, and rapid delivery can provide cust@ritier
flexibility. ASDMs try to deliver small working subsystems as &spossible rather than
waiting to show the customer the final product until it is complete. Fowler (2005)
mentioned that frequent delivery of working versions of a final system was a kagyid
development. These working systems represent only a portion of the whole system, but
should be good enough to get customer feedback. The study of 23,000 projects conducted
by Standish Group International (1994) revealed that early and frequent defiwengll
software components increases the potential for success.

The fourth significant attribute of agile methods is an autonomous and self-
organizing team, which mirrors the lean principle “empower the team.”cbhisept is

based on the assumptions that (1) a mature organization looks at the whole system and

20

not on optimizing disaggregated parts, and (2) a mature organization focuses oig learni
effectively and empowers the people who do the work to make decisions. ASDMs focus
more on team work than TSDMs. As a whole, the team is responsible for the surccess
failure of the project. Teams should be autonomous in term of organization and
management of projects.

The last two lean manufacturing principles in the table did not directly dfiect t
attributes of the agile methods but these principles are somewhat embeddegillént
practices. Regarding the principle of “build integrity in,” Brooks (1995, p. 255) stated
“Conceptual integrity means that the system’s central concepts workeéogsth
smooth, cohesive whole, and it is a critical factor in creating perceivediinpteghe
“see the whole” principle puts more emphasis on maximizing over all system

performance than maximizing the performance any particular part ofstesrs

Characteristics, Strengths, Weaknesses of TSDMs
and ASDMs

The ASDMs have the potential to provide higher customer satisfaction, lower bug
rate, shorter development cycles, and quicker adaptation to rapidly changing®usine
requirements (Boehm, 2002; Boehm & Turner, 2003; Parnas, 2006). Parrish (2004)
argues that ASDMs provide increased quality, shorter time to market, bétienef,
and greater customer satisfaction. Miller and Larson (2005) also believe h&sAS
emphasize close collaboration between the users and developers of a project, and
relatively quick development cycles that can react to changing requirerdants
Australian group, Shine Technologies (2003) surveyed 131 respondents of teams and

companies that had employed agile methods and found that (1) 93% stated that

21

productivity was better or significantly better, (2) 49% stated thas egste reduced or
significantly reduced, (3) 88% stated that quality was better or sigmtifydaetter, and

(4) 83% stated that business satisfaction was better or significaridy. iBeck (2000)
reported that in the original XP project at Daimler Chrysler, it took 12 to 15 people 2
years to write and deploy a system that a team of 30 had failed to delive pnothé
years. Spencer (2005) also stated that “our implementation of agile pgdwlps us find

bugs earlier, helps us achieve higher quality, and helps us work well with QA.”

According to a report by Forrester Research (2005), only 14% of North American
and European enterprises use agile software development processes, and 8¥%o#rer
either interested in adopting agile methods or already planning to do so.

So far, we have discussed various strengths, weaknesses, and charaagristic
both TSDMs and ASDMs. These were summarized in Table 8 and the next section

reviews the literature on agile methods for large-scale projects.

Agile Methods for Large-Scale Projects
Most agile methods have primarily been applied to small to medium size projects

such as internet and web-based information systems. It is not clear rnatjfileds are

used on large-scale projects that they can provide end-users with thd deality in a

timely manner (Marrington, Hogan, & Thomas, 2005). However, some researchers hav
reported that large-scale and complex projects have benefited from statkivbd agile
development methods (Bowers, May, Melander, Baarman, & Ayoob, 2002; Lippert et al.,
2003; Cao, Mohan, Xu, & Ramesh, 2004; Lindvall et al., 2004). Bowers et al. (2002)

examined whether the XP method can handle large-scale and life-criticargftw

22

systems. The authors adopted the XP method to redesign their public safety

communication systems, which consists of over a million lines of C language code

Table 8
Characteristics, Strengths, and Weaknesses of TSDMs and ASDMs
TSDMs ASDMs
Characteristics e Extensive planning e lterative and incremental
e Codified process e Customer collaboration
¢ Rigorous reuse e Frequent delivery
e Heavy documentation e People centric
e Big design up front e Light and fast development
cycle
Strengths e Straightforward, e Short development cycle
methodical, and e High customer satisfaction
structured nature e Low bug rate
o Predictability, stability, e Quick adaptation to rapidly
and high assurance changing business
requirements
Weaknesses e A slow adaptation to e Significant document

rapidly changing
business requirements

e Atendency to be over
budget

e Atendency to be
behind schedule

e Difficult to create a
complete set of
requirements up front

reduction and heavy
dependent on tacit
knowledge

Not sufficient test for
mission/safety-critical
projects

Not adequate for highly
stable projects

Can be successful only with
talented individuals who
favor many degrees of
freedom

Not appropriate for large-
scale projects

23

They used the XP method to mitigate risks with early, frequent feedback.
However, they did not use every part of the XP method. Instead, they adopted some
practices, dropped others and supplemented others with practices from other fislds. Thi
paper revealed the possibilities for applying the XP method to large-schliéeacritical
projects if the XP method was modified to fit into the specific application develupm
environment. Lippert et al. (2003) also examined whether the XP method was apgropria
for large and long term projects. They indicated that a suitably adaptediegelopment
process (in particular XP) was ideal for long-term projects and the devehbpf large
systems. This is contradictory to the preferences of many informatiomoiegy (IT)
managers who often consider XP as a slightly chaotic methodology. Lippert et al
mentioned that they followed the recommended practice of adapting XP to tl#ficspe
project. They also developed methodological extensions to XP for use in a number of
areas in which questions and problems frequently occur. The majority of studiegesn lar
scale projects have been conducted using the XP method, which was initigtyedesi
for small-scale projects with less than 10 developers and a product that would not be
excessively complex (Beck, 2000).

Among the various agile methods, the Scrum method was selected for this study
because Scrum is one of the most widely adopted agile methods in the U.S. software
industry (Leffingwell, 2007; Williams & Cockburn, 2003), and Scrum is suitable for any
size of projects (Schwaber & Beedle, 2002). The next section explains thearoots

history, the empirical process control, and the framework of the Scrum method.

24

Scrum Software Development Method

The Philosophical Roots of Scrum
The Scrum software development method is an agile process that can be used to

manage and control complex software and product development using iterative and
incremental practices (Advanced Development Methods, 2009; Schwaber, 2004, 2007,
2008; Schwaber & Beedle, 2002) and is an enhancement of the iterative and incremental
approach to delivering objected-oriented software (Schwaber, 1996). Leflifig0&/,

p. 41) also defined the Scrum method as “. . . a lightweight agile project management
method based on small, empowered, self-organizing teams; complete visibilitgpahd
adaptation.” The origin of term scrum came from the popular sport rugby, in which
fifteen players on each team compete against each other. While the termefersrtor

the strategy used for getting an out-of-play ball back into play in rugbgsifiivet used

to describe hyper-productive development processes in Japan (Takeuchi and Nonaka,
1986). Three strategies from rugby, including a holistic team approach, constant
interaction among team members, and unchanging core team members, & iatmpt

Scrum’s management and control processes. Takeuchi and Nonaka (1986, p. 137) noted:

This new emphasis on speed and flexibility calls for a different approach for
managing new product development. The traditional sequential or ‘relay race’
approach to product development - exemplified by the National Aeronautics and
Space Administration's phased program planning (PPP) system - magtconfli
with the goals of maximum speed and flexibility. Instead, a holistic or ‘fugby
approach - where a team tries to go the distance as a unit, passing the hall back
and forth - may better serve today's competitive requirements.

Takeuchi and Nonaka also described six principles that contribute substantially to
the Scrum philosophy. Each principle correlates directly to many of theglesiaf the

Agile Manifesto that we previously discussed. Their six principles afeuflt)in

25

instability, (2) self-organizing project teams, (3) overlapping dgraknt phases, (4)

multi-learning, (5) subtle control, and (6) organizational transfer of leguiiiable 9

shows these principles with explanations.

Table 9

Six Principles of the New Product Development Process

(Source: Leffingwell, 2007, p. 43)

eps

self-

e,
ch

-]

a

) the

No. | Principles Contents

1 Built-in A principle philosophy for management is to provide a visign
instability and challenge to the team but not to provide the specific st

for how the team is to accomplish these objectives.

2 Self-organizing | Self-organizing teams exhibit three conditions: autonomy, ¢
project teams transcendence, and cross-fertilization.

3 Overlapping In Scrum, the lines between product definition, design, cod
development and test are blurred. Product definition derives design, whi
phases affects product definition

4 Multi-learning By organizing in an environment that offers multiple legrni
opportunities, teams are in constant and close contact with
each other as well as with outside sources of information v
the customer proxy or direct involvement of the team with the
customer.

5 Subtle Control Scrum provides daily and monthly objective checkpoints for
each project. Management provides additional control by
creating a proper and open work environment, encouragin
team to interact with customers, and establishing reward
systems based on team, rather than individual behavior.

6 Organizational | Scrum teams in particular, and agile teams in general, routinely

transfer of
learning

exhibit transfer of learning outside their project team. Learr
may be driven by the excitement generated by more effect
processes and self-empowered teams or by the objective
results, but in any case, good news spreads quickly.

ling
ve

The History and Practices of Scrum

The Scrum process was developed by Schwaber and Sutherland (Schwaber &

Beedle, 2002). The former developed and formalized the Scrum process for system

26

development while he was at his company, Advanced Development Methods (ADM), in
the early 1990s. The latter developed many of the initial thoughts and practicesufar S
when he was at Easel Corporation as a vice president of Object Technology in 1994. By a
joint effort of both, the Scrum process was first introduced to the public at theeswder

of Object-Oriented Programming, Systems, Languages and ApplicatiofsSI3)in

1996 (Schwaber, 1996). The Scrum process looks simple, but is practical enough to
deeply influence the work experience and to capture key agile characdgltistiman,

2007). Some key practices of Scrum (Laffingwell, 2007, p. 44; Larman, p. 109) include
the following point. (1) Self-managing, cross-functional, self-directdipsganizing,

and collocated teams of eight or fewer team members develop software in. $dyints
Sprints are iterations of fixed 30-day duration, where each sprint deliversiarued,

tested functionality of value to the user. (3) Work within a Sprint is fixed. Oncztpe

of a Sprint is chosen, no external addition of work can be added except by the
development team. (4) The Scrum master mentors and manages the teams that are
responsible for delivery of successful outcomes at each sprint. (5) All workdimnlees
carried as a Product Backlog, which includes requirements to be delivered, tite defe
workload, as well as infrastructure and design activities. (6) The ProdudbBas
developed, managed, and prioritized by the product owner, who is an integral member of
the team and who has the primary responsibility of interfacing with thenakter
customers. (7) A daily stand-up meeting with special questions is a primary
communication method. (8) Scrum focuses heavily on time-boxing. Sprints, stand-up
meetings, release review meetings are all completed in prescriies]) Scrum

allows requirements, architecture, and design to emerge over the course ofeitte pr

27

(10) Scrum provides a demo to external stakeholders at end of each iterationhand eac

iteration is client-driven adaptive planning.

The Scrum method consists of three main elements - the empirical procesk cont
(visibility, inspection, and adaptation), the framework (roles, ceremonies, téadtay,

and the workflow. The following sections describe in detail these three maiargtem

Control

b PP ‘13 ::\. a“

Visibility Inspection Adaptation
— Various aspects of Any aspects of
Any aspects of

the process the process under
the process
should be unacceptable
should be known _
to evervbod inspected range should be
yboedy frequently adjusted

Figure 4 Three legs of empirical process control.

Empirical Process Control
The co-founder of the Scrum process, Schwaber (2004, 2008), has argued that the

Scrum process employs an empirical process control which has three legsingadirly
of its implementations: Transparency (Visibility), Inspection, and Adiaptat
Transparency or visibility means that any aspects of the process #uitaéf outcome
must be visible and known to everybody involved in the project process. Inspection

requires that various aspects of the process be inspected frequently enough so that

28

unacceptable variances in the process can be detected. Adaptation requires that the
inspector should adjust the process if one or more aspects of the process are in an

unacceptable range. Figure 4 visualizes the empirical process.

Schwaber (2002, p. 24) introduced a noteworthy story, cited below, that points out
that the system development process is complex and unpredictable, hence it should be

managed by a process control model that is empirical.

| wanted to understand why my customers’ methodologies didn’t work for my
company, so | brought several methodologies to process theory experts at the
DuPont Experimental Station in 1995. These experts, led by Babatunde
Ogannaike, are the most highly respected theorists in industrial process. cont
They inspected the system development processes that | brought them. | have
rarely provided a group with so much laughter. They were amazed and appalled
that my industry, system development, was trying to do its work using a
completely inappropriate process control model. They said systems development
had so much complexity and unpredictability that it had to be managed by a
process control model they referred to as “empirical”’. They said this waisgot
new, and all complex processes that weren’'t completely understood required the
empirical model.

Schwaber (2004) mentioned that a code review can be analyzed with the
empirical process control model described above. Any code written by degetbpeaitd
be visible to everybody (transparency). The most experienced and knowledgeable
developers can review the code (inspection). If there is room to improve the code,
reviewers’ comments and suggestions should be reflected in the code (adaptation).
Framework of Scrum

The framework of Scrum consists of three components including roles,
ceremonies, and artifacts (Schwaber, 2004). There are three distinch rible<Sicrum

process: the Product Owner, the Team and the Scrum master.

29

Three Roles in Scrunithe Product Owneis responsible for getting initial and
on-going funding for the project by creating the project’s overall requiresniesturn on
investment (ROI) objectives, and release plan (Schwaber, 2004). The Product©wner i
also responsible for managing and controlling the Product Backlog, which igddsa
the Scrum artifacts section. The Product Owner should be one person rather than a
committee. If any of items in the Product Backlog need to be changed oorniézer,
this should be done through the Product Owner. The reason for establishing a single
Product Owner is to avoid having multiple conflicting lists. The Product Owner should
make the Product Backlog visible to everyone so that everyone knows which item has the
highest priority. To finish the project successfully, everyone in the organizataoids
follow the decision made by the Product Owner. The Product Owner can be the product
manager for commercial development, or the project manager or the user dapartm

manager in-house development.

The Teanis responsible for implementing the functionality described in the
requirements. Teams should be self-managing, self-organizing, and crassafalrto
maximize team performance. All of the team members are responsibleldahéot
success and the failure of sub-systems and the entire system (SchwadberT@am
members decide what items should be accomplished over the next Sprint in the Sprint
planning meeting. The team should be autonomous so that it has the power to make a
decision, do whatever it needs to do, and ask for any impediments to be removed.
Although the team can make a decision on how to do its work, the team’s decision should

be conform to any existing organization’s charters, standard, conventionectrks,

30

and technology. It is desirable to create a team with people who have diffexdsoki
skills necessary to meet the Sprint goal.

If the size of the team is larger than eight people, Schwaber and Beedle (2002)
strongly recommend breaking them into multiple teams to minimize the interactd
dependencies between team members. They also believe that large teaate gmmer
much complexity for an empirical process. Team members are callebguiggse they,
like the pigs in the following joke, are committed to the project. Other than team
members, everyone else is a chicken. Chickens can attend the Daily Scrum kiaeting

should be remain silent. Chickens cannot interfere with the meetings in any way.

A chicken and a pig are together when the chicken says, “Let’s staraaraggt” The
pig thinks it over and says, “What would we call this restaurant?” The chicken says,
“Ham n’ Eggs!” The pig says, “No, thanks. I'd be committed, but you’d only be involved

(Schwaber & Beedle, 2002, p. 42).

The Scrum Master (SM¥ a new management role introduced by Scrum.
According to Schwaber and Beedle (2002), the SM has various duties and
responsibilities. The SM is responsible for ensuring that Scrum values, gsaaticl
rules are enacted and enforced. The SM is the driving force behind all of the Scrum
practices. The SM sets them up and makes sure they happen. The SM represents
management and the team to each other. At the Daily Scrum, the SM listehstolose
what each team member reports. The SM compares what progress has beenwhatle t

progress was expected, based on Sprint goals and predictions made during the previous

31

Daily Scrum. SM also tries to remove any impediments imposed on developers

(Schwaber & Beedle, 2002, p. 31). Table 10 shows the roles in Scrum.

Table 10
Main Roles in Scrum
Roles
The Product Owner The Team

e creates the project’s overall
requirements, return on investmer
(ROI) objectives, and release plan
manages and controls the Produc
Backlog

can be the product manager, proje
manager, or user development

manager

1t

pCt

is responsible for implementing th
functionality

Is responsible for both the succes
and the failure of systems

should be self-managing, self-
organizing, and cross-functional
should be committed to the projec

D

\"2J

—F

The Scrum Master

is @ new management role
introduced by Scrum

is responsible for ensuring that
Scrum values, practices, and rules
are enacted and enforced

is the driving force behind all of th
Scrum practices

represents management and the
team to each other

tries to remove any impediments

(1)

imposed on developers

Everyone Else

Is chicken
cannot interfere with the meetings
in any way

Ceremonies in Scrunthere are several ceremonies in the Scrum process

including the Daily Scrum Meeting, the Daily Scrum of Scrums Meeting, thatSpri

Review Meeting and the Sprint Planning Meeting. Diady Scrum Meeting (DSM$ a

15-minute status meeting to talk about what has been accomplished since the last

meeting, what items will be done before the next meeting, and what obstadkpdes

32

have. DSMs facilitate communications, identify and remove impediments to
development, highlight and promote quick decision-making, and improve transparency
(visibility) as explained in the previous section. Thaly Scrum of Scrums Meeting
(DSSM)is another short daily meeting and follows the same format as a regilar DS

The main reason for having a DSSM is to synchronize the work between multiple Scrum

teams.

The Sprint Planning Meeting (SPMy a monthly meeting, where the Product
Owner and Team get together to discuss what will be done for the next Sprint wisich las
usually for 30 days. In a SPM, team members break a project into a set cdusenall
manageable tasks so that all the tasks can be completed in one Spri#prinh&eview
Meeting (SRMj)s another monthly meeting which is held at the end of the Sprint. An
SRM is usually a four-hour time-boxed meeting, where team membersifpndsd was

developed during the Sprint to the Product Owner and stakeholders.

Three Artifacts in Scrunin addition to the Scrum roles and ceremonies, the
Scrum process provides three artifacts, namely the Product Backlog, thieB&klog,
and the Burndown Chart. THroduct Backlogs a collection of functional and non-
functional requirements, which are prioritized in order of importance to the bssifee
items in the Product Backlog are created and maintained by the Product OwnepléA sim
version of Product Backlog is shown in Table 11. A complete Product Backlog can be
found in Appendix A. As shown in Table 11, the requirement column represents various
projects needing to be accomplished in the Sprint. The Num column places an internal

number for each project, which is used for referential purposes. Some of examtiles for

33

Category column are feature, enhance, defect, and technology. The status colum
represents “not started,” “underway,” or “complete.” The priority columgea from
one to five and the smaller number represents the higher priority. The estohatn

represents the estimated hours needed to finish the project.

Table 11

A Sample Product Backlog

1 | Product Backlog

2

3 | Requirement Num | Category Status Priority | Estimate

4 | Create login screen 12 Enhance Not started 5 100

5 | PDA sale capture 117/ Enhance Not started 5 300

6 | Auto-size column 23 Enhance Complete 2 120

7 | Create JLBBK 120 | Feature Underway 1 130
interface

8 | Create log entry 121| Feature Not started 3 500

9 | Credit card 26 Defect Complete 2 200
payment

10 | Commission 221 | Feature Underway 4 700
calculation

11 | Create intake 124 | Feature Not started 3 800
screen

The Sprint Backlogs created by team members from the Product Backlog in a
way that the high priority items in the Product Backlog are first selected akehbinto
a set of smaller tasks. When the Product Backlog items are divided into sks|ltéam
members estimate the completion time for each task. Team members aketdasks as
small as possible so that every task can be accomplished within three days.ifithe Spr
Backlog consists of these small tasks. A simple version of Sprint Backlbgvig sn

Table 12. A complete Sprint Backlog can be found in Appendix B. As shown in Table

34

12, the Task Description column represents a set of small tasks that needs to be

completed within one cycle of the Sprint.

Table 12

A Sample Sprint Backlog

1 | Sprint Backlog

2
3 | Task Description | Orig | Respo| Status Hours of work remaining

inat | nsible

or 488 344 321 298 255
4 | Add search JS JJ/SS| Inprogress 20 11 11 6 2

functionality

5 | Create inmate JC | AN In progress| 24 16 16 16 8

release

6 | Update parametey JC | BB Not started| 23 23 23 23 23
screen

7 | Release screen | JS PB Complete 24 17 10 6 0
enhancement

8 | Nested control JS SN Removed 20 20 20 20 20
(Moved to next
Sprint)

9 | Add incidenttab | JC | SJ In progresg 25 20 16 8 8
in inmate screen

10| Format the tab in| JC | AN In progress| 24 24 16 8 8
inmate screen

11| Disable JC | TK Complete 23 23 16 8 0
medication tab in
inmate screen

These lists are created by team members from the Requirement ligted in t
Product Backlog. The Originator column represents a name of person or people who
originate the task. The Responsible column shows a name of person or people who are
responsible for. The Status column shows several different status of eacithading
“Not started,” “In progress,” “Complete,” and “Removed.” The last column shiogs t

hours of work remaining. At the end of the Sprint session the remaining hours for each

35

task should be zero. As shown in row #8, some of tasks in the Sprint Backlog cannot be

completed and are carried over to the next Sprint.

Burndown Chart

400
350 M

300

250
200

150 \.\‘.?,J\

100 \\IL?

50

Work Remaining (Hrs)

Day of Month

Figure 5 Burndown chart.

The Burndown Chaiis a graphical presentation where work remaining is tracked
on the vertical axis and the time periods tracked on the horizontal axis. The chaft shoul
be accessible by every member participating in the project. It is a gdddrtpooviding
visibility (transparency) to the people who are involved in the project. In Scrum, the
Burndown Chart is considered the most critical project data to track (Larman, 2097). It
recommended to post an updated version of the chart each day by the Scrum meeting so
that team members can see the current status of each task. An individual acldai¢am
can be used to show individual performance and team velocity respectively.%igure
shows a simple version of an individual Burndown Chart. A complete individual and

team Burndown chart can be found in Appendix C.

36

As mentioned at the beginning of this section, the framework of Scrum consists of
three components: Roles, Ceremonies, and Artifacts. Table 13 summarizesghe thre

components and major elements of each component.

Table 13
The Framework of Scrum
Roles Ceremonies Artifacts
e The Product Owner e Daily Scrum e Product Backlog
e The Scrum Team Meeting e Sprint Backlog
e The Scrum Master e Daily Scrum of e Burndown Chart
Scrums
Meeting
e Sprint Review
Meeting
e Sprint Planning
Meeting

Flow of Scrum
The Scrum process begins with a vision of the system and a simple plan on

Return on Investment (ROI) and release milestones. The vision is described issdusine
terms rather than technical terms. The vision may be unclear at first,|bo¢eame

more precise as the project moves forward. As mentioned earlier, the Product®©wner
responsible for getting initial funding, delivering the vision while maximi&@j, and
creating the Product Backlog. The prioritized items in the Product Bacldatj\aded

into smaller tasks through the Sprint Planning Meeting and placed in the Sprint Backlog.
In the Sprint Planning Meeting, the Product Owner explains the content, purpose,
meaning, and intentions of each item in the Product Backlog. Team membesg& can a
guestions if they do not understand any items in the Product Backlog. All the tasks in the

Sprint Backlog are undertaken in Sprints, which are done iteratively until theatasks

37

completed. Daily Scrum Meetings are used to review task progress dacmprint.

Figure 6 illustrates the flow of the Scrum process and Table 14 shows a Seoyaidi

Table 14

Scrum Lifecycle

(Source: Larman, 2007, 113)

Pre-Game

Development

Release

Planning

Staging

Establish the vision

Identify more

Implement a systen

nOperational

Sprint Review

% set expectations, andrequirements and | ready for release in deployment
2 | secure funding prioritize enough | a series of 30-day
T for first iteration iteration (Sprints)
Write vision, budget| Planning Sprint planning Documentation
initial product meeting each
backlog and estimateExploratory design iteration, defining | Training
items. and prototypes the Sprint Backlog
and estimates Marketing &
3 | Exploratory design Sales
S | and prototype Daily Scrum
'23 meetings

The Unified Process (UP) is a well-defined, object-oriented system deveibpme

Rational Unified Process

process originally offered by IBM Rational Software and was developeadbghB

Rumbaugh, and Jacobson (Satzinger et al., 2005).

New functiohality
Is damonstrated

at end of sprint

Froduct Backiog:
Emerging, prioritized
requirements

Scrum Flow

Vision

Anticipated RO,
Feleases, Milgstones

Figure 6. Flow of Scrum.
(Source: Hodgetts, 2009)

38

39

The UP takes an iterative, requirements-driven, and architecture-@gyrmach,
based on sound engineering principles (Kruchten, 2004). Some of the universal principles
of UP includes: (1) adapt the process, (2) balance stakeholder prioritiesl|#Bprate
across teams, (4) demonstrate value iteratively, (5) elevate the leltacdction, and
(6) focus continuously on quality. The UP has a long and proven history and has clearly

evolved (Ambler, 2005).

Table 15

History of Unified Process

Year | Event

1988 | Objectory v1.0 is created by Jacobson’s Objectory AB company. riaatio
Unified Process and Enterprise Unified Process came out fro@ujeetory
process.

1996 | Rational Objectory Process (ROP) 4.0 is created. Iterativecepbnis
introduced.

1998| ROP is renamed into Rational Unified Process and RUP 5.0 is released.

1999 | Rational Unified Process 5.5 is released with an enhancement-tfmeand
web-based development.

2000| Rational Unified Process 2000 is developed with the addition of business
engineering techniques to the business modeling discipline and a| more
enhanced requirements approach.

2003 | Rational Unified Process 2003 is released with an enhanced test disciplipe.

2004 | Enterprise Unified Process is developed with the expansion of thersde
management discipline.

2005/ Agile Unified Process is developed

Table 15 depicts how the UP has evolved through several variations. Among the
many different versions, Rational Unified Process (RUP) 2003 was utilized isttialy
as a framework. As shown in Table 15, RUP came from the Objectory process v1.0 and
evolved into RUP 2003 with various additions and enhancements. More recently, a

lighter UP called the Agile Unified Process (AUP) was developed foriensadtware

40

development. The AUP utilizes a streamlined approach, which has feweiesawit
deliverables with a simplified method.

The structure of RUP is two dimensional: phases and disciplines. The phases
represent the four major stages that a project goes through over timeajbhstages
include inception, elaboration, construction, and transition. The disciplines represent the
logical activities that take place throughout the project. The disciplieedivaded into
main disciplines and support disciplines. The main disciplines include business modeling,
requirements, analysis and design, implement, testing, and deployment. Thé suppor
disciplines include configuration and change management, project management, and

environment. Table 16 shows the two dimensions of RUP.

Table 16

Two Dimensions of RUP

Dimensions RUP

Phases Inception
Elaboration
Construction
Transition

Main
Disciplines

Business Modeling

Requirements

Analysis & Design

Implement

Testing

Deployment

Support Configuration & Change Management
Disciplines e Project Management

e Environment

soauldiosiq
e 6 o o o

The nine disciplines can be employed across two or more phases during the RUP

development life cycle. For example, the business modeling discipline can hetiliz

41

both the inception and elaboration phases to understand the business environment. The
requirements, the design, the implementation, and the testing disciplines capldgdm
across all four phases to classify requirements that the system mwshenplto design

a solution for the system that satisfies the requirements, to write codestked the

system actually work, and to conduct unit and integrated system testing. Toynuenm
discipline can occur during the elaboration, construction, and transition phases to place a
portion of the system, or the full system, into operation for users. The support descipli
can also occur across all four phases for planning and controlling the projdetlTa

shows where the nine disciplines are used within the four phases, and also where
disciplines are mostly utilized. The next section describes the main obgestisie

activities of each RUP phase, based on the explanations of Ambler (2005) and Batzinge

et al. (2005).

Table 17

Utilization of Disciplines in RUP phases

RUP Disciplines | Phases

Business Modeling Inception*, Elaboration

Requirements Inception, Elaboration*, Construction, Transition

Analysis & Design| Inception, Elaboration*, Construction, Transition

Implement Inception, Elaboration, Construction*, Transition
Testing Elaboration, Construction*, Transition
Deployment Elaboration, Construction, Transition*

Configuration & Inception, Elaboration, Construction*, Transition
Change
Management

42

RUP Disciplines | Phases

Project Inception, Elaboration*, Construction, Transition
Management

Environment Inception, Elaboration*, Construction, Transition

(* represents the most utilized phase for a certain discipline)

The Inception Phase
The primary objectives of the inception phase are to (1) identify the business

scope of the new system and the project, (2) develop preliminary cost and schedule
estimates based on the stakeholder concurrence, (3) identify the business eed for t
project, (4) understand the requirements according to the business case foettig proj
and (5) establish a vision for the solution. As shown in Table 17, the business modeling
discipline is highly utilized in the inception phase. The main activities of thadsssi
modeling discipline in this phase include: (1) create a list of business besystem
objectives, and system capabilities, (2) describe the problem or need, (8consi
business process, workflow, and interfaces to other systems, and (4) anaiyarotine

system stakeholders, existing system architecture, and system iotgistra

The Elaboration Phase
During the elaboration phase, detailed information is gathered, hence the

requirements discipline is mostly utilized in this phase. Based on the gathered
information, functional and non-functional requirements are defined. The functional
requirements are activities and processes that the news system shqubdittdrhe non-
functional requirements are characteristics of the new system other traantivitees it
must perform. Some of non-functional requirements can include technical requseme

performance requirements, usability requirements, reliability reopgints, and security

43

requirements. All defined requirements are prioritized and evaluated with sydteam
users. A structured walkthrough with users is an important process to make sure the
gathered and prioritized requirements are correct and appropriate. @sacmdialogs

can also be developed in this phase.

The Construction Phase
The main focus in this phase goes to coding and testing the software. All the

system components and features, including user interfaces, business |dgiascdsas
functions, and help functions, are implemented according to the specificationsedesig

in the previous phase. This phase should produce a releasable working system so that the
system can be deployed during the next phase. This phase can include severatitera

that continue the design and implementation of the system. In particular, for large

projects, several construction iterations can be involved in an effort to break & proj

into small and manageable tasks.

The Transition Phase
During the transition phase, the system is delivered into production and becomes

available to end users. One or more iterations in this phase should involve end-user
training with a user’'s manual, beta testing to validate the system funogainstend-
users’ expectation, and corresponding modification and fine tuning. If all the

requirements are satisfied, the development cycle is closed.

Quantitative Versus Qualitative Research Methods

Though various research methods exist, the most commonly used classification of

research methods is between quantitative and qualitative research methodsat@eant

44

methods start with an assumption that variables can be identified and relationships ca
measured. Quantitative methods usually employ theories, hypotheses, andatiathe
models to generalize research findings to other people and places. Datadallec
guantitative methods are numeric indices that can be quantified for stbhéinitysis.
Generalization, causal explanation, and prediction are the main purposes aferese
conducted with quantitative methods. In contrast, qualitative methods seldom begin with
hypotheses and theories, and assume that variables are complex, interwoven, atid diffic
to measure. Qualitative methods employ non-numeric data, such as field notes,
interviews, conversation, participant observations, questionnaires, documentgsnd te
photographs, recordings, memos, and researcher’s reflection and reactian @enz
Lincoln, 2000; Glesne, 2006; Myers, 2009). Qualitative researchers use multgple dat
collection methods, called “triangulation,” to increase the trustworthofebe data
(Glesne; Myers). The use of multiple methods can also secure an in-depth maddgysta
of the phenomenon in question (Denzin & Lincoln). Qualitative research can be found in
many disciplines and fields using a variety of approaches, methods, and techniques.
Qualitative research is an interdisciplinary, and sometimes coumiptitiary, field
(Nelson, Treichler, & Grossberg, 1992). A qualitative researcher may be seen as
bricoleur, a jack-of-all-trades, a kind of professional do-it-yoursélfévi-Strauss,
1966).

Qualitative research uses a small number of samples, rather than a labge num
of random samples. The data is then categorized into patterns as the prinsdigrbas

organizing and reporting results. Quantitative data can be measured, whtkigaal

45

data normally cannot be put directly into contexts that can be graphed or displayed b

mathematical terms.

Table 18
Differences between Quantitative and Qualitative Method (Note. From Becoming
Qualitative Researchers, by Glesne, C, 2006, Boston: Pearson. Copyright 2006 by

Pearson Education Inc. Adapted with permission)

Quantitative Methods Qualitative Methods
Assumptions e Social facts have an e Reality is socially
objective reality constructed
e Variables can be e Variables are complex,
indentified and interwoven, and difficult to
relationships measured measure
Research e Generalizability e Contextualization
Purposes e Causal explanations e Understanding
e Prediction e Interpretation
Research e Begins with hypothesis and e May result in hypothesis
Approach theory and theory
e Uses formal instruments e Researcher as instrument
e Experimental e Naturalistic
e Deductive e Inductive
e Component analysis e Searches for patterns
e Seeks the norm e Seeks pluralism, complexity
e Reduces data to numerical e Makes minor use of
indices numerical indices
e Uses abstract language in e Descriptive write-up
write-up
Research e Detachment e Personal involvement
Role e Objective portrayal e Empathic understanding

Converting contextual data to quantifiable numeric data results in the loss of a
large portion of the understanding of the phenomenon from the point of view of the
participant and its particular social and institutional context (Kaplan & MHx%094).

Quantitative research focuses mainly on numbers, whereas qualitativelideeases

46

on context. Myers (2009) argued that losing many of the social and culturatisasipec
organizations is a major disadvantage of quantitative research. He also memizned t
“the quantitative researcher trades context for the ability to géreseadross a

population” (2009, p. 9).

Table 19

Strengths of Qualitative Methods

Merits

Qualitative research is useful for describing the complex phenomenon

Qualitative research can conduct cross-case comparisons and analysis

Qualitative research describes in rich detail phenomenon as thest@ated and

embedded in local context

Qualitative research is useful for describing the complex phenomenon

Qualitative research is useful for studying a number of limited caseptim de

Qualitative research provides individual case information

Qualitative research is useful for describing the complex phenomenon

Quialitative research can conduct cross-case comparisons and analysis

Qualitative research describes in rich detail phenomenon as thesitaated and

embedded in local context

10. Qualitative research provides description and understanding of [Eepglsonal
experience of phenomenon (i.e., emic or insiders’ viewpoint)

11. Qualitative research determines how participants interpret the cosstruct

12. Data are usually collected in naturalistic settings

13. Qualitative research is responsive for local situation and conditions

14. Qualitative researcher is responsive for the change that might occur dherisigidy

15. Qualitative uses an important case to vividly demonstrate the phenontenon

readers of a report

Qualitative research determines idiographic causation (i.e.ndetdon of cause

of particular events)

wnN e

Lo NOUL e

16.

Table 18 displays differences between quantitative methods and qualitative
methods. There are many different qualitative research approaches ineatiomg
research, case study research, anthropology, ethnography, grounded theory,

hermeneutics, semiotics, and phenomenology. All these qualitative resesdhddm

a7

have a number of strengths, as shown in Table 19. Qualitative research has ed$o seve

weaknesses as shown in Table 20.

Table 20

Weakness of Qualitative Methods

Weaknesses

1. Knowledge produced might not be generalized to other people in othes,péaxd
at other times (i.e., the research results are applied topamticular people, in
particular places, and at particular time)

It is difficult to make quantitative prediction

It is more difficult to test hypothesis and theory with a large participant pool

It takes more time to collect data compare to quantitative methods

Data analysis is often time-consuming

Research results can be easily influenced by researchersonal biases and
idiosyncrasies

ok wWwNnN

Qualitative Research Methods in Information Systems

Quantitative research methods have been dominant research methods in
Management Information systems (MIS). However, some prominentriafanm
Systems (IS) researchers recently recognized the strengths tdittqueahesearch
methods and started to apply them to their research efforts. The interest onithgwgual
methods has increased among many research communities due to the digsatatact
the type of research information produced by quantitative methods (Van Maanen, 1982).
As identified by Benbasat, Goldstein, and Mead (1987), the roots of the dissatisiact
guantitative methods include (1) complexity of multivariate methods, (2) thiddtgin
restrictions inherent in the use of quantitative methods, (3) the large number ofssample
required, and (4) difficulty in understanding and interpreting the researcbnoes

generated through complex quantitative methods. Another reason why IShesearc

48

turned their eyes to qualitative methods can be found in the research results giylishe
Baroudi and Orlikowski (1989). They conducted extensive research to discover the
statistical power of papers published in leading journals in MIS. The sialtistiwer is

an important measure to any research using statistical infereting.t&heir research
survey reveals that the statistical power of those papers is, on averagaitslilgsta
below accepted norms. Surprisingly, Baroudi and Orlikowski claimed that chsesin
MIS typically have a 40% chance of not recognizing the observable fact under stud
even though it, in fact, may exist.

There is much evidence that qualitative methods are considered as an appropriate
method in MIS research. In 1999, MIS Quarterly, one of leading MIS journals, published
a special issue on intensive research in information systems using quglitati
interpretive, and case methods to study information technology. Markus and Lee (1999)
employed the term “intensive research” originally suggested byRN&884) to signal
the variety of methods that are commonly called qualitative researchre8altof this
special issue, nine articles related to qualitative methods were publishedegemdy,

MIS Quarterly published another special issue on action research in inforregstems

in September, 2004. In the forward of that special issue, Baskerville and Myers (2004)
believed that action research methods could improve practical relevancesed®ch.

The lack of relevancy to practice found in many papers published in leadin@iitals

has been a big issue. Benbasat and Zumud (1999) addressed this issue and provided many
good suggestions to overcoming the lack of relevance to practice. It is noticeaible tha
gualitative methods are considered by prominent MIS researchers to be valid ni@thods

provide practical knowledge.

49

In 1997, Myers (1997) established a website to support novice and experienced
gualitative researchers in information systems. The qualitativerchsaiathat time was
still new within the information system field, so Myers thought creatimgraglscholarly
resource would provide a focal point for the emerging qualitative research community
His website is filled with abundant information on how to conduct, evaluate, and publish
gualitative research. In 2000, the International Conference on Informatstens(ICIS)
held a panel discussion to assess the merits of Markus’ article (1983), which vedis one
the most cited empirical examples of qualitative research in informatstensy. More
recently, the ICIS held in Milwaukee in December 2006 also established oneeeparat
section just for qualitative research methods and provided panel discussions on
gualitative methods.

As mentioned earlier, there are various qualitative methods. Among them, four
gualitative research methods will be discussed here in terms of how theyiaeel iril

the MIS field.

Case Study Research
According to the study of Orlikowski and Baroudi (1991), case studies are the

most common qualitative method. Their study reveals that over 90% of 155 information
systems research articles published between 1983 and 1988 in leading MIS journals
(Communications of the ACM, MIS Quarterly, Proceedings of International Goder

on Information Systems, and Management Science) employed case stbdiedois
experiments, or surveys. Among the three categories, the case studies arcbfit 6f

the whole papers. Alavi and Carson (1992) also examined and analyzed 908 MIS articles

published from 1968 to 1988 in eight core journals (Communications of the ACM, Data

50

Base, Decision Science, Harvard Business Review, Journal of Managemenatido
Systems, MIS Quarterly, Management Science, and Sloan Management)REkieir
research results showed that 146 articles or 33.4% of the sample were fieldastddies
among them, case studies account for a total of 40 articles. Some of MIS papers tha

discuss or employ case studies are listed in Appendix H.

Action Research
Baskerville and Wood-Harper (1996) explain how IS researchers might employ

action research in MIS. Avison, Lau, Myers, and Nielsen (1999) argue thathessar
should try out their theories with practitioners to make academic researchateosmnt.

A recent paper written by Fruhling and De Vreede (2006) demonstrates how action
research can be utilized in a real situation and in a real organization. A paper published
by Ytterstad, Akselsen, Svendsen, and Watson (1996) also shows a good empirical

example of action research. Appendix H lists some of papers related to actavnhrese

Ethnography
Ethnography has become more broadly employed in the organization study in

information systems since early pioneering work by Wynn (1979), Suchman (1987), and
Zuboff (1988). Orlikowski (1991) applied the ethnographic method to study how
information technology deployed in work processes facilitates changesrniga &br

control and forms of organizing. Preston (1991) also examined the problems in and of
management information systems using the ethnographic method. Davies ana Nielse
(1992) discussed the ethnographic study of configuration management and
documentation practices in an information technology center. Myers (1999, p.1) has

argued that “ethnographic research is well suited to providing informatiomsyste

51

researchers with rich insight into the human, social, and organizational aspects of
information systems.” Appendix H shows more published papers in the area of

ethnographic study.

Grounded Theory
Orlikowski's (1993) paper is considered one of the best examples of grounded

theory in information systems. This paper was recognized as the best Mi8rlQuar

paper of the year for 1993. In this paper, Orlikowski used a grounded theoryhesearc
approach to develop theoretical framework for conceptualizing the organit&sres

around the adoption and use of CASE (Computer Aided Software Engineering) tools.
Due to the usefulness in developing context-based, process oriented descriptions and
explanations of the phenomenon, grounded theory approaches are becoming common in
information systems research. Some of papers related to grounded themteaia |

Appendix H.

52

CHAPTER Il

RESEARCH METHODS AND PROCEDURES

Introduction

In this study, data was collected and analyzed using a qualitative method. In
particular, case study research was utilized as the research methodwartedrtheory
as the mode for analysis. After the rationale for selecting the cagerstaérch is
described, the type of case study and the unit of analysis are explained, folloaved by
description of the site selection process, and an explanation of the data sourdgs. Final
the methods and procedures for the case study research and grounded theory are

presented.

Rationale for Selecting Case Study Research

As mentioned in the introduction section, two in-depth case studies were
employed as a research method for two primary reasons. First, a cadeasttioky
capability of scrutinizing a phenomenon in its natural settings and utilizing neutigbé
collection methods to gather information from one or more people, groups, or
organizations (Benbasat & McFarlan, 1984; Bonoma, 1985; Kaplan, 1985; Stone, 1978;
Yin, 1989a). Second, a case study is known to be a well-suited method for capturing the
knowledge of practitioners and developing theories from it (Benbasat et al., 1987).
There are three well-known reasons why case study research can dereahas
a viable information systems research method (Benbasat et al., 1987). Fietetireh
is carried out in a natural setting, the current state of the art can hedeand theories

can be generated from practice. Second, “how” and “why” questions can be answered,;

53

that is, the nature and complexity of the process taking place can be understabd Thir
case study is an appropriate way to research an area in which few previouslsiudie
been done. Based on the literature review, employing a case study is veryiafgtopr
explore the issues and challenges of the Scrum software development method, where

research and theories are at the early formative stages.

Type of Case Study Research

There are at least six main different types of case studies (Yin, 1993)a3dée
study research can be conducted with a single case or multiple caseseAagegstudy
concentrates on a single organization or situation, whereas a multipleuthsmstudes
two or more instances within the same study. Further, a case study can bez=ters
an exploratory, explanatory, or descriptive study regardless of singleliplencases.
An exploratory case study is typically employed to define the questions pathbges
for a subsequent study or to determine the feasibility of the research pescetiur
explanatory case study is used to identify cause-effect relationshipscipties case
study illustrates a case study may fall into one of at least six (38R)tlypes of case
studies as shown in Table 21. In this study, multiple-cases (two organizationahwith

exploratory and a descriptive point of view were selected.

Table 21

Six Different Types of Case Studies
Type Single-Case Multiple-Case
Exploratory | Exploratory with Single-Case Exploratory with Multiples€a
Explanatory| Explanatory with Single-Case Explanatory with Multiple-Case
Descriptive | Descriptive with Single-Case Descriptive with Multigkese

Holistic

Sigle-case design

Context

54

NMultiple-casze design

(Singl Context Context
Smgle
anit of
analysis) Case

Context Context

Type | Type 3

Context Context
Embedded Context
{multiple
units of
analysis) okl

Unit of

Analysisl

Embedded
Unit of
Analysis 2

Context

Context

Type 2

Typc 4

Figure 7. Basic types of design for case studies.
(Source: Yin, 203, p. 40)

Unit of Analysis in Case Study

Defining a unit of analysis within a particular case is critical botihé design

and analysis phase of the case study (Yin, 2003). In the design phase, a wallwgfine

of analysis can give researchers boundaries for the study which lead fwrapriape

literature review and adequate data collection. In the analysis phasecheBndings can

be generalized to specific theoretic propositions about the defined unit of aalysis.

addition, the unit of analysis becomes the main analytic level for the cageshadlied.

Yin has suggested four different types of designs for case studies (seeHidgdoth

single-case and multiple-case study can have a unitary unit or multiple uaitalgsis.

55

Thus, the four types of suggested case studies are single-case holigtis ([Bgpe 1),
single-case embedded designs (Type 2), multiple-case holistic desypes3)T and
multiple-case embedded designs (Type 4). Yin also mentions that thereeare fi
rationales for launching single-case designs including (1) the cassegfs the critical
case in testing a well-formulated theory, (2) the case representt@me case or a
unique case, (3) the case is representative or typical case, (4) thereastaisry case,
i.e., few researchers had previously investigated the case, and (5)dle tbas
longitudinal case (studying the same single case at two or more differet# ipdime).
In this study, the Type 3 design (multiple-case with a single unit) was used. Thus
the main unit of analysis was the entire software development process of(Seeum
Figure 8). This main unit will include all of the organizational and techniciaitaet

taking place over time.

Tyvpe 3 NMultiple-case desien
Scrum Software Scrum Software
Development Process Development Process

Figure 8 Multi-case design used for the research.

Site Selection

Two research sites were selected for their similarities asasd¢Heir differences,

based on the technique of theoretical sampling (Glaser & Strauss, 1967). Both

56

organizations chosen for this study have used Scrum for the past few yeans in thei
systems development processes. The Scrum method in both organizations wasdntegrat
in every aspect of their software development processes, including plamahgisa

design, coding, and testing. While one organization has been providing large-scale and
mission-critical applications, the other organization has been providing smdll-
medium-scale applications. The two organizations also differ on size, industry, and
location. These differences between the organizations provide useful contizsimade
during data analysis. One organization produces large-scale and missioh-critica
applications will be called the ABC firm, while the other organization willdied the

XYZ firm. The next section briefly describes the background of these twe.firm

ABC Firm
The ABC firm has been providing mission-critical public safety software togoli

departments, fire departments, 911 dispatch centers, sheriff’s offices, and airpor
authorities since 1978. Due to the nature of software related to the public safetyl, a s
glitch in the company’s software can cause severe disasters dtieastiaie ABC firm
has strived to meet the highest standard of robustness and reliability becesegréat
impacts on the public safety. As of this paper, nearly 600 agencies and over 30,000 public
safety officials in the United States use the company’s software, whicli&sch records
management system, a computer-aided dispatch system, a fire/emengehcyl service
management system, and a jail management system.

The jail management system was recently re-designed and developed using the
Scrum method, with five to eight software engineers working for more thanetave.y

The jail management system was mostly developed using the C sharp (C#) compute

57

programming language on the Microsoft .Net platform for front-end graphical user
interfaces and C UNIX programming language for the management of a &it#X-
database system. The jail system consists of more than a million lines oThede
company has a total of 30 software developers, product managers, and Qualianéess
(QA) personnel in the software development division and has been using Scrum since
April, 2005.

About four months after the company decided to use the Scrum method, the main
part of the company moved to a different city which is about 100 miles away from the
original site. The company kept the two work places for about a year, with thvarsoft

development team divided between the two locations.

XYZ Firm
The XYZ firm has been providing internet-based database applicationsifyrimar

to clients in the government sector for over fifteen years, with productsln vit
statistics/records, environmental water quality and human services. Soew clients
include the Environmental Protection Agency, the Federal Aviation Administration
(FAA), the States of Arizona and Montana, and the District of Columbia. The firm has
been using the Scrum software development method and has successfully completed
several projects, including a vital statistics, electronic birth and degititries system, a
Safety Programs Airmen Notification System (SPANS), and an enwrgesdical
system.

SPANS, which was built using Microsoft's .NET framework, was re-designed
and developed to assist the Federal Aviation Administration Safety TeanS{HAA

meeting their goals of providing airmen with safety program information anftcatiin

58

in the timeliest manner possible, while providing an easy way for airmen to make
suggestions to the safety program for needed information. SPANS also alldwsAtiie
keep in touch with airmen and alert them to safety seminars, events, and important

changes that affect them, both regionally and nationally.

Comparison of Two Firms
As discussed previously, ABC and XYZ operate in different markets. The

duration of a project at ABC firm is longer than one at XYZ, with the average @ursti
projects at ABC being 1-2 year(s) and at XYZ 3-6 months. ABC utilizes various
computer programming languages, such as Java, C, C++, C#, and Perl, on both UNIX
and Windows operating systems. XYZ mainly uses Java and HTML-based web
programming languages on the Windows platform. Table 22 summarizes various

differences between the firms.

Data Sources

In an attempt to gather data, three types of data were collected from bathofirm
triangulate findings and enhance trustworthiness (Gall, Gall, & Borg, 2008h&le
2006). First, observations of software development process was conducted through on-
site visits and field notes were taken during the observation to make the straitige fa
(Erickson, 1973). Second, an email survey was developed and conducted among software
developers, QA personnel, and managers. The survey instrument was mainly used to
refine interview questions. Finally, a formal face-to-face intervies conducted with
executive officers, project managers, lead software engineers, and dexeldipeirthe

formal interviews were audio-taped, transcribed, and later coded for an@lyisis

59

triangulation in the process of data collection provides more useful information and
different perspectives on the issues, allows for cross-checking, andstreldger

substantiation of constructs (Eisenhardt, 1989; Glaser & Strauss, 1967; Pett@fiéyy, 1

Table 22

Differences Between ABC and XYZ Firm

Categories ABC Firm XYZ Firm
Main e Jail Management System, e Vital Statistics/Record
Applications e Computer Aided Dispatch System
System e Environmental Water
e Fire/Emergency Medical Service System
Service System e Human Service System
e Records Management
System
Size of Projects Large-Scale Small/Medium-Scale
Mission-critical ~ All applications are mission- Some of applications are
Projects critical mission-critical
Average 1-2 year(s) 3-6 months
Duration of
Projects
Computer
Languages Java, C, C++, C#, Perl Java, HTML
Development Unix and Windows System Windows System
Platform

Data collection focused on issues and challenges of Scrum. It sought indfermati
on: empirical process control (visibility, inspection, and adaptation) in Scrumgléseof
the product owner, team members, and Scrum master; the daily Scrum meetindy the dai
Scrum of Scrums meeting, the Sprint review, and the Sprint planning meeting; the
product backlog, the Sprint backlog, and burndown charts; the flow of Scrum process;

user involvement; training; documentation; communication; individual and team

60

experience with Scrum; applicability of Scrum; bug tracking system;qtregtimation
and planning; and the working environment.

The first field study was conducted within the ABC firm. During the fieldystud
which lasted for about 8 months, daily systems development activities under the Scrum
process, such as the daily Scrum meeting, the Scrum of Scrums meeting,rihe Spri
planning meeting, and the Sprint review meeting, were observed. In addition to the
observation, an email survey was conducted among 15 people including developers,
Quality Assurance (QA) personnel, and project managers. The following opé¢iogies
were used as survey questions:

1. What have worked and have not worked for you on a project since you began
using Scrum?

What are the most unique and interesting aspects of Scrum?

What have you learned from Scrum?

What would you do next time with Scrum?

What advices do you have for others involved in Scrum?

Do you have any comments or opinions on any of the following Scrum
process?

Daily Scrum meeting

Daily Scrum of Scrums

Sprint planning meeting

Sprint review meeting

Product backlog

Sprint backlog

Scrum master

O hrwWN

R

Some of selected project team members, including developers, lead engineers,
project managers, and executive officers were interviewed both informallypamalilfy.
Each informal interview took an average of a half an hour and summary notes were
taken. The formal interviews took an average of one hour and were audio-taped and
transcribed later. Table 23 shows the number of people, type, and amount of interviews

conducted at the ABC firm.

61

Table 23

Type and Number of Interviews Conducted at ABC Firm

Position (number of people) Informal Interview Formal Interview Total
VP in R & D Department (1) 2 1 3
Project Manager (2) 5 2 7
Lead Engineers (2) 4 2 6
Developers (7) 14 5 19
Total (12) 25 10 35

The second field study was conducted within the XYZ firm. The field study,
which started with an informal interview with an executive officer, took about 4 months
The Scrum processes in 5 Scrum teams were observed and an email survey was
conducted among developers, QA personnel, and project managers. The same survey
guestions used at ABC were utilized. Informal and formal interviews eogr@ucted
among 10 people including developers, project managers, a director of operations, and a
senior vice president of operations. Table 24 shows number of people, type, and amount
of interviews conducted at XYZ.

At each site, the observation was conducted in both observe-only mode and in a
mode where a participant observer was allowed to talk. Various levels of indsyidua
such as developers, lead engineers, project managers, and executive offreers, we
selected to provide data from multiple levels and perspectives. This was donedo answ
Leonard-Barton (1990, p. 249), “In order to understand all the interacting factors, it is
necessary that the research methodology slice vertically through otgaminataining

data from multiple levels and perspectives.”

62

Table 24

Type and Number of Interviews Conducted at XYZ Firm

Position (number of people) Informal Interview Formal Interview Total
Sr. VP in Operations (1) 2 1 3
Director of operations (1) 2 1 3
Project Manager (2) 3 2 5
Developers (6) 6 6 10
Total (10) 11 10 21

While the primary unit of analysis was the Scrum software development process
the collection of inter-related data at other levels of analysis (R®ttid 990; Yin,
1989a, 1989b) was considered. All the formal interview questions were semi-sttucture

and the complete list of interview questions was listed in Appendix E.

Grounded Theory

In the process of data analysis, grounded theory (Glaser & Strauss, 1967; Martin
& Turner, 1986; Turner, 1983) was employed with an aim of generating descriptive and
explanatory theory associated with Scrum software development procespprbaca
has been effectively utilized in organizational research (Anacon, 1990; E&lsditon,
1992; Isabella, 1990; Kahn, 1990; Pettigrew, 1990; Sutton, 1987). Grounded theory is
“an approach to theory development that involves deriving constructs and lawg directl
from the immediate data that the researcher has collected ratherdhamgdon an
existing theory” (Gall et al., 2003, p. 626). Sometimes, it would be better foralesesar

to collect data and analyze them without conducting a review of the litelbstimehand

63

(Glaser, 1978). The main purpose of grounded theory, which was initially developed by
Straus and Corbin (1988), is to “demonstrate relations between conceptual categbries
to specify the conditions under which theoretical relationships emerge, chaage, or

maintained” (Charmaz, 2002, p. 675).

64

CHAPTER IV

DATA ANALYSIS AND RESEARCH RESULTS

This chapter describes the process of data analysis and empiriaag$itlaiough
grounded theory study of two firms that implemented Scrum in their software
development processes. Concepts suggested by the open coding of raw data angl recurrin

themes identified from axial coding are also explained.

The Process of Data Analysis

In the first stage of data analysis, all the data produced by observatiails, em
surveys, documentations and interviews were examined and coded by focusing on the
issues and challenges of Scrum identified using the empirical preces#eols and the
Scrum framework (roles, ceremonies, and artifact). In the first roundafdatysis, an
open coding technique (Straus & Corbin, 1990) was used to identify possible concepts,
along with their properties and dimensions. The open coding technique involves a form
of content analysis where the data is read and categorized into conceptssbgyasted
by the data rather than imposed from the outside (Agar, 1980).

In the second round, the codes were reviewed, and the concepts were organized
into recurring themes. These themes were used later as a basiatiogaeset of stable
and common categories. During the second round of data analysis, the doauenents
re-read, and analytic and self-reflective memos were createdinBhethge of data
analysis was completed through an axial coding (Straus & Corbin, 1990) which depends
on a synthetic technique of making connections between categories and srltssateg

build a more comprehensive scheme. During this stage, all the codes wehedea

65

sorted, grouped, and compared to the original data. This process continued until a final
series of categories were identified, each having a high frequencgwfence in the
data. Figure 9 illustrates the process of the data analysis. Inltheifgl section, each of

the concepts and categories found in the ABC and XYZ firm is presented andetiscuss

Data
(Observations | Read and e
Emails categonzed mto Concents Organzednto Recurring
Documents + Open Coding ° * Axzal Coding Themes
Interviews) {Content Analysis) * Synthetic Tecknigue
+ Analytic Technique

_ Prime candidatesfor
Ezammed and>_ /
coded by
focusing on

Issues and
Challenges

Common

Categories
of Scrum

Figure 9 Data analysis process.

ABC Firm

ABC has about 30 software engineers in five development teams in the software
division. ABC used a waterfall style traditional software developmentaddtr more
than 20 years before they changed to the Scrum method. To test the success of Scrum
method, all software engineers in the firm were invited to 2 days-long, 8 intemsive

Scrum training sessions, which were conducted by one of leading trainintsarpais

66

field (AgileLogic, 2006). The firm then reorganized their development teathosvint

the Scrum model. Each team consists of four to seven software engineers, a Quality
Assurance (QA) person, a Scrum master, and a Product Line Manager (PLM). Thes
teams are specialized in the area of interface, jail, record, mobile,cniteeture.

When Scrum was first introduced to the firm, most developers were reluctant to
adopt a new method due to their previous experience with traditional development
methods. However, they began to enjoy several unique features of Scrum as they
exercised its’ various elements. In general, most elements of Scrumueeessfully
adopted and implemented with minor modifications dealing with meeting schedules and
the open working environment. The following sections explain sixteen concepts that
appeared in the data analysis process.

Table 25 lists the categories, concepts, and data related to ABC. As shown in the
table, the factors of human resource management, structured development process,
environmental, and information systems and technology were constructed. The concepts

comprising these categories are discussed in the following section.

Human Resource Management Factor
The concepts of team management, collaboration, training, lack of accountability,
and trust and confidence constitute the human resource management factor. Eguth conc

is discussed in turn.

Table 25

Categories, Concepts, and Data Related to ABC

No. | Common Concepts Data
Categories
1 Human Team Management e Teams were reorganized without considering developers’ knowledge
Resource and skills
Management e Self-managing team does not work well
Factor .

Team needs a supervisor who can see a big picture
Small team size is more flexible and adaptable in defining and
applying a variant of Scrum

Collaboration

Developers and QA does not collaborate

Developers do not try to get to know new developers in remote
Several teams simultaneously work on “look and feel” design th
should be implemented by a designated team

Tools are used to reduce collaboration problems

Site

Training

New employee training is one of the biggest problems
Because of the complex nature of the system, new employees 11
to spend a lot of time to be trained
Employee training problem gets worse when two development s
are involved

eed

ites

Lack of Accountability

Tasks in a Sprint backlog do not get completed

Nobody takes responsibility on delayed tasks

Self-managing Scrum team provokes the lack of supervision
Project managers do not have any authority to control develope

IS

Trust and Confidence

Scrum master does not remove developer’s impediments

Trust and confidence are lost when people do not complete their

work
It is important to know who you are talking to and what level of

information they have

(table continue

L9

Structured
Development
Process Facto

Scrum Framework

The Scrum model defines a product backlog, helps prioritize tasks,

keep track of task assignments, and helps monitor task progres
Scrum increases our communication in the team. There seems
better team work using the SCRUM model.

Daily Scrum meeting is utilized by team members to understang
what other members are working on and identify obstacles to
overcome

Scrum master is selected from non-technical person

A group of Scrum masters have a daily Scrum of Scrums meeting

Daily Scrum meeting is held too often
Sprint planning meeting occupies too much time

Unit and Integration
Testing

A QA person needs to wait until developers finish their coding
Developers do not want to review the code that they finished du
the previous Sprint

QA people want developers to set aside some time for bugs
QA people may not know what areas could be affected by the
changes made by developers

ring

Coding Standard

Developers can understand other developer’s code better throu
coding standards
Too much coding standards may hamper developers performan

oh

Documentation

Detailed design documents were reduced significantly
(Example of documents: use cases, class diagram, sequencing
diagram, activity diagram, communication diagram)

Quick implementation without creating a document can cause r
effects that damage other parts of the project

No one takes time to think about inter-dependency

Bug rate is increased because of reduced documents which leal
the lack of standardization of features, field names, and error
messages

pple

d to

(table continue:

89

Formal Code Review

A web-based code review tool was created by a project manager
Reviewers checked if there were any side and ripple effects to qther

code
Formal code review was a vital and critical process for high-qu
applications

ity

Environmental
Factor

Customer Involvement

Customers cannot participate in Scrum meetings due to the larg
number of customers scattered in the U.S.

Project managers spend lots of hours to visit customers
The firm hosts a users’ conference where customers can vote fq
against a policy and a direction of new application development
QA personnel cannot provide customers with quick turn around
bug fixes

e

I or

on

Working Environment

Open working environment promotes communications, facilitate
self-organization, and makes developers to get together easily

S

We are constantly distracted by the person we work with in a cubicle

setting
Putting every team member in one cubicle area increases
collaboration and teamwork

Interdependency among
Modules

QA department has found twice as many bugs since the firm
switched to Scrum

As the size of application grows, the dependencies and
interconnections among tasks increase

Developers have a tendency to complete a task in a quick and ¢
way

Developers do not think of how code will be maintained and the

irty

code will be flexible enough for future needs

(table continue:

69

Social Facilitation,
Social Loafing, Group
Motivation, and
Evaluation
Apprehension

as factors that reduced development times and lowered bug rates

Social facilitation effect and group motivational gains were obse}ved

Evaluation apprehension was observed when the company invi
of developers, QA personnel, and people in other to the Sprint
review meeting

ed all

Information
Systems and
Technology
Factor

Communication System

The firm put a lot of efforts to establish a good communication
channel

Video conference equipment was used only for team meetings
Phone conferencing did not provide facial expression, gesture,
body language

A web demo tool together with a phone system worked very we
Some of tools including instant messaging, email, virtual private
networking, and remote desktop were also used

Multimedia systems did not work as optimally as face-to-face
conversation

If data line is down employees cannot do anything

and

Information and
Knowledge Sharing
System

Well-structured information and knowledge sharing systems are
needed between experienced developers and brand new develc
A web-based Wiki program is used to facilitate the information a
knowledge sharing

pers
nd

The Wiki program helps to mitigate the problem between two sites

Bug Tracking System
and Management Tool

A Unix-based bug tracking system called MOM is utilized by
different departments

The level of bug severity is assigned to each bug

A commercial tool called JIRA is adopted

JIRA is used to record defects found in alpha and beta testing and in

standard code
JIRA provides filter functions and severity priority codes that ran
the level of severity of bugs

k

JIRA does not provide a decent search engine

0L

71

Team Managemen terms of development times and costs, Scrum was not very
effective during the first two months after ABC switched to the Scrum method. They
attributed this undesirable fact to the inappropriate composition of the development
teams. The teams were reorganized without considering knowledge and skidls of t
developers. Therefore, some team members had to learn business logic (how the
application works in a specific field) that they were not familiar with, andetheeded
to learn new development tools and programming languages. As a result, it taak long
development times and more development costs. A project manager stated:

Teams cannot be thrown together. The team needs to be built. Without the right

mix of team members Scum development is much slower. You can still succeed

with Scum development. But without all members working together, building the

team, the interest, and the enjoyment, you are not going to have the success and
the energy from the team that the Scum development can bring.

Some developers dislike a self-managing team though this is identiiee as
the unique aspects of Scrum. They prefer to have a team lead who can keegoihiongs
in the right direction. They think the Scrum master might be a good candidate to do this
job. One developer added:

I’'m not sure that I like having the group of developers run the team. | would still

prefer having a team lead type of person who can work with the team to help

focus and keep things going in the right direction. | think the Scrum master should
be doing this but I think this person needs to be more technical. | don’t think this
person should take the team over however, | think they should just help focus the
team on the right priorities.
Another developer also mentioned that, “Our teams aren’t very good at selfinganag
we’re more used to someone being in charge.” A QA person revealed another possible

problem with teams, developers given too much power to runs the team. He vented that

“our problem was when team members didn’t interact well with other members of the

72

team.” One developer expressed that a self-managing team was strangeatadhhe
wanted to have a supervisor who can see the big picture. He stated:
When we are going to take vacation/sick leave, we report to our team members
rather than a manager. I'm not sure if that’'s good or bad, but it seems strange to
me. It sometimes feels like we don’t have much supervision, which | personally
like, but we seem to lack a person or group that is trying to see the big picture.
However, most of developers consider a self-managing and self-organemg te
great idea. One developer stated that, “The part of Scrum that has worked tbe inest f
is the idea that the team decides how to do things based on the consensus of the team.”
Another developer mentioned, “There seems to be better team work using the Scrum
model. | like the idea that the team has more control over how the development is done
and completed.” A project manager added, “Team work is very important! The most
interesting and unique part of Scrum has been better team work.” The firnotkeet
the size of Scrum team as small as possible, believing that teams can bexiladeedhd
adaptable in defining and applying an appropriate variant of Scrum. A vice pteside
software R&D department stated:
It seems the Scrum method provides better team work through the Scrum
framework. We keep each team as small as possible as recommended by the

Scrum method, and it appears that a small Scrum team is more efficient when
implementing various components of Scrum.

Collaboration.When ABC first adopted the Scrum method, five Scrum teams
were organized and each team had a Quality Assurance (QA) person who wastddsi
to test the code created by his/her own team. Recently, the company pulled the QA
person from each Scrum team and created a QA personnel-only Scrum team s@that a Q
person can test the code generated by any Scrum teams. Because the Q&&urism t

located in one place, it sometimes causes collaboration problems between riemote s

73

developers and QA personnel. For example, when developers in a remote site pass the
code over to QA personnel through the Concurrent Versions System (CVS), QA
personnel may not know which part of code is affected by the changes that developers
made. A lead engineer noted:
The development was kind of passed over to QA and they took care of testing.
But the problem with that is QA may not know what particular area could be
affected. So, they cannot test the area which might be broken by the changes
made by developers.
This problem might be solved if developers take on some parts of QA’s testing or show
the QA personnel the potential areas that might be affected by the modification done
Another collaboration problem arose when new developers of the Scrum team
were hired in one location. Developers in the other location did not try to get to know the
new developers. One developer put it this way:
When new members of the team were hired at the other site, it was easianfor tea
members here not to really put any effort into getting to know that person and
learning how best to work with them. This problem was especially bad when the
new members had some personality characteristics that made thden a litt
annoying or perhaps difficult to develop a desire to want to work with them.
This issue mainly resulted from the way the Scrum team is divided at tweediffsites.
It would be better for the company to reorganize the Scrum team so that tedrarsiem
are located at the same place.
One notable observation occurred at a daily Scrum of Scrums meeting with the
firm’s vice president of software development. Duplicates works were fouasisac
Scrum teams due to a lack of collaboration among the different teams. Isova®tdd

that ABC had a difficult time keeping the product output consistent across teams. F

example, several teams may simultaneously work on the “look and feel” design t

74

should be implemented by a designated team (e.g., an architecture teanmyplibss i

that there should be a person (possibly a Scrum master in each team) who is responsibl
for checking the consistency of products across Scrum teams. It was notee tha
inconsistency and duplicates across different teams could negativelytlagfetticient
product management.

Other collaboration problems arose when developers and support staff discuss
how to divide and assign tasks between the two sites in the Sprint planning meeting and
how to track bugs reported by QA personnel and customers. To reduce the collaboration
problems in this area, the firm has been using a web-based commercialléabl ca

VersionOne [ttp://versionone.comwhich has provided an excellent project

management mechanism for both sites. Through VersionOne, developers at batinsite
actually see how each project is divided, what projects are going on, the skl of
project, who is working on each project, and when those projects are expected to be
completed.

Recently, the company picked another commercial tool called JIRA

(http://www.atlassian.com/software/jiyab track information mainly on what kinds of

bugs exist, who is working on each bug, and the status of each bug. JIRA actually
replaced an old tool called MOM, which was developed internally and used to create
information for support problems. However, using JIRA has some downsides. A project
manager aired this issue:
But it (JIRA) also has drawbacks. We’ve now broken up for instances, the fixed
description, the problem, various fields, and who’s worked on it. But in JIRA, you
can't search. If you are looking for some word in the problem somewhere, you

have to search each and every individual field. So, if you think, for instance, some
value is in there in fields other than the comments, summary, and description, you

75

must put the value in each field and then search individually. And searching is not
near as good as MOM had. For instance, you can only search on whole words.
You have to have the beginning of word. You can’t search for the value within a
word.

Despite the downsides, JIRA has been providing developers with a useful bug tracking

mechanism for both sites. JIRA also has a special code, called the severibyitr

code, which enables support people to automate the choice on what bugs to work on next.

VersionOne and JIRA play a vital role in the company towards reducing collaborat

problems that can arise in tracking and managing projects and bugs.

Training. New employee training issues emerged when information and
knowledge-sharing issues and communication issues were brought up. A couple of
project managers mentioned that one of the biggest problems that the company has been
facing is new employee training. Because of the complex nature of thasofivogram
that the firm has been creating, new employees need to be trained for ancepenmi:
of time. A project manager noted that:

due to the complexity of our application, new software engineers need to spend a

good chunk of time to understand various aspects of the system. The typical

employee training program usually lasts six month.
Another project manager added:

“Right now, each Scrum team is in charge of training of new software enginee

This involves a selection of a mentor who leads and guides the new employee.

The mentor spends a lot of his/her time with the new employee to provide the

necessary knowledge and skills for projects. | think this is a big waste of time

because the mentor in each Scrum team teaches some common parts of the system

that can be taught together with other employees who belong to other Scrum
teams.”

76

The project manager suggested, “It would be more time-saving if one mectoesedl
new employees together the common parts of the system, and then let eache&an
teach its new employee team-specific parts.”

It seems the problem gets worse when an employee who has expertise irdone fiel
is at the remote site and the new employee needs to learn the new field fromdtee re
employee. A developer declared, “We often times have a situation where anp&wee
needs to know some parts of the system and the person who knows about them is at
different location.” Another developer contributed, “We have some difficulties when we
are involved with other team members, part of the team is here and part of the &&am i
the remote site. In particular, when we have a new member here and he/she néeds to ta
to other members at a different site.”

To address this problem, the company used multi-media, such as phone/video
conferencing or web demos, but the training through these information technology has
limitations. A developer pointed out, “We use a phone or a video set whenever a new
employee needs to converse with an employee in remote site but it's not efficient
Another developer explains it this way, “You have to have a face-to-face and-ome-on
training in order to make it efficient. You can do the training through the phone or video

conferencing, but it's not efficient.”

Lack of AccountabilityOne of the interesting aspects of the Scrum method is the
ability to see the visibility of the progress of each project in everythirfifteen days,
depending on the duration of the Sprint. In the Sprint planning meeting, team members

divide items in the product backlog into a set of small and manageable tasks, which wil

77

be entered into Sprint backlog. Based on the estimated completion time for each task, the
set of all tasks in Sprint backlog is determined in such a way that they can betedmpl
within a month. However, the tasks in the Sprint backlog usually do not get completed as
estimated, and tasks are consistently carried over to the next Sprint Meeainegvit,

nobody takes responsibility for that. A project manager noted, “Some tasks just kee
getting carried over to the next month. There does not seem to be any respoaosibility

the developer side to complete the task. If they do not, it is 0.k. and they hope to do better
the next month in estimating their project.”

Another unique aspect of the Scrum method is self-managed teams, where the
team is managed by the team members without having too much supervision from
outside of the team. As part of the self-managing team, team members inyti8cdan
meeting choose tasks that they will work on for the day and report what has been done
since the last daily Scrum meeting. However, this setting seems to be natgvorki
properly due to the team member’s lack of accountability on the tasks they Thisse
seems to be a source of delayed projects. A project manager noted, “In the dawly Scr
there seems to be some lack of ‘what did you do yesterday?’ accountability. Ayl taki
on specific tasks for that day to work on is usually too generic. | believe wédbevme
too relaxed on what we accept and that encourages some projects to drag over time.”

Another issue is that project managers do not have any authority to urge
developers to work faster or harder. The managers do not take any accountability on
delayed tasks because they do not have any control over that. The project manager
contributed, “When we meet with the management team at the end of the month, no one

seems to take the responsibility for those items not completed. The projecersatag

78

not have any control on getting people to work faster or harder, so it is a little

frustrating.”

Trust and Confidencdrust and confidence is an issue noticed between
developers and Scrum masters. A Scrum master is supposed to do administrative work,
mainly by helping developers focus on their work, by providing what the developers
need, or by removing developer’s roadblocks. It seems that developers badly want to
have a Scrum master who does the job. However, one Scrum master was unable to get
developers items or information they need and was unable to remove developer’s
impediments. He also did not follow up with developers to explain why he was unable to
help them. A developer mentioned, “We need somebody who is going to be able to get us
what we need and somebody telling us that ‘You’re going to get your informatikn ba
And we weren't getting any information back and things weren't followed up.” As
developers do not get what they need from the Scrum master, they quickly loseisheir t
and confidence in the Scrum master. Another developer stated that, “I carpewopte
who are not doing the job that they are supposed to do or that they said they are going to
do. I lose my confidence when things don’t get done.”

Trust and confidence as an issue was also noticed between developers when
developers worked together on the same project, and they did not see any progress on a
module that was assigned to a developer. A developer mentioned that, “I usually work on
a certain task with other developers, and sometimes | lose my trust if keereiny

progress from a task assigned to other developers.”

79

The same issue arose if developers were divided into two development sites. For
example, a Scrum team member asks a team member at the other site tdalo taskr
but no progress on the task is visible. It seems developers at one site had aehard tim
establishing a feeling of trust in Scrum masters or developers at theiteivenen they
do not complete tasks, and the lack of trust led to a reduction in confidence. As a
developer stated, “People in one site didn’t trust people in the other site if thepater
able to get the job done. | think that was one of major problems we had. That really hurts
our confidence.” Another developer talks about the level of confidence and wants to
know the level of information that other developer has. He noted that, “I need to be able
to have a confidence level. I think it’s really important to know who you are talking to
and what level of information they have.” He also mentioned, “I work better withgeopl

who | know better so | understand what they are really saying.”

Structured Development Process Factor
As shown in Table 25, the structured development process factor consists of the
Scrum framework, unit and integration testing, coding standard, documentation, and

formal code review. Each concept is presented in the following section.

Scrum FrameworklThe majority of developers are in favor of a Scrum
framework. One developer expressed that, “I like how the Scrum model defines & produc
backlog, helps us prioritize tasks, keep track of task assignments, and helps us monitor
task progress.” Another developer stated that, “Scrum increases our comronnicat
the team. There seems to be better team work using the Scrum model. Working in the

Scrum team provides motivation, excitement, and interest.” A project mansger al

80

mentioned that, “I think the Scrum model gives us all a goal to strive for each month.

This is motivating and helps us stay on task.”

In terms of daily Scrum meetings, a couple of teams had a standup meeting and
the rest of teams had a seated meeting. However, the principal of shoricdaiy S
meeting time was well observed (less than 15 minutes) by all teamsalSxezrlopers
claimed, “it was not necessary to have Scrum meeting everyday when thereowere
specific agenda to discuss”, but the majority of developers and QA personnel enjsyed thi
daily-based meeting. The daily Scrum meeting also seems to be a goook tiesnf
members to understand what other members were working on and identify obstacles t
overcome. For example, if a developer says, “I am stuck with a certain problasr,” ot
developers would typically respond with “I can help with that. Let’s get tegetiter
the meeting” or “I don’t know the solution for that but | can look at your problem after
the meeting.” One developer noted that, “I like the daily status updates adiyp@ti
high priority tasks.” Another developer stated, “Through the daily Scrum meetang, t
members are able to refine the goal for each Sprint and improve the quality oftgfoduc

The firm appointed a Scrum master for each of the five development teams.
Because the company believed that the main role of the Scrum master is to frevide
administrative services for his or her team members, the company appointed non-
technical persons as Scum masters. The non-technical Scrum mastennessetmed
to be a problem for developers. One developer stated that, “Not having the comuatt Scr
master was a problem. Team impediments were not taken care of and often adeded t
repeated, slowing or even stopping progress.” Another developer specified, “Our Scr

masters don’t have enough technical backgrounds to understand the things that we’re

81

dealing with. They sometimes had a hard time removing our roadblocks because of their
lack of understanding of our technical stuff.”

The firm also held the Sprint review meeting, called a “products fair”. The
products fair was unique in the sense that developers in all teams, QA personnel, and
people in other department (sales, marketing, customer support) were strongly
encouraged to attend. The firm expected that, given an opportunity to show their
accomplishments during the Sprint, developers would diligently work to make sure that
they are currently on the pre-determined development schedule with apprawedteof
intermediate deliverables of the products.

The Sprint planning meeting seemed to provide smaller and manageable tasks to
developers. Several developers stated that, “I like the Sprint planning mebé&rg you
have to breakdown the projects into smaller tasks. This makes it easy to manage big
projects.” Also, the product backlog and burndown chart appeared to help developers to
organize and prioritize the schedule, and track the progress during the Sprint. Severa
developers expressed similar opinions, like “I like having product backlog retoews
organize and prioritize the schedule each month. | also like a burndown chart and its
ability to track our progress during the month.”

Though most of people liked the daily Scrum meeting, some of developers
expressed their worries. One developer stated:

We meet each day as opposed to weekly or bi-weekly. It is good to have

feedback, but sometimes it feels like too much time for not enough value. | don’t

think it is necessary for that much reporting and it takes too much time away from

programming. | think we could report 2 or 3 times a week and still have the
productivity level we now have in our team.

82

Another developer also mentioned:

“While it is important to deliver quality products in a timely manner, it$s al

important to not spend too much time in meetings that do not offer a good return

on their investment. Meetings are an investment for any company and keeping a

good balance requires input from all parties and honest evaluation of time spent.”
Several developers expressed their worries on the Sprint meeting. One didlght t
the meeting occupies too much time. He mentioned that, “on the negative side, | $hink it’
a lot more overhead to have the Sprint meetings, which take all day at the end of each
month.”

Some QA personnel also wanted to have a streamlined planning session. One QA
person stated that, “We need to streamline the planning session as much as possible.
Going to meetings repeatedly is not productive.” Finally, one developer didn’tdikenS
at all. He mentioned that, “Frankly, | don't like Scrum, | don’t think I'd do it given the

choice. | would prefer to simply adopt some of the Scrum methods into current

processes.”

Unit and Integration TestingVhen regular teams were reorganized into Scrum
teams, a QA person was assigned to each Scrum team. However, the QArpesastn i
Scrum team needs to wait until developers in the team finish their coding during the
Sprint, which lasts usually for 30 days. This process causes a problem because the Q

person in each team is always behind the Sprint schedule. A QA manager mentioned:

| find that it's really hard to test code if there's no code to test. So, QA is
always behind the rest of the team. The programmers finish coding within the
Sprint, but QA isn't finished within the Sprint. So, QA is added to the next Sprint.

83

Another problem with this setting is that when QA people work on the code that
developers just finished in the previous Sprint, they often times need to talk with
developers about the code and developers do not want to go back to the code that they
already checked in. One QA person stated that, “It's like pulling teethttmdonvince
the team that I'm going to find bugs with their code that they just threw evgefiA
people want developers to spend some time to talk about bugs with them. Developers just
want to keep writing code instead of revisiting the code created during the previous
Sprint. Another QA person mentioned that, “Developers really should set aside some
time to address the bugs in a timely manner so that | can continue with.testing
To mitigate the problem, ABC pulled a QA person from each Scrum team and
created a QA-only Scrum team. The QA-only Scrum team covers all codeddrgate
other Scrum teams. It seems this change has improved the efficiencinig bestause
QA people usually have some code to test, and they do not need to wait for developers in
one Scrum team to finish their code. Associated with this setting, QA people welg us
in charge of both unit and integration testing. The firm changed the testinggioces
such a way that developers took responsibility for unit testing, because QA people
sometimes do not have the detail picture of the particular area where a deweldqaet.
An executive officer offered:
QA people are asking for developers to do some testing. In the past, the
development was kind of passed over to QA and they took care of testing. The
problem with that is a QA person may not know what particular areas could be
affected by the changes made by developers.
One developer also mentioned that, “If you know what could be affected, you may focus

your testing just on those areas. But sometimes, QA people do not realize that ther

84

another area also affected by some of the changes.” Another developer shared his

personal experience:
One time | made some changes in UU command which updates a unit. It turned
out that my change broke UC command which updates call and broke other
commands. But QA people did not do any tests on those areas because they did
not know they were related.

Due to the issues described above, ABC asked developers to do some portion of the

testing that QA people usually cover, but this may not a good move economically for

ABC because developers usually get paid more than QA people.

Coding StandardsABC has utilized coding standards. They have very specific
coding standards in many areas to facilitate easily maintainable anttlekp@code.

ABC'’s document on C# coding standards describes comprehensive rules and conventions
that developers should follow. Table 26 displays two coding standard examples
associated with headers and naming conventions. Other coding standard examples are
listed in Appendix D.

By using the coding standard, developers agree that they can understand other
developer’s code better without spending much time. One developer stated tkata“l li
formal coding standard. It gives the same style and format, and this conslstgreme
a lot in understanding other developer’s code.” However, one developer worried about
putting too many coding standards on developer’s shoulders. He stated, “Havirgy codin
standards is good, but too much coercion to the standards may hamper our performance
because we need to look at coding documents back and forth while we are coding to

conform to standards.”

Table 26

C# Coding Standard

85

Area

Sub Area

Description

Headers

File

The copyright notice and the CVS

information are all that will appear
at the top of a .cs file. These will

account for the first 4 lines of each

file.

Class/Delegate/Interfac

eClass headers will be in xml format

to facilitate the automatic
documentation feature. If the clas
description is longer than one line
add a remarks section.

U)

Method/Event Handler

Function headers will be in xml
format to facilitate the automatic
documentation feature. If there ar
any exceptions thrown in the

function, they must be documented

inside the exception tag in the
function folder.

D

Properties

Class properties should be
documented through ‘summary’
and ‘value’ tag. A remark tag may
be used for more detailed

explanations, but generally will not

be found in properties.

Naming
Conventions

Capitalization Rules

Class, Enum type, Event, Interfa
and Method should use Pascal tyj
Parameter, Variables, and Proteci
should use camel type.

Abbreviations

Do not use abbreviations or
contractions as parts of identifier
names. Do not use acronyms that
are generally accepted in the
computing field.

Type Name Confusion

Different programming languagg
use different terms to identify the
fundamental managed types. Clas
library designers must avoid using
language-specific terminology.

ce,
De.
ed

2S

5S

86

DocumentationAfter the firm adopted the Scrum process, the amount of
documentation was reduced significantly. For example, detailed design documents
including class diagrams (see Appendix F), sequencing diagrams (see Appendix G)
activity diagrams, communication diagrams, and use cases were redudedrnated. A
developer mentioned that, “Before we went agile, we required that detaih desig
documents were prepared before code was written. But we are not creatindedeia
documents anymore.” A QA manager also uttered that, “The detail design dogument
were routed to the QA manager, development manager, document manager, and
sometimes to others.” She also explained how detailed design documents vaere: utili

As the QA Manager, | read though those documents with a red pen in hand. |

verified that we were standardizing things. If | had questions that were not

addressed in the design about how something should work given a certain
scenario, then | made sure that those questions were answered and the design
document updated. The documentation manager also reviewed the document to
make sure that the error messages, field prompts, reports, etc. weneagjicathy
correct and that everything was spelled correctly.
A certain amount of documentation seems to be very useful when developers work on a
complex project, try to find and turn around fixes and problems, or need some ideas and
guestions for the project. One project manager said:

When we were working on a complex project where we would make one change

and have QA test, then work on the next change, test was very

successful. Documentation was there and notes were taken as we went. We were

able to find and turn around fixes and problems quickly using a document.

Documentation, the input of QA, and others who were familiar with the project,

gave us a wider range of ideas and questions for the project.

Several subjects noticed that the reduced amount of documentation is a big

headache. A project manager worries about quick implementations withoutgreati

detailed design documents. The quick implementations seem to cause rippletedtects

87

damage other parts of the project. She noted, “One drawback is that there ardetw detai
design documents. Whatever the idea is, it's just implemented. No one is takingethe ti
to think about what effects it may have on others parts of the program.” Another problem
is the increased number of bugs due to the lack of standardization of featutes, fiel
names, and error messages. This kind of standardization would have been easily
implemented if the documents had been created. A software tester stated's‘mbe
thought put into the standardization of features, field names, error messages, or
anything. It appears that code is just thrown together. So, when | go to tdatld, i
apart.” A QA manager confirmed this statement as she mentioned thaintingftwice
as many bugs since we went to agile as | did before we went agilel Daethe basic
bugs resolved, then | can really start testing it. And the system doesk'the way that |
anticipated.” The increase in bugs requires a lot of developer working hours tadfix, a
this is a major issue because the code should be re-written. The QA managhrscited t
example:
| go to the programmer and they didn't even address the issue because it wasn't
part of the design and they don't know how it should work. | end up calling a
meeting with part of the team to discuss design issues that should have been
addressed prior to the project even being coded. And most of these are not little
design issues that a couple lines of code can fix. These are major issues and
major code re-writes. And then once it's done, I've got to start testingrengry
again.
Several developers agreed that design and documentation should be a necessary
part of completing a project. Developers are not in favor of reducing the amount of

documents. A developer explicitly expressed his opinion when he said, “I don't like the

fact that our design and documentation requirements have lost their focus in Scrum.”

88

Formal Code ReviewABC has utilized formal code reviews since they started
producing high-quality software applications. A web-based, formal-codewdwgdl was
created by a project manager in the firm and it has evolved to the current versigthr
several revisions. When developers write or modify the code, they are required to go
through a formal code review process before they check the code into the central code
repository. Developers need to choose two code reviewers, and one of them isausually
senior software engineer or a developer who knows the area well. Once the code is
delivered to the reviewers through the web portal, the reviewers provide feedback about
if there is a side effect, a ripple effect to other code, or the code looks gootbpzese
and code reviewers sometimes have a meeting to discuss code changes thathaye a
impact on other modules. In this case, other senior developers or project managers are
invited to the meeting.

All interviewees agreed that the formal code review was a hecessapssential
step to construct robust applications. One developer declared, “I think the formal code
review keeps us in the right track. We can find inaccurately written code intibé ini
development phase and fix mistakes overlooked by a developer.” Another developer
commented, “The formal code review can keep our code from being exposed to
vulnerabilities such as buffer overflows and memory leaks. This process makasle
more robust and secure.” A project manager expressed the following:

We go through a very thorough code review. Often times, our code review

requires a line by line review. We can avoid a lot of common mistakes by having

two or more people examine the same code though it sometimes takes more effort
and time. It has been proven that our code review process is effectivairag fin

defects in the code under review. | think the formal code review is a vital and
critical process in creating high-quality software applications.

89

Environment Factor

Four identified elements of the environmental factor include 1) customer
involvement, 2) working environment, 3) interdependency among modules, and 4) the
group of social facilitation, social loafing, group motivation, and evaluation appogec

They are discussed in the following section.

Customer Involvemen@ne of characteristics of agile methods is a constant
customer involvement in every aspect of the software development processt éfs par
the customer involvement, a customer representative is required to attentymeeti
However, ABC could not invite customers to all of the meetings, such as the daity Scr
and the Sprint planning/review meetings, because there are so many custathenesds
across the United State. Instead, product managers visit customers on #iteoor ta
clients through WebEXx to gather the project requirements, to show the progress of the
products, and to obtain feedback from them. A project manager related:
We spend almost a half of our work time in talking to our clients. Through the
conversation with clients, we gather project specifications, show them the
progress of our products, and receive their feedback. If possible, we use WebEXx to
show features of the products and some charts and graphs, otherwise, we visit
them on site.
Another project manager spends many of hours visiting agencies and comes back with
project requirements. He then creates a to-do list and a graphical usecéstéofa
developers. He mentioned that
| go out to meet our clients and conduct research on what we need in a product. |
come back to company with lots of requirements that our clients want. | produce a
list of things we need to create and talk with developers to develop the product for

our clients. | spent about 9 months last year doing research, going out tockisit ea
agency. That is my job, just going out and gathering requirements, keeping track

90

of equipments, putting together wire frames of what the screen should look like,

what kind of data should be on it, and how it should be presented, and then take it

back and review it.
ABC also hosts users’ conference once a year to get feedback from tmaergst At
this conference, customers vote for or against a new direction of application
development. A project manager articulated that, “We’ve been hosting usersecasfe
for several years, and it has been very successful. One of the importantretasts
conference is that customers can vote for or against a policy and a direction of new
application development.”

One interesting notice associated with the customer involvement is that QA
people have a hard time providing customers with a quick turn around on bug fixes
because of Scrum settings. A QA manager stated that, “Going to agile hashaeén a
adjustment for most of our customers. We’re unable to give them the quick turn around
on bug fixes like they used to get. We can’t give them a quick turn around on bug fixes
because we can't interrupt the Sprint.” She continued to explain it by sayintBibiatre
we adopted Scrum, we had been able to fix customer’s bugs quickly. But now, we focus

more on the code created during the Sprint and place less priority on customer’s bugs

because we don’t want to interrupt the Sprint process.”

Working EnvironmentAn open working environment is recommended by the
Scrum method because it promotes communications, facilitates self-otgamiaad
helps developers get together easily. Before ABC started the Scrum procdss, mos
developers had their own office. After adopting the Scrum process, all the deselope

were reorganized into cubicles in such a way that all the team memberscatkiptde

91

the same cubicle area. Most developers do not like this new work environment and
consider the cubicle settings less efficient because they cannot corcenttiagir work
while their coworkers talk to other coworkers. One developer complained:

We share cubicles with a coworker. | think this is a bad thing, because we are

constantly distracted by the person we work with. Cubicle-partners are often

having conversations with other coworkers about their tasks, and it is hard not to
get drawn into their conversations, even if you don’t have anything pertinent to
add to it. Overall, | feel it is distracting and generally less efficient
Another developer stated, “Don’t pair developers up in a cubicle with someone else.
Place them near team members, but give them enough space that they can t®ncentra
when necessary.” A QA person also mentioned, “I was more productive when | had my
own office. | was not distracted by my coworker’s phone conversation or other noise
going around me.”

However, some developers think that cubicle settings increase the amount of
communication between team members. One developer mentioned, “I like the open-
space-working environment. It promotes our communication. | can easily grab roye of
team members and discuss issues and problems.” Another developer stagtd cdrie
talk to our team members easily and ask questions quickly.” One developempedclai

“I like the idea of placing every team member inside one cubicle area bedhuseit

fosters collaboration and teamwork.”

Interdependency among Modulé&sthe first stage of the projects, the Scrum
method was not very effective in terms of bug rate. During the first three mantths, f
example, the QA department found almost twice as many bugs after theviiaimes! to

the Scrum method. A QA manager confirms, “I'm finding twice as many bugs si@c

92

went to agile as | did before we went agile.” They attributed the finding twothelexity

of the project. As the size and complexity of the application grew, the depersdandie
interconnections among tasks in the application increased. However, the developers we
not able to fully consider all the dependencies and interconnections among modules
because of their narrow-minded planning and design in each Sprint planning meeting. A
developer explained:

Team members seem not to take enough time to think about interdependencies

and interconnections between modules. After several Sprint cycles, wedealize

that we didn’t think about what effects this module may have on other part of the
project or how this module may be interrelated with other tasks in the product
backlog.

It was also noticed that when developers had to complete a set of tasks,
determined in each Sprint planning meeting, they had a tendency to complete tasks
quick and dirty way rather than to think of how the code will be maintained, and how
each task in the current Sprint planning meeting can be flexible for future changes. A
developer stated, “We have a tendency to do things in a quick and dirty way rather than
to think into the future. (How will we maintain the code, and will it be flexible enough
for future needs?)” Another developer noted, “Sometimes things are rushed into the
Sprint meeting and the team doesn’t take the time to add such tasks into the Sprint
backlog.” Further, the developers often found that their monthly work schedules for
producing intermediate deliverables were optimistically estimaadohd to finishing all
the tasks in the Sprint backlog. A developer mentioned that, “When we plan things in our

monthly Sprint planning session, we underestimate how long things will take, and that

leads to the failure of finishing all the tasks in Sprint backlog.” A project nearadsp

93

stated that, “Some tasks just keep getting carried over to the next Spriwigbddtidy

hope to do better the next month in estimating their project.”

Social Facilitation, Social Loafing, Group Motivation, and Evaluation
ApprehensionThis section is quite different from the other sections because it was
developed through observations based on social facilitation, social loafing, and group
motivation. Social facilitation indicates that in the presence of other people npamnice
is focused on a simple task, whereas performance on a difficult task is hampetked (Ai
& Douthitt, 2001). Social loafing is the tendency to take advantage of others’ efforts
when working in groups, while group motivational gain is obtained when people increase

their effort to help co-workers whose performance is poor.

Social facilitation effect and group motivational gains were observed assfactor
that reduced development times and lowered bug rate. In particular, evaluation
apprehension (Bond, 1982; Cottrell, 1972) was observed when the firm invited all
developers, QA personnel, and people in other departments (sales, marketing, customer
support) to the Sprint review meeting. In the Sprint review meeting, allaparsihad a
chance to show what they had done in an interdepartmental environment and they were
concerned about how they were evaluated by these people. Group motivational gains
were also obtained as a social compensation effect (Williams, Harkinsatu Ke§91)
when a team member helped other team members who were not familiar with new
development tools or programming languages. At the same time, ABC did not dags/e w

to evaluate individual performance, leaving room for individuals seeking to free-ride

94

Information Systems and Technology Factor
The information systems and technology factor is comprised of communication
system, information and knowledge sharing system, and bug tracking system and

management tool. These concepts are discussed in the following section.

Communication Systert.seems ABC realized and understood the important role
of communication in the software development process because they have put a lot of
efforts into establishing good communication channels. As mentioned in the third
chapter, ABC had two development sites for about a year and developers were divided
into two geographic locations. With the two development sites, they set up devices to
have video conference capabilities between the two sites. However, due to thedtime a
use constraint, the video conference was not always available for each individual
software developer. Rather, the video conference was usually used for tedmgsnee
between sites once or twice a month. Because of the unavailability of video comifgrenci
phone conferencing was used a lot.

It seems that phone conferencing has problems as well. A lead engirexir stat

When we have the daily Scrum meeting in the morning we did it in a couple of

different ways. One was video conferencing and that was actually qoe

also did phone conferences, which were not as good as video conferencing,
mostly because when somebody made a comment, you couldn’t see their face,
which gives the background. Of course, the Scrum master couldn’t do anything
about that. That was counter-productive. If you have two groups video

conferencing, that is much better. You can see face-to-face and if somgbody i

upset, you know about it. You can’'t hear people making faces over the phone.

That did happen.

Other developers also mentioned in the survey that video conferencing helped them to

see the other person’s facial expressions, gestures, and body languadevéloger

95

stated that, “it’s still hard to know whether they understand what | am explaining t
them”.

Though video conferencing is much better than phone conferencing, there are
still limitations to using video conferencing. The daily Scrum meeting andihe
Scrum of Scrums meeting have mostly been done through phone conferencing. The
monthly Sprint planning and Review meeting have been done through video
conferencing. Other than video and phone conferencing, software developers have been

using a tool called web dembtip://www.beamyourscreen.coio show people in

remote sites things on someone’s screen. This tool, together with a phone sstem, s
to work very well, as a developer mentioned,

Actually we used web-demo which worked out very well for us when we are
going to do code reviews and we used that web demo with phone conferencing.
And it was like being in a media-room. Actually, it was much better than being in
a media-room in a lot of cases because we were able to scroll to wheratie wa
look at. It was very efficient.

The last multi-media that the company has been using are an Instant Message
(IM) and an email system. All of the developers mentioned that they werethsing
instant message and email system much more than before they were diddea int
groups. It seems the instant message system is used more effectively graaithe
system for a short and quick question and answer. The instant message sysiso was
used more by new employees. Several developers agreed on the followingrstatem
Yea, a lot more when you are working with a new person. You are using it (IM
tool) all the time because he’s asking questions back and forth over an IM session.
You are using it a lot with a new person when, if he would have been here, he
would have come in the office to show to him instead email him back and forth,
or you would have been looking at it together. You could have used web demos to

do that but in most cases it is short questions. We didn’t feel like we had to do
something like that.

96

One developer, who used to use VPN mentioned, “Sometimes, the VPN is too
slow, which causes frustration.” It was obvious that people did not use VPN once they
found it was not fast enough. Though the video/phone system, web-demo system, and
instant message/email system help software developers reduce tragpbendistance
between two sites, it seems those multimedia systems have not been workingnalbyopti
as face-to-face conversation. Several developers mentioned that, “It would so much
easier to be able to work with somebody right here in my office.” An executieeroff
also mentioned, “Well, in some ways it would be better to be down there at times.” He
went on to explain that

it hasn’t been that big of a disadvantage but once in a while, we just get two or

three guys together, if there’s an issue and somebody wants to talk about options

or kind of brainstorm on the idea. For me to join that group from this remote site

is more difficult.
The company seemed to suffer a lot when a communication line was down because of
their heavy dependence on it. A lead engineer mentioned that, “We had a few problems
last month with phone systems not working very well. When the phone systems were
down it was a big deal, plus when phone systems were down the data line went down
too.” Because the telephone systems and data systems share the saraklipleysic
employees could not do anything, as a project manager stated:

For example, you're working on a summarizer or something like that, all of

sudden, the screen is closed down. And if you are in the middle of some debugger

and the data line is gone, you will lose everything and you have to start it from the

beginning. That's why one of our programmers went over home. She’s working
out of her home now.

Information and Knowledge Sharing Syst&iien the main part of ABC moved

to a different location, the firm went through major changes. One of them \wasgec

97

in staff. The vice president of the software development division related thate‘Wher
a change when we moved to a different location with new staff, and I think we lost about
15% of our staff, including software developers.” To fill the empty positions, AB@ hire
several new software developers. These newly hired people created more fmogsct
manager said, “There are a lot more bugs now because people are not always
knowledgeable about the software that they are working on” and “often they change
some code, something like a radio log which is very complex piece of codegirid sli
changes to that have a lot of impacts in lots of areas. It takes a time toiliag faith
our complex systems.”

Because of the complexity of ABC’s software system, it is importantie ha
well-structured information- and knowledge-sharing systems between enxqesi
software developers and brand new software developers. In particular,tited twi
have such a knowledge sharing system if new software developers in one location need
some of the expertise of software developers in another location. One develtgzbr st
“It is a little difficult to share information and explain ideas over those ldigjances.”
Another way to get around this problem might be placing new developers with senior
developers within the same Scrum team in one location. But this solution is not always
feasible for ABC because of the complexity of software systems andubgasi that
developers often need expertise from other developers in a different Scroangan a
different location. So, to facilitate the knowledge and information-sharindgythéas

been using a web-based Wiki prograrttd://www.wiki.org) that enables developers to

add and edit items that might be critical to other developers. For examplestitbe se

called “gotcha” in the company’s Wiki includes the most frequent mistakes that

98

developers can make in many different parts of the company’s softwaegmsimie to
easy access to the Wiki program, the information stored on the Wiki databaseenhitigat

the problems between the two sites.

Bug Tracking System and Management TABIC has been using a bug tracking
system called MOM, which was developed by the firm on the UNIX platform. The MOM
bug tracking system is shared by many groups, including support people at the help desk,
developers, and QA personnel. A brief description about a bug and the step-by-step
procedures to duplicate the bug are entered into the system. One developer thentione

that

we use our own bug tracking system called MOM. QA personnel and support
people usually describe the nature of a bug, the place where it is found, and the
procedures to duplicate the bug if possible. Once the description is entered into
the system, it can be viewed by developers, QA personnel, support people, and
managers.
Based on the level of severity, each bug is labeled with a number betweendzthea.
The number zero represents very urgent and the highest level of severity,swherea
number three represents the lowest level of severity. A person who is assignestd
level bug is required to stop all the current tasks and work full-time on the bug until it is
resolved. One developer mentioned:
All bugs are entered into MOM and are assigned to an appropriate developer or
group of developers. A zero level bug is uncommon but when it happens it is very
critical to solve the problem as soon as possible using all possible resources
because the zero level bugs could stop some parts of or the entire operation.

As mentioned earlier, the firm adopted a commercial bug tracking systieah cal

JIRA (http://www.atlassian.com/software/jijaA vice president in the software

development department stated:

99

Well, recently we moved away from the MOM system. We used to create support
problems and then create a duplicate for development in the MOM support
system. We have now moved to JIRA. | think in MOM you didn’t have fields for
certain information. Everything was pretty much put into a narrative envimnme
or a report.
JIRA is used to record defects found in alpha and beta testing and in other areas. A
manager stated that, “JIRA only logs defects that we found in alpha and batadest
also defects in standard code that a customer told us about. It's just a trackiog tto®| f
development division for defects in products.” It seems JIRA has filter fun¢hans
MOM does not provide. The manager mentioned that, “JIRA has a lot of information that
used to be found in MOM. But it has important filter functions which we couldn’t do in
MOM. It has some advantages so that | don’t want to go back to MOM.” Another
advantage of using JIRA seems to be that it provides priority codes that raekethaf |
the severity of bugs. This function automates the selection of a next bug to be tsickled b
listing the bugs in sequential order based on the priority. The VP in software
development stated:
Well, one of benefits of JIRA is that it has severity priority codes. It wasteof
BETA test, and there’s a number of other fields that down the road we will be
using to divide the information. We are working a way to try to determine as
efficiently as possible what bugs to work on next. JIRA can still automate the
choice versus having a person just look at and say what you need to fix or not. We
try to use that information to do that.
One of disadvantages of using JIRA appears to be that it does not offer a decént sear
function on the bug information already typed into the system. This is mainly caused b

the JIRA interface, which requires a user to enter the narrative bug infommeab

separate text boxes.

100

In order to further improve the effectiveness of project management, ABC us
two different managing tools: Microsoft Excel and VersionOne. MicrosafeExas
used first, but was replaced by VersionOne because of Excel’s limitalilitypfor
efficient project management. VersionOne, as mentioned earlier, is a web-bas
commercial management tool that provided various functions, such as simplifgjagtpr
planning and management, enhancing business and project adaptability, improving
project visibility, and increasing project predictability and confidence.eStenelopers
expressed difficulties in using three different bug tracking and managéooés. One
developer complained that

. it's hard because we are using MOM for part of our tasks, we are using JIRA
for another portion, and we are using VersionOne to track the development cycle

and Scrum cycle. So, it makes difficult that way. We can’t use one product for
everything.

XYZ Firm

The XYZ firm had five Scrum teams, and each team consisted of three or four
developers, a project owner, and a Scrum master. Due to the small size of the firm, onl
one quality assurance person, and one database administrator were designaiedd
services for all Scrum teams. Every Scrum team worked on a new project exeept f
team that worked on on-going maintenance. Table 27 summarizes the common
categories, concepts, and data related to XYZ. As shown in the table, the factors of
human resource management, structured development process, environmental, and
information systems and technology were constructed for XYZ. The conceptssiagpr

these categories are discussed in the following section.

101

Human Resource Management Factor
The concepts of training, collaboration, and multiple responsibilities colstitut

human resource management factor. Each concept is discussed in turn.

Training. It seems that XYZ needs to provide developers with more formal step-
by-step training. Most developers feel that they did not have enough training on the
Scrum development method. Due to the lack of training, some of developers do not see
the big picture and the benefits of Scrum as a whole. One developer mentioned, “I don’t
think our whole team buys-in to Scrum development in general because we are not
getting a whole picture of how Scrum is working and how it benefits us.” Another
developer confessed that he had a misconception on the relationship between a project
and a Sprint. He thought he should complete a full project within a single Sprint. In

reality, a project is usually completed through multiple Sprints.

Table 27

Categories, Concepts, and Data Related to the XYZ Firm

No. | Common Concepts Data
Categories
1 Human Training e Developers need more formal step-by-step training
Resource e Some of developers do not see the benefits of Scrum
Management e Company provides brown back lunch training and a
Factor “luncheon learn” meeting
Collaboration e Scrum provides good collaboration mechanism between
developers
e Collaboration between developers and product managers
should be improved
e Scrum helps developers to be aware of other developers’
tasks.
Multiple Responsibilities e One person is responsible for many tasks in different field
e Product manager is a bottleneck in the development process
e Developers have a communication problem with a product
owner
2 Structured Scrum Framework e Scrum ceremonies force developers to be on the same page
Development e Daily Scrum meeting, Sprint planning meeting, and Sprint
Processing review meetings are sometimes inefficient
Factor e Setting up the meeting time is difficult
Formal Code Review e Company employs informal code review
e The formal code review can impose accountability to
developers
Unit and Integration Testing e Company uses a N-unit testing
e Testing self-created code is not efficient
e Legacy code is not suitable for unit or integration testing
e Wide range of testing skills are needed
(table continue: 5

[4

Coding Standard

The coding standard can provide easy maintainable cod
Company has a verbal coding standard

[}

The coding standard can hamper developer’s creativity and

reduce the efficiency

Documentation

Less documentation
More comments on the code

Equally shared skills and knowledge among team members

Hard to complete the system without having any documtrnts

Project Estimation and Planning
Poker

)

Developers have difficulties to estimate legacy code related

project

Planning poker reduces estimation difficulties

Breaking big tasks into smaller ones helps developer ha
good estimation

Ve

Use Cases

Developers realize the importance of creating use cases
Use cases help developers understand the system they
going to build

Users do not know what user cases are

are

Environmental
Factor

Customer Involvement

Not involved in the decision making process

Biggest roadblock in the development process
Customers do not know what they really want
Customers give unclear system requirements

Working Environment

Open working space makes developers to be easily
accessible

Open working space fosters communication

Open working space distracts developers

Common Tools and Problems
between Teams

Similar technologies can be used between teams

Common problems between teams can be resolved through

collaboration
The role of liaison between teams is needed

(table continue

0T

‘
.

w

Government Project and Scrum
Method

Government project requires a big planning and a big de
up front

Developers work with many unfamiliar jargons and
acronyms

Company needs a new hybrid development method

sign

Social Loafing

Everyone is fairly motivated and quick to point out if
anyone is not doing his share

Individual hard work is not recognized

Accurate measurement of individual performance is nee

ded

Information
Systems and
Technology
Factor

Communication

Daily scrum meetings improve communication within a
team

Lack of communication between teams
Work is being duplicated
Lack of communication with customers

Bug Tracking System

A web-based bug tracking system is helpful in prioritizing
bugs and keeping track of bugs.

Mantis, a free bug tracking system works well except for
some cases

Developers want customers to report their bugs in Manti

)

[72)

Version Control Systems

Open source revision control system called Subversion i
main system
Subversion provides a decent tagging and branching me
Subversion rebuilds the system automatically if code
changes

thod

¥0T1

105

When developers first began to work on Scrum projects, their project manager
demonstrated the concepts of Scrum projects and how they related to the existing
systems. After that, developers were to learn the Scrum concepts and working
environments all by themselves. One developer commented, “We are usughy t
briefly by a project manager how the system works the first time and then kind of g
from there, | guess.” Another developer stated, “I did not have formal trainmuked
up Scrum in the Wiki to get an idea what the working environment looked like.” Many
developers want to have a continuous formal set of training. One developer noted that, “It
would be helpful if we have a class that trains us, more than just an overview or just a
kind of tour around.”

To mitigate problems caused by the lack of a formal training program, the
company recently began hosting regular brown-bag lunch meetings to provide more
training. A Scrum Master affirmed that, “Recently, we have been hosting foronal
lessons on how things should work through a brown-bag lunch. | have been attending BB
lunch regularly. It's really helpful. Other than that, it's really beehausrief overview.”

In addition to the BB lunch meeting, the company offers a “lunch-and-learnfgonog

An operations director explained, “We do have pretty frequent lunch-and-learns where
the company buys us lunch and then we have someone like a operation director go
through and explain how Scrum works.” One advantage of having the lunch-and-learn
program is that everyone including developers, Scrum Masters, Product Ownerd, Proje
Managers, and other staff members can attend the meeting and provide feedéack. T
operations director said, “The whole company can attend, not just some people, so that

everyone can provide feedback. It also helps people to be reminded how to do tasks as

106

well, because sometimes through the day-to-day we forget certainsagp8crum, so

it's helpful to be reminded of them and remember to do it right.”

Collaboration.It appears that the Scrum method has provided the company with a
good collaboration mechanism. Most developers feel that they have good collaboration
between developers within the same team. One developer mentioned that, “I think it's
really good. | have often seen a team member go to another to ask about codicespract
and methodology. | have seen that several times so | think that’s really gomdtieA
developer stated:

Whenever | have a problem or issue to discuss with other developers, | am very

comfortable talking to any of my team members. | think Scrum practices gromot

collaboration between team members. For example, throughout the daily Scrum
meeting, we can identify what roadblocks we have to complete tasks specified in

a Sprint backlog and what items need to be done together.

Further, it seems the Scrum method has helped developers be aware of other developers
tasks and be interested in other developers’ success. This atmosphere seems to make
developers self-motivated. One developer stated:

It seems everyone is involved and they are interested in everyone’s success.

Everyone is very self motivated. So, if they don’t have something to do, they go

in and look at our Sprint backlog and choose the next thing. So, it's more reach

out and get than assigned to us.

However, some developers think the collaboration needs to be improved between
developers and the product manager. One developer stated that,

“There has been great collaboration between developers, but there has not been

enough collaboration between developers and the product manager. He has been

busy with many tasks and has not been able to allocate enough time to discuss
problems and issues with developers.”

107

The collaboration issue between developers and a particular product manager is

elaborated in the multiple responsibilities section.

Multiple ResponsibilitiesThe Scrum method does not recommend that
developers be involved in multiple projects at the same time. At XYZ, all developers
work on a single project. The one person with multiple responsibilities acts as the
product manager, product owner, and accounting manager. Due to his multiple
responsibilities, he is too busy and overloaded. Developers have a tendency not to talk
with him enough outside of Scrum meetings or ask him to deal with other issues when
they come up. One developer stated, “He tends to be a bottleneck for the rest of team
members. We’'ve been waiting on him giving us feedback. Sometimes it tends to be a

little bit of lag in getting any questions answered.” Another developer mentioned:

You know we have a product owner, but he is overworked and he has too many
other responsibilities so he can’t dedicate himself to the product and carlt get a
kinds of tasks done. It hinders our progress, and he doesn’t have enough time to
find what exactly we have to do. So, we need to get someone else to help with
that.

Developers have also a communication problem with him. One developer articulated:
The only sort of communication problem we have is with the product owner. He
is overloaded with too many other tasks throughout the company, so he is rarely
available, and we have a lack of communication with him. So, that hurt us, but
when he is available, the communication is fine.

It seems the company needs to release some of this person’s responsibiitesan

concentrate on a single project and make himself available to other desd@papre

decent communications.

108

Structured Development Processing Factor
As shown in Table 27, structured development process factor consists of Scrum

framework, formal code review, unit and integration testing, coding standard,
documentation, project estimation and planning poker, and use cases. Each concept is
presented in the following section.

Scrum Frameworlt seems that Scrum has been well adopted and has brought
big improvement to XYZ. One developer stated, “Scrum agile has been working quite
well for us on all of our projects. It has been a huge improvement over the waterfall
method.” Another developer mentioned, “Scrum really helps team members to get
involved in the project.” One project manager also noted, “The Scrum method helps team
members to be aware of everyone’s progress, and in Scrum, nobody can fall behind
without people taking notice.” Another project manager mentioned, “The Scrum
framework prevents a scope creep because tasks can only be dropped from a Sprint, and
Scrum also prevents the project from going too far off course if cliemfisresnents are
not accurate.”

Scrum ceremonies including the Daily Scrum Meeting, the Sprint Planning
Meeting, and the Sprint Review Meeting, seemed to help developers focus on producing
guality applications. Most developers testified that the Scrum ceremoniebd@veery
useful and very productive. One developer mentioned that “The 15-minute standup Daily
Scrum meeting has allowed us to be on the same page because we can talk to each other
and everybody knows what other members are working on.” Another developer
expressed a similar opinion on the Daily Scrum meeting. He mentioned:

This is a great way to make sure everyone is on the same page regarding work
accomplished and work to be done. This allows quick assessment of those people

109

who are already behind from the beginning and forces the team to make an
adjustment and compensate.

A project manager noted that, “The daily Scrum meeting is valuable and ds¥éatiay

to include clients in these meetings as much as possible.”

Regarding the Sprint planning meeting, most developers considered it as an

imperative and critical meeting. One developer noted:

Time spent in elaboration during the Sprint planning meeting significantly helps
estimating and scope planning because we are able to determine the number of
employee working hours for the next 30 days and how much work we will be able
to accomplish. Additionally, we have 3 or more developers estimate each
development task which promotes in-depth planning discussions when estimates
vary widely. This creates a more accurately defined Sprint backlog.

One developer regarded the Sprint review meeting as a bridge meeting &bt le
people into the next Sprint. He stated that, “The Sprint review meeting is imdortant
transitioning into the next Sprint. Depending on the project, this may be a good time to
plan a short (around 5 days) Sprint to develop post-launch patches that may bearritical f
the client.” Another developer also mentioned that, “This is very advantageous as long as
all team members, including the client, are open-minded enough to have a candid
discussion. It allows all team members to discuss the items that did not wbakdel
what can be done to address them in future Sprints.”
Regarding a product backlog and Sprint backlog, one developer stated:
The master product backlog is invaluable in long-term planning as well as quickly
ascertaining the next tasks. With our clients, we hold a master product backlog
reorganizing meeting every few months to make sure the priorities are stil
specified accurately. The Sprint backlog is the key to knowing what everyone is
working on, how much time is left, and what tasks are left to do. Keeping the

Sprint backlog in priority order and working on tasks in that order assures that the
most important stuff is done first.

110

Another developer also mentioned:

Product backlog is important, especially for a project that is going to span
multiple Sprints. It will help keep track of remaining tasks, help you prioritize
them, and prevent them from falling through the cracks between Sprints. Be sure
to update it as new feature requests come in. Having a product backlog makes
Sprint planning much easier. Sprint backlog is the output of your Sprint planning
meeting, and an essential tool for the daily Scrum.

However, some developers talked about inefficient Sprint planning and review
meetings. One developer argued that, “Some of our Sprint meetings are soasithiil
seems to be a waste of time spending a whole day just for planning and reviawitl thi
needs to be adjusted based on the complexity of the project that we are working on.” One
senior developer noted that, “Keeping daily Scrum meetings to 15 minutes wadtdiffi
Some of this is caused by just gabbing a little too long, but valid reasons for taking too
long are the amount of material we needed to discuss, and also because we hold Scrums
for 2 or 3 projects at once.” Another developer mentioned:

Our daily standup Scrum meetings sometimes go on a little longer just because

everybody is talking about what they did last night. | think there probably is some

good advice on trying to keep your daily standup meetings consistent and short so

that people are not distracted and they can go back to work quickly as most
people would rather work productively than waste time.

Another issue is related to setting up the meeting time. Due to the flexible ehexduse
among developers, it is difficult to get all developers together at onevitmaut

interrupting their work. One developer stated:

| think the hard things for us in Scrum is when to do it because some of us get in

at 7:30 am and some of us at 9:30 am. So, as a team, we just have the Scrum as
soon as everyone gets in. That's usually at ten or eleven. The problem is that

those who get in early are interrupted from their work because they've been

working very well for two or three hours. They are in the grove or zone so being
interrupted is frustrating. We talked about doing it at the end of the day but that

also has a problem because some people come in at 6:30 am and leave at 3:30 pm,

111

and some people come in at 9:30 am and leave at 6:30 pm. It makes it hard for our
team to get together all at one time.

Some of developers feel that Scrum might not be appropriate for large-sgjatdspr

because it is not easy to make a large team be agile. One developer stated:

Agile is difficult with really large projects. It's hard for largeaims to be agile. It
is necessary to split the large project up into teams of 8 with common goals. Let
team of 8 Scrum self-manage. Project Managers can facilitate conatiomjc
and check status between teams.
Another developer made a suggestion about tasks on the Sprint backlog. He suggested
that tasks on the backlog should be updated dynamically and that tasks taking more than
a day should be divided into small sub-tasks. He suggested:
When updating the Sprint backlog every day, if the tasks you are working on
don’t match the granularity of the tasks on the backlog, update the tasks on the
backlog and redistribute the hours among the tasks. This is to prevent treating a
group of tasks as a single bucket of hours that you are working against, which
makes it more difficult to see exactly where the progress is. If a tassresthan
a day of work, try to break it up into sub-tasks.
A developer noticed that some of Scrum team members were not flexible and did not
spend enough time to create a detailed Sprint backlog. He stated, “I would like tstsugge
that people participating in Scrum be flexible. Rigidity seems to be theob&ugie.
Also, when we generate a detailed Sprint backlog we need to spend as much time as
possible.” One last comment from a developer showed that some managers tried to
manage the Scrum teams instead of coaching them. He asserted, “Mareageds
managing! Let the team self-manage. Managers/Project managers shosldasxtha

only — it doesn’t work if the project manager is running the Scrum like a stattisignee

Project manager — step back and let the team run the Scrum meeting.”

112

Formal Code RevievDevelopers have not set aside a time for a formal code
review, but they have been having informal code reviews. Due to the informal code
reviews, tools that facilitate formal code review have not been developed aetutit
addition, the informal code reviews has not been employed frequently. One develope
stated that, “We don’t incorporate proper tools in our code review.” Another developer
mentioned that, “We have an informal code review occasionally. We don'’t do it very
often and probably should do it more. We talk about it a lot but just never have the time
to do it.” It seems developers are aware of the benefits of having a fadeateview
though they do not use it. One developer stated that, “Other people can offer feedback on
how a developer is doing and how the particular code can fit into the rest of a project.”
Another developer also mentioned that, “Through a formal code review, other people in
the team can look at the assumptions and choices that | made and say this is a good work
for that situation or not good for the situation.” Another benefit of having the formal code
review is to impose accountability on developers because they know their cloole wil
reviewed by other people. One developer stated:

| think it’s really useful. It gives you accountability because you know at some

point somebody else will go back and look at your code. In the short term,

developers may not pay extra attention to their code because a lot of developers
just take an assignment and write the code with the belief that no one will look at
it again. Formal code reviews would solve this problem.
Most developers agreed that visiting the code retrospectively is importantnis of
improving the quality of code and enhancing developer’s coding skills.
The Scrum master mentioned a problem that might be caused by the lack of

formal code reviews. He stated that, “There is a chance that a develdpsroade

which is already built in, for example, in the Dot Net framework or ASP Dot Net

113

framework.” If a developer tries to write code which is alreadytenjttested, and
proved to be efficient by a third party, it would be a big waste of time and money. It
appears that developers are good at looking at other developer’s code andapding g
feedback. It seems it is just a matter of setting a time aside famalfoode review and

selecting an appropriate tool to facilitate the code review.

Unit and Integration Testingthe company has been using a unit testing tool
called “N-Unit,” which provides a unit-testing framework for all Dot Nelgaages. Each
developer tests their own code, but they try not to because they think testing their ow
code is not effective. One developer mentioned that, “We test our own code but we try
not to because it's not effective to test one’s own code, and developers usually have an
assumption that their code always works.” When developers test their own codésthey
consider an integration test. One developers stated, “Everybody tests theiufbyuss
to make sure it works and also making sure it works with the big picture and ewgrythin
else works with it.” It appears that several quality assurance petsamieelp other
developers in testing regardless of team boundaries. A quality assuramcespetesd
that, “We have a few people who do help out with testing. They are technically on the
team but they are just available for everybody to help testing.” In additiotetoal
testing done by in-house people, clients are also involved in testing by visiésgsite
and conducting a test. A project manager stated that, “Generally, when ticatappls
getting ready for clients, the clients get into a test site and test.dbhegck and test,

and enter bugs that they find.”

114

It appears that the firm has a large legacy code base and the legaoasaous
designed for unit or integration testing. This is a big challenge for theAiproject
manager stated that, “We’ve got all legacy code and it wasn't writtdliy fer test cases.

It would be nice if we can figure out someway of going back and kind of cleaning some
of those things up. In terms of quality assurance, that's really about biggestghalle
right now.” The firm also has code, called “code behind,” which is difficult for
developers to test because that code works behind the curtain and there is no efficient
way to test the code.

Developers wish to have a wider range of testers. One developer stated:

Probably, we would get managed better if we had more people who have a wider

range of software testing skills. Right now, usually, one person is testing,

sometimes someone who is technical and sometimes someone who is non-
technical. They usually catch different types of bugs.
Another developer uttered that developers could not test everything becausadalient
not have enough budget to cover one hundred percent testing. He also explained the
process of a unit and product owner level testing.

Our developers create their own unique tests. But we don’t have one hundred-

percent coverage because our client doesn’'t have the budget to make us test

everything. We do create a unit test, then we have our product owner-level
testing, then developers test their own code as well, and then from there we put
everything in to MANTIS, which is our bug tracking system.

Coding StandardSeveral coding standards for different computer programming
languages exist. For example, Sun Microsystems provides the standard corsviemti
the programming language and Microsoft proposes coding guidelines for the C++ and C#

programming languages. In addition to Sun Microsystems and Microsoft, other

organizations such as GNU Free Software Foundation and CERT at Carnegie Mellon

115

University also suggest standard coding styles and guidelines. The mainsbaefit
having coding standards is that developers can provide easily maintainablencothat a

developers can decipher other people’s code without difficulties.

It seems developers are aware of the main benefit of following the coding
standard even though they do not have a formal coding standard. One developer stated,
“There is no formal coding standard; probably a coding standard could be of good benefit
to us.” Another developer mentioned that, “There is no written coding standard, but we
are close enough to propose to a person who is not following a norm or our verbal coding
standard.” Some of the developers employ coding standards provided by the tools they
are using or modify suggested guidelines to suit their environment. One devedtger st
that, “The coding standard is dictated pretty much by MS Visual Studio.” Another
developer mentioned that, “I took the Borland coding standard and changed it and
updated it for what | thought it would be best for us.”

All interviewed developers think that they are doing fine without having a coding
standard. One developer stated, “Most people have their coding styles, whicbesute de
enough you can follow them pretty well. So, it's not a big deal.” On the contrary, one
project manager thinks that forcing the coding standard can hamper develogeansty
and reduce their efficiency. He stated that, “There are definibely to different styles of
code being everywhere. People are creative where they can work the fro@sttigt
The problem with enforcing a coding standard is that it limits creativitigdther project
manager mentioned that, “I think it is not worth to it force coding standards igitr hi

our performance if a lot of people have to relearn how to code in a lot of places.

116

DocumentationThe Scrum method, like other agile software development
methods, significantly reduces the amount of documentation. In fact, the atfilmdsie
claim that the code itself should be a document. That is why developers who are
accustomed to agile methods place more comments in the code. Several developers
mentioned they placed more explanations in any tricky piece of code and for aggsha
that they made. However, many developers agree that without having any dauiment
is very difficult to complete tasks for those developers who are working onopaines
system they never worked on before and also for new developers who do not have much
experience with the project. For both cases, developers who do not understand the project
ask a lot of questions, which takes time away from developers who do understand the
project. One developer mentioned that, “When | first got here, of course, | was
overwhelmed. It would have been nice to have some documents that explain why certain
things were done in a particular way and what they were.” One more developer
mentioned that, “Agile methods do not use specification documents. | think that might be
a weakness in agile methods. The agile methods allow you to go much quickeras long
whoever is specifying has a very good idea of what clients want. If this isencase,
the agile methods are just as slow as anything else because you are pave to get
clarification.”

Another developer also raised the issue of the lack of documentation. He stated
“Right now, we have one guy who is the main guy. He knows all of the systems and |
think, personally, that might be a mistake. Not because he is not good at it, but because it
just makes one gigantic point of failure if he is hit by a bus or if he leaves for anothe

company.” It would take several months for the firm to recover the knowledgerth

117

main developer has. The idea behind reducing documents in the agile methods is to keep
every team member equal by sharing skills and knowledge on the systems. laythi&t w

one person leaves, there is still a lot of shared knowledge that has gone around among
other team members, so it is not a big deal. However, in reality at XYZ, this is not

feasible.

Project Estimation and Planning Pokdihe developers at XYZ had a hard time
estimating how long a particular project should take. The level of projeciagistim
difficulty increases when developers need to deal with legacy code or when desvelope
do not have the experience required to finish a project. One developer said, “It's hard to
get estimation on legacy code.” Another developer stated, “We are just dofirgtthe
project and the accuracy of estimation is hard to determine because we jubagen’

much experiences on this kind of project.”

To resolve or reduce the difficulties, developers were introduced to a new project
estimation method called “Planning Poker.” In Planning Poker, all developers are
required to pick a card, each of which has an estimation number to express tnalieesti
of a particular task. If there is a big gap among developers’ estimatiohopengediscuss
the task and try to narrow down the gap. One developer explained the procedure for
Planning Poker as:

For each task, we discuss for a minute or two and call the vote from the planning

porker card. Everyone holds up their estimates and then if they are pretty close

then we just take an average of them and put them as an estimate. If they are very
far apart, if someone says two hours and someone says 20 hours then we pause
and re-discuss it to find out why the estimates are so different. As soon as

everyone has a thorough understanding of the problem, then we go again until we
get closer.

118

Another developer commented:

| guess the idea is to kind of narrow down the numbers. In the past we just made

an educated guess, which is O.K. All the people on the product made a guess.
There are usually three guesses, which result in three estimates kon I& tizesy

are too different, then we talk about the task and figure out why we have different
estimates. In Planning Porker, | guess there are ranges of nuirthark 1, 2, 3,

5, 8, and then 13, 20, 40, and 100. So, when someone chooses 40 and someone
else chooses 8, then we need to discuss about the task. If we are not sure about the
task, then we talk about it and do something on the whiteboard to lay it out, and
discuss what could be done.

Developers think that there are many merits to using Planning Poker. One developer
stated, “You can get the opportunity to say why you think it's going to take so long, why
you think it's going to take not nearly as long, and then you can actually work out some
of the issues.” Another developer mentioned:

| think the advantage is that we can have a lot of discussion. That's an advantage.
A few times | come through...because | don’t know the whole systems asswell a
they do. | give some number and they give some other number. | think it
eventually gets close together, but at least a project manager cae &l m

overview about the things that are involved and make sure we are on the same

page.
A project manager also stated:

It is kind of nice to just have some sort of anonymous way we can throw cards up
and discuss it rather than writing it down and be coerced into thinking by
something or by whatever everyone else thinking. So it is nice...it helps us to
have each developer have their own opinion.

It is noticed that breaking big tasks into smaller ones helps developers have bett

estimates. One developer commented:

| think one of the things that really help is that everyone here seems to be
conditioned to breaking their tasks down into the smallest possible measurable
tasks and then to say, this field needs to be changed to accept this variable, or
something like that. Very small tasks...you could say that yeah that taslelby its
will take me an hour or two. And so it's a lot easier to make the good estimates
that way if you break it down into a small element.

119

Another developer also expressed the importance of breaking tasks into small one. He
said, “We already have our tasks from our product backlog. We break them up into small
ones first in the Sprint backlog so that we can have more accurate estimates.”
It is noticed that that every developer thinks Planning Poker is very useful,
effective, and pretty reasonable as well because it gives developersa thaxpress
their honest estimation. However, experience, pre-knowledge, and skills are noted to be
important factors in good estimation. One developer stated, “I think Planning Poker
provides a more accurate estimation. That’s part of it. But | really thénjist matter of
experience for good estimation.” He also mentioned that, “I think it's a good thing to
have Planning Poker, even if it brings big differences in estimation numbers thienkrs
around.” Another developer reiterated:
It works well in the middle to the end of a project because now you have a very
good idea of what you're working with and the technology you’re working with.
But initially, it got to be horrendous unless you're working with technology that
you're extremely familiar with. Also, you know the technology is only half the
battle. It's the logic and the system itself that you have to figure out and
sometimes it takes a lot more time then you think.
This developer argued that, though Planning Poker can help your estimation, the bottom

line is you need to be familiar with the technologies that you are going to use, the

business logic, and the system itself. Otherwise the estimation will be horrendous

Use Casedt is noticed that all developers agree that use cases can help them
better understand what needs to be built and that they have the most success when they
have use cases. One developer mentioned that, “In our Sprint planning session we did a
fair amount of documentation in terms of creating use cases. When we had use cases we

had the best success.” He continued to explain what his team did. He stated, “We first

120

received a list of items that we needed to build and then we wrote out specifibg, anay
couple of paragraphs for each item.” Another developer added, “I think it reagky Urel
figure out the system that we are going to build.”
However, there are several problems in creating use cases. A developeasvhat w
familiar with the system had a hard time creating use cases. Hk Stdtdt | was a little
unprepared to write use cases for a web site that | was not reallyafamih.” Another
problem is that clients usually do not know the systems that they want to have and what
use cases are. One developer stated, “They don’t know really what usarea$es
basically you need to come up with something you think makes sense and write it down
and then go back to review it. The idea is that it’s really difficult to come up with
specifics for it.”

Though clients do not know about use cases, it seems that they are comfortable
with revising them. A project manager stated, “It's a lot easier for theaviger
something we’ve written.” Based on this description, it would be better if cliems kne
what they really want to have in their system and understand use cases. dréhibev
situation, developers could communicate better with clients and would createubetter

cases, which then leads to success of the project.

Environmental Factor
The environmental factors including customer involvement, working

environment, common tools and problems between teams, government project and Scrum

method, and social loafing were identified and are discussed in the followirmnsecti

121

Customer Involvementustomer involvement in the software development
process is very critical to the success of the project. The agile methtedthst the
customer should be part of the development process from analysis and design to
implementation and maintenance. However, at XYZ, developers have difficukyngor
with customers on the projects. A project manager commented that, “Custoness are
involved in the decision making process until it is all done.” He added, “We don’t get as
much customer involvement as we want. Our customers are busy and they have other
things to do than to talk to programmers all day.” One developer complained that, “We
request our customers to talk to us every day and at a minimum once a week, but they are
not very involved. We end up with talking with them maybe twice per Sprint.” Another

developer stated,

“Our customers did not give us specification documents. We basically had an
hour-long meeting to make a specification. So it was vague when we started it. It
was up to us to make specifics and estimations. | think the biggest roadblock in
our development process was in the customer involvement. Though we did not
have enough customer involvement, our customers accepted most parta of the
system that we created and asked us for minor changes. But I think it would be
much better if we get together more often with our customers.”

It appears that, most of the time, customers do not know what they really want in
their future system and it becomes a roadblock for customers to get involved in the
project development process. Said one developer, “Customers think they have a clear
idea but they do not. For example, the customer wants to track people’s credit. To them,
that’s clear and precise. But to us, we need to know who the people are, what the credits
are, when they expire, how long we track them, what rewards are earned for many

credits.” Due to unclear customer requirements, developers have a hard timneg gt

what exactly the customer wants to include in their system. One Scrunr Maste

122

mentioned, “We need to get out a lot of information from unclear statements, wkash ta
more time, which causes us to get involved less because it takes too much time. But we

don’t have any other way to do it because we don’t have information.”

Working Environmentost agile methods, including Scrum, recommend
removing the cubicles and setting up collocated team space because cubinhkEs pr
isolation, and the Scrum process relies heavily on high-bandwidth, face-to-face
communication, and networking. Open space is considered better than the cubicles and
private offices in the Scrum process. Many developers like the idea of an open-spa
working environment. One developer mentioned, “I feel like | am little closehtr ot
developers in open space. It's really nice to be able to look across the room and talk to
somebody else in the team and ask questions quickly. | don’t feel like | am shouting ove
the cubicle wall to get to them.” Another developer stated that, “Open space is good
because everyone is easily accessible. | like it because | think isfostamunication.

It's very easy to say hey, | need some help, information, or come, look at thisolisery

is just kind of open, and it seems to work very well.”

Though some developers enjoyed the open-space-working environment, other
developers did not like the open space, and they mentioned downsides and some
problems. One developer stated that, “the open areas are very nice to communication but
it does hurt when you try to concentrate because there are a lot of distractions. For
example, when co-workers are having a conversation with somebody or havingea phon
conversation, it's very distracting.” Another developer groused that, “I aplesluctive

because a lot of noises are going all around. Without having cubicle walls or private

123

offices, the distractions are pretty high which is hard to work with.” A team latatist
“You know the best working environment is an office. In your private office, you can do

things your way, and focus on things without being distracted by other noises.”

To cancel out the noises, most developers use headphones. The director of
operations noted that, “Everybody has headphones and they can just put those on and
listen to something. That pretty much drowns everything else out.” Howeveralsever
developers complained that, “We developers, are usually working while listening t
music. We all have nice headphones. Everything is going under that. But if | need to

focus on something, that’s really difficult just because | have headphones on.”

Common Technologies and Problems between T&anesobservation is that one
team’s members could spend a lot of hours finding the right tools or technologies suitable
for their project without knowing that the team next door is already using tools or
technologies that could be used for their project. There are many similar tecbs oy
be utilized between teams. One developer mentioned, “A lot of things arer simila
between teams who are working on different projects, there are even some \@rsions
technologies that we use.” He continues by saying that “One is driven by theother s
think it makes sense that we can solve each other’s problems using the same tools in
many cases.” Another developer voiced this thought, “I think that the technologies we
use between teams are similar enough that if we do our level best, we dce able
cooperate.” It is also noticed that some problems that separate teams ranglare
One developer noticed, “I think when problems come up, even though we may not know

the languages used in another team’s project, a lot of problems are the same.”

124

One of the teams sometimes uses a quite different setup in a different
environment, as reported by a project manager, “They are doing thingsliffeitently.”
He also added, “I think they will eventually move to some of the technologies we are
using. Then we will be able to cooperate more. But now it does make sense that we use a
different environment.”
It is noticed that having a person who can play the role of a liaison between teams
is important because of the similar technologies used in multiple teams andiltéye s
problems arising with the teams. The person should be able to inform a team whether
there are similar technologies that other teams already take advahtagewhether
there are similar problems that other teams faced and resolved.
Government Project and Scrum MethGavernment projects usually require
heavy documentation, big planning, and big design up front. Due to the bureaucratic
nature of the government, a government project seems not to conform to the principles of
the Scrum method. Developers consider that working on a government project is
challenging because government itself is not agile. One developerseqires
You know here we are really struggling with a government project bedase t
think they are doing agile. But government tends to be very bureaucratic because
it tends to be a lot of red-tape and tends to have many layers of accountability
inside their organizational structure. It takes a long time for decisions tcaget m
They are very not agile just by default. And so, trying to get them to function that
way can be a challenge.
Another issue in dealing with a government project is that there are mgoggand
acronyms used in the descriptions of the government project. Developers have &l lear

these unfamiliar terms. They think the government project is complicatedledal®per

stated, “Of course, it’s affiliated with government and anything withat#d with

125

government has a tendency to be complex and then there’s a lot of acronyms and there’s
a lot of vocabulary that 1 know nothing about.” Conflicts between the bureaucratie natu

of a government and the principles of Scrum method seem to create a big hurdle in
fulfilling the government project. To lower the hurdle, XYZ tries to use the Scrum

method with a Unified Process (UP) method, which conforms more to the requirements
of a government project. But the hybrid of the Scrum method and the Unified Process

method has not been fully developed in the firm.

Social LoafingAs explained in ABC'’s social loafing section, social loafing is an
observed fact that people are less productive and less motivated when they work in a
group than when they work alone. Also, social loafing is the tendency to take advantage
of other’s effort when working in groups. It is noticed that most developers feeliths
not been much social loafing in their projects. One developer stated, “I| don't ezlly s
that happening now so much. There are three of us on our team. | think everybody does
their fair share of work.” Another developer held that social loafing is, “.lyraat in
our team. Everyone is fairly motivated and quick to point out if anyone is not doing his or
her share.” However, one developer thinks there has been social loafing in his peject. H
held that, “In our particular project, that’s been true to a certain extent.” Anothe
developer stated that, “I think that’s true sometimes, but | have never been involved in
that kind of situation in my project. | haven’t got a credit that | think | don’trdeseHe
also thinks the firm has been very fair in recognizing developers’ hard workltlteafe
“They are very good about it. Actually, they are very good at giving credartbw

developers who worked hard on a project.”

126

Overall, most developers think social loafing has not been a problem, but some
developers expressed an interesting issue. One of them stated:

| don’t think there is so much individual recognition, whereas there is team

recognition. So for example, in an XYZ team, when we get the project done, then

we recognize the team, rather than ‘Oh, John did the most, Amy did the second.’

Most stuff like that. As a team, we are all respected as doing an equal amount of
work. If you are not part of it, you will get fire.

Information Systems and Technology Factor
The information systems and technology factor is comprised of these concepts:
communication, bug tracking system, and version control systems. These concepts are

discussed in the following section.

CommunicationThe Scrum process recognizes the important role of
communications in the software development process and provides an excellenbimeans
communication. All interviewees agree that the Daily Scrum Meetings improve
communications between team members. However, each team in the firnyis fairl
separated and generally there is not much communication between teamskTie la
communication between teams could cause problems, such as duplicated work. This
problem can be solved, or at least mitigated, if the firm holds daily ScrumwhScr
meetings so that the Scrum masters from each Scrum team can make suilkeiao wor

being duplicated.

Good within-team and between-team communication can be accomplished
through the framework of Scrum, but communication with the customer can be
problematic. Several developers observed that, “the biggest area of comroangsates

that we have is with the customer more than anything else, because they tendvi® not g

127

us a lot of feedback.” Part of the reason that the customer does not provide feedback is
that, in most cases, they have other daily jobs to take care of in addition to the vork wit
developers. This is related to the customer involvement issue, which is explained in the

customer involvement section.

Bug Tracking Systemll developers agree on that any web-based bug tracking
system can assist them in the task of prioritizing bugs and keeping track oTbags
company has been using a bug tracking system called “Mantis,” which isveeipee
based bug tracking system. Most developers think Mantis has been working well for the
bug tracking and auditing. One developer mentioned that, “It does a good job as far as
bug tracking and auditing.” Another developer states that, “I have been pledsed wit
Mantis. We use it very effectively, and it's very customizable.”

Mantis also has a search function so that developers can do a key word search.
One developer observed that, “Mantis has a good search engine. You can use any
subsidiary field, which is a track list, and it can categorize very wethvéver, some
developers think they could use Mantis more effectively by integrating ésatasks,
and burn-down charts into Mantis. One developer stated, “We only put bugs into Mantis
instead of features and tasks. | want to incorporate burn-down charts into Mantis.” A
couple of developers also think there is a bug in the software. One developer noted,
“There are couples of weird things it does occasionally, but it's nothing cquiast’

The other developer uttered, “Mantis is supposed to send an email whenever a new bug is

entered in and sometime it sends false notification. It seems to be a bug inwlaeesof

128

One interesting thing found in the interviews is that developers want lilkeiisc
to report bugs into Mantis. A project manager affirmed that, “It would be nice if our
clients could get into Mantis and report bugs there.” In fact, a project managertbt,
“Basically, two teams had their clients enter bugs into Mantis. That carigsel lier
them.” However, the client in one of the projects does not like using Mantis as a bug
report system, so they use an email system instead. This seems to be a mioblem f
developers, because one noted, “they [the client] email the bugs to somebody and often
we don’t follow up on them.”

Another issue is that clients’ bug reports are often vague and difficult to
understand. One developer mentioned,

“Usually, their reports are a little vague and hard to understand. They daly, ‘I

this and enter the information and then save and then the page went blank.’

Sometimes, you don’t know exactly what page they were in the website and

sometimes you don’t know which information didn’t get saved.”

To solve the issue, developers ask clients for more feedback on their reports. One
developer stated that, “We can ask our client to put more feedback directlyiis siad
hope our client sees it or sends an email, or we can give them a call if we have any
guestions on the feedback. It seems that Mantis works well as a bug trackingfeyste

the firm, though it has a little glitch. However, it seems that more effogdaded to

integrate features, tasks, and burn down charts into Mantis.

Version Control Systenthe company has been using an open-source revision
control system called “Subversion”. All developers commented that Subversion would be
a great tool in any environment where a version control system is needed. Oneatevelop

stated, “We use Subversion and it works very well for us.” Another developer added,

129

“I've been really impressed with Subversion.” Another developer claims that ISidove

“. .. works very well for small teams and for large teams as well.” A projanager

who used another revision control system thinks Subversion provides various functions
and is superior in many ways. He claimed that, “It has great utilityt grgging and
branching. | can only think of pros for it. It has been great for us and you know egpeciall
compared to SourceSafe. It's superior in every way.” Another develapered that
Subversion makes revision control easy, especially when creating anagitiibranch.

He stated, “I came from using the Concurrent Versions System. Subversionkastana

lot of things easier. We are using Subversion and it has an advantage when you want to
create a branch with some project. That's the biggest advantage of using it.”

In addition to the advantages mentioned above, Subversion periodically checks if
there are any changes made. If there are any changes made in the rejtogbamds
the system. One developer stated, “We use Subversion. It just polls everyrfutesii
think and whenever there’s change, it checks out the code and rebuilds it, and make sure
everything is still working.”

Some developers think they can use it better by creating more branches. One
developer commented, “We need to use it better and do more branching.” Another
developer talked about a recent mistake, “Some code got checked in retdertthe i
main branch and got deployed. It caused a problem because it was in a ha#ftaieady
should have been checked into a branch.” Other than the problem caused by human error,
it seems that Subversion is a well-chosen revision control system for tharfidnthe

firm just needs to expand its use.

130

CHAPTER V

DISCUSSION AND MANAGEMENT GUIDELINES

This chapter discusses the discoveries from an in-depth agile software
development study of two firms utilizing the Scrum software methodology. The
discussion covers the following topics: critical issues and challenges founoftyna
the Scrum method in both of the study firms and management guidelines for availing a

overcoming obstacles when adopting the Scrum method.

Issues and Challenges of Scrum

This section discusses issues and challenges identified in two firnesnpacng
concepts which emerged from the data. The issues and challenges disaggsstl

lessons that Scrum practitioners can learn and provide a basis for mantgeiselines.

Human Resource Management
Human resource management comprises in-house people related issues. Table 28

presents issues identified from the two firms. These issues revehbitenges of the
Scrum method.

Team ManagemeniVhen an organization decides to employ the Scrum method,
the organization needs to reorganize their existing development teams intot8ams.
The ABC results indicate that when Scrum teams are created, they mustgosedm
based on the knowledge and skills necessary for the projects in order to reduce the time
learn business logic, development tools, and programming languages. In addition, eac

Scrum team needs a team leader who can see the big picture and guide thehheam

131

right direction, even though self-managing team are one of the unique aspectsrof Scr

The Scrum master might be a good candidate for this job and selected from a group of
technical people, rather than a group of non-technical people like at ABC. Some
developers like the idea that the team decides how to do things based on the consensus of
the team and that the team has more control over how to complete the development
project. When organizing Scrum teams, the organization needs to balance management
between a pure self-managing team and a heavy leader-guided team. Agssthiefiom

ABC is that small sized teams are more flexible and adaptable in definingalgthg

variants of Scrum. Interestingly, team management was not an identifiedti3sié. a

Table 28
Human Resource Management Issues
Category ABC Firm Issues XYZ Firm Issues
Human e Team Management e Multiple responsibilities
Resource e Collaboration e Collaboration
Management e Training e Training

e Lack of Accountability

e Trust and Confidence

Collaboration.The research identified several collaboration problems at ABC
when the firm kept two geographically separated development teams. These problems
could also apply to co-located teams. The first collaboration problem occurresehetw
developers at one site and QA personnel at the other site; developers wenggot@d&i
into CVS without telling QA personnel the potential areas of code that might beedffec
by the changes made. To mitigate this problem, developers should take some
responsibility in testing code, or collaborate with QA personnel by showing th&ipbte

areas of code that might be broken by their changes. The cause of the second

132

collaboration problem was a divided team with members in two different development
locations. When the team hired new members at one site, it was difficultrfor tea
members at the other site to work with them. This incident indicates that when new
members are hired, assign them to a co-located Scrum team instead of asrEemote
Scrum team. The third collaboration problem arose between Scrum teams duedk the la
of a designated person responsible for checking the consistency of products aarss Sc
teams. The solution to this problem consists of appointing a Scrum master in each tea
and having them discuss any common issues across Scrum teams. The fourth
collaboration problem concerned dividing and assigning tasks between twao $ites i
Sprint planning meeting, as well as how to track bugs reported by QA personnel and
customers. The mitigation of this problem is to use commercial tools designed to address
these issues, such as VersionOne (which offers good project management meghanis
or JIRA (which provides excellent bug tracking mechanisms).

At XYZ, no major collaboration problems were noticed. On one occasion at XYZ,
a situation developed between developers and a particular project manager. Due to
insufficient human resources, one person had multiple responsibilities as product
manager, product owner, and accounting manager. The first problem was that developers
did not try to talk with the individual about issues that came up outside of the Scrum
meeting because they knew he was too busy and overloaded with too many other tasks.
The second problem was that developers had to wait to get any questions ansveered. Th
third problem was the developers had the notion that the overloaded manager was a
bottleneck for the rest of team. A fourth problem was that developers had comiuanicat

issues with him because he was rarely available to people. This situatharbmig

133

beneficial to XYZ for a short time. In the long run, however, the firm will loke enore
than it gains with a manager trying to fulfill multiple conflictingpessibilities.

Training. One of the biggest problems ABC faced was in new employee training.
Due to the complexity embedded in the system, new employees need to spend a lot of
time becoming familiar with the system. ABC deemed training new engsmeparately
in each Scrum team a big waste of time. A more efficient method is to appoint a mentor
to train all new employees in the basic practices of the firm, with each teiay tgsk
specific training. The problem with new employee training gets wolnsa the
employee who has expertise in an area is at a different site than the n@yesm@ine
observation noted that the use of multimedia may help the firm mitigate thismrdhle
is not a complete solution. The indication is that co-located Scrum team membeds shoul
do employee training.

XYZ also had a training problem. However, the problem there is with the Scrum
development method itself, rather than the existing systems. Some develdperssiie
the big picture and the benefits of Scrum. One developer had a misconception that he
thought he should complete a full project within a single Sprint, instead of multiple
Sprints. XYZ'’s case indicates that it is important to have all new developéinsagigh
thorough, step-by-step, formal training and occasional follow-up trainingth#er
Brown bag lunch training or the “lunch-and-learn”-type training offerethbyfirm to all
employees is an excellent way to make up for the lack of formal traamidgo get
feedback from everyone.

Lack of AccountabilityABC revealed that tasks in the Sprint backlog often did

not get completed as estimated, and were consistently carried over to thpriréxt S

134

Then, nobody took responsibility for the delayed tasks. The initial intention of a self-
managed team is to allow developers to run the team and have ownership of the projects;
this seems to have been a big hole at ABC. If not operating correctly, selfyathteams
promote a lack of supervision, which can lead to a lack of accountability and
commensurate project delays. It appears that it would be helpful for the fionfar the
necessary authority to either project managers or Scrum masters to sugeveitpers.

In that way, project managers or Scrum masters may influence developerk taster

and harder, while allowing developers a certain degree of self-management

It is also a downside of distributed Scrum that developers do not take ownership
of task completion, due to the lack of relevant control at both sites. Batra, Sin, and Tseng
(2006) suggested setting up a coordinator in one site and ambassador in the dther site
ensure control. A lack of accountability issue was not found at XYZ.

Trust and ConfidencTrust and confidence arose as an issue between a Scrum
master and developers when the Scrum master was unable to get developers items or
information they needed and was unable to remove developer’'s impediments. The same
issue arose between developers when developers worked together on the same project
and they did not see any progress on a module assigned to another developer or group.

The trust issue got worse in the case of two development sites, causing cenfidenc
levels with other developers to degrade. The fifth principle of the agile estmif

(http://agilemanifesto.org/principles.hihdays, “Build projects around motivated

individuals. Give them the environment and support they need, and trust them to get the

job done.” This implies developers should work in an environment that suits them and

135

should have the support that they need, and at the same time they should give other team
members trust to attain high confidence levels.

It takes a lot of time and effort to regain trust and confidence among develbpers
is critical to prevent trust and confidence problems before they happen. To resakte a t
and confidence problem, the organization should foster collaboration and have project
managers keep monitoring the situation. Also, when there are team membeesentdiff
sites, it would be helpful if each member of the team at one site would take the time
get to know members at the other site. The trust and confidence was not an identified

issue at XYZ.

Structured Development Process
The structured development process consists of systematic proceskisslats.

Table 29 shows the structured development process issues identified in the research.
They are discussed below.

Scrum FrameworkMost developers at ABC were in favor of the Scrum
framework. They thought the Scrum model promoted communication and team work,
and helped them keep track of task assignments and monitor task progress. They also
thought that working in the Scrum team provided motivation, excitement, and interest.
Some developers, however, did not like the frequent daily Scrum meeting. Thagtfelt
having the daily Scrum meeting was too much time for not enough value, and that the
various Scrum meetings took too much developer’s time away from programming, even
though the Scrum meetings helped team members refine the goals for eathr&pri
improved the quality of products. Some developers and QA personnel also thought

monthly Sprint planning meetings took too much time and they want to streamline the

136

planning session. As ABC indicates, any organization should have streamlined Scrum
meetings and monitor whether or not various Scrum planning sessions take too much

time for not enough value.

Table 29
Structured Development Process Issues
Category ABC Firm Issues XYZ Firm Issues
Structured e Scrum Framework e Scrum Framework
Development e Unit and Integration e Unit and Integration Testing
Process Testing e Coding Standard

e Coding Standard e Documentation

e Documentation e Formal Code Review

e Formal Code Review e Project Estimation and

Planning Poker
e Use Cases

The Scrum method works quite well for developers at XYZ and is a big
improvement over the waterfall method. Developers thought the Scrum method helped
team members get involved in projects, be aware of everyone’s progess, scope
creep, and prevent projects from going too far off course. Like ABC, some degeloper
did not like inefficient Sprint planning and review meetings. They felt thadikgealaily
Scrum meetings to 15 minutes was difficult because people gab a little tothleregis
an excessive amount of material that needed discussed, and taking care of 2 ots3 proje
at once.

Another problem was setting up the meeting time. It was difficult to bet al
developers together at one time without interrupting their work becausefteXitée

work schedule. The research noted that some project managers actually ma@aged t

137

Scrum team rather than let the team self-manage, and that developers did not spend
enough time generating a detailed Sprint backlog.

Unit and Integration TestingiVhen ABC first adopted the Scrum method, the
firm placed a QA person on each Scrum team. This caused a problem because the QA
person is always behind the Sprint schedule. This problem was resolved by creating a
QA-only Scrum team that covered all code generated by other Scrum teasns. Thi
solution created another problem that when developers made a change and passed the
code to the QA team, the QA personnel sometimes did not know the other areas that
affected by the changes. To resolve this problem, the firm asked developersmoedo s
portion of the testing themselves that the QA people usually cover. This may not be a
good move economically for ABC firm because developers usually are paidiraore t
QA personnel; this might be a sensitive issue that any organization neestsve re
wisely.

XYZ utilized a tool called “N-Unit” for unit testing, and each developeetkst
his/her own code. Interestingly, the firm also invited their clients to theitesind had
them track, test, and enter bugs that they found. However, having developers test their
own code had two issues. First, developers usually assume that their code always wor
Second, developers could not as thoroughly test their code as third-party testers.

Another issue was related to large legacy code not designed for unit ortintegra
testing. Developers had a difficult time testing the legacy code. Theylegde and the
code working behind the curtain were a big challenge to the firm. The fiomeésled to
hire more people who had a wide range of testing skills in software. Insufftiemit

budget also made it difficult to test everything covering one hundred-percentooiie

138

It seems that the firm utilized the unit test well, but it did not cover all pessibl
combinations of issues due the short client budget and lack of wide range of skilled QA
personnel. In addition, the firm needed to rewrite the legacy code or find ouiceaneff
way to make the legacy code unit-testable.

Coding StandardABC utilized coding standards. They have very specific coding
standards in many areas in order to have easily maintainable and expandable code. Most
developers agree that having a formal coding standard enables them to undenstand ot
developer’s code, but some developers worry about putting too many coding standards on
developer’s shoulders. Some developers actually think that heavy coercion to the
standard may hamper their performance because they have to look at coding documents
back and forth to see if their code conforms to the standard.

XYZ did not have a formal coding standard but had a verbal coding standard;
developers felt that they were close enough to comment when a person who did not
follow the norm. Developers had their own coding style, which was influenced bylsever
commercial software packages, such as Microsoft Visual Studio and Borland. Most
developers and project managers thought forcing a coding standard might hamper
developer’s creativity and hinder performance because they had to releam donle in
many places.

DocumentationAfter ABC started the Scrum method, many detail documents,
such as class diagrams, sequence diagrams, activity diagrams, comioniiaiiams,
and use cases were significantly reduced, or disappeared. The lack of detagiedades

indicated at ABC, caused many problems in complex projects. One main arézdaffec

139

considerably was testing, because QA personnel depend heavily on documentation to find
problems.

Another problem with a lack of detailed documentation was the tendency to write
code without taking time to think about what effects the code may have on other parts of
the application. These resulted in an increased number of bugs, which then recutired a |
of developer working hours to fix. This was a major issue and caused major code re-
writes. It's obvious from ABC that if any organizations deal with complex age la
projects, they need to tailor the Scrum philosophy on reducing the amount of
documentation.

XYZ also reduced the amount of documentations significantly. Developers tried
to place more comments and explanations for any tricky logic in the code, atbng w
explanations for any changes that they made, to compensate for the lack of
documentation. However, it turned out that many developers had a hard time completing
tasks without any documentation, especially developers who needed to work on parts of
the system they had never worked on before and new developers who did not have much
experience with XYZ's projects. Further, those developers asked a lot of questions
which took much time away from developers who did understand the project. As XYZ
indicates, no documents at all are a very dangerous idea that leads to odemngr
including causing the agile method to be as slow as anything else.

In the agile methods, the code itself is regarded as all the documentation that
developers need. However, it is apparent that zero documents are not alway# the ri
way for large-scale and complex projects, especially, in a distributachSsrvironment.

The amount of documentation should be decided based on the context of the development

140

environment, though Parnas (2006) suggests a wordy document and Simon (2006)
suggests no more than a two page long document

An additional problem was that only one main developer had extensive
knowledge about the firm’s systems, rather than every developer on the Scrum team
having shared skills and knowledge of the systems. If that main person leavem floe fir
any reason, it would be a big problem because it may take several months to rexover t
knowledge lost. Keeping all team members equal by sharing skills and knowledge on the
systems is not easy, and not feasible in reality.

Formal Code ReviewABC has utilized a web-based formal code review, and
developers think the formal code review is a vital and critical process imgy&égh-
guality software applications. Any issues and challenges were not identifA&Ca

Developers at XYZ did not have a formal code review, but they had an occasional
informal code review. Not having a formal code review invoked some issues. First,
developers did not pay extra attention to their code, because they believed no one would
look at it again. If they believed that at some point somebody would go back and look at
their code, they would have more accountability. Second, developers lost opportunities to
improve the quality of their code and enhance their coding skills through feedback from
other developers. Third, there was a high chance that developers wasted time and money
by trying to re-invent the wheel from scratch because there are mangxaudeples
already written, tested, and proved efficient by the Dot Net framework ar othe
commercial builders. Most developers knew the benefits of having a formal eoele, re
but they just never had the time to do it. XYZ needs to set a time aside for a formal cod

review and select an appropriate tool to facilitate the code review.

141

Project Estimation and Planning Pokdrhis issue came up only at XYZ, though
having an accurate project estimate was an important part of projects forimsth fi
Developers at XYZ had a hard time estimating the duration of a project, andehefle
hardness increased when developers needed to deal with legacy code or when they did
not have the experience required to finish a project. However, it seems theyeaitigat
issue by introducing a new project estimation method called “Planning Pokext’oA |
comments from developers revealed that the Planning Poker method provided developers
with the opportunity to throw out their honest opinion without being biased or coerced by
other developers. Also, Planning Poker helped developers have a chance to discuss
estimation gaps between developers, and guided them to reaching bett&iesstine
noticeable benefit was when developers were able to break big tasks into thetsmalle
measurable segments, they were easily able to make good estimatese@hehes
noticed that every developer thought Planning Poker was very useful, effective, and
produced reasonable estimates. However, though Planning Poker could help estimation,
the bottom line was developers needed to be familiar with the technologies yhaetbe
going to use, the business logic, and the system itself. Otherwise, estim#tsitl tve
one of the most difficult parts of a project.

Use CasesThis issue was identified only at XYZ. Developers at XYZ knew that
they could understand the system better with use cases and that they hadsihecbest
when they had use cases. Though the firm has reduced the amount of specification
documents a lot since the firm adopted Scrum, one Scrum team created a fair amount of
use case documentation based on a list of items that team members needed to build.

Three issues were identified related to creating use cases. Firstdsualopers were not

142

well prepared to write use cases because they were unfamiliar witleans$stcond,

clients did not have a clear and precise idea what they really wanted to have in thei
system. Third, clients did not know what use cases are or how to use them.

The first issue is an in-house issue and the other two are client-relaiesl iEke in-

house issue can be resolved through a well-organized employee training program. The
client-related issues were resolved by having developers come up with some
specifications and having clients review it. It would be better if clients know tivbg

really want to have in their system and understand use cases. If clientsratien of

use cases and have a clear idea of their system, developers can commultti cditenis

better and create better use cases, which can lead to successful projects.

Environment
Table 30 shows issues belong to the environmental factor. The iasdes

challenges related to the environmental factor are discussed below.

Table 30
Environment Issues
Category ABC Firm Issues XYZ Firm Issues
Environment e Customer Involvement e Customer Involvement
e Working Environment e Working Environment
e Interdependency among e Common Tools and
Modules Problems between Teams
e Social Loafing e Government Projects and
the Scrum Method
e Social Loafing

Customer InvolvemenDue to the large number of customers scattered across the
United States, ABC needed to come up with a different solution to incorporate customer

feedback. One way that the firm employed was to send out product line managers to the

143

customer and have them collect project requirements. The project line maadagers
utilized WebEx to show features of the products and some charts and graphs to reduce
the number of onsite visits. Another way the firm employed to get customer é&edba
was to host a user conference once a year. At the conference, the firm datedmsw
policies and directions of product development. The customers then voted for or against
the policies and new development direction.

One issue associated with the customer involvement at ABC was that QA people
had a difficult time providing the customers with quick bug fixes. This resulted frem t
Scrum method principles, which required the QA people to focus more on the code
generated during the Sprint process than on responding to customer problems.

Though each project at XYZ was only for one customer, developers at XYZ had
difficulties getting customers involved in the decision making process. The custdiche
not willingly participate in the process because they were busy and had othgitohitng
Poor customer involvement in projects caused problems for the firm because developers
needed to create specifics without conversing with clients. Often tinoekiatlot of
hours to figure out what exactly customers really wanted to include in tiseansy
because they did not know what they want in their future system. This was a big
roadblock for developers as they went through the development process.

Though XYZ did not have enough customer involvement, most final products
were accepted by their customers with minor changes requests. Xa&&'sntlicates that
if developers get together more often with their customers, organizations can aelive

software product to customers sooner with better features and functions.zatigasi

144

may also reduce maintenance fees by delivering a more correct pitatuzigtomers
want.

Working EnvironmeniThere were mixed feelings among developers about the
open-space working environment. Some developers liked a cubicle setting beeguse th
thought it increased the number of communications between team members and fostere
collaboration and the teamwork. However, most developers did not like the open-space
working environment because they could not concentrate on their work while their
coworkers talked to one another. It was apparent that most developers liked having their
own office rather than a cubicle in order to be productive.

Many developers at XYZ liked the open-space working environment because it
provided easy access to other developers and it fostered communication. Though some
developers enjoyed the open-space working environment, other developers did not like it
and thought it brought some downsides and problems. First, developers were easily
distracted when their co-worker’s talked to other co-workers or when theygramha
conversation with someone. Second, developers were less productive when they could
not concentrate because of a lot of background noise. To cancel out the noise, developers
utilized headphones, which they put on to drown everything else out. Though this helped
most developers, some could not focus on their works just because they have the
headphones on.

Interdependency among Modulé$.ABC, as the size and complexity of the
project grew, the dependencies and interconnections among tasks in the application
increased. However, developers were not able to fully consider all the depesdertti

interconnections among modules because of their narrow-focused planning and design in

145

each Sprint planning meeting. The developers also had a tendency to do things in a quick
and dirty way without thinking whether the code would be flexible enough for future
needs. As ABC indicates, any organizations should support and encourage developers to
spend more time on considering the dependencies and interconnections among modules.
The issue of interdependency among modules was not identified at XYZ becadise XY
projects were relatively small and less complex compared to ABC'’s projects

Common Tools and Problems between Tedimsugh XYZ did not show any
signs of interdependencies among modules due to the firm’s small size ofyyrihject
firm did have issues with common tools and problems between teams. It appeared that
one Scrum team’s members could spend many hours finding the right tools or
technologies suitable for their project without knowing that other Scrum teezasal
employed similar tools or technologies. This is a big waste of preciousgevsltime
if two Scrum teams can utilize the same or similar tools or technologies.

The research also noted that each Scrum team had similar problems, which might
be resolved using similar solutions. Teams spent time resolving similarpldach in
their own way, which is another waste doing duplicate work if the same solution can be
applied to both problems. The firm should appoint a person to inform teams if there are
similar technologies that other teams already took advantage of and whetieesire
similar problems that other teams faced and resolved successfully.

Government Project and the Scrum Methblis issue was identified only at
XYZ because the firm has been dealing with many government projects. A government
project usually requires heavy documentation, big planning, and big design up front. This

does not conform to the philosophy of the Scrum method. It is a big challenge to

146

complete government projects with the Scrum method because the governetfest its

not agile, and the nature of government is bureaucratic. An additional issue is that
developers have to learn the jargon and acronyms used in the descriptions of governme
projects, adding unproductive time to complete a government project. To overcome these
hurdles, XYZ wants to combine the Scrum method with a Unified Process (UP) method

in order to conform more to the requirements of government projects. This hybrid of
Scrum and the Unified Process has not been developed in the firm. The author of this
paper developed a possible hybrid method as a part of this research, which is @xplaine
the Future Study section.

Social Loafing.The social loafing issue was identified at ABC because the firm
did not have ways to evaluate individual performance. In addition, social facilitation,
group motivational gain, and evaluation apprehension were also found. Sociakitatilita
and group motivational gain contributed to reduced development time and to lower bug
rates. When the firm invited all developers, QA personnel, and people in other
departments to the Sprint review meeting, developer evaluation apprehension was
observed.

Social loafing was generally not an issue at XYZ, though it was present to a
certain extent in some projects. Though XYZ has been very fair in recognizing
developers’ hard work, some developers did not think there was much individual
recognition, rather they thought there was more team recognition.

If the firm does not provide a way to accurately measure an individual’s
performance, and the performance is measured only by the unit or team, aoafioigl |

issue within the team might be raised. It is import to eliminate sociahtphfi making

147

each individual’'s contribution verifiable (Balijepally, 2005) and to offset its plessi
negative impact on development time and cost. It might be a good idea to invite all
developers, QA personnel, and staff in other departments to the Sprint review meeting
where developers present what they implemented. In this way, developers nmigin ga

evaluation appreciation of how others view their work.

Information Systems and Technology
Table 31 shows issues associated with information systems and technology.

Those issues and challenges are discussed below.

Table 31
Information Systems and Technology Issues
Category ABC Firm Issues XYZ Firm Issues
Information e Communication System e Communication
Systems and e Information and Knowledge e Bug Tracking System
Technology Sharing System e Version Control Systems

e Bug Tracking System and

Management Tool

Communication Systermeffective communication is the root of most failures in
software products (Parnas, 2006; Simon, 1990). ABC utilized a lot of communication
devices to set up good communication channels when they kept two geographically
different development sites. Some of the multimedia tools utilized by therfalodied
video conference systems, phone conference systems, a web-demo systermtan insta
message system, and an email system. A virtual private network systeatsovaslized
at the beginning, but it was discarded because it was not fast enough. Of thatdiffere
multimedia tools used, the video conference system was most effective beeapise

could see facial expressions, gestures, and body language as issuesocwssedlis

148

However, none of the multimedia systems worked as optimally as faceeto-fac
conversation. Beck et al. (2001) stated that the most efficient and effenditied of
conveying information to and within a development team is face-to-face cativer#\
contributing problem was unstable communication and data lines. When the phone
systems were down, the data line went down with it because they shared the same
physical line.

Overall, the Scrum method provided an excellent communication mechanism at
XYZ. Developers believed that the Scrum method improved communications
considerably between team members. Each team in the firm was fairlytedzard
generally there was not much communication between teams. The lack of contimuinica
between teams caused problems as explained in the issues of common tools and problems
section. This problem might be easily resolved by holding a daily Scrum of Scrum
meeting and having Scrum masters of each Scrum team communicate Withhesac

Another communication issue was with customers. More than anything else, this
was the biggest communication issue the firm had. As described in the issues oécustom
involvement section, customers tended not to communicate with developers and not to
give a lot of feedback because they usually had other pressing work to do.

Information and Knowledge Sharing Syst&nABC, newly hired developers
created a lot of bugs because they were not knowledgeable about the softwhsythat t
were working on. Some parts of the application were very sensitive to changes, so a
slight modification on these parts had a lot of impact in other areas. It is imtdorta
have well-structured information and knowledge-sharing systems betwgemeexxed

software developers and brand new software developers. In particular, itryasitieal

149

to have a knowledge sharing system if new software developers in one location need
some of the expertise of software developers in another location. To resolve thresnprobl
the firm utilized a web-based Wiki program which enables developers to add and edit
items that might be critical to other developers. Another issue was assigwiycired
developers to Scrum teams. Though the firm maintained two geographically different
development sites, each Scrum team’s members should be co-located in only éme site.
that way, new developers can have face-to-face communication with other team
members.

Bug Tracking System and Management TABIC developed a bug tracking
system called MOM, which ran on a UNIX platform. Later, the firm adopted a
commercial bug tracking system called JIRA because of its additionaldnalities,
such as filter functions and severity priority code functions. The firm alspeatih
commercial web-based management tool called VersionOne to provide useful
functionalities, such as simplifying project planning and management, enhancing
business and project adaptability, improving project visibility, and increasijecpr
predictability and confidence. The problem associated with these tools wasethiem
could not use one product for both bug tracking and management of a Scrum cycle.
Developers had a difficult time using all three products at the same time.

XYZ utilized a free, web-based bug tracking system called “Mantis &hwhi
worked very well for bug tracking and auditing purposes. However, developers thought
they could use Mantis more effectively by integrating features, tasks, anddum
charts into Mantis. Mantis sometimes also sent out false email notificatleersa new

bug was entered in the system. Customers associated with two Scrum teaeuskerger

150

into Mantis, which was very helpful for developers because every bug could be thanage
by one tool.

Customers associated with other Scrum teams reported their bugs through an
email system. This sometimes caused a problem because developers needledlitio de
two systems to track bugs, and they did not follow up on customer’s emails. Another
problem was vague customer bug reports, which developers had a difficult time
understanding. This took a lot of developer time because they had to take extra steps
deciphering the customer report. Developers usually asked customers to puren a m
detailed description, sent an email, or called directly to get more feedbaic& ceport.

Version Control SystemXYZ utilized a version control system called
“Subversion,” a well-know version control system in the open source community. It has
been a great utility for the firm because of its superior tagging and brgraapability
and a functionality that checks periodically to see if there are any chawaglesin code
and then rebuilds whole system if any changes are detected in the reposadd;tiom
to the automatic rebuild capability, it also makes sure every piece of codewsisting
properly. Some developers think they can use it better by creating more branches and
expanding its use. Other than a human error problem that checked some code into the

wrong branch, the firm picked a good revision control system.

Management Guidelines

This section provides management guidelines to help organizations that are
already utilizing Scrum or planning to implement Scrum in the future. The gedel

explained here also help organizations avoid stumbling blocks in their Scrum

151

implementation. The issues and challenges identified and discussed in the previous
section provide the basis of the guidelines. The first set of guidelines islfwrated

Scrum teams, and the second ones for geographically scattered Scrum teams.

Guidelines for Co-located Scrum Teams
1. When a new Scrum team is organized, managers must consider whether each

team member’s knowledge and skills are pertinent to the project the team
members are going to work on.

2. Each Scrum team needs a team leader who can show team members the big
picture and guide them in the right direction. The Scrum master might be a good
candidate for the team leader. The team leader should not manage the team, but
should instead coach the team. The Scrum master should be a technical person
able to easily remove technology-related developer impediments.

3. When developers check code into a code repository, they should inform QA
personnel, in addition to the direct code that the developers modified or added,
about any other code sections that need to be tested as a result of the
modifications.

4. The project manager should not be a bottle neck to Scrum teams due to his/her
multiple responsibilities in other areas that are not directly relatée t@am
project.

5. Formal step-by-step new employee training should be a requirement, and
managers should monitor if the training is efficient.

6. New employees should be given enough time to understand both the existing

systems and the Scrum method before they get into a project.

152

7. Brown bag lunch training or “Lunch-and-learn” type training should be
implemented often to refresh developers on Scrum and to exchange information.

8. A self-managing Scrum team still needs a supervisor who has authority to get
developers to work faster and harder.

9. Project managers should monitor if there are any trust and confidence issues
among developers, and between Scrum masters and developers.

10.The duration and rules of the daily Scrum meeting should be strictly observed; the
duration of other Scrum meetings should be dynamically adjusted based on the
agenda for efficiency.

11.Project managers should foster collaboration between developers and QA
personnel. Developers should be able to do a unit test of other developer’s code
and work closely with QA people on integration testing.

12.Organizations should educate developers that every piece of code should be
testable and designed for ease of testing.

13.Formal coding standards increase readability and understanding of other
developer’s code; too many coding standards hamper developer performance.

14.Lack of documentation is a source of problems, especially for large-scale and
complex projects. The philosophy of the Scrum method which reduces
documentation significantly should be tailored. Organizations need to determine
how much documentation is adequate for their projects.

15. Along with documentation, organizations need to promote each Scrum team
member having an equal amount of skill and knowledge relative to the project

they are working on.

153

16. Formal code review is a vital and critical process for quality appitsti
Organizations should establish an efficient way to do formal code reviews.

17.Planning poker is a very easy, useful, and efficient way to evaluate projects
Developers should break a big project into the smallest possible tasks to get better
estimates on those tasks.

18.Use cases are important specifications that elevate a developer’s amdiecsof
the project that they are working on; both developers and clients need to be
educated in how to write good use cases.

19. Customer involvement is very critical for the success of a project. Organizations
should invite customers to participate in the decision making process and find out
a good way to include them in the various Scrum meetings.

20.If any organizations have a large number of scattered customers, they should
consider the use of an annual or semi-annual user conference to explain their new
products, collect user feedback, and have them vote for or against the
organization’s new product direction.

21.Open-space working environments promote teamwork and communication, but
organizations should come up with methods to help developers deal with
environmental distractions.

22.For large-scale and complex projects, organizations should encourage and support
developers spending sufficient time thinking about dependencies and

interconnections between modules.

154

23.If any projects require heavy documentation, big planning, and/or big design up
front, the Scrum method might not work well unless combined with another
method, such as a Unified Process.

24.Organizations should provide a fair way to measure individual performance to
prevent social loafing being an issue.

25. A product fair, which invites people in other departments to a Sprint review
meeting and have developers present their works, is an excellent way to boost
developer performance.

26.Bug tracking systems and project management tools should be combined into one
piece of software to improve efficiency.

27.1f possible, invite customers to a test site and have them test code and enter their
bugs into the organization’s bug tracking system, rather than letting thaih em
bugs to developers.

28.Good version control systems should be established and utilized to maintain
various branches of each product.

29. A person should be selected in each team to work as a liaison between Scrum
teams to discuss any common issues and common tools that can be shared among
Scrum teams. The Scrum master of each team might be a good candidate, and
daily Scrum of Scrums meetings need to be utilized for this purpose.

Additional Guidelines for Geographically
Distributed Scrum Teams

1. When developers check code into a code repository, they should inform QA

personnel at the other site, in addition to the direct code that the developers

155

modified or added, about any other code sections that need to be tested as a result
of the modifications.

. Scum team members should be co-located at one site, rather than having a team
comprised of team members from two different sites.

. There should be a person to work as the liaison between sites. This person should
facilitate collaboration when dividing and assigning tasks between sites. The
project manager at each site might be a good candidate.

. There should be good bug tracking tools and project management tools, accessible
and shared by multiple sites.

. New employee training should be performed through members at the same
development site.

. Project managers at each site should pay extra attention to trust and confidence

issues between developers at different sites.

. Trust and confidence issues are reduced if each Scrum team member at one site

takes time to get to know members at the other site.

. A video conference system between sites works best for communication between
sites, but does not work as optimally as face-to-face conversation.

. Tools like a web-based wiki program should be utilized to share information and

knowledge between developers at different sites.

156

CHAPTER VI

A THEORETICAL MODEL, FUTURE STUDY, AND CONCLUSIONS

This chapter suggests a theoretical model for the adoption and utilizationeof agil
methods in the development of mission-critical, small- and large-scaéx{grand a new
hybrid model for further research on the application of traditional and agiled®e(This

chapter also presents limitations of the present research and lastlfirsdmenclusions.

A Theoretical Model

In the previous chapter, four critical factors for the success of Scrum were
described. This section addresses relationships among the four factors andialanager
insights to maximize the benefits of software development with Scrum. Thisrsalso
provides a theoretical model to explain how agile methods can be adopted and utilized to
effectively support the development of mission-critical, small- and largie-pcojects.

The first factor was human resource management to reflect the imgootaie
team composition, collaboration, training, accountability, trust and confidence and
multiple responsibilities. In terms of human resource management, the organization
should consider what would be the optimal allocation of a limited number of developers.
It was obvious that it took more development time and cost when new team members did
not interact well with other members of the team (Williams & Kessler, 2000jeam
members needed more learning and training to complete their tasks. Theairgani
should foster collaboration between developers and QA people so that QA peoplé can tes

changed code and other areas of code that might be affected by code changed.

157

Assigning an appropriate and technical Scrum master is also important for the
success of the Scrum method. Sometimes team impediments were not takemwedre of
often needed to be repeated, slowing or even stopping the progress of the Sprint. Scrum
masters should elevate trust and confidence levels among developers and between

developers and themselves.

Collaboration

Employee Training

Team Composition

Human Resource Management Factor

Multiple
Responsibilities

Lack of
Accountability

Trust & Confidence

Figure 1Q The theoretical model of a human resource management factor.

Scrum masters also need to have authority to urge developers to work faster or

harder. It may not be a good idea to have developers run the team without having a team

158

leader (Marrington et al., 2005) to make right decisions in a timely manner gdran t
members do not know which way to take among several alternatives.

New employee training should not be treated lightly. The organization should
provide step-by-step formal training with the organization’s systems anaseft
development method to new employees. If developers need to do other projects asked by
other departments or project managers have multiple responsibilities, theyfoansot
on current project tasks and Scrum won’t work. In conclusion, human resource
management issues can directly affect the performance of Scrum Egure 10 show
the theoretical model of the human resource management factor. All ofitbe &wl
challenges related to the factor should be reduced or resolved to succesafabe
human resources.

The second factor is a structured development process to reflect the importance of
the Scrum framework, unit and integration testing, coding standards, documentation,
formal code review, project estimation and Planning Poker, and use casessloftarm
structured development process, all Scrum frameworks, including Scrum cereamahies
Scrum artifacts, should work together smoothly. The organization should alsolgareful
examine the role of a QA person on each Scrum team or on a QA-only Scrum team. QA
people can conduct unit and integration testing, and relieve the burden of developers
testing their own code. Having a formal code review and coding standardsieat, ttt
organizations should not put too much weight on developer shoulder. The organization
should identify how much documentation is appropriate for each project based on the
context of the development environment. The amount and utilization of use cases should

also be determined on the same context. Project estimation using Panning Rdleer ca

159

easily implemented, but the results will be outstanding. Figure 11 displays thetittaor
model of a structured development process factor. Each process should be properly

established and wisely used.

Unit and Integration
Testing

Coding Standard

Structured Development Process Factor Documentation

Formal Code Review

Project Estimation &
Planning Poker

Figure 11 The theoretical model of a structured development process factor.

The third factor is the environmental factor, reflecting the importancestdmer
involvement, working environment, interdependency among modules, social loafing, and

common tools and problems. In Scrum, the autonomous nature of Scrum team allows

160

developers to have more control over how and when the development is completed,
depending on the consensus of the team, and to have more ownership of the projects they
are working on. Therefore, it is tempting to state that an autonomous Scrum team has
better control and efficient product management. However, often the developeos are

able to fully consider all the dependencies and interconnections among moduléagresul

in inconsistent product outputs across team members within the same Scrum team.

Working Environment

Interdependency
among Modules

Customer
Involvement

Environmental Factor

Common Tools &
Problems

Social Loafing

Figure 12 The theoretical model of an environmental factor.

Further, due to limited communication between different Scrum teams, it is

difficult to keep the overall product output consistent across teams. The lack of

161

communication results in them solving common problems, each in their own style and
way, though the same solution can be applied to common problems across teams. The
inconsistency and duplication across teams negatively affects mifficmduct

management.

Regarding the large number of customers scattered in broad areas, a dddier m
should be developed for collecting user requirements and feedback. The research noted
that while sharing cubicles with a co-worker improves the opportunity to commanicat
among team members, it is possible for developers to be constantly distracidichsy c
partners often having conversations with other coworkers. If the organization pravides
way to accurately measure the individual’s performance, a social loséing within a
team might be diminished. Figure 12 illustrates the theoretical model of the
environmental factor.

The fourth factor is information systems and information technology, to reflect
the importance of communication system, information and knowledge sharing system,
bug tracking system and management tools, and version control systems. Tiegsg sys
and tools are indispensable for the success of Scrum.

The Scrum method envisions autonomous teams who are given a strong
motivation to iteratively and continuously monitor the progress of their prdjecisgh
interactions and discussions in the daily Scrum meeting and Sprint revieingeeet
Communication systems, bug tracking systems, and management tools aabamef
the sense that they help developers visually see and remember what needs to be done on a
daily and monthly basis. Figure 13 shows the theoretical model of the infonmati

systems and information technology factor.

162

The final theoretical model, which combines the critical factors, is preksante
Figure 14. As explained in the previous sections, all of the issues and challengds in ea
category should be resolved, or at least mitigated, and the four factors shoulchbedala
and support each other to have success when Scrum is applied to mission critital, smal

and large-scale projects.

Information and
Knowledge Sharing
System

Communication Management Tools

System

Information Systems and
Information Technology Factor

Version Control
Systems

Bug Tracking System

Figure 13 The theoretical model of an information system and information technology
factor.

Structured Development Process

* Scrum Framework

*+ Unit & Integration Testing —
J—— O T L. PR DR | T
f_—-— e LR 16 Ll LG4 cll b ‘\
~ o TYasien mrybads s Y
/ A WAL GALE L \
rd 8 TFasemal (MadaD oo A Y
4 I. Gl ST LNCVWLIEYY
+ Project Estimation & Planning Poker

Human Resource Man agement Envir onmental Factor

+ Customer Involvement

+ WWorking Environment

* Interdependency among Modules
* Social Loafing

* Common Tools & Problems

* Team Composition

* Collaboration

Information Svstems & Information
Technology

* Communication System

* Information & Knowledge Sharing
System

* Bug Tracking System

* Management Tools

* Version Control Systems

Figure 14 Theoretical model for the success of Scrum.

€91

164

Future Study: A Hybrid Model

As described in the literature review section, agile methods have mainly been
utilized in relatively small-scale and simple projects and have not beenentifficested
in large-scale projects, although researchers have reported that |degarscaomplex
projects also benefited from suitably tailored agile development methods (Baivedrs
2002; Cao et al., 2004; Lindvall et al., 2004, Lippert et al., 2003). Both agile methods and
traditional methods have strengths and weaknesses as shown in the literagure revi
section. It would be very beneficial if we can come up with a new method that

accommodates the strengths while suppressing the weaknesses of both methods.

Inception
Business
Modeling

l

Sprint Meeting
Planning/Review Meeting
Sprint Backlog/Bumdown Chart

Product Backlog

Transition kee{ Elaboration
Deployment/ p— AnalysisiDesign

Configuration Daily Scrum Meeting
(5M, Teams, Product Owner)

I

Construction

Implementation/Test

Figure 15 A new hybrid model.

165

One solution for this issue is to create a new hybrid method by combining the
Scrum method with the Rational Unified Process (RUP) method. The rationale of the
selection of the Scrum method from among other agile methods is: (1) Scrundedya w
used agile method in the software industry, in particular in the United Statedlaell,

2007; Williams & Cockburn, 2003), (2) Scrum is powerful and easy to learn (Willson,
2009), and (3) the Scrum method claims to be suitable to any size of projects (Schwaber
& Beedle, 2002). Also, RUP is relatively easy to streamline (Ambler, 2005) pad af

the research, the author created a new hybrid model of RUP with Scrum. Figure 15

displays the new hybrid model.

Table 32
Disciplines of Hybrid Model and RUP
Dimensions RUP Hybrid
Phases e Inception e Inception
e Elaboration e Elaboration
e Construction e Construction
e Transition e Transition
o | Main e Business Modeling e Business Modeling
@ | Disciplines e Requirements e Analysis & Design
= e Analysis & Design e Implement
§ e Implement e Testing
e Testing e Deployment
e Deployment
Support e Configuration & e Configuration &
Disciplines Change Change Management
Management
e Project Management
e Environment

As shown in Figure 15, the four major phases and disciplines of RUP provide the

skeleton of the new method. The nine principles of RUP are reduced into seven

166

disciplines to streamline the process. All of the seven disciplines can bedutilizach
phase, but only the main disciplines are displayed in Figure 15. The business modeling
discipline is the main player in the inception phase. The analysis and the design
disciplines are mostly utilized in the elaboration phase.

The implementation and testing disciplines focus on the construction phase,
whereas, the deployment and configuration disciplines are in the transition pHdse. Ta
32 shows the seven disciplines of the hybrid model along with the original nine RUP
disciplines

The ceremonies (Daily Scrum meeting and Sprint meeting) and rolesg&M, t
product owner), and artifacts (product backlog, Sprint backlog, and burndown chart) of
Scrum can be embedded into the RUP phases without causing any trouble. The daily
Scrum meeting, the daily Scrum of Scrums, the Sprint planning meeting, and tite Spri
review meeting can be conducted iteratively in each RUP phase. The product amner c
create the product log as a part of the business modeling discipline. A Scsten ahso
can play the usual role defined in the Scrum process. The tasks defined in the product
backlog and the Sprint backlog can be accomplished and monitored through the daily
Scrum meeting and the Sprint meeting.

Figure 16 illustrates a typical phase of the hybrid model. As shown in the,figur
the left-most column contains the product backlog and burndown chart. These Scrum
artifacts can be shared by multiple Sprints, which are displayed on the top of eac
column. Each Sprint starts with the Sprint planning meeting and ends with the Sprint
review meeting. The seven RUP disciplines can be monitored through the daity Scr

meeting. Based on the progress of a project, the usage of the seven RUP disciplines wi

167

vary in each Sprint. For example, in the inception phase, the first Sprint mayfooeis
on the business modeling discipline than the other disciplines. However, the second and
third Sprint may utilize the analysis/design and the implementation/segpldies.
Figure 16 illustrates the inception phase, which consists of multiple Simntsach
phase can contain only one or two Sprints according to the size of a project.

As shown in both Figure 15 and Figure 16, we can still provide a straightforward,
methodical, and structured process in our hybrid method by keeping the four major
phases of RUP. However, the hybrid method will lose some degree of predictability

stability, and high assurance because of the agility of Scrum embedded into RUP

o o Spnnt Planning Meeting Sprnt Planning Meeting ... Spnnt Planning Meeting
g ?__ (Spunt Backlog) (Sprnt Backlog) (Sprnt Backlog)
o 8 o ; : (=, - ; w, . -
2w = | Business Modeling = | Business Modeling = | Business Modeling
=] = = =
Q92 ~]]
=3 .—,%i Z | AnalysisiDesign g‘ Analysis/Design g‘ Analysis/Design
- E = =
; Implementation/Testing i Implementation/Testing i Implementation/Testing
o @ o
g | Deployment/Configuration g | Deployment/Configuration g | Deployment/Configuration
e (7] 1)
Sprnt Review Meeting Sprnt Review Meeting ... Spnnt Review Meeting

Figure 16 The inception phase of a hybrid model.

However, the hybrid model is capable of handling rapidly changing business
requirements. It is expected that over-budget and delayed-schedule istbesedlced
due to the increased adaptability of the hybrid method. As explained, the four major

phases and six disciplines of RUP provide a method platform, and the ceremonies, roles,

168

and artifacts of Scrum offer management and tracking mechanism in the néiv hybr

model.

Limitations of Present Study

There are several limitations of this study. First, the most impomaitation of
this research is that the unit of analysis of this research was narrowed dow8¢outine
software development process as utilized by the two study firms. Henceding bf
this research may not be directly generalizable to the larger populationrenud ba
extended to wider populations. Second, interviewees were selected from various roles,
levels of experience, and positions, including developers, lead software endgiceans,
masters, project managers, and executive officers. Selection bias veagfifeated the
process of selection. Third, critics may argue that the number of intervievetsubjeoo
small to be representative of the population. Interviews with a non-random sample of a
few dozen members of the target population may not meet the statisticapasaam
necessary to project the results accurately or reliably to the total popukdurth, some
interviewees might not want to present themselves negatively, and this hesearoot
have recorded interviewees’ actual opinions. Finally, because the qualityof dat
collection and the research results is highly dependent on the skills of thelresaad
on the rigor of data analysis, the quality of the research might be influens&dl®wand

experience of the researcher.

169

Conclusions

This research identified the four main categories of critical issueshatidrges
that may affect the quality of the application of agile methods and illedteatheoretical
model which showed how agile methods can be adopted and utilized to effectively
support the development of mission-critical, small- and large-scale prajactpaper
also provided management guidelines to help organizations avoid and overcome
obstacles in adopting the Scrum method as a future software development method. The
lessons about Scrum obtained through the two case studies will be valuable assets to
many Scrum practitioners, and the suggested new framework for furthechesedhe
application of traditional and agile methods will provides a basis for furteeameh for

those who want to further explore hybrid software development methods.

170

REFERENCES

Advanced Development Methods, Inc. (2009). Scrum, Retrieved February 2, 2009, from
http://www.controlchaos.com.

Agar, M. H. (1980)The professional stranger: An informal introduction to ethnography
New York: Academic Press.

AgileLogic. (2006).Agile logic Retrieved March 20, 2009, from
http://www.agilelogic.com

Aiello, J. R., & Douthitt, E. A. (2001). Social facilitation from Triplett to eleoic
performance monitoringzroup Dynamics5(3), 163-180.

Alavi, M., & Carlson, P. (1992). A review of MIS research and disciplinary development.
Journal of Management Information Systen(d),845-62.

Ambler, S. (2005). A manager’s introduction to the Rational Unified Process (RUP).
Retrieved Feb 20, 2009, from
http://www.ambysoft.com/downloads/managersintroToRUP.pdf

Anacon, D. (1990). Outward bound: Strategies for team survival in an organization.
Academy of Management Journal(3J3 334-365.

Avison, D., Lau, F., Myers, M., & Nielsen, P. A. (1999). Action research.
Communications of the ACM, @2, 94-97.

Awad, M. A. (2005) A comparison between agile and traditional software development
methodologiesUnpublished doctoral dissertatiofhe University of Western
Australia, Australia.

Balijepally, V. (2005). Collaborative software development in agile methodslegie
Perspectives from small group reseaftonceedings of the Eleventh Americas
Conference on InformatioBystems, August 11-14, Omaha, NE.

Baroudi, J. J., & Orlikowski, J. W. (1989). The problems of statistical power in MIS
researchMIS Quarterly,181), 87-106.

Baskerville, R., & Myers, M. D. (2004). Special issues on action research in information
systems: Making IS research relevant to practice — ForWi& Quarterly,
28(3), 329-335.

Baskerville, R.L., & Wood-Harper, A.T. (1996). A critical perspective oroagesearch
as a method for information systems reseafohrnal of Information Technology,
11, 235-246.

171

Batra, D., Sin, T., & Tseng, S. (2006). Modified agile practices for outsourced software
projects.Proceedings of the Twelfth Americas Conference on Information
SystemsAcapulco, Mexico, August 4-6, 2006, 3872-3880.

Beck, K. (2000)Extreme programming explained: Embrace charieading, MA:
Addison-Wesley.

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et al.
(2001).Manifesto for agile software developmeRetrieved December 10, 2008,
from http://www.agilemanifesto.org/

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et al.
(2001).Principles behind the agile manifesi®etrieved January 19, 2009, from
http://www.agilemanifesto.org/principles.html

Benbasat, I., & McFarlan, W. (Eds.). (198Ah analysis of research methodologies in
the information systems research challergston: Harvard Business School
Press.

Benbasat, 1., Goldstein, K., & Mead, M. (1987). The case research strategy is efudie
information systemaMlIS Quarterly, 272), 369-368.

Benbasat, 1., & Zmud, W. R. (1999). Empirical research in information systems: The
practice of relevanc@llS Quarterly, 281), 3-16.

Boehm, B. (2002, January). Get ready for agile methods with@aneputer, 36L), 64-
69.

Boehm, B., & Philip, P. (1988). Understanding and controlling software ¢BSE.
Transactions on Software Engineering(1@), 1462-1477.

Boehm, B., & Turner, R. (2003, June). Using risk to balance agile and plan-driven
methodsComputer, 3@), 57-66.

Bond, C. F. (1982). Social facilitation: A self-presentational vismarnal of Personality
and Social Psychology?2, 1042-1050.

Bonoma, T. V. (1985). Case research in marketing: Opportunities, problems, and a
processJournal of Marketing Research, @3, 199-208.

Bowers, J., May, J., Melander, E., Baarman, M., & Ayoob, A. (2002). Tailoring XP for
large systems mission critical software developmrdceedings of the Second
XP Universe and First Agile Universe Conference on Extreme Programming and
Agile Methods100-111.

Brooks, F. P. (1995)he mythical man-montReading, MA: Addison-Wesley.

172

Cao, L., Mohan, K., Xu, P., & Ramesh, B. (2004). How extreme does extreme
programming have to be? Adapting XP practices to large-scale projects.
Proceedings of the $™Hawaii International Conference on System Sciertces,
10.

Charmaz, K. (2002). Qualitative interviewing and grounded theory analysis..In J. F
Gubrium & J.A. HolsteinHandbook of qualitative research’{2d., pp.675-
694). Thousand Oaks, CA: Sage.

Cockburn, A. (2007)Agile software development: The cooperative gaupper Saddle
River, NJ: Addison-Wesley.

Cottrell, N. B. (1972). Social facilitation, in C.G. McClintock (Ed&Experimental Social
PsychologyHolt, New York, 185-236.

Davies, L.J., & Nielsen, S. (1992). An ethnographic study of configuration maeagem
and documentation practices in an information technology centre. In K.E.
Kendall, K. Lyytinen, & J. I. De Gross (EdsThe impact of computer supported
technology on information systems developmémsterdam: Elsevier/North
Holland.

Dennis, A., Wixom, B. H., & Tegarden, D. (200Systems analysis and design with
UML version 2.0Hoboken, NJ: Wiley.

Denzin, N. K., & Lincoln, Y. S. (Eds.). (200(landbooks of qualitative resear¢and
ed.). Thousand Oaks, CA: Sage.

Eisenhardt, K. M. (1989). Building theories from case study reseacaldemy of
management review, (), 532-550.

Elsbach, K. D., & Sutton, R. 1. (1992). Acquiring organizational legitimacy through
illegimate actions: A marriage of institutional and impression management
theories Academy of Management Journal (85 699-733.

Erickson, F. (1973). What makes school ethnography ‘ethnogra@ioyificil on
Anthropology and Education Newslette2¥ 10-19.

Forrester Research, Inc. (2006prporate IT leads the second wave of agile adoption.
Cambridge, MA.

Fowler, M. (2005)The new methodologiRetrieved December 10, 2008, from
http://martinfowler.com/articles/newMethodology.html

Fruhling, A., & De Vreede, G. J. (2006). Field experiences with extreme progra:
Developing an emergency response systamrnal of Management Information
Systems, 42), 39-68.

173

Gall, D. M., Gall, P. J., & Borg, R. W. (200&8ducational research: An introduction.
Boston: Allyn and Bacon.

Glaser, B. G. (1978 heoretical sensitivity: Advances in the methodology of grounded
theory.Mill Valley; CA: Sociology Press.

Glaser, B. G., & Strauss, A. L. (1967The discovery of grounded theory: Strategies for
gualitative researchNew York: Aldine.

Glesne, C. (2006 Becoming qualitative researcheBoston: Pearson.

Hickey, A. M., & Davis, A. M. (2004). A unified model of requirements elicitation.
Journal of Management Information Systef4), 65-84.

Highsmith, J., & Cockburn, A. (2001, September). Agile software development: The
business innovationEEE Computer, 3@), 120-122.

Hodgetts, P. (2009Rroduct development with ScruRetrieved February 1, 2009, from
http://www.agilelogic.com

Isabella, L. A. (1990). Evolving interpretations as a change unfolds: How managers
construe key organizational evemd&ademy of Management Journal(Bg3 7-
41.

Jones, C. (1997Applied Software Measuremenitighstown, NJ: McGraw-Hill.

Kahn, W. A. (1990). Psychological conditions of personal engagement and
disengagement at workcademy of Management Journal(8J3 248-266.

Kaplan, B., & Maxwell, J. A. (1984). Qualitative research methods for evaluating
computer information systems. Thousand Oaks, CA: Sage.

Kaplan, R. S. (1985)he role of empirical research in management accounBogton:
Harvard Business School.

Kruchten, P. (2004)The rational unified process: An introductio8™(ed). Reading,
MA: Addison-Wesley Longman.

Larman, C. (2007)Agile and iterative developmeroston: Addison-Wesley.

Leffingwell, D. (2007).Scaling software agility: Best practices for large enterprises.
Upper Saddle River, NJ: Addison-Wesley.

Lévi-Strauss, C. (1966 he savage min(2" ed.). Chicago: University of Chicago
Press.

174

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., et al.
(2004). Agile software development in large organizati@Quenputer37(12), 26-
34.

Lippert, M., Becker-Pechau, P., Breitling, H., Koch, J., Kornstadt, A., Roock, S., et al.
(2003). Developing complex projects using XP with extensiGosputer 36(6),
67-73.

Leonard-Barton, D. A. (1990). A dual methodology for case studies: Synergisticaise of
longitudinal single site with replicated multiple sit€sganization Science,(3),
248-266.

Markus, M. L. (1983). Power, politics, and MIS implementat@ammunications of the
ACM, 26@6), 430-444.

Markus, M. L., & Lee, S. A. (1999). Special issues on intensive research in informat
systems: Using qualitative, interpretive, and case methods to study itilarma
technology — forwardVlIS Quarterly, 281), 35-38.

Marrington, A., Hogan, J. M., & Thomas, R. (2005). Quality assurance in a student-
based agile software engineering procBssceedings of the 2005 Australian
Software Engineering Conferen824-331.

Martin, P. Y., & Turner, B. A. (1986). Grounded theory and organizational res&eh.
Journal of Applied Behavioral Science (2P 141-157.

Miller, K., & Larson, D. (2005, winter). Agile software development: Human valnds a
culture.Technology and Society Magazine, IEEHA2436-42.

Myers, M. D. (1997). Qualitative research in information syst&mS. Quarterly, 212),
241-242.

Myers, M. D. (1999). Investigating information systems with ethnographiangse
Communication of the AIS(Z3), 1-20.

Myers, M. D. (2009)Qualitative research in business and managemssridon: Sage.

Nelson, C., Treichler, P. A., & Grossberg, L. (19%)ltural studies: An introduction.
New York: Routledge.

Orlikowski, W. J. (1991). Integrated information environment or matrix of control? The
contradictory implications of information Technologéccounting, Management
and Information Technologie$(1), 9-42.

Orlikowski, W. J. (1993). CASE tools are organizational change: Investigating
incremental and radical changes in systems developM&tQuarterly 17(3),
309-340.

175

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in
organizations: Research approaches and assumplfiwiosination Systems
Research, @), 1-28.

Parnas, D. (2006). Agile methods and GSD: The wrong solution to an old but real
problem.Communication of the ACM, @), 29.

Parrish, A., Smith, R., Hale, D., & Hale, J. (2004). A field study of developer pairs:
Productivity impacts and implication&€EE Software, 2b), 76-79.

Pettigrew, A. M. (1989). Issues of time and site selection in longitudinakrcbsea
change. In J. I. Cash, & P. R. Lawrence (Eddg information systems research
challenge: Qualitative research methogisp. 13-19)Boston: Harvard Business
School Press.

Pettigrew, A. M. (1990). Longitudinal field research on change: Theory andceracti
Organization Scrience,(3), 267-292.

Poppendieck, M., & Poppendieck, T. (20033an software development. An agile
toolkit. Upper Saddle River, NJ: Addison-Wesley.

Preston, A. M. (1991). The 'Problem' in and of management information systems,
Accounting, Management and Information Technolqdi@ly, 43-69.

Royce, W. (1970). Managing the development of large software sysftemaeedings of
IEEE WESCON]-9.

Satzinger, J. W., Jackson, R. B., & Burd, S. D. (200%ject-oriented analysis & design
with unified processBoston: Thomson Course- Technology.

Schach, S. R. (2004An introduction to object-oriented systems analysis and design with
UML and the unified procesBoston: McGraw-Hill.

Schman, L. (1987Plans and situated actions: The problem of human-machine
communicationCambridge: Cambridge University Press.

Schwaber, K. (1996). SCRUM development procBssceedings of ACM SIGPLAN on
Objected-Oriented Programming, Systems, Languages, & Applicd@DBSLA
'96), San Jose, CA.

Schwaber, K. (2004 Agile project management with Scruredmond, WA: Microsoft
Press.

Schwaber, K. (2007 he enterprise and ScruRedmond, WA: Microsoft Press.

Schwaber, K. (2008)What is ScrumRetrieved March 5, 2008, from
http://www.scrumalliance.org/system/resource/file/275/whatls Sgdim

176

Schwaber, K., & Beedle, M. (200Agile software development with Scrudpper
Saddle River, NJ: Prentice Hall.

Shine Technologies. (2003 gile methodologies survey resuN4toria, Australia.

Shingo, S. (1981).s%udy of ‘Toyota’ production system from industrial engineering
viewpoint.Osaka, Japan: Japan Management Association.

Simon, M. (2006). Global software development: A hard problem requiring a host of
solutions.Communication of the ACM, @), 32-33.

Sommerville, 1. (2004)Software Engineerind@oston: Addision-Wesley.

Spencer, J. (2005). There has to be a better Riageedings of Agile United, Experience
Report.

Standish Group International. (1994he Chaos reporRetrieved March 20, 2007, from
http://www.standishgroup.com/sample_research/chaos_1994 1.php

Standish Group International. (200Extreme ChaoRetrieved July 10, 2009, from
http://www.smallfootprint.com/LinkClick.aspx?fileticket=XJyTIOiQ®Zo3D &t
abid=63&mid=519

Stone, E. (1978Research methods in organizational behavislenview, IL: Scott,
Foresman.

Straus, A. L., & Corbin, J. M. (1988). Basics of qualitative research: Techniques and
procedures for developing grounded theofY €21.). Thousand Oaks, CA: Sage.

Straus, A L., & Coribin, J. M. (1990Rasics of qualitative research: Grounded theory,
procedures, and techniquddewbury Park, CA: Sage.

Suchman, L. (1955). Making work visibléommunications of the AGN8(9), 56-64.

Suchman, L. (1987Rlans and situated actions: The problem of human-machine
communicationCambridge: Cambridge University Press.

Sutton, R. I. (1987). The process of organizational death: Disbanding and reconnecting.
Administrative Science Quarterly, @2, 542-5609.

Takeuchi, H., & Nonaka, I. (1986, January- February). The new new product
development gamédarvard Business Review37-146.

Thomas, M. (2001). It projects sink or swiBritish Computer Society Review

Turner, B. A. (1983). The use of grounded theory for the qualitative analysis of
organizational behaviodournal of Management Studies(240), 333-348.

177

Van Maanen, J. (1982ntroduction in varieties of qualitative researddeverly Hills,
CA: Sage.

Watson, R. T., Kelly, G., Galliers, D., & Brancheau, C. (1997). Key issues in informat
systems management: An international perspecimenal of Management
Information System43(4), 91-115.

Weick, K. (1994). Theoretical assumptions and research methodology selection. Boston:
Harvard Business Press.

Williams, L., & Cockburn, A. (2003, June). Agile software development: It's about
feedback and changéomputer36(6), 39-43.

Williams, K. D., Harkins, S. G., & Karau, S. J. (1991). Social loafing and social
compensation: The effects of expectation of co-worker performdaaeal of
Personality and Psychology, @1, 570-581.

Williams, L., & Kessler, R. (2000). All | really need to know about pair programming
learned in kindergartei@ommunication of the ACM, @3, 108-114.

Willson, C. D. (2009)A brief introduction to SCRUM: An agile methodololylatincor
Inc. Information Technology Management Consulting.

Wynn, E. (1979)0Office conversation as an information mediwmpublished doctoral
dissertation, University of California, Berkeley.

Yin, R. K. (1989a)Case study research: Design and meth@&sserly Hills, CA: Sage.

Yin, R. K. (1989b). Research design issues in using the case study method to study
management information systems. In J. |. Cash, Jr. & P. R. Lawrence {td@s.),
information systems research challenge: Qualitative research metBod®n:
Harvard Business School Press.

Yin, R. K. (1993) Applications of case study researdtewbury Park, CA: Sage.

Yin, R. K. (2003).Case study research: Design and meth@sed). Thousand Oaks,
CA: Sage.

Ytterstad, P., Akselsen, S., Svendsen, G., & Watson, R.T. (1996). Teledemocracy: Using
information technology to enhance political waSQ Discovery, 1

Zuboff, S. (1988)In the age of the smart machir¢ew York: Basic Books.

178

APPENDICES

179

APPENDIX A. PRODUCT BACKLOG

S search <

¢ Favorites

< =2

| search -

Sprint Planning

e ault. asp:

=
F2 ESh 200 blocked

ABF Check

180

VIPCZh7DKGK 3p Iy VbFMISe 2V ZMNFZpy SrmnfS+OcDNCk7roq Toe93C CadSNG== Go

Release Plannin:

[options

riy Home

Sprint | Task | Test Planning
dd Sprint
December Edit | Close| [Sprint 06-1 Edit | Activats| [Sprint 06 Edit | Activate| [SpHnt 06-3 Edin | Activate| -
End Date os 145.75 ||End Date o6 152.25 ate: 2 ooe 102.50 ||end Dace - 94.00
= Coded Control--Limited 5.00 || = Imaas Caching problam .00 UCRIBR updats (2292) 20.00 || % Cus cards (S122) =.00
ook for # Kaizan St SalactionsList 15.00 || % Men Custody: Testing an 100 || % Bond Paymaents: Testing 10.00
= Add Housing A z.00 Screans (51307 Fixing (295%) and Fixing (392345)
tab o 1 Jail-Surarmit Linking (3862) 2.00 || s caz: Tasting and 10.00 || x Agency Billing: Testing and zo.00
(4532a Bonds: Testing and Fixing 7.00 Fixing (3965a) Fixing (3240)
* Bonds--Remaove “Apply To® =.00 (39342 itrants: Tasting and 10,00 Movrnant: Tasting and is.00
Functionality (3934B) SYINV for Kaizen 1s.00 Fixing (I9&&c) Fixing (3353)
= Inrn armant Tab 200 || = Settings sditor zor .25 Scheduiad Evants: Tasting 1000 || = =: Testing and Fixing =.00
(s3ve % Bonds--Rarmaining Dus s.00 and Fixing (29272 a
= Evant Viewsr Updates: =00 Caloulation (114257) * Bocking crdsi Tasting .00 || Intake & Ral Records: =.00
(3937 # Tirme Starmp Control Issuss z.00 and Fixing (46226) d Fixing (4632)
= InFnate Screen Housing Tab =.00 (11zsse) * Property Issus (S07S) is.00 || = Tasting and Fixing =.00
(3ze8a) % Jail Marge Part 11 5.00 || x Jail Account Inmate 20,00
= Faleasa: add notes fiald =.00 Narnarnargs (3974) counts (8736 = Incidents: Testing and =.00
Release: | (All) ~ Team: (all) ~ |sprint: | December ~||Filter: |~ |Find: Add Backlog Itermn
Backlog Items 2 Mext b Export {.xls) | Custc
Backloa
Rank ID MName Category Owner Status PriorityC Estimate Sprint
1892 Problermn 118951 Medical History (=] Bug Future 3.00 December
1923 Gridchitecture(2) 1 Enhancement In Progress 20.00 December
1896 MName Control (S203)(2) £ Enhancement In Progress 5.00 December
1899 Inmate Release: Testing and Fixing (S042)(2) £ Exception In Progress s.00 December
1915 Offense: Testing and Fixing (4633a)(2) €1 Exception In Progress 3.00 December
1916 Arrests: Testing and Fixing (4633b)(2} €1 Exception In Progress 3.00 December
1917 Holds: Testing and Fixing (3953)(2) &£ Exception In Progress S5.00 December
1801 Build Practice Data Set £ Enhancement Future s.00 December
1199 Release: add notes field (4632c) €3 enhancement Future 3.00 December
1200 Kaizen Look n Feel (Dec) €1 Enhancement Future 1s.00 December
1202 wvisitation (3939} £ Enhancement Future 25.00 December
1262 Booking Process: Testing and Fixing (3865) E£1 Exception Future s.00 December
1187 Add Housing Assingment tab to Inmate Screen (4632a £ Enhancement In Frogress
1191 Bonds--Remowve “Apply To" Functionality (3934b) Enhancement Future
1192 Inmate Movement Tab (3968a) £ Enhancement In Progress
1194 Ewvent Viewer Updates: (3937} £ Enhancement Future
1182 <Coded Control--Limited lock for expired (4894) € Enhancement Future
1198 Inmate Screen Housing Tab (3968a) £ Enhancement Future
1204 Required Meds: Testing and Fixing (3895) E1 Exception Future
1205 Locations: Testing and Fixing (3932) €1 Exception Future
1206 Flags: Testing and Fixing (3935) €1 Exception Future
1209 Medications: Parameter to turn off events (3895) £ Enhancement Future
1211 Bond Payments totals not recalculating (114250) £ Exception Future
1214 Jail Areas Issues (115176} £ exception Future
1219 Location Screen Issues (11517&) €1 Exception Future

181

APPENDIX B. SPRINT BACKLOG

182

= =1e3]
f9] Elle Edit Wiew Insert Format Tools Data Window Help Type stion For help (= — & 3¢
DS bl g o (155] G| -2 = - 2] | bl 55 -5 -|B r u |[E|= = 1] $ % > 8 S8 SR | [O A -
Ea4 - A Editing behavior
1K) a1 B I _c T o7 E = = T [T) e Tt 1™ N [=] 3 [=] =3 s T o v "2 E3 o~
1 Oct Sprint - Sprint Backio: . sl ol s] o & w| o | o]
x .- s D AR AR ERERE E|lZ |z |28 |3
7 HERERERERE
2 & |z (s |23 | s [|2 (8|2 |2
N = ~H- - = - B BB aloioicisicis — I [=l =] [l [=]l[=
=5 [ETT) Intake Screen
24 |6 | wess intake: Select nmate Screen; collesting data et
25 a7 4554 Intake: status barferror handler in controlled Form Bl L) F2
s [ws | wses i parameters
27 s [ases v ks & art 5d3 [Irrmiois rEEora.]
28 [TE1 [wses iri ake: new code contral
29 5o 5 incake: Tezting
ToR | TAeAT € [Bond Pasments: When a pasment i= added. two pagment entries
= Show up in the bond pagment tab on the bond soreen. Also on the
bond pasment soreen. after 4 bond pagment is saved. a phantom
20
5 [300 L I
a6 E3] Lo I
ar 7)
£ in Frogress|
33 = P s]
o) Tested controis n oo)
o Interiaces Famo F])
az =2 o = £
43 Bto i ducno: I
TS i E diting betavicr egrezs] EL I
a5 i W alidation [(added after sprint] i)
S 3 eolurmns {added after Zprint] Fil
a7 T 2 alculated column to pad refiey vales (1 Zorinal Eil I I
157 | 114255 | 2.6 | © |Bond: The -Giearcd By~ ficld needs 1o be read onis (on the oic: L B
exception tab onig) When the Gle.
Flelds below should be editab
48
5z
53 |z | soez
54 |76 | Soaz S W
5 | vrr | moes T
e [1o | soez
57 [181 | soaz
e [e | soaz
sa |85 [soaz h
o |83 [sS4z i
&1 |7 Sotz | T
sz Soaz 3
&2 Soaz il
3 EE i P I N I B I B I N I B
5 EuIES
s 08
&7 EuLES
56 ey Felease Housing
sa [250| ®1za 10 | Kaizen Ed
7o [272| 39660 T T 7 Upaate o Femoved|
oa | 369 7 | 12 [Medications: Update the I0g to contain the medication and dose
73 when created.
Zie| e85 | mz | 13 Stion= tab on the Inmate sereen Showld be GO G G N I B R
- ez cations from Inmate Soreen parameter is
a5 2) set to trus
[52) 7 e T =
%6363 | © | 15 [Log. Add the
o Format the tab I
a1 ey E‘ 2 2
2z Testi T
55 W6 | 46aeb | 7 [@ Add the inmate incident tab to the inmate soreen.
£.0d logic for oreats incident button] I |
a5 F i bugs round by et Tite diu £ T T BN N I N) N N
2 Forrmat the tab and dispisy ncigent InFormat Teci T el el el 1zl lololololo
ar Tore i 3)) G
= 301 116796 U ng 3 cmpurch record 3 soresn Goes not Show the I CI I I T T I A I B B B
as Purchazes soreen.
= 302 | 117003 Cannot ACCEPT a record after booking an inmate and entering | (I I I T N I A I I N R
! 101 Risk score.
- Jor [ze4 | izw T 1 3% rutesh unit testina st T stololelolelolslolslals
4 4 » w5 Sprint Backlon { Team Burndown o Tndvidual Burndown £ Stats ¢ Retrose | < >
Ready raur

183

APPENDIX C. BURNDOWN CHART

184

E3 Microsoft Excel - Jail 200510 Sprint.xls

16 |Buradown
TASKS

ideal Burndown

————a 0\

o + PN o 5 N > 5 " . s e e P N
N JNC S S A B S B S S S S R A R S

Oct Sprint - Individual Burndown Chart

Note: amount of work shown per person notimportant. Focus on the angle of the line: is someaone stalled? Running out of work?

[

e e | el |w) el wlwlw ol o e el n o] o= o
NI R E S s E G R S N E G

=
=]

-
-

z
-
-
=

Individual Burndown (Stats (Retrosper ¢ | . _ =l

i
g
L &

185

APPENDIX D. C# CODING STANDARD

186

C# Coding Standards

Introduction

The following is a paragraph from a Microsoft dagygideline found in Microsoft
Visual C# .NET.

"The .NET Framework's managed environment allowsldpers to improve their
programming model to support a wide range of fonellity. The goal of the .NET
Framework design guidelines is to encourage censigtand predictability in public
APIs while enabling Web and cross-language intiegrdt is strongly recommended
that you follow these design guidelines when d@ietpclasses and components that
extend the .NET Framework. Inconsistent designradiyeaffects developer
productivity. Development tools and add-ins can same of these guidelines into de
facto prescriptive rules, and reduce the valu@ontanforming components.
Nonconforming components will function, but notheir full potential.”

Though this statement refers specifically to Ifp@@velopment, it applies just as well to
all our C# development. Our goal is to create toales easily maintainable, expandable
and conforming to standards that help us intertg®ith other systems, code pieces or
applications.

File, Class and Method headers

File Headers

The copyright notice and the CVS information aréhat will appear at the top of a .cs
file. These, along with top and bottom separats;, vaill account for the first 4 lines of
each file.

Il
Il Copyright 2004 ABC Technologies Inc. All Rigiteserved.
// Version $Id: $

I

Class/Delegate/Interface Headers

Class headers will be in xml format to facilitdie fiautomatic documentation feature.
Some of this header may be entered automaticgthyiire using Visual Studio. This is
the general format:

I <summary>

/Il Short description of the Class
Il </[summary>

public class MyClass

(...

187

If the class description is longer than one lidie, @ remarks section. The remarks section
may be as many lines as needed to fully descrbeldiss. Here is an example:

Il <remarks>

/Il This is a full description of the class ...
...

Il <lfremarks>

Method/Event Handler Headers

Function headers will be in xml format to facilitate tutomatic documentation feature.
Some of this header may be entered automaticaiyifare using Visual Studio. This is
the general format:

Il <summary>

/Il Short description of the Class

Il </[summary>

Il <param name="row">Row we're looking for</param>
/Il <returns>description of return value</returns>

public bool rowExists(DataRow row)

{

If there is a need for a description longer thamlme, use the remarks tag as described
above, in the File Headers section.

Exceptions - if there are any exceptions throwth@function, theynust be
documented inside the exception tag in the funtteader:

/Il <exception> exception name </exception>

Properties Headers

Class properties should be documented in the fimitpmanner:
Il <summary>
/Il Name property
Il </[summary>
Il <value>
/Il A value tag is used to describe the property va lue
I <lvalue>

public string Name

{

get
{

188

A remarks tag (as described above) may be useati@r detailed explanations, but
generally will not be found in properties.

Documenting Code

The following points are recommended commentingrtegcies.

* When modifying code, always keep the commentingratd up to date.

* Avoid adding comments at the end of a line of cedd:line comments make
code more difficult to read. However, end-line coenis are appropriate when
annotating variable declarations, in which casgn all end-line comments at a
common tab stop.

* Avoid clutter comments, such as an entire lineste#rasks. Instead, use white
space to separate comments from code.

* Prior to deployment, remove all temporary or exdours comments to avoid
confusion during future maintenance work.

* If you need comments to explain a complex secfi@ode that you are writing,
examine the code to determine if you should rewriteat all possible, do not
document bad code — rewrite it. Although perfornesstmould not typically be
sacrificed to make the code simpler for human aop$ion, a balance must be
maintained between performance and maintainability.

» Use complete sentences when writing comments. Catarsbould clarify the
code, not add ambiguity.

* Comment as you code because you will not likelehawe to do it later. Also,
should you get a chance to revisit code you hawtemwrthat which is obvious
today probably will not be obvious six weeks from now.

» Use comments to explain the intent of the codey $heuld not serve as inline

translations of the code.

« Comment anything that is not readily obviouthencode.

» Use comments on code that consists of loops ai@bognches. These are key
areas that will assist source code readers.

» Throughout the application, construct commentsyusinniform style with
consistent punctuation and structure.

» Separate comments from comment delimiters withendiace. Doing so will
make comments obvious and easy to locate whendestteout color clues.

Naming conventions

Capitalization Rules

The following table summatrizes the capitalizatides and provides examples for the
different types of identifiers.

189

Identifier Case Example
Class Pascal AppDomain
Enum type Pascal ErrorLevd
Enum value Pasce FatalError
Event Pascal ValueChange
Exception class Pascal WebException
Note Always ends with the suffiException.
Reac-only Static Pasce RedValue
field
Interface Pascal IDisposable
Note Always begins with the prefil.
Method Pascal ToString
Namespace Pascal System.Drawing
Paramete Came typeName
Variable Camel fourL eafClover
Property Pascal BackColor
Protecte Came redValue
instance field Note Rarely used. A property is preferable
using a protected instance field.
Public instanc Pasce RedValue
Field Note Rarely used. A property is preferable

using a public instance field.

Name Guiddines

The following points are recommended naming teclasq

Routines

» Avoid elusive names that are open to subjectiegpnttation, such as
AnalyzeThis () for a routine, okxK8 for a variable. Such names contribute to
ambiguity more than abstraction.

* In object-oriented languages, it is redundantdtude class names in the name of
class properties, such Bsok.BookTitle . Instead, usBook.Title.

» Use the verb-noun method for naming routines taidbpm some operation on a
given object, such a3alculatelnvoiceTotal ()

Variables

* Append computation qualifiers\g, Sum, Min, Max, Index) to the end
of a variable name where appropriate.

» Use complementary pairs in variable names, sushréshax, begin/end, and
open/close.

190

Since most hames are constructed by concatenatingaswords, use mixed-
case formatting to simplify reading them. In addifito help distinguish between
variables and routines, use Pascal casbafr(latelnvoiceTotal) for
routine names where the first letter of each wehpitalized. For variable
names, use camel casidgcimentFormatType) where the first letter of each
word except the first is capitalized.

Even for a short-lived variable that may appeaniy a few lines of code, still use
a meaningful name. Use single-letter variable nasuesh as, orj , for short-
loop indexes only.

Do not use literal numbers (magic numbers) orditstrings, such ari=

| To 7 . Instead, use named constants, suchFasi = 1 To
NUMDAYS IN_WEEK for ease of maintenance and understanding.

Miscellaneous

Minimize the use of abbreviations, but use thoakybu have created
consistently. An abbreviation should have only meaning and likewise, each
abbreviated word should have only one abbrevigtionexample, if you use min
to abbreviate minimum, do so everywhere and das®min to also abbreviate
minute.

When naming functions, include a description oftilae being returned, such as
GetCurrentWindowNamey).

Avoid reusing names for different elements, suchrasitine called
ProcessSales() and a variablealled iProcessSales.

Avoid homonyms, such as write and right, when ngralaments to prevent
confusion during code reviews.

Abbreviations

To avoid confusion and guarantee cross-languagi@pdration, follow these rules
regarding the use of abbreviations:

Do not use abbreviations or contractions as paidewtifier names. For
example, us&etWindow instead ofGetwin .

Do not use acronyms that are not generally accepted computing field.
Where appropriate, use well-known acronyms to cepéengthy phrase names.
For example, usel for User Interface andLAPfor On-line Analytical
Processing.

When using acronyms, use Pascal case or camébcaseonyms more than two
characters long. For example, use HtmIButton ofButton. However, you
should capitalize acronyms that consist of only tvaracters, such as
System. |0 instead ofSystem. lo.

Do not use abbreviations in identifiers or paramedenes. If you must use
abbreviations, use camel cégeabbreviations that consist of more than two
characters, even if this contradicts the standackaiation of the word.

191

Avoiding Type Name Confusion

Different programming languages use different teomdentify the fundamental
managed types. Class library designers must aswig language-specific terminology.
Follow the rules described in this section to atgpe name confusion.

Use names that describe a type's meaning ratimendimaes that describe the type. In the
rare case that a parameter has no semantic méaymigd its type, use a generic name.
For example, a class that supports writing a waoietlata types into a stream might have
the following methods.

void Write{double value);

Do not create language-specific method names,ths following example.
void Write(double doubleValue);

Case Sensitivity

To avoid confusion and guarantee cross-languagi@pdration, follow these rules
regarding the use of case sensitivity:

» Do not use names that require case sensitivity Joaents must be fully usable
from both case-sensitive and case-insensitive &gags Case-insensitive
languages cannot distinguish between two namemilig same context that
differ only by case. Therefore, you must avoid sitigation in the components or
classes that you create.

» Do not create two nhamespaces with names that diffeiby case. For example, a
case insensitive language cannot distinguish battedollowing two
namespace declarations.

namespace ee.cummings;
namespace Ee.Cummings;

» Do not create a function with parameter namegiifiar only by case. The
following example is incorrect.

void MyFunction(string a, string A)

» Do not create a namespace with type names ffeatafly by case. In the
following examplePoint p andPOINT p are inappropriate type
names
because they differ only by case.

System.Windows.Forms.Point p
System.Windows.Forms.POINT p

» Do not create a type with property names thégrdainly by case. In the following
examplejnt Color andint COLOR are inappropriate property
names
because they differ only by case.

int Color {get, set}
int COLOR {get, set}

192

Do not create a type with method names that differ only by case. Inltwerig
examplecalculate andCalculate are inappropriate method names
because they differ only by case.

void calculate()

void Calculate()

Namespace Naming Guidelines

The general rule for naming namespaces is to use the company name follahed by
technology name and optionally the feature and design as follows.

CompanyName.TechnologyName[.Feature][.Design]

For example:

ABC.
Microsoft.Media.Design

Prefixing namespace names with a company name or other well-éstdismnd
avoids the possibility of two published namespaces having the same name. For
exampleMicrosoft.Office Is an appropriate prefix for the Office Automation
Classes provided by Microsoft.

Use a stable, recognized technology name at the second level of a hierarchica
name. Use organizational hierarchies as the basis for namespace hierarchies
Name a hamespace that contains types that provide design-time functimnality
base namespace with th&esign suffix. For example, the
svstem.windows.Forms.Desian Namespace contains designers and related classes
used to desigBvstem.windows.Forms based applications.

A nested namespace should have a dependency on types in the containing
namespace. For example, the classes iB¥seem.Web.Ul.Design depend on the
classes irBvstem.Web.Ul. However, the classes 8ystem.Web.UI do not

depend on the classesSystem.Web.UI.Design.

You should us®ascal case for namespaces, and separate logical componeitits wi
periods, as iMicrosoft.Office.PowerPoint . If your brand employs
nontraditional casing, follow the casing defined by your brand, even if ét@svi
from the prescribed Pascal case. For example, the nameliexded/ebobjects
andee.cummings illustrate appropriate deviations from the Pascal case rule.
Use plural namespace names if it is semantically appropriate. Foplexaise
System.Collections rather tharBystem.Collection . Exceptions to this
rule are brand names and abbreviations. For exampkyste®.1O

rather than System.IOs.

Do not use the same name for a namespace and a class. For example, do not
provide both @ebug namespace andiebug class.

Finally, note that a namespace name does not have to parallel an assandly
For example, if you name an assem¥diyCompany.MyTechnology.dll it

193

does not have to contairMyCompany.MyTechnoiogy hamespace.

Additional Class Naming Guidelines

The following rules outline the guidelines for nagclasses:

» Use a noun or noun phrase to name a class.

» UsePascalcase.

» Use abbreviations sparingly.

* Do not use a type prefix, such@r class, on a class name. For example, use
the class nameilestream rather tharCFileStream

» Do not use the underscore character (_

» Occasionally, it is necessary to provide a classehat begins with the letter |,
even though the class is not an interface. Tlaippsopriate as long as | is the first
letter of an entire word that is a part of the<la@me. For example, the class
nameldentitystore is appropriate.

* Where appropriate, use a compound word to namevadelass. The second
part of the derived class's name should be the pathe base class. For
example ApplicationException is an appropriate name for a class derived
from a class namegxception , becausépplicationException isa
kind of Exception . Use reasonable judgment in applying this rule. For
exampleButton is an appropriate name for a class derived fromtrGl
Although a button is a kind of control, makingnBol a part of the class
name would lengthen the name unnecessarily.

Additional Parameter Naming Guidelines

It is important to carefully follow these parameataming guidelines because visual
design tools that provide context sensitive hetpaass browsing functionality display
method parameter names to users in the desigreefolldwing rules outline the naming
guidelines for parameters:

» Usecamel case for parameter names.

» Use descriptive parameter names. Parameter naodgd bh descriptive enough
that the name of the parameter and its type casdzbto determine its meaning
In most scenarios. For example, visual design tbatgrovide context sensitive
help display method parameters to the developgeestype. The parameter
names should be descriptive enough in this scetaesitow the developer to
supply the correct parameters.

» Use names that describe a parameter's meaningtreth@ames that describe a
parameter's type. Development tools should proweaningful information
about a parameter's type. Therefore, a paramedens can be put to better use
by describing meaning. Use type-based parametesgparingly and only

where it is appropriate.

» Do not use reserved parameters. Reserved paraaretprs/ate parameters that
might be exposed in a future version if they aegled. Instead, if more data is
needed in a future version of your class libraag, @new overload for a method.

194

» Do not prefix parameter names with Hungarian tygiation.

Format

Formatting makes the logical organization of trgecabvious. Taking the time to ensure
that the source code is formatted in a considtagital manner is helpful to you and to
other developers who must decipher the source code.

The following points are recommended formattingrhegues.

Braces

» Align open and close braces vertically wheredgairs align, such as:
for(i =0;i<100; i++
) {

else

This is the default behavior of Microsoft tools dnel common coding style for
all public C# files.
» Braces are required on all constructs that at@ypossibility of braces.

White Space

» Use tabs for indenting lines. This allows différasers to set tabs in whatever
manner they choose.

* Indent code along the lines of logical constarctWithout indenting, code
becomes difficult to follow. Indenting the codelggeeasier-to-read code, such
as:

If ... Then
If ... Then

Else

End
If Else

195

End If

» Lines of code and comments shall not exceed didénos. Lines that are longer
than 100 columns should be extended to a newtlmesmsonable, readable
location.

» Use spaces before and after most operators vaiaym b does not alter the intent
of the code.

For examplex =y * x; instead ok=y*x ;

» Use white space to provide organizational clusstice code. Doing so creates
"paragraphs” of code, which aid the reader in cehmanding the logical
segmenting of the software.

* When aline is broken across several lines, maktavibus that it is incomplete
without the following line by placing the concateoa operator at the end of
each line instead of at the beginning.

» Where appropriate, avoid placing more than onerstatt per line. An exception
is a for loop, such &sr (i=0; i<100; i++).

Horizontal Spacing

Horizontal spacing for keywords/methods followedilgarenthesis use the following
format. The engineer can use their own discreboadding a space between the
keyword/method name and the opening parenthesisednvden the closing parenthesis
and the opening brace. The coding standard dogisa@space to be present after an
open parenthesis and a before a closing parenthagiexpression between the
parenthesis follows the above rule for horizontal space.

Correct Examples:
classMethod(oneParameter);
classMethod (oneParameter);

if((screenWidth <=80) && ('screenHeight > 20) X
if ((screenWidth <= 80) && (screenHeight > 20)){
Incorrect Examples:

classMethod(oneParameter);
if((screenWidth<=80)&&(screenHeight>20)X

Modules

Break large, complex sections of code into smal@nprehensible modules.

Exception Handling
» Developers are responsible for what do in respmnseceptions.

196

* In case of exceptions, give a friendly messagegtaiser only if:
« The message can be understood by the user.
« The message conveys useful information to the user.
» Do not write try-catch in all your methods. Userily if there is a possibility that
a specific exception may occur. For example, if yeunaiting into a file, handle
only FilelOException.

* You may write your own custom exception classesedjuired in
your application. Do not derive your custom exceptiom® the base
class SystemException. Instead, inherit from ApgibmException.

Commenting

C# provides a mechanism for developers to docutheinicode using XML. This
document contains the standard keywords and fokmeatsll use to ensure the help files
are universally useful.

In source code files, lines that begin with /// #rat precede a user-defined type such as
a class, delegate, or interface; a member such as a festd, goperty, or method; or a
namespace declaration can be processed as conamepisced in a file.

Items that are documented in this fashion are

» Classes
* Delegates
* Interfaces
Members
o Field
0 Property
o Event
o Method

The summary tag is the most basic of tags. Thiedlstv is the complete set currently
supported by VS.NET. The ones marked with a *faenes | feel are the most useful.

« The ctag gives you a way to indicate that textiwia description should be
marked as code. Use code to indicate multiple dsesode.

* code*
The code tag gives you a way to indicate multipkeslas code. Use <c>to
indicate that text within a description should kerked as code.

* example*
The example tag lets you specify an example oftbavge a method or other
library member. Commonly, this would involve useia code tag.

e exception*
The exception tag lets you specify which exceptioksss can throw.

197

* include
The include tag lets you refer to comments in ardite that describe the types
and members in your source code. This is an ditegria placing documentation
comments directly in your source code file.

* para
The para tag is for use inside a tag, such as skemar <returns>, and lets you
add structure to the text.

* param*
The param tag should be used in the comment fetfeoch declaration to
describe one of the parameters for the method.

e paramref
The paramref tag gives you a way to indicate thatrd is a parameter. The
XML file can be processed to format this parametespme distinct way.

e permission*
The permission tag lets you document the accessneimber. The
System.Security.PermissionSet lets you specifysadoea member.

* remarks*
The remarks tag is where you can specify overyidevmation about a class or
other type. <summary> is where you can describenérabers of the type.

e returns
The returns tag should be used in the commentrfathod declaration to
describe the return value.

* see
The see tag lets you specify a link from withirt.télse <seealso> to indicate text
that you might want to appear in a See Also section.

» seealso*
The seealso tag lets you specify the text thahyigat want to appear in a See
Also section. Use <see> to specify a link from wmitext.

e summary*
The summary tag should be used to describe a méonlaetype. Use <remarks>
to supply information about the type itself.

» value*
The value tag lets you describe a property. Natiethen you add a property via
code wizard in the Visual Studio .NET developmenirenment, it will add a
<summary> tag for the new property. You should thenually add a <value>
tag to describe the value that the property represents.

Here are my suggestions for what to include fon @athe types we will be
commenting:

Classes, Delegates and Interfaces

| suggest we include the summary and optionalfgarks to further clarify or provide
more detail of the type's behavior.

198

Required: summary Optional: remarks
What about: permission?

Il <summary>

/Il This is a short description of the class Sample

Il </[summary>

Il <remarks>If more needs to be said about this cl ass,
place those comments

/Il in the remarks section.

Il <lremarks>
public class Sample

{

We may also want to require the permission flagdate the visibility of the type. Do
you feel this would be valuable to have this shothé documentation?

Member fields

Required: summary
Optional: remarks
Question: permission?

public class Sample
{
Il <summary>
/Il short description of value
Il </[summary>
Il <permission>private</permission>
private int value;

Member properties

Required: summary
value
Optional: remarks

I <summary>
/Il Name property
Il </[summary>
Il <value>
/Il A value tag is used to describe the property va lue
I <value>
public string Name
{
get

199

Member methods and event handlers

Required: summary
returns
params (only if present)
exceptions (only if any are thrown)

Optional: remarks
Question: permission?

/Il <summary>

/Il Short description

/Il </[summary>

/Il <param name="sender">description of sender</par am>
/Il <param name="e">description of e</param>

Il <returns>void</returns>

private void toolBar_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)

{

These are only my suggestions. Any of this is uplébate, so please share your
opinions. | suggest we require the returns fieltl)di it be known if you disagree.

What do you think about having the permission metl? Necessary? Not enough need?

And what about formatting? There are 3 differepe/shown here - do you have a
preference? | use the one line method when thedireeshort. But on multi-line entries,
which of the 2 outlined above work for you?

Since .Net was release, MS added the ability td*tigkto surround multi-line text.
This is not put in automatically, so | suggest thahow we use the /// method. But
maybe you disagree??

Note: We are able to define any tags we want asutfpert is XML. But in order to take
advantage of some cool features, | suggest whegeddefined tags.

200

APPENDIX E. INTERVIEW QUESTIONS

201

Interview Questionsfor Developers and Quality Assurance
Per sonnel

Team
e How many teams are involved in the project?
e When ateam is composed, what kinds of characteristics (programming skills,
knowledge, experiences, etc.) of developers are considered?
e How many people are working on the project in each team? (specify by title)
o Software Developer:
0 Quality Assurance Personnel:
o Product Manager:
e Who else was on the team?
e What are the main issues and challenges in composing a team and working with
other team members?

Version Control
e What kinds of version control systems are used?
e How often build (or integration) is done?

Customer
e Did customers attend any team meetings, if so, what kind of meeting and how
often do they attend?
e How do you get feedback from customers?
e How often do you get feedback from customers?
e How do you reflect customer feedback on you project?

Working environment
e What is your working environment? (Open environment, cubicle, or personal
office)
e What are the pros and cons of your environment?

Debugging
¢ What methods were used for debugging? (Unit testing, system wide testijig), et
e How often do you integrate the changes?
e Who are responsible for testing (developers, Quality Assurance persoanel, et

Management Tools
e What tools do you use to manage and track projects?
e How do you share knowledge and skills with other developers?

Scrum
e Please describe the pros and cons on each item.

202

Daily Scrum meeting

Sprint planning meeting

Sprint review meeting

Product backlog

Sprint backlog

Scrum Master

e How often and how long do you have the following meeting?
a. Daily Scrum meeting
b. Spring planning meeting
c. Sprint review meeting

~P oo oTw

e Who usually attend the following meeting?
d. Daily Scrum meeting
e. Spring planning meeting
f. Sprint review meeting
Who creates a product backlog and a sprint backlog?
How do you estimate the time for each task in sprint backlog?
How much time is allocated to design?
How much time is allocated to documentation?
What is Scrum Master’s responsibility?

Unified Process
e What are the roles of Unified Process in your software development process?
e How does Unified Process help to implement Scrum?
e Are there any issues and challenges in using Scrum with Unified P?ocess

General |ssues
e What things did and did not work for you on a project?
e What are the most interesting and unique aspects of Scrum with Unified Process
e What did you learn, what would you do next time, and what advice do you have
for others?

203

Interview Questionsfor Executive Managers

Project description:
e What projects were you involved and are you working on?
e What's the nature of project?
e How long does each project take to be completed?

Bug Rate, Development Time and Cost

e What is your bug rate in terms of per line of code, per working hours, and per
module?

e What is your development time per module and per project?

e What is your development cost per module and per project?

e Compare to a similar project that you completed using traditional metham is y
bug rate/development time/development cost increased or decreased?

e What are the factors that attribute to increasing/decreasing buanrhte
development time and development cost?

204

APPENDIX F. CLASS DIAGRAM

205

DIAGRAMS

Class Diagram
+haight; it ogattiay: beotosnafiise afgoment.char=T oem 908tz 0
o?ﬂ?:ill N &sgmm;uqm pdaloatert: Even) Learnaos:beiasnatise iaen:eelinere
e it s : belean - sk char =l " .)
vindoembar muto: 0 ‘ (motded:borkean= iy msortaslga{efee: ¢ chr): buloan
ol ot 0 T pskin: st)b
i Lelnag: =0 ‘ o bt insedPlaipo3:in ¢ cha):bociean
ptotess 0 -1 - o: ol nsodShingfotset: v 8,3} void
X v ALS1) 0 upparasy: boslazna fls) spoatfonCareitpoa i) botioan-
U vadoLzt opts) void {+showemo0 v - oremevd(GASEY: ng, longth) v
obrowssCreatled) wid - vsemgnava]S) void ruplcel o22: o new_harchar) bl
cloan_up{windaw: int):void valtett): void - .
LstBox i +an_upf) :vold 1tutChanged): bosiean
M MO0 int= 20 m:m’m P
e RO, e) o AL 12 =y
i o) 1ot o v T
Fla_stws: [“wm.'m HiK:lrt . - beid:buctaana e
) M :t L - dhr= <t talane i
K. Canse:mig [, feids i l—— eantinuous bogiaan=ttso dm:boetaeaafhise
Wi Heta0: it et sk o i sbtenz i
seanteld:veid Hookp _\mame K Delotelvald i Jookups i modied-boslean voglit: bosigan= &t
o ko). i n st Lapach | opangad o= e
*doutieLookup) . void K End) :void " eI ~nsum<'lm~' o
0B) o ok Entg - - FUBpIRRSR: Dl iy oty
gumValue(valus):wid K E2l):vold : Weatan: et D
. K Oveh: o vapngaNeue(8): el ~so‘m‘n:ﬁzm=mb
K He: v ittt .mx;immm
‘KJ’MEOI.WI\‘I] SteusBar opatision: =0
Wngerl:ed o srtet ogloans faso
M "KL vty _Sce iz § ot -bicanstdo
! W Lo il o oten= e
cuman_sglecon inl=-1 L v - oy Sl g e
: x ”;"' 1K) vad :han_upo.\‘v‘ Lo o e -
: . ! K Py0n) vtid dispNisg{s):veid | - slindeut:botlaan=flso
oa0d(p08 b, ala) 0l | K.Pg0np: g | pa:ot W boclsin= s
i i | Mg kP - e gt
omar{pus) i ‘ /K Pravound:vog bt i etnane e
- /[ty ikt E———
remove{ pos:) -vold / |[KReubfe)eld o it eI
removeRl): vold £ [Rl veld Wit ‘ P
woplsee(pon:in,dala):vd | / 'Kﬂlm!'fﬂ e) .';m
mm:ﬂ" S xﬂ:ooow;m ’ L. e s olet)t -
N WM s Lo o] L BT
7 oK Tob(: vl n_Optons; otam{bgo:rt - XCFrame)
o s K Tl ;)
W isterer K Ao nig odisgmRohn{op); 00 ScreenLoyoibirager il
K Ve void 1salipf amgs: bytel)ved
+10aCUsi(win: ad x: In y: I, rows tn headr : vld o "
! vsoModa{m: nl) :vold

206

APPENDIX G. SEQUENCE DIAGRAM

207

Sequence Diagram

< = J.

Setup the'screen
_LODSCR
0.* _LDSCRPRNI(prompts)
0. _LDSCRVAR(fields)
I _LDSCR_DONE]

+{ e |
retum_ p{ EaVarFieid
[
[
I
[
[
[
I
[
|
|
l
|

1
{
[
1
|
i
screenValidate [
I
|
|
1
|
i

|
I
| 0.* _DISPLAY
| _DISPVARS
! Digplpro setup
| =
e - oo | o reoponzras
: ! I 1 repeats
Rtk o it Cmmmesmeessmm———— From=me--- A== fom====--- qm====---- fm===--=- .
: Keyin ! I I :
! Keyin :
')
) i [| I '
!) setup EditField 1 i i '
)]
: ! refiirm keyin value ! ! i
' € — — = —ym = - - VR : ;
PPN Y AP 1 I B O IO | Y A 1
. | |]
Exit screen , |
| |
|

cleanup | f
' cleanup .
) e _ T reum_ _ _ L _ _
I ! ! A
| | 3 7
| _return ——————%(7N
| DN
retur] —X
6 —————————
! v
EAN

l_

B T

208

APPENDIX H. QUALITATIVE STUDIES

List of Papers Related to Case Studies:

209

Author Title Publisher Volume/Year/
Page
Walsham, G. | Information Systems Strategy ACM (22:2), April
and Waema, T| and Implementation: A Case | Transactions on 1994, pp. 150-
Study of a Building Society | Information 173.
Systems
Sillince, J.A.A. | Varieties of Political Process | Information (8:4), December
and Mouakket,| During Systems Systems 1997, pp. 368-
S. Development,” Research 397.
Shanks, G. The Challenges of Strategic | Journal of 6, 1997, pp. 69-
Data Planning: an Interpretive Strategic 90.
Case Study Information
Systems
Sauer, C. Why Information Systems Fail:Alfred Waller | 1993.
A Case Study Approach Ltd, Henley-on-
Thames
Robey, D. and | Transforming Work through | Information (7:1), 1996, pp.
Sahay, S. Information Technology: A | Systems 93-110.
Comparative Case Study of | Research
Geographic Information
Systems in County
Government
Pare, G. Investigating Information Communication| (13:1), 2004, pp.
Systems with Positivist Case | s of the 233-264.
Study Research Association for
Information
Systems
Orlikowski, Improvising Organizational | Information (7:1), 1996, pp.
W.J. Transformation Over Time: A| Systems 63-92.
Situated Change Perspective| Research
Markus, M.L. Finding a Happy Medium: ACM 12,2, April 1994,
Explaining the Negative Transactions on pp. 119-149.
Effects of Electronic Information
Communication on Social Life Systems
at Work
Markus, M.L. | Power, Politics and MIS Communication| 26, 1983, pp. 430
Implementation s of the ACM | 444,
Manning, P.K. | Information Technology in thelnformation (7:1), 1996, pp.
Police Context: The "Sailor" | Systems 52-62.
Phone Research
Levine, H.G. | Diagnosing the Human Threatsournal of (10:2), Fall 1993,
and Rossmore, to Information Technology Management | pp. 55-73.
D. Implementation: A Missing Information

210

Factor in Systems Analysis | Systems
lllustrated in a Case Study
Author Title Publisher Volume/Year/
Page
Lee, A.S. Electronic Mail as a Medium| MIS Quarterly | (18:2), June 1994,
for Rich Communication: An pp. 143-157.
Empirical Investigation Using
Hermeneutic Interpretation
Kaplan, B. and| Combining Qualitative and MIS Quarterly | (12:4) 1988, pp.
Duchon, D. Quantitative Methods in 571-587.

Information Systems Researg
A Case Study

h:

List of Papers Related To Action Resear ch:

211

Author Title Publisher Volume/Year/
Page
Wood Harper, | Viewpoint: Action Research | Journal of (2), 1992,
AT. Information pp.235-236.
Systems
Warmington, | "Action Research: Its MethodsJournal of (7), 1980, pp.
A. and its Implications Applied Systems| 23-39.
Analysis
Street, C.T., Small Business Growth And | MIS Quarterly | (28:3) 2004, pp
and Meister, Internal Transparency: The 473-506.
D.B. Role Of Information Systems
Martensson, P., Dialogical Action Research At MIS Quarterly | (28:3) 2004, pp
and Lee, A.S. | Omega Corporation 507-536.
Mansell, G. Action research in informatiognJournal of (1), 1991, pp.
systems development Information 29-40.
Systems
Lindgren, R., | Design Principles For MIS Quarterly | (28:3) 2004, pp
Henfridsson, | Competence Management 435-472.
O.,and Systems: A Synthesis Of An
Schultze, U. Action Research Study
Lee, A.S,, A Workshop on Two Proceedings of | 1992, p. 305-
Baskerville, Techniques for Qualitative the Thirteenth | 306.
R.L. and Data Analysis: Action International
Davies, L. Research and Ethnography | Conference on
Information
Systems
Kohli, R., and | Informating The Clan: MIS Quarterly | (28:3) 2004, pp

Kettinger, W.J.

Controlling Physicians' Costs
And Outcomes

363-394

Markus, M.L. | Power, Politics and MIS Communicationg 26, 1983, pp.
Implementation of the ACM 430-444.

Kock, N.F., Jr.,| Can Action Research be MadeJournal of (1:1), 1997, pp.

McQueen, R.J.| More Rigorous in a Positivist | Systems and 1-24.

and Scott, J.L.

Sense? The Contribution of a

ninformation

Iterative Approach

Technology

List of Papers Related To Ethnographic Resear ch:

212

Author Title Publisher Volume/Year/
Page
Suchman, L. Making Work Visible Communicationg (38:9), 1995, pp.
of the ACM 56-64.
Simonsen, J. | Using Ethnography in Communicationg (40:7), 1997, pp.
and Kensing, | Contextual Design of the ACM 82-88.
F.
Randall, D., Steps towards a partnership: | London, 1994.
Hughes, J. and| Ethnography and System Academic Press
Shapiro, D. Design. In M. Jirotka & J.
Goguen (Eds.Requirements
Engineering: Social and
Technical Issues.
Prasad, P. Systems of meaning: Chapman and | 1997, pp. 101-
ethnography as a methodologyHall, London 118.
for the study of information
technologies. In A.S. Lee, J.
Liebenau, & J.l. De Gross
(Eds.),Information Systems
and Qualitative Research.
Ngwenyama, | Ethnographic Research in Proceedings of | 14-17 December
O.K., Harvey, | Information Systems: An the Eighteenth | 1997.
L., Myers, Exploration of Three International
M.D. and Alternative Approaches to Conference on
Wynn, E. Ethnography. Information
Systems
Myers, M.D. Hidden Agendas, Power, and| Information (10:3), pp. 224-
and Young, L. | Managerial Assumptions in | Technology & | 240.
W. Information Systems People
Development: An
Ethnographic Study.
Myers, M.D. Critical Ethnography in Chapman and | 1997, pp. 276-
Information Systems. In A.S. | Hall, London, 300.
Lee, J. Liebenau and J.1.
DeGross (Eds.)nformation
Systems and Qualitative
Research
Klein, H. K. A Set of Principles for MIS Quarterly, | (23:1), 1999, pp.
and Myers, Conducting and Evaluating | Special Issue on| 67-93.
M.D. Interpretive Field Studies in | Intensive
Information Systems. Research
Harvey, L. and| Scholarship and practice: the| Information (8:3), 1995, pp.
Myers, M.D. contribution of ethnographic | Technology & | 13-27.

213

research methods to bridging| People
the gap.
Author Title Publisher Volume/Year/
Page
Benson, D.H. A field study of end-user MIS Quarterly | December, 1983,
computing: Findings and pp. 35-45.
issues.

List of Papers Related To Grounded Theory:

214

Author Title Publisher Volume/Year/
Page
Urquhart, C. An Encounter with Grounded Idea Group 2001, pp. 104-
Theory: Tackling the Practical Publishing, 140.
and Philosophical Issues. In E.Hershey
Trauth (Ed.)Qualitative
Research in IS: Issues and
Trends
Urquhart, C. Exploring Analyst-Client Chapman and | 1997, pp. 149-
Communication: Using Hall, London 181.
Grounded Theory Techniques
to Investigate Interaction in
Informal Requirements
Gathering. In A.S. Lee, J.
Liebenau, & J.I. DeGross
(Eds.),Information Systems
and Qualitative Research
Smit, J. Grounded Theory South African (24:November),
Methodology in IS Research:| Computer 1999, pp. 219-
Glaser versus Strauss Journal 222.
PriesHeje, J. Three barriers for continuing Scandinavian (4), 1992, pp.
use of computerbased tools: aJournal of 119-136.
grounded theory approach Information
Systems
Pettigrew, Contextualist Research and thé&msterdam, 1985, pp. 53-78
A.M. Study of Organizational North Holland

Change Processes. In E.
Mumford, R. Hirschheim, G.
Fitzgerald, & A.T. Wood-
Harper (Eds.)Research
Methods in Information
Systems

Pandit, Maresh
R' ll’ll,

The Creation of Theory: A
Recent Application of the
Grounded Theory Method

The Qualitative
Report

2(4), 1996

Pace, S. A grounded theory of the flowinternational (60:3) 2004, pp
experiences of Web users Journal of 327-363.
Human-
Computer
Studies
Hughes, J. and Grounded Theory: Never Information (1), 2000, pp.
D, H. Knowingly Understood Systems Review| 181-197.

De Vreede,

Exploring the Application an

dJournal of

(15:3), 1999, pp.

215

G.J., Jones, N.| Acceptance of Group Support Management 197-212.
and Mgaya, R.| Systems in Africa Information
Systems
Author Title Publisher Volume/Year/
Page
Bowker, G., Infrastructure and London: 1995, pp. 344-
Timmermans, | Organizational Chapman and | 370.
S. and Star, Transformation: Classifying | Hall
S.L. Nurses' Work. In W.

Orlikowski, G. Walsham, M.

Jones, & J.D. DeGross (Eds.
Information Technology and

Changes in Organizational

Work

216

CURRICULUM VITAE

217

Juyun Joey Cho

Assistant Professor

Computer Information Systems

Colorado State University — Pueblo

2200 Bonforte Blvd. joey.cho@colostate-pueblo.edu
Pueblo, CO 81001

EDUCATION
e Ph.D. Management Infor mation Systems, (2009), Utah State University.
e Second Master of Computer Science (2000), Utah State University.
e Second Bachelor of Computer Science (1995), Utah State University.
e Master of Computer Engineering (1990), Chungbuk National University,
Korea.

e Bachelor of Computer Engineering, (1988), Chungbuk National University,
Korea.

REFEREED JOURNAL ARTICLES
e Cho, J. (2009).A hybrid software development method for large-scale projects:

rational unified process with Scrumgsues in Information Systemxq2), 340-
348.

e Cardon, P., Marshall, B., Norris, OCho, J., et al. (2009). Online and offline
social ties of social network website users: an exploratory study in eleven
societiesJournal of Computer Information Systems(15054-64.

e Cho, J. (2008).Issues and challenges of agile software development with scrum.
Issues in Information Systems, IX{B8-195.

e Cho, J., Jones, S., & Olsen, [I2008).An exploratory study on factors
influencing major selectionssues in Information Systems, IX{B8-175.

e Cho, J. (2007). Globalization and global software developmiesties in
Information System¥/I11(2), 287-290.

CONFERENCE PPROCEEDINGS
e Cho, J., Marjanovi, B., Chi, T., Vogl, M., & Bechtoldt, C. (2009). What can
Yahoo! do to be more competitivé®roceedings of'81SOneWorld
International Conferengd.as Vegas, Nevada, 66: 1-12

e Cho, J. (2007). Distributed Scrum for large-scale and mission-critical projects.
Proceedings of 3Americas Conference on Information Systems (AMCIS-
07), Keystone, Colorado, amcis-508-2007 (8 pages).

218

e Cho, J., Couraud, J., & Olsen, D. (2007). IS curriculum recommendations for
web courses based on current technology use by fortune 400 companies.
Proceedings of 3Americas Conference on Information Systems (AMCIS-
07), Keystone, Colorado, amcis-506-2007 (10 pages).

e Cho, J. (2007). An exploratory study on management of virtual teams in
distributed scrum software development method for large-scale and complex
projects.Proceedings of #8Americas Conference on Information Systems
(AMCIS-07) Keystone, Colorado (submitted to Doctoral Consortium).

e Marshall, B.,Cho, J., & Harris, M. (2006). Application of recent trends in web
technologiesProceedings of 46International Association for Computer
Information Systems (IACIS-0®&eno, Las Vegas, 34 (abstract only).

e Cho, J., Kim, Y., & Olsen, D. (2006). A case study on the applicability and
effectiveness of scrum software development in mission-critical agetlar
scale projectsProceedings of ¥2Americas Conference on Information
Systems (AMCIS-06Acapulco, Mexico, 3705-3711.

TECHNICAL PAPERS
e Cho, J. (2000)
“An Interactive Computer and Literacy Instruction SysteRtir{ded by NSF &
U.S. Department of Education)
Master’s report, Computer Science, Utah State University, 2000.

e Cho, J. (1990)
“A Study on the Optimal Fixed-Size Window Scheme in RISC (Reduced
Instruction Set Computer) system”
Master’s thesis, Computer Engineering, Chungbuk National University, 1990.

CONFERENCE PRESENTATIONS
e “A Hybrid Software Development Method for Large-Scale Projects: Rational
Unified Process with Scrumthe 49" International Association for Computer
Information Systems (IACIS}ittsburgh, Pennsylvania, 2009.

e “What can Yahoo! do to be more Competitiveth& 8th of ISOneWorld
International Conferenge.as Vegas, Nevada, 2009.

e “Issues and Challenges of Agile Software Development with Scriln@8’
International Association for Computer Information Systems (IACIS)
Savannah, Georgia, 2008

e “An Exploratory Study on Factors Influencing Major Selectidh® 48"
International Association for Computer Information Systems (IACIS)
Savannah, Georgia, 2008

219

“Globalization and Global Software Developmerttie 47" International
Association for Computer Information Systems (IACV&ncouver, Canada,
2007.

“Distributed Scrum for Large-Scale and Mission-Critical Projedtss 13"
Americas Conference on Information Systems (AMCISK&5)stone,
Colorado, 2007.

“IS Curriculum Recommendations for Web Courses Based on Current
Technology Use By Fortune 400 Companié¥’hceedings of 18Americas
Conference on Information Systems (AMCIS-B@)ystone, Colorado, 2007

“An Exploratory Study on Management of Virtual Teams in Distributed Scrum
Software Development Method for Large-Scale and Complex Proj#ogs”,
13" Americas Conference on Information Systems (AMCISK&gjstone,
Colorado, 2007.

“Agile Software Development Methods in Distributed Software Development
Environment”,10th Annual Graduate Research Symposiutah State
University, 2007.

“A Case Study on the Applicability and Effectiveness of Scrum Software
Development in Mission-Critical and Large-Scale Projedts?,13" Americas
Conference on Information Systems (AMCIS-B6apulco, Mexico, 2006.

“Agile Software Development Methods for Large-Scale Projeéts Annual
Graduate Research Symposiugtah State University, 2006.

TEACHING EXPERIENCE
Colorado State University - Pueblo, Colorado

MGMT 565 Management Information Systems, spring 2009

C1S 411 Internet Server Side Programming, spring 2009

C1S 311 Introduction to Web Development, fall 2008

CIS 271 Advanced Program Design with Java, fall 2008, 2009

CIS 171 Introduction to Java Programming, fall 2008, 2009

MGMT 365 Introduction to MIS, summer 2008, 2009

BUSAD 265 Inferential Statistics, summer 2008, 2009

CI'S 240 Object Oriented Analysis and Design, spring 2008, 2009, fall 2009
CIS4/561 IT Security Management, spring 2008

Utah State University, Logan, Utah

BUS 3510 Business Programming (Satellite distance education), spring 2007

220

e BIS5450/6450 Designing Graphical User Interfaces for E-Commerce, spring
2007

e BIS 2100 Principles of Management Information Systems, fall 2006 & fall 2007
(two sections)

e BIS5450/6450 Designing Graphical User Interfaces for E-Commerce, fall 2006
(Real-life project for RCF Ing.

e BIS 6500 Developing Business Information Systems with Advanced
Software Concepts (Satellite distance education), summer 2006

e BIS3500/6500 Management Information Systems Development, fall 2005

PROFESSIONAL ACTIVITIES & AFFILIATIONS

e Reviewer
Issues in Information Systems, 2007,2008, 2009
Americas Conference on Information Systems (AMCIS) 2007
Pacific Asia Conference on Information Systems (PACIS) 2007
International Association for Computer Information Systems (IACIS)
2007, 2008
O AMCIS Doctoral Consortium, 2007

©0O0O0OO0o

e Track Chair:
o Systems Analysis and Design, ISOneWorld 2009, Las Vegas, USA, 20009.
o0 Systems Analysis and Design, ISOneWorld 2008, Las Vegas, USA, 2008.

® Session Chair:
O Software Engineering, International Association for Computer
Information Systems (IACIS), Savannah, Georgia, 2008.
O Expert systems, International Association for Computer Information
Systems (IACIS), Vancouver, Canada, 2007.

e Student Representative for Doctoral Advisory Committee in Interdisciplinary
Department Program, Utah State University, 2006-2007.

e Professional Membership
o International Association for Computer Information Systems (2006-
present)
0 Association for Information Systems (2005-2007)
O ACM Special Interest Group on Knowledge Discovery & Data Mining
(SIGKDD) 2003-2008.

HONORS & REWORDS
e Faculty Development Grant, Colorado State University-Pueblo, 2008 & 2009.
e Accepted to AMCIS 2007 Doctoral Consortium.

221

Travel Funds Award, Graduate Student Senate (GSS), Utah State University,
2006 & 2007.

Travel Funds Award, Management Information Systems Dept, Utah State
University, 2006.

Korean President’s Scholarship (IL-HAE scholarship foundation, full-tuition &
living expenses), 1985-1987.

Chungbuk National University President's Scholarship (Full tuition), 1984.

WORK EXPERIENCE

Assistant Professor, January 2008-Pr esent
o Colorado State University-Pueblo, 2200 Bonforte Blvd, Pueblo, CO 81001

Graduate I nstructor, September 2005-September, 2007
o Utah State University, Logan, UT 84322

Softwar e Engineer 11, December 2003-January, 2006
Spillman Technologies Inc., 4625 West Lake Park Blvd. Salt Lake City, UT
84120 provides complicated public safety software solutions such as 911
dispatch system, jail management system, and fire/emergency medical system
http://www.spillman.comn)/
o Performs product design and system analysis.
0 Researches, develops, designs and maintains application software.
o Establishes standards, procedures, and specification for software
development and maintenance.
Implements changes, corrects problems to modify, develop, and enhance
functionality.
Analyzes software requirement to determine feasibility of design.
Consults with customer concerning design issues.
Organizes and participates in software design and code reviews.
Participates in the definition of technical requirements, software
procedures, software installation, upgrade issues, and user documentation
for application software.
o Performs code verifications, release testing, and beta support for assigned
products.
o0 Researches problems discovered by Quality Assurance for product
support.
o Develops solutions to problems.
0 Researches and understands the marketing requirements for a product,
including target environment, performance criteria and competitive issues.

o

© O 0O

Softwar e Engineer |1/Project Manager, February 2000-September, 2003

222

Global Mart / PickSend Inc., 517 W. 100 N. Providence, UT 84B32dmmerce
retail/whole sale company selling products through an internet
http://www.picksend.com

0 Supervised 4-6 web programmers.

o Implemented GUI using Borland C++ Builder for order processing
system, product management system, purchasing system, receiving
system, inventory management system, credit card transaction system,
accounting system, retail store management system (Cash salesylaya
and rental system), vendor management system, and RMA system.

0 Set up interface between our order processing system and remote site drop
shippers database system using ODBC.

o Implemented database-enabled Shopping Cart and Cashpad system using
CGil for globalmart.com, escapeoutdoors.com, globalmartoutlet.com, and
poweredmarket.com.

o Implemented Server Monitor system using Client-Server TCP/IP Socket
program between Windows and Linux Machines. (When server goes down
Windows machine calls out manager’s cell phone)

o Implemented Interface between our database and UPS/Fedex shipping
system using ODBC in Windows NT system.

o Implemented various reporting systems using Perl.

o Designed Database driven dynamic web site using Perl , Perl DBI, and
PHP. (http://www.globalmart.com, http://www.picksend.com)

o Implemented cron jobs for automated ftp and data dump using Perl.

0 Set up search engine strategies for company’s web site.

o Implemented Linux Raid System.

0 Set up Web Statistics Program.

o0 Set up and Maintained Linux Gateway Server(Sangome Card for T1 frame

relay server), Firewall Server(IPCHAINS), Proxy Server, Ei@arver,
Apache Web Server, Fax Server, DNS Server, File/Printer Server,
Database Server(MySQL), Backup Server.

Softwar e Engineer |1, September 1999-Feburary 2000
Intermountain Transcription Services Inc., 570 Research Parkway, North Logan,
UT 84341 provides medical transcription serviges
Designed, implemented, tested, and debugged the following
0 Object Oriented Windows Program using Borland C++ Builder.
0 Relational Database System.
o GUI for medical transcription system.
0 Set up/Maintain Linux Server.

Softwar e Engineer, September 1997-September 1999

Digitran System Inc., 2176N. Main, Logan, UTidkes sophisticated computer
simulated software for mining, petroleum, vehicle, and maritime crane indjistries
Analyzed, designed, implemented, maintained the following

223

o TCP/IP, UDP/IP Networking, Low Level Socket Networking, and Serial
Communication for Win95/NT and UNIX.

Graphical User Interface for Win95/NT and X Motif for SGI
IRIX/LINUX using MS visual C++ and Dataview Xdesigner.

Motion, Hardware Interfacing.

Simulation Logic for Crane, Oil, and Truck Simulator.

Multi-Channel Sound System Control for Win95 and Linux.

OpenGL Graphics Program.

Converting code from SGI IRIX to Linux.

Set up Email/Web Server, LAN, CVS(Concurrent Version System) and
Firewalls.

o

O 0O O0OO0OO0O0

Resear ch Assistant in Multimedia L ab, June 1996-September 1997
Computer Science Department, Utah State University, Logan, UT
o Participated in the research project called “Computer Literacy’nuhi-

media computer based instructional system that teaches college student
how to use Word Processor, Spread Sheet, VAX/VMS Email, Windows95
Systems, UNIX Systems and Internet. (ToolBook and Paradox database
were usediFunded by National Science Foundation & the United
States Department of Education)

Teaching Assistant, Mar ch 1996-June 1996

Computer Science Department, Utah State University, Logan, UT
0 Helped students with C and C++ program problems.
0 Graded CS410. (Operating Systems)

Resear ch Assistant, September 1995-Mar ch 1996
Computational Sciences Division, Space Dynamics Lab, Logan, UT
0 Tested software and dataMASA projects using IRIS "Explorer” in
SGI workstation.

Assistant Technician, October 1994-September 1995
Merrill Library, Utah State University, Logan, UT
o Dumped data and maintained MDAS of Merrill & Sci-Tech Libraries.
0 Retrieved and analyzed statistical data to see how the Librariesststaba
are being accessed and used.

Teaching Assistant, 1988-1990
Dept. of Computer Engineering, Chungbuk National University, Chungbuk,
Korea.
o0 Taught architecture of Z-80 micro processor and Assembly Language.
0 Helped students build Analogue/Digital Converter.

Computer Lab Consultant, March 1988-February 1989

224

Dept. of Computer Engineering, Chungbuk National University, Chungbuk,
Korea.

0 Maintained Software program and hardware equipment.

0 Helped students with computer problems.

PROFESSIONAL SKILLS
e Computer Programming L anguages.
C/C++, C#, PHP, Java, Java Script, Perl script, Perl DBI , UNIX sh@it,sc
HTML, PHP, PVM, Lisp, Prolog, Assembly Language, Pascal, FORTRAN,
BASIC, Visual Basic.

e Software Packages:
MS Visual Studio .NET, MS Visual C++/J++, Borland C++ Builder, dBaselV,
Paradox, MySQL, Asymmetric Toolbook, Matlab, NeualWare, SLAM II.

e Operating Systems:
Windows3.1/95/98/2000/XP/NT, Linux, SunOS, IBM AIX, HP-UX, SGI-IRIX,
VAX/IVMS, DEC ULTRIX, MS-DOS.

e Platforms:
HP-UX 9000/700, SunSPARC, SGI, DEC 5000, VAX 11/780, IBM
PC/Compatibles, Macintosh.

	An Exploratory Study on Issues and Challenges of Agile Software Development with Scrum
	Recommended Citation

	Microsoft Word - $ASQ47594_supp_7E584814-5145-11DF-8BD4-6B46D352ABB1.doc

