
An Experience Report at Teaching a Group Based
Agile Software Development Project Course

Craig Anslow
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

craig.anslow@ucalgary.ca

Frank Maurer
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

frank.maurer@ucalgary.ca

ABSTRACT
Teaching group based Agile software development project
courses is difficult. There are many aspects that need to
be considered for a project to be successful such as a well
defined scope, students working effectively together, and en-
gaging with the customer. In this paper we present an ex-
perience report at teaching an Agile software development
project course that involved teams developing web applica-
tions. The resources developed for the course and discussion
about our experience will help inform others who also wish
to teach group based software development courses.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Design

Keywords
Agile Software Development; Group Work; Evaluation

1. INTRODUCTION
Agile software development methodologies are now ubiq-

uitous within industry. Some methodologies include Scrum
and XP which include a set of practices for developing soft-
ware in an iterative fashion [3, 31]. Understanding these
methodologies and how to apply them are important for
students to learn before they enter the software industry.

Teaching group based Agile software development projects
at university is difficult. There are many aspects that need
to be considered carefully when delivering a group based
course such as defining a well scoped project, students work-
ing effectively together, and students regularly engaging with
the customer. In this paper we describe our experience
at teaching a grouped based Agile software development
project course using a learn by doing approach.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright c© 2015 ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677284.

2. RELATED WORK
There are a number of courses at universities around the

world who run similar types of group based courses using
Agile software development methodologies such as Scrum
and XP. Each of these courses have their own intricacies
and many of the published findings have found Scrum to be
an effective methodology to teachx students about Agile.

Pinto et al. [25] identify the Scrum methodology as suit-
able for student based group projects. They highlight the
benefits of Scrum as increased progress visibility, and in-
creased student focus and motivation.

Rico and Sayani [28] report on the result of the adapta-
tion of final year student courses to Agile methods. They
find that proper tutoring and coaching of teams with re-
spect to agile methods is a key factor to the success of a
project. They also report on studies of Agile methods used
in bachelors and masters-level courses from 2003 to 2008.

Schroeder et al. [30] presented the setup, implementation,
and results of two software development labs using Scrum
in 2010 and 2011. They found the Scrum methodology to
be ideal for introducing software processes. They also found
using fun challenges for students helped motivated the stu-
dents and provided a skeleton and development environment
for a quick start to a project.

Devedzic and Milenkovic [6] have been teaching Agile soft-
ware development courses using Scrum and XP for eight
years. They present a number of lessons learned over that
time period: eliminate major difficulties early, iterations
should be rather short, Agile works with Agile students,
mentoring is not always effective sometimes it is best for
students to discover things on their own, and teams should
be small and self organizing.

Kropp and Meier [16] recently experimented with adopt-
ing Agile methods for teaching software development. They
found that using these methodologies had a positive effect
on students and learning outcomes.

El-Khalili [10] propose teaching Agile software develop-
ment using problem-based learning. The findings of their
case study showed that students developed entrepreneurial
skills better than traditional methods based on surveys.

Soria et al. [33] have taught a number of courses that use
Scrum and an Agile Coach. They conducted a study using
the Capability Maturity Model Integration (CMMI) [14] to
compare against the Rational Unified Process (RUP) [17].
The results of their study have shown that a balance among
Scrum, the Agile Coach role and CMMI is more appealing to
students so that they can obtain a higher coverage of CMMI
practices than when using CMMI with RUP.

3. COURSE OUTLINE
The aim of this course was to introduce Agile method-

ologies (Scrum and XP) to students for software develop-
ment purposes. This included developing software for a
real customer over 13 weeks and involved lectures, group
assignments, and lab work. Students leaned Agile practices
by doing including continuous deployment, acceptance test-
ing, refactoring, unit testing, incremental design, retrospec-
tive analysis, iterative planning, pair programming, progress
tracking, and lean engineering management. 14 students en-
rolled in the course, seven undergraduates and seven grad-
uates which formed two separate teams. We expected each
student to work at least 10 hours per week on this course.

3.1 Course Projects
Teams could select a project from a list of projects. The

theme of the projects were focused on big data and visual
analytics. All of the projects aimed at producing software
that would involve a user interface and a database backend.
The selected projects are described as follows.

Petroleum Visual Analytics Explorer: Large amounts
of data about petroleum has been accumulated over
many years, including well locations, well logs, opera-
tional and production data. Some analytical methods
have been developed to understand the data. Cur-
rently there is no software that integrates analytical
and visualization functions for petroleum data. The
objective of the project was to develop a web-based
GIS application to visualize the petroleum data and
the analytical results. The customer was a professor
in the Department of Geomatics at our University.

Library Book Analytics: The Library contains a large
collection of books and other items which can be loaned
out to students and staff. The library does not have
effective tools for understanding which resources have
been issued, used the most and least, and accessed
from what campus. The aim of this project was to
build a visualization application that allows librarians
to explore what resources have been used the most
and least and what the history of these items are. The
customer was the IT group in the Library within our
University.

3.2 Assignments
The teams had to develop software over four iterations.

For each iteration the teams were assessed on a number of
facets with respect to Agile practices and artifacts. Iter-
ations 1 and 2 lasted two weeks. Iterations 3 and 4 lasted
three weeks. Iterations that were longer were weighted more
for assessment. At the end of each iteration the teams gave
a 30 minute group presentation to the rest of the class, and
each individual completed a reflection report based on their
experience in the iteration. The final grade for the under-
graduates was weighted 40% for the iteration component,
30% group presentations, and 30% reflection reports. For
the graduates the weighting of the iterations was 40% of the
final grade which included the group presentations and re-
flection reports. In addition to these assignments the grad-
uates also had to complete a research paper exploring an
Agile concept and give a progress presentation on the re-
search paper. The research paper was weighted 30% and
progress research presentation 30%.

(a) Expectations of the
course from students.

(b) Marshmallow Challenge:
students working in teams.

Figure 1: Course Lectures - interactive exercises.

3.3 Lecture Schedule
There were 25 time slots for lectures. The course involved

two lectures and two labs per week. The lectures lasted 75
minutes and the labs 60 minutes. The lectures and labs took
place on Tuesday and Thursday each week.

Week one (start of Iteration 0) involved an introduction
and welcome to the course. Students were given an overview
of the course and what was expected of them. This lecture
involved a group exercise where each student wrote down on
index cards what they expected to happen during the course
and what they hoped to learn from the course. When the
students had written their ideas down on the index cards
they put them on the black board. Once all the ideas were on
the black board students then discussed them and grouped
the index cards into categories (see Figure 1(a)).

Week two involved the students participating in the Marsh-
mallow Challenge1 where they worked in teams to complete
an instructive design exercise that encourages teams to ex-
perience simple but profound lessons in collaboration, in-
novation and creativity. The task is eighteen minutes long
where teams must build the tallest free-standing structure
out of 20 sticks of spaghetti, one yard of tape, one yard of
string, and one marshmallow which needs to be on top of the
structure (see Figure 1(b)). Another lecture presented an
overview of Agile methodologies where the Agile Manifesto
was introduced, core strategies of Agile, and an overview of
each of the Scrum and XP methods.

Week three introduced release and iteration planning. It
was important the students understood what these planning
activities were as they are fundamental to Agile. For re-
lease planning the emphasis was put on creating user stories,
grouping user stories into epics and themes, and prioritizing
the stories on an Agile wall with the customer. For iteration
planning user stories were described and how they could be
broken down into tasks and how they could be estimated.

Week four (start of Iteration 1) introduced progress track-
ing and knowledge sharing. The purpose for tracking work
effort was described and why it is important for all team
members to see what is happening on a project. A num-

1http://marshmallowchallenge.com/

ber of progress tracking techniques were presented such as
Scrum meetings, Agile walls, burn down charts, code cov-
erage tools, and software metrics visualization tools. For
knowledge sharing the importance of communication amongst
team members and the customer was explained. Various
communication techniques were presented such as bug track-
ing tools and collaborative tools like wikis. To learn about
the essence of communication and requirements gathering an
exercise was given where students shared messages amongst
each other and played three roles. Analysts described the
requirements on paper. Messengers carried the requirements
on notes from analysts to developers and back, but were not
allowed to communicate in any way with other groups. De-
velopers implemented the specification based on the notes.

Week five introduced version and configuration manage-
ment. Software versioning and configuration management
were described, the benefits of continuous integration were
highlighted, and some version control tools were presented.
The second lecture teams gave the Iteration 1 group presen-
tation and demonstration.

Week six (start of iteration 2) introduced XP practices
notably pair programming, test driven development (TDD),
and refactoring [2, 11, 34]. Pair programming was described
including the benefits for programming in pairs, what roles
were involved, how the process works, different options for
pairing, and the need for regularly rotating roles. Students
performed a pairing exercise2 where they had a list of a set
of simple tasks to complete like writing down information or
reading out information. The students performed the task
in pairs and switched roles according to their strengths. The
aim of the exercise was to convey some of the feeling of what
it’s like to perform pair programming. For software testing
TDD was described and why it is useful for Agile teams,
unit testing was described [22], and an empirical study was
presented which outlines the benefits of testing [19].

Week seven introduced quality assurance [12] and example
driven development. Some techniques such as Framework
for Integrated Tests [23] were covered and an empirical study
on executable acceptance tests was presented [21]. Students
also gave the Iteration 2 group presentation.

Week eight (start of iteration 3) introduced process im-
provements and Agile retrospectives. Traditional models
such as the Capability Maturity Model (CMM) [14] was
presented, along with project retrospectives [15], and Ag-
ile retrospectives [5]. The importance of retrospectives was
explained, what is involved when performing this activity,
and how to perform a retrospective was described.

Week nine students worked in teams and performed an
Agile retrospective for the previous iteration based on one
of the following plans from the retrospective wiki3. Figure 2
shows one of the teams performing their retrospective. The
other lecture during this week covered a number of papers
presenting research about empirical studies on Agile soft-
ware development. These papers and references included
methods for qualitative research [4], the success of Agile
methods [35], literature review on agile software develop-
ment [8], comparative analysis of job satisfaction [20], the
role of the customer on Agile teams [18], and self organizing
teams [13]. These papers were useful to point the graduate
students at to help them with their research papers.

2http://xp123.com/articles/pair-practice/
3http://retrospectivewiki.org/

Figure 2: A team performing a retrospective with
index cards grouped by different categories and a
large display screen for additional information.

Week 10 introduced scaling of Agile projects and dis-
tributed Agile projects. Ways in which teams could scale
projects and how projects could be modified so that they
scale for larger teams was presented4. The challenges in
scaling Agile teams was discussed including coordinating
work across teams, integrating work across teams, and main-
taining technical integrity of the system. Ways in which
teams can be distributed when they work on projects across
different buildings, cities, and countries was presented [9].
The challenges with distributed teams were discussed includ-
ing communication, collaboration, integrating work into one
working system, and maintaining successful feedback loops
with the customer. Some empirical studies on distributed
Agile software development were presented [7, 32]. Students
also gave the Iteration 3 group presentation.

Week 11 (start of iteration 4) teams performed an Agile
retrospective for iteration 3 and began iteration planning.
The second lecture was on Lean Software Development [26,
27]. The principles of Lean were covered and an overview
was given on the early history based on processes from Toy-
ota [24]. Students also performed an exercise about creating
invitation cards5. The exercise taught them that single piece
flow is faster than batch and queue process. This exercise led
into presenting Lean Software Development and Kanban [1].

Week 12 followed on from the Lean concept and involved
watching a video on Lean Startup [29]. The second lecture
of this week was the start of the graduate student presenta-
tions, where four students presented the progress they had
made on their research papers. Each presentation was 15
mins long with up to 5 minutes for questions and change of
speaker. The undergraduates were allowed to work on the
their projects instead of attending the lecture.

Week 13 involved the remainder of the graduate student
research progress presentations and the final group presen-
tations delivered to a larger invited department audience.

4http://www.estherderby.com/ and
http://www.ambysoft.com/
5http://tastycupcakes.org/2009/06/were-having-a-party/

3.4 Labs
Each team had two one hour official labs per week. The

teaching assistant (TA) for the course managed the labs and
gave technical assistance where required such as use of tools.
The labs took place in the computer labs where students
were encouraged to pair program and work on tasks from an
iteration. The labs were scheduled before the lectures took
place. Hence it made a solid couple of hours dedicated to the
course. The undergraduate students had their lab two hours
before the lecture. During the labs teams had their daily
scrum meeting where the TA acted as the Scrum master for
the teams. The customer was encouraged to attend these
official lab hours to help with the project where needed.

3.5 Assessment
Grading individuals in team based projects is hard. It was

important that our assessment criteria was fair on all indi-
viduals and that it was clearly understood by all students.
We created a rubric based on the content of the lecture ma-
terial which was used to assess the students for each itera-
tion. Grades were given for each artifact or process. If the
students exceeded expectations for that artifact or process
they received a 5, if they met expectations they received a
3, and if they did not meet expectations they received a 0.
In between grades 2 and 4 were used if students were on the
border between the other grades. Each student was given
the rubric so they knew what they were being assessed on
before the time period. The assessment period for most ac-
tivities took place in the lab, except for the attendance at
lectures, group presentation, and reflection reports. The re-
flection reports helped complement some of the assessment
of the activities.

For lectures we kept track of which students attended.
We actively engaged the students during the lectures and
encouraged them into dialogs so that they understood the
ideas and concepts being presented. We reinforced the ideas
by asking students to report their experience at performing
some of the processes or to discuss how they were progressing
with artifacts. If students attended all lectures and engaged
with the rest of the class they exceeded expectations.

During the labs the teams performed Scrum meetings. It
was important that all team members were present and fol-
lowed the rules of a Scrum meeting. We observed these
Scrum meetings in action and offered suggestions on how
to improve them each week. If the Scrum meetings were
running effectively students exceeded expectations.

We monitored how the students engaged with the cus-
tomers through meetings and online contact. If there were
many customer meetings and the customer got involved in
the design and coding of the software then the students ex-
ceeded expectations.

We regularly checked the code the students produced via
commits to the version control system to see that regular
commits were happening and that all students were con-
tributing to the project. If there were regular commits and
team members were committing then students exceeded ex-
pectations. Essentially this assessment component was to
make sure that the students were regularly making commits
and continuously integrating their software.

We observed the product backlog to make sure that the
user stories had been grouped into epics and themes. We
expected the product backlog to be a part of the Story Board
whether it was physical or digital. We observed how tasks

were being tracked on the story board and if enough detail
was being added.

For the release plan we wanted to see if the students had
thought about the dependencies of the user stories and if
they had discussed with the customer prioritization of the
stories for each iteration. For the iteration plan we wanted
to see if the tasks for the user stories had been described up
front and in enough detail, and had estimates for how much
time they think it would take to complete a task.

For documentation we checked the students code to ensure
they were using established practices and that the team was
consistently following the same style. We wanted to see if
they had diagrams to explain the architecture of the system
to their customers, charts to show the teams progress, and
use of any other project reporting tools. We were also look-
ing to see if they did paper prototypes before they developed
different aspects of their systems.

For testing we examined the unit tests the students wrote.
We did walk throughs of the test and got the students to
explain the details of the tests out aloud. We checked to see
if they used any code coverage tools and how much of the
code was covered by the tests.

For each iteration the students gave a group presentation.
Each presentation was graded and we looked to see how
clearly and effectively the teams described the key issues of
the project, target users, how the customer was involved,
release and iteration plans, user stories, tasks, charts to il-
lustrate work effort, pair programming activities, testing of
the software, and demonstrating their software in action. In
order to give individual grades for this part of the assess-
ment each student on the team was encouraged to present
some aspect of the project.

The reflection reports were required to be completed by
each team member at the conclusion of each iteration. The
purpose of the report was for the students to reflect what
they had done in the past iteration and how they could
improve the next iteration. In the report we looked to see the
contributions made by each student on the project and what
all team members did. The report was used as an indicator
to confirm that all the students were consistently stating
the same activities. The report also gave the opportunity
for students to raise any issues about the course.

4. DISCUSSION
There were a number of aspects from this course which we

would like to discuss based on our experience and feedback
given through student evaluations. Some aspects will help
to make a course of this nature be more effective.

Lectures. There were 25 lecture slots for the course
which required a lot of material for the students to take
in. We used a variety of methods to teach the material such
as group exercises, lecture slides, case studies from industry,
academic papers on Agile, and videos from the Internet. A
number of students found that the material did not neces-
sarily help them with the course assignments and that some
of the material was not as engaging. It is hard to accom-
modate all learning needs, but we tried to use a variety of
different methods. Some students had learnt some of the
material from previous courses such as testing and version
control. Given the course content, the size of the class, and
different levels of students (undergraduates and graduates)
it is hard to keep all students engaged at once. The students
all enjoyed and engaged with the interactive exercises that

took place during the lectures. We did not provide the lec-
ture schedule up front at the beginning of the course which
some students would have preferred.

To address the amount of lectures we would like to limit
the number of lectures per week to one lecture and allow
the students more time to work on the assignments so that
they can become more productive. The extra hour dedicated
to the lecture could be swapped into an hour of official lab
time instead. For the lectures that contained no exercises
we would do our best to incorporate more learning by doing
exercises as required. We would in future provide a detailed
lecture schedule up front before the course began.

Customer Involvement. It was difficult at the start of
the course to convince both the customer and students of
both projects that high customer involvement was needed.
This required the lecturer to meet one on one with the cus-
tomer to explain what Agile methods are and the importance
of having weekly meetings and getting involved with the de-
sign of the applications. The undergraduate team were slow
to adjust at involving the customer. Eventually they sched-
uled customer requirements meetings with the lead customer
and got her graduate students to attend the labs each week
to help with the smaller design decisions. The graduates
only met the customer once a week but this proved to be
sufficient for their team and their customer was happy with
the output produced.

To address the lack of customer involvement at the be-
ginning of the course we would invite the customer along
to one of the earlier lectures during iteration zero so that
the students can get their contact details earlier. We would
make it mandatory for customer meetings to happen each
week and make sure that the customers attended some of
the lab programming times.

Scope Creep. It was hard for students to realize how
long user stories and tasks would take to complete due to
their lack of experience. Their estimation skills improved
but it was still a high learning curve and they fully did not
master this activity during the course. Their release plan-
ning and iteration planning was not clearly defined at the
beginning of each iteration which caused teams to under-
estimate how long tasks actually took to complete. Quite
often at the end of each iteration there were still user stories
and tasks not completed by both teams. To help remedy the
scope creep we introduced lean management and Kanban at
the beginning of Iteration 4. Applying Kanban techniques
helped prioritize the tasks and user stories that needed to
be completed. By using Kanban the students could see how
they could more efficiently use their time rather than spend-
ing effort constantly task switching.

To prevent scope creep we would be more stringent at
Scrum meetings about what tasks students are working on.
We could introduce Lean and Kanban earlier in the lecture
schedule so that the students understand completing a task
before moving onto the next one is more efficient.

Work Load. There was a lot of material to cover in the
course and the projects themselves were quite demanding
based on customer requirements. The students had to learn
new technologies then learn how to apply them to deliver
working software for their customer. We expected students
to spend at least 10 hours per week on the course. Due to
the students lack of experience at estimating and tracking
of tasks this was not as accurate as we expected. Some stu-
dent’s reported working just over 10 hours but were doing

more like 20–30 hours for a few weeks. For example the
first three iterations students were not tracking all the addi-
tional time they spent learning new technologies and setting
up their development environments. This caused some frus-
tration for the students and made it hard for the lecturer to
understand where some of the issues were attributed to.

To prevent work load issues we would be more stringent at
the beginning of the course about tracking time for all tasks
students worked on. We would have more emphasis on the
tracking of information about tasks, get students to indi-
cate in the Scrum meetings how many hours they had been
spending, and look more closely at the reflection reports.

Assessment. For the first two iterations the assessment
rubric was not given early enough to the students, hence
some of the students were worried about how they were get-
ting assessed. Some of the students did not quite understand
the differences between some of the values on the assessment
rubric. For example they did not understand what grades
2) and 4) meant. In hindsight it would have been more ef-
fective to only have a three point scale and remove grades 2)
and 4) for each artifact and process. Given the time it took
to review the reflection reports it was not possible to give
immediate feedback. This usually took up to a week after
the iteration had ended. It would have been more effective
to give faster feedback which the students could utilize much
earlier in the next iteration.

To accommodate faster feedback we could reduce the size
of the reflection reports and not always assess all artifacts
and processes for each iteration. We could make it clearer on
the course outline more details about the course assessment.
We could distribute the information about the assessment
rubrics in a more timely manner.

Team Work. The teams were supposed to be self or-
ganizing [13]. The graduate team did a good job of orga-
nizing themselves early and managed to sort out the tasks
amongst themselves evenly. The undergraduates took a lit-
tle bit more effort as there were some personality conflicts
and they were not as open and honest with each other as
is required to be successful on Agile teams. Sometimes the
undergraduate students failed to turn up to team meetings
which showed a lack of commitment. To address the issues
with the undergraduates we arranged a special meeting to
create a Team Agreement where the students would abide
by rules made up to suit their team needs. Applying this
technique made the team more coherent and productive for
the last two iterations.

To make teams more effective we could potentially put
more assessment criteria around mandatory coding sessions
so that they turn up. This could, however, be more arduous
for the lecturer and TA than required. Ultimately it should
be up to the students to make the effort to work together.

Level of Students. The course had both undergradu-
ate and graduate students. This proved challenging with
respect to sorting out teams at the beginning of the course
and assessing the students during the course based on dif-
ferent grading schemes. Given the even split of students (7
undergraduates and 7 graduates) this subsequently made it
easier to group the students into two different project teams.

To address the level of students in the course we would not
run a course again with both undergraduates and graduates
in the same class. Instead we would make this course only
for undergraduates and likely have a reading course on Agile
methods and empirical studies for graduates.

5. CONCLUSIONS
Agile software development methodologies (e.g. Scrum

and XP) are now ubiquitous within the software develop-
ment industry. Understanding what these practices and
techniques are and how to apply them are important for
computer science students to learn before they enter the
software development industry.

In this experience report we described our approach at
teaching a grouped based Agile software development project
course. The students successfully developed visual analytics
applications for exploration of petroleum data and online
library resources. Based on our experience we found that
there was too many lectures, that the customer needed to be
involved more, and some teams had scope creep which had to
be managed appropriately. Due to the scope creep the work
load for some students was unbalanced within the team. The
assessment criteria involved too many components and the
feedback on the assessment was not fast enough for the stu-
dents requirements. One team suffered from not being very
well organized and had personality conflicts.

In the future we would not have two courses mixed to-
gether. By describing our experience at teaching a group
based Agile software development project course we hope
others can benefit from our efforts for their future courses.

Acknowledgments
Thanks to Tedd Hellmann for being an effective teaching assis-
tant. Thanks to the students for participating in the course.
Thanks to Jennifer Ferreira, Angela Martin, Siva Dorairaj, Rashina
Hoda, David Pearce, James Noble, and Robert Biddle for advice
and feedback. Thanks to Mitacs Elevate program for funding.

6. REFERENCES
[1] D. Anderson. Kanban: Successful Evolutionary Change for

Your Technology Business. Blue Hole Press, 2010.

[2] K. Beck. Test Driven Development: By Example. Addison
Wesley, 2002.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 2004.

[4] J. Creswell. Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches. SAGE Publications, 2008.

[5] E. Derby and D. Larsen. Agile Retrospectives – Making
Good Teams Great. The Pragmatic Bookshelf, 2006.

[6] V. Devedzic and S. Milenkovic. Teaching Agile software
development: A case study. IEEE Transactions on
Education, 54(2):273–278, May 2011.

[7] S. Dorairaj and J. Noble. Agile software development with
distributed teams: Agility, distribution and trust. In
Proceedings of the International Conference on Agile,
pages 1–10. IEEE, 2013.

[8] T. Dyb̊a and T. Dingsøyr. Empirical studies of Agile
software development: A systematic review. Inf. Softw.
Technol., 50(9-10):833–859, Aug. 2008.

[9] J. Eckstein. Agile Software Development with Distributed
Teams Perfect. Dorset House, 2010.

[10] N. El-Khalili. Teaching Agile software engineering using
problem-based learning. Int. J. Inf. Commun. Technol.
Educ., 9(3):1–12, July 2013.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999.

[12] R. L. Glass. Facts and Fallacies of Software Engineering.
Addison Wesley, 2002.

[13] R. Hoda, J. Noble, and S. Marshall. Self-organizing roles on
Agile software development teams. IEEE Transactions on
Software Engineering, 39(3):422–444, 2013.

[14] W. Humphrey. Managing the software process. Addison
Wesley, 1989.

[15] N. Kerth. Project Retrospectives: A Handbook for Team
Reviews. Dorset House, 2001.

[16] M. Kropp and A. Meier. Teaching Agile software
development at university level: Values, management, and
craftsmanship. In Proceedings of the Conference on
Software Engineering Education and Training (CSEET),
pages 179–188. IEEE, May 2013.

[17] P. Kruchten. The Rational Unified Process: An
Introduction. Addison Wesley, 2003.

[18] A. Martin, R. Biddle, and J. Noble. The XP customer team:
A grounded theory. In Proceedings of the International
Conference on Agile, pages 57–64. IEEE, 2009.

[19] G. Melnik. Empirical Analysis of Acceptance Test Driven
Development. PhD thesis, Department of Computer
Science, University of Calgary, 2007.

[20] G. Melnik and F. Maurer. Comparative analysis of job
satisfaction in agile and non-agile software development
teams. In Proceedings of the International Conference on
Agile Processes in Software Engineering and Extreme
Programming (XP), pages 32–42. Springer, 2006.

[21] G. Melnik, F. Maurer, and M. Chiasson. Executable
acceptance tests for communicating business requirements:
Customer perspective. In Proceedings of the International
Conference on Agile, pages 35–46. IEEE, 2006.

[22] G. Meszaros. xUnit Test Patterns: Refactoring Test Code.
Addison Wesley, 2007.

[23] R. Mugridge and W. Cunningham. Fit for Developing
Software: Framework for Integrated Tests. Prentice Hall,
2005.

[24] T. Ohno. Toyota Production System: Beyond Large-Scale
Production. Productivity Press, 1988.

[25] L. Pinto, R. Rosa, C. Pacheco, C. Xavier, R. Barreto,
V. Lucena, M. Caxias, and C. Figueiredo. On the use of
Scrum for the management of practcal projects in graduate
courses. In Proceedings of the Frontiers in Education
Conference (FIE), pages 1–6. IEEE, 2009.

[26] M. Poppendieck and T. Poppendieck. Lean Software
Development: An Agile Toolkit. Addison Wesley, 2003.

[27] M. Poppendieck and T. Poppendieck. Implementing Lean
Software Development. Addison Wesley, 2007.

[28] D. Rico and H. Sayani. Use of Agile methods in software
engineering education. In Proceedings of the International
Conference on Agile, pages 174–179, 2009.

[29] E. Ries. The Lean Startup: How Today’s Entrepreneurs
Use Continuous Innovation to Create Radically Successful
Businesses. Crown Business, 2011.

[30] A. Schroeder, A. Klarl, P. Mayer, and C. Kroiss. Teaching
Agile software development through lab courses. In
Proceedings of the Global Engineering Education
Conference (EDUCON), pages 1–10. IEEE, 2012.

[31] K. Schwaber and M. Beedle. Agile Software Development
with Scrum. Prentice Hall, 2001.

[32] H. Sharp, R. Giuffrida, and G. Melnik. Information flow
within a dispersed agile team: A distributed cognition
perspective. In Proceedings of the International Conference
on Agile Processes in Software Engineering and Extreme
Programming (XP), pages 62–76, 2012.

[33] A. Soria, M. Campo, and G. Rodriguez. Improving software
engineering teaching by introducing Agile management. In
Proceedings of the Argentine Symposium on Software
Engineering (ASSE), pages 215–229, 2012.

[34] L. Williams and R. Kessler. Pair Programming Illuminated.
Addison Wesley, 2002.

[35] C. Zannier, G. Melnik, and F. Maurer. On the success of
empirical studies in the international conference on
software engineering. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
341–350. ACM, 2006.

