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Abstract—Millions of companies expend billions of 

dollars on trillions of software for the development and 

maintenance. Still many projects result in failure causing 

heavy financial loss. Major reason is the inefficient effort 

estimation techniques which are not so suitable for the 

current development methods. The continuous change in 

the software development technology makes effort 

estimation more challenging. Till date, no estimation 

method has been found full-proof to accurately 

pre-compute the time, money, effort (man-hours) and 

other resources required to successfully complete the 

project resulting either over-estimated budget or 

under-estimated budget. Here a machine learning 

COCOMO is proposed which is a novel non-algorithmic 

approach to effort estimation. This estimation technique 

performs well within their pre-specified domains and 

beyond so. As development methods have undergone 

revolutionaries but estimation techniques are not so 

modified to cope up with the modern development skills, 

so the need of training the models to work with updated 

development methods is being satiated just by finding out 

the patterns and associations among the domain specific 

data sets via neural networks along with carriage of 

desired COCOMO features. This paper estimates the 

effort by training proposed neural network using already 

published data-set and later on, the testing is done. The 

validation clearly shows that the performance of 

algorithmic method is improved by the proposed machine 

learning method.  

 

Index Terms—COCOMO (Constructive Cost Model), 

Correlation, Machine Learning, MMRE (Mean Magnitude 

of Relative Error), Neural Network, Software Effort 

Estimation. 

 

I.  INTRODUCTION 

Every domain of our life is covered with overwhelming 

applications of computers now-a-days. No aspect left 

untouched by computers i.e. hardware and software. It is 

found that the prices for computer hardware has decreased 

in comparison of software which is continuously 

increasing. Software Industry annually spend the billions 

on the acquisition and maintenance of software [1]. 

Object-oriented programming, computer-aided 

software engineering (CASE), COTS, Agile Methodology 

and other technology are in use for software development, 

but software effort estimation has somewhere lagged 

behind in terms of advancements. One major resource for 

software product is Man-power, the effort. Estimation 

models first compute the effort required to complete the 

project, that can be further converted into dollars. The 

current estimation models dishearten project managers by 

over-estimated budget or under-estimated budget resulting 

into a complete failure. Various models for software cost 

estimation are available in market. 

The most popular one is the Constructive Cost Model, 

or COCOMO developed by Barry Boehm [2]. The basis 

for COCOMO is a database of sixty-three projects created 

at TRW during the 1960's and 1970's and is published in 

Boehm's book, Software Engineering Economics. The 

popularity of COCOMO lies in its ease of application and 

its non-proprietary nature. Other models, like ESTIMACS 

are proprietary. In all these models the inputs and the 

relationships are domain specific which are fully 

dependent on the experts opinion. For this reason, such 

models tend to perform poor or even fail when their 

application boundaries are tried to be changed. 

In such scenario, there is a need of a technique that can 

substitute the expert-judgement. The destined answer is 

Machine Learning. Data Collection, Knowledge 

acquisition, classification, pattern recognition and much 

more can be done easily and efficiently. Here we tried to 

apply Machine Learning to Software Engineering in Effort 

Estimation. Neural Network allows to model a complex 

set of relationship between the dependent variable and the 

independent variables. If we consider effort as dependent 

attribute and cost drivers with software size as 

independent entities then, neural network can be 

implemented as machine learning tool. 

The overall objective is to design a methodology for 

machine learning based approach to software effort 

estimation using neural networks. Because current 

estimation models provide only marginal results within 
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their domain specific applications otherwise, tend to fail 

when applied for latest development methods. The 

performance of proposed model based on 

machine-learning technique is evaluated and analyzed in 

comparison to the traditional models. 

This proposed model uses the COCOMO data set for 

training phase and the Kemmerer data set for testing 

purposes. Then, the effectiveness of machine-learning 

technique to the effort estimation field is determined and 

post-analysis conclusion is drawn. 

With this research work, we tried not only to develop a 

better opportunity for cost estimation but also tried to 

apply machine learning to software engineering. 

This paper is structured into six sections as follows: 

Section II, discusses the background of the research work 

theme. Section III, covers the literature survey 

highlighting the various accuracy reports of  COCOMO 

model and brings a torch on the contributions made by 

various researchers. Section IV, provides the experimental 

set-up which includes the design of proposed model and 

the training/testing data sets. Detailed architecture of 

proposed model is comprised of multiple network 

configurations to carry out the experiment. Section V, 

shows how machine learning is applied using the training 

data set as the means for knowledge acquisition via neural 

network. Then, the resulting model is tested using testing 

data set. The training and testing data-set are different to 

determine the capability of the models to generalize. In 

section VI displays the findings of work. The results of 

experiments with multiple neural networks configurations 

are analyzed on overall performance against actual project 

effort and against each other. Section VII, sums up the 

analysis with the conclusions made out of the entire 

research work. 

 

II.  BACKGROUND 

Effort estimation is all time catch for software industry 

when it comes to the point of accuracy. Various software 

developers, Engineers and reseachers contributed to this 

area. Multiple techniques and paradigms are already 

available in the industry and machine learning is one of the 

growing approach in this area. The stems of the current 

work lies in the COCOMO empirical equation and neural 

network technology. 

The remaining section brings light on the stem and 

expansion of the proposed work. 

A.  Effort Estimation 

A big challenge is being faced by software developers in 

name of effort estimation. A wide range of techniques are 

being employed for effort estimation like Analogy based 

estimation [3], estimation by expert [4], rule induction 

techniques [5], algorithmic techniques with empirical 

strategies [6], artificial neural network designed methods 

[7, 8, 9], decision tree based strategies [10], Bayesian 

network techniques [11] and fuzzy logic based estimation 

structures [12] and ad-hoc approach based [13]. 

Software Estimation Models are categorized into 

Algorithmic and Non Algorithmic techniques as shown in 

Fig.1. which are further classified as Linear/non linear 

models, Discrete models, Multiplicative models, Power 

Function models [14]. 

Algorithmic models are formula based models derived 

from some project data. These compute effort by 

performing some calibration on the pre-specified formulae. 

Some examples are: 

 

a) COCOMO model [1, 2] 

b) Putnams’ model and SLIM [16] 

c) Function Point Analysis (FPA) [15] 

d) ESTIMACS 

 

 

Fig.1. Software Estimation Models 

The Constructive Cost Model COCOMO, was 

developed by Barry Boehm in the late 1970's, during his 

tenure at TRW, and published in 1981, Software 

Engineering Economics. This model is a hierarchy of three 

models basic, Intermediate and detailed. It is based on a 

study of 63 projects developed at TRW from the period of 

1964 to 1979. Three development modes were defined as 

organic, semidetached, and embedded [2]. 

Initially, three development modes were defined then; 

calibration was made using the original 56 project 

database to get better accuracy. Few more projects were 

added to the original database resulting into the famous 63 

project database. COCOMO relies on empirically derived 

relationships among the various cost drivers [2]. This 

model is popular because of the ease of its application and 

availability. 

The basic COCOMO equations take the form: 

 

Effort Applied, 

E = a ∙ (SLOC) b                    [man-months]       (1) 

 

Development Time, 

D = c ∙ (Effort Applied) d          [months]           (2) 

 

where, SLOC is the estimated number of delivered lines 

(expressed in thousands ) of code for project, The 

coefficients a, b, c and d are dependent upon the three 

modes of development of projects. 

Non-Algorithmic models were introduced in 1990s. The 

inability of algorithmic methods to reason directed the 

path to the exploration of non-algorithmic methods. 

Examples are: 

 

a) Case-based reasoning (CBR) 

b) Analogy Based Estimation 

c) Delphi Techniques 
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Estimation techniques are being experimented 

considering fusion with soft computing approach. 

Hodgkinson et al. [17] concluded that estimation by expert 

judgment performed better to regression based models. A 

Neuro-fuzzy approach [18], came into light considering 

the linguistic attributes of a fuzzy system and combining 

them with a neural network. Burgess et al. applied genetic 

programming to carry software effort estimation [19]. 

B.  Machine Learning 

Machine learning based effort estimation falls under 

non-algorithmic approach. It covers the use of neural 

network, genetic algorithms and CBR techniques. 

The neural network paradigm grew out from the idea of 

imitating the human brain. Initial efforts were made by 

early artificial intelligence researchers. In 1958, Frank 

Rosenblatt defined a neural network structure called a 

perceptron [20]. He outlined the principles about storing 

the information in connecting weights. This research 

introduced all kind of training algorithms, supervised and 

unsupervised. Next milestone in the colored paradigm of 

neural network was the work done by John Hopfield [20]. 

The Defense Advanced Research Projects Agency 

sponsored a neural network review in 1988 and published 

a report on the field [21]. 

Neural Network is a massively parallel adaptive 

network of simple nonlinear computing elements called 

Neurons, which are intended to abstract and model some 

of the functionality of the human nervous system in an 

attempt to partially capture some of its computational 

strengths [22, 23, 24]. 

 

 

Fig.2. A basic neuron 

Basic Components of a neural network as shown in fig. 

2.: 

 

i) neurons,  

ii) activation function,  

iii) signal function,  

iv) pattern of connectivity,  

v) activity aggregation rule,  

vi) activation rule, 

vii) learning rule and  

viii) environment [25].  

1
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where  

x1 ,x2, … , xn are the input signals ,  

w1,w2, …, wn are the synaptic weights,  

u is the linear combiner output,  

b is the bias,  

Φ is the activation function and  

y is the output signal of the neuron. 

 

First up, a neural network is created then, it is trained 

which involves the modification of the weights in the 

connections between network layers with the objective to 

achieve the target output, is called learning. There are two 

classes of learning: Supervised Learning and 

Unsupervised Learning [23, 24].  

In supervised training, both the inputs and the outputs 

are provided. The network then processes the inputs, 

compares its resulting outputs against the desired outputs 

and error is calculated.  

In unsupervised training, the network is provided with 

inputs but not with desired outputs. The system itself must 

then decide what features it will use to group the input data 

[22]. 

Architecture of neural network: feed-forward neural 

network, is the architecture in which the network has no 

loops. Feed-back (recurrent) is an architecture in which 

loops occurs in the network [23, 24].  

Further, Network can be a single-layered network or a 

multi-layered network. In single layer architecture, it 

consists of a single layer of output nodes, the inputs 

neurons are connected directly to the outputs neurons via a 

series of weights. But in multi layer architecture, there is 

an additional layer of neurons present between input and 

output layers. That layer is called hidden layer [23, 24]. 

Any number of hidden layers can be added according to 

the requirement of the situation and accuracy desired. In 

this paper we have used multiple layer feed forward neural 

network. 

The most popular networks and the selected one in my 

work, is the back-propagation network. It is named after 

the training method used in this network. The network is a 

feed-forward network constructed of input layer of 

neurons, an output layer of neurons, and one or more 

hidden layers of neurons. Each neuron (or node) is defined 

by a transfer function.  

In the case of the back-propagation network, the 

function usually has a sigmoid or S-shape that ranges 

asymptotically between zero and one. The reason for 

choosing the sigmoid is that the function must be 

continuously differentiable and should be asymptotic for 

infinitely large positive and negative values of the 

independent variables [21]. The neurons in each layer are 

then assigned a weighted connection to each neuron in the 

following layer. These connection weights are established 

randomly upon initialization of training and then 

re-calculated as the network is presented with the training 

patterns until the error of the output is minimized. The 

method that adjusts the weights is known as the 
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Generalized Delta Rule which is a method based on 

derivatives that allows for the connection weights to be 

adjusted to obtain the least-mean square of the error in the 

output [21]. 

Bias neurons, if used, imply provide a constant input 

signal to the neurons in a particular layer and relieve some 

of the pressure from the learning process for the 

connection weights.  

A simple network diagram is shown in Fig. 3. 

 

 

Fig.3. A Simplified Back-propagation Network 

During the training process, the connection weights 

(and threshold values) are adjusted using the following 

equation [22]: 

 

( ) ( ) * ( ) _ _w new w old a Delta w output activation level    

 

where w, stands for the new and old values of the 

connection weight and is a constant that defines the 

magnitude of the effect of Delta on the weight. Delta 

describes a function that is proportional to the negative of 

the derivative of the error with respect to the connection 

weight and output_activation_ level is the output of the 

neuron.  

This back-propagation of error mechanism allows the 

weights at all layers to be adjusted as the training process 

is performed, including any connections between hidden 

layer neurons. 

A back-propagation network is capable of generalizing 

and feature detection because it is trained with different 

examples whose features become embedded in the weights 

of the hidden layer nodes [21]. An example of the 

operation of a neural network is provided by Maren and 

involves a neural network designed to solve an XOR 

classification problem.  

Applications of Neural networks are in the areas of 

filtering, image and voice recognition, financial analysis, 

and. 

 

III.  RELATED WORKS 

Although, extensive research work has been carried out 

in past few decades for an accurate estimation technique. 

But, we are lagging behind somewhere because traditional 

techniques like COCOMO model are not suitable for 

current market trends.  

 

MayaZaki and Mori [26]  
In 1985, the accuracy of COCOMO model was reported 

by MayaZaki and Mori [26], in consideration of the study 

of 33 software projects. The MMRE was found at 165.6%.  

 

Kemerer [27]  

In 1987 Kemerer [27], in the paper entitled An 

Empirical Validation of Software Cost Estimation Models 

compared the accuracy of 4 estimation models FPA, 

COCOMO, SLIM, and ESTIMACS. He analyzed many 

COCOMO models. COCOMO Intermediate showed the 

least Mean Magnitude of Relative Error (MMRE). The 

Mean Magnitude of Relative Error (MMRE) of the 15 

projects was 583.82%. Likewise, He presented project 

data for SLIM, ESTIMACS and FP Models. 

Table I shows the effort estimate (man-month), the 

actual effort (man-month), and percentage MRE data of 

the 15 software projects using COCOMO for the effort 

estimation. 

Kemerer used data collected from 15 completed 

software projects to produce results. Each model was 

tested for predictive capability for effort estimation. The 

result made was that the models require substantial 

calibration. He also identified the main attributes which 

affect software productivity [27]. 

 

Chandrasekaran and Kumar [28]  
In 2012, another case study was reported while applying 

both COCOMO model and Function Point Analysis for 
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the software project effort estimation by Chandrasekaran 

and Kumar [28], He published the accuracy report with 

percentage MMRE (8.4%) for the COCOMO model 

estimation. 

Table 1. Kemerer Data-Set 

DETAILS OF THE SOFTWARE PROJECTS FROM KEMERER [27] 

Project No. 
Estimated Effort 

(person month) 

Actual Effort 

(person month) 
MRE (%) 

1 917.56 287.00 219.71 

2 151.66 82.50 83.83 

3 6,182.65 1,107.30 458.35 

4 558.98 86.90 543.25 

5 1,344.20 336.30 299.70 

6 313.36 84.00 273.05 

7 234.78 23.20 911.98 

8 1,165.70 130.30 794.63 

9 4,248.73 116.00 3,562.70 

10 180.29 72.00 150.40 

11 1,520.04 258.70 487.57 

12 558.12 230.70 141.82 

13 1,073.47 157.00 583.74 

14 629.22 246.90 154.85 

15 133.94 69.90 91.62 

MMRE 583.82 

 

Tharwon Arnuphaptrairong [29]  

In 2016, Arnuphaptrairong made a literature survey to 

find which software effort estimation model is more 

accurate? He reported that Use Case Point Analysis 

outperforms other models with the least weighted average 

Mean Magnitude of Relative Error (MMRE) of 39.11%, 

compare to 90.38% for Function Point Analysis and 

284.61% for COCOMO model. It indicates that there is 

still need to improve the estimation performance but the 

question is how. 

The availability of accuracy reports tabulated in Table 

2., satisfying research criteria is found to be low. Only 3 

studies are made available [29] from the contributions of 

MayaZaki and Mori in 1985 [26], Kemerer in 1987 [27], 

and Chandrasekaran and Kumar in 2012 [28].  

Table 2. COCOMO accuracy reports 

SUMMARY OF THREE COCOMO STUDIES [29] 

S. No. Contributor 

Number of   

Software 

 project 

MMRE (%) 

1 MayaZaki and Mori  33 165.60 

2 Kemerer  15 583.82 

3 
Chandrasekaran and 

Kumar  
1 8.4 

Weighted Average MMRE 284.61 

 

Therefore other techniques like machine learning, 

exploratory data analysis now dominating the field [30]. 

Machine Learning is suitable to the effort estimation due 

to it can learn from previous data. It associates the 

dependent (effort) and independent variables (cost drivers). 

It generalizes the training data set and produces acceptable 

result for any unseen data. 

Most of the work in the application of neural network to 

effort estimation made use of feed-forward multi-layer 

Perceptron, Back-propagation algorithm and sigmoid 

function. Various models are introduced for solving 

multiple real life problems [31]. 

 

IV.  EXPERIMENTAL SET-UP 

Proposed methodology for training the neural network 

to predict the effort required for successful completion of 

software project, at early level of development accurately, 

can be given by following algorithm as shown in fig. 4.: 

 

Step I. Define the training datasets with input-target 

vectors. Process the dataset, if required. Input comprises of 

the independent attributes and target is dependent entity 

(effort). 

Step II. Define the testing datasets with input attributes 

compatible with those of training dataset. 

Step III. Design the network which would implement 

machine learning by absorbing the information gathered 

during training phase. Size of network, size of layers, 

transfer function, training algorithm, training function, 

performance function and other parameters should be 

supplied. 

Step IV. Initialize the network. 

Step V. Feed the network with training data (as in 

stepI )allowing the capture of associations among data 

which would be further used for effort prediction. 

Step VI. After training, test the performance of the 

learned network by supplying the testing dataset as in Step 

II. 

Step VII. Analyze the performance of the network by 

comparing the estimated effort and the actual effort. 

Retrain the network (repeat from step V ) if performance is 

not satisfactory. 
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Fig.4. Proposed Methodology 

A.  Data Collection Preparation 

The experimental set-up for any machine-learning 

technique is a two-step process. It includes training and 

testing of neural network. For each step, specific relevant 

data set is required. We selected COCOMO dataset (63 

projects database by Boehm) for training [2] and the 

Kemmerer dataset (15 projects database by Kemmerer) 

[27] for testing. 

After making the selection of dataset, the next crucial 

aspect is data preparation. It is about paying special 

attention towards how the data is being fed to the network, 

because the entire performance is very sensitive to the data 

and its presentation. 

Here, this experiment requires three transformations. 

First, the KDSI is transformed into its corresponding 

logarithmic value. Second, the actual effort values are 

translated into logarithmic values. Third, the mode of 

project is represented with combination of 3-digit Boolean 

value where Embedded= 1 0 0, Semi-detached= 0 1 0, 

Organic= 0 0 1 . The basic reason behind these 

conversions is that all input variables should vary over a 

roughly similar range between the minimum and 

maximum values. 

Sample Input-output Vector demonstrating 

transformations shown in Table 3. 

The training data set consists of 63 samples.  

"COCOMO_Inputs" is a 20 x 63 matrix of values. 

"COCOMO_Targets" is an 1 x 63 matrix. All of the 63 

COCOMO projects were used as the training set, and 

Kemmerer data set of 15 projects were used as the testing 

set with "KER_Inputs" is a 20 x 15 matrix of values. 

"KER_Targets" is an 1 x 15 matrix.. 

Table 3. Sample Input-output Vector demonstrating transformations 

 
 

B.  Proposed Model 

Designing the neural network is an iterative process. 

Prior to the training, no configuration can be said the best 

arrangement. Various network configurations iteratively 

trained in the ranges of Number of Hidden Neurons: 1-10; 
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12-20; 20-30 and Number of Hidden Layers: 1-2 ; 1-2 ; 1-2 

to search for the best-performing configurations. Our 

worthy efforts lead us to following six top configurations 

of network. 

The proposed model SG [N1/N2] is a feed forward 

back-propagation multilayer neural network, comprised of 

one input layer, one output layer and two hidden layers 

shown in fig. 5.  

The size of input layer is 20 input neurons where each 

neuron represents one particular software attribute on 

which effort depends. Output layer produces effort 

estimated as a single output. The size of hidden layers 

varies in different configurations. Other parameters are 

same in all six configurations like transfer function, 

training function etc.  

 

Proposed model with five Configurations: 

Configuration I. SG1 [5/8] with N1=5; N2=8; 

Configuration II. SG2 [8/9] with N1=8; N2=9; 

Configuration III. SG3 [11/10] with N1=11; N2=10; 

Configuration IV. SG4 [16/19] with N1=16; N2=19; 

Configuration V. SG5 [18/15] with N1=18; N2=15; 

Configuration VI. SG6 [24/25] with N1=24; N2=25; 

 

where N1 = number of neurons in 1st Hidden Layer and  

N2 = number of neurons in 2nd Hidden Layer 

 

The sigmoid function is selected as transfer function at 

hidden layers. The sigmoid or S-shape that ranges 

asymptotically between zero and one. The reason for 

choosing the sigmoid is that the function must be 

continuously differentiable and should be asymptotic for 

infinitely large positive and negative values of the 

independent variables [11]. At output layer pure linear 

function is selected as transfer function. While training, 

Mean Squared Error is Performance function. For training 

back-propagation algorithm based on Delta rule is 

employed via Levenberg-Marquardt back-propagation 

function. 

 

 

Fig.5. Overall Architecture of Proposed Model 

C.  Performance Evaluation Criteria 

The performance of proposed model can be evaluated as 

the degree to which the model’s estimated effort (Effort 

Estimated) matches the actual effort (Effort Actual). If the 

model would be perfect, then for every project Effort 

Estimated = Effort Actual. 

Boehm [2] introduced percentage error test with 

 

Estimated Actual

Actual

Effort Effort
Percentage Error

Effort


  

 
Estimation may vary as over-estimation or as 

under-estimation; Overestimation results into either less 

production (Parkinson’s law: “Work expands to fill the 

time available for its completion”) or add so-called “gold 

plating” [2]. Underestimation may lead the project 

understaffed and new staff would be appointed as the 

deadlines approaches. This results in a heavy loss 

(Brooks’s law: “Adding man-power to a late software 

project makes it later” ) [32]. Conte et al. [33] suggested a 

magnitude of relative error, or MRE Test taking in 

consideration both under-estimation and over-estimation. 
 

Estimated Actual

Actual

Effort Effort
MRE

Effort


  

 

ESTIMATION ACCURACY EVALUATION 

CRITERIA # 1 

 

The Magnitude of Relative Error (MRE) and the Mean 

Magnitude of Relative Error (MMRE) [34], [35] are used 

to evaluate the accuracy of the cost estimation models. 

They are defined as:  

 

i i

i

y y
MRE

y


  

 

where yi is the actual value and ỹi  is the estimate. 
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where n is the number of estimates; and is the Magnitude 

of Relative Error (MRE) of the ith estimate. The perfect 

value of the MRE, MMRE test would be zero. 

 

ESTIMATION ACCURACY EVALUATION 

CRITERIA # 2 

 

The Standard Deviation of Magnitude of Relative Error 

(SDMRE) is adopted as another evaluation criteria defined 

as: the standard deviation of MRE for all n estimations 

made. The perfect value of the SDMRE test would be zero. 

 

ESTIMATION ACCURACY EVALUATION 

CRITERIA # 3 

 

The Correlation co-efficient, Squared R, is next 

measurement criteria. This entity reflects the degree to 

which the model’s estimation correlate with the actual 

results. Albrecht’s test by performing the linear 

Regression with actual Effort as the dependent variable 

and the estimated Effort as the independent variable; is 

carried out for all proposed models. The perfect value of 

the R2 test would be one. 

 

V.  TRAINING AND TESTING THE PROPOSED MODEL 

The proposed model SG [N1/N2] is a feed forward 

back-propagation multilayer neural network, comprised of 

one input layer, one output layer and two hidden layers 

shown in fig.6. The size of input layer is 20 input neurons 

where each neuron represents one particular software 

attribute on which effort depends. Output layer produces 

effort estimated as a single output. The size of hidden 

layers varies in different configurations. Other parameters 

are same in all six configurations like transfer function, 

training function etc.  

Proposed model with five Configurations: 

 

Configuration I. SG1 [5/8] with N1=5; N2=8; 

Configuration II. SG2 [8/9] with N1=8; N2=9; 

Configuration III. SG3 [11/10] with N1=11; N2=10; 

Configuration IV. SG4 [16/19] with N1=16; N2=19; 

Configuration V. SG5 [18/15] with N1=18; N2=15; 

Configuration VI. SG6 [24/25] with N1=24; N2=25; 

 

where N1 = number of neurons in 1st Hidden Layer and  

N2 = number of neurons in 2nd Hidden Layer 

 

   

 

Fig.6. Proposed Model SG[N1/ N2] 

A.  Training of Model SG1 through SG6 with 63 Project COCOMO Dataset 

Table 4. 63 Project COCOMO Dataset for Training 

Total KDSI AAF RELY DATA CPLX TIME STOR VIRT TURN ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED MODE1 MODE2 MODE3 Effort 

2.03307 1 0.88 1.16 0.7 1 1.06 1.15 1.07 1.19 1.13 1.17 1.1 1 1.24 1.1 1.04 1 0 0 3.30963 

2.46686 0.85 0.88 1.16 0.85 1 1.06 1 1.07 1 0.91 1 0.9 0.95 1.1 1 1 1 0 0 3.20412 

2.12057 1 1 1.16 0.85 1 1 0.87 0.94 0.86 0.82 0.86 0.9 0.95 0.91 0.91 1 0 1 0 2.3856 

1.77815 0.76 0.75 1.16 0.7 1 1 0.87 1 1.19 0.91 1.42 1 0.95 1.24 1 1.04 0 0 1 2.38021 

1.20412 1 0.88 0.94 1 1 1 0.87 1 1 1 0.86 0.9 0.95 1.24 1 1 0 0 1 1.51851 

0.60206 1 0.75 1 0.85 1 1.21 1 1 1.46 1 1.42 0.9 0.95 1.24 1.1 1 0 0 1 1.63346 

0.83884 1 0.75 1 1 1 1 0.87 0.87 1 1 1 0.9 0.95 0.91 0.91 1 0 0 1 0.90309 

1.34242 1 1.15 0.94 1.3 1.66 1.56 1.3 1 0.71 0.91 1 1.21 1.14 1.1 1.1 1.08 1 0 0 3.0314 

1.47712 1 1.15 0.94 1.3 1.3 1.21 1.15 1 0.86 1 0.86 1.1 1.07 0.91 1 1 1 0 0 2.62634 

1.46239 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9 1 1 1 1 1 0 0 2.5065 

1.50515 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9 1 1 1 1 1 0 0 2.33845 

1.5682 1 1.15 0.94 1.3 1.11 1.06 1 1 0.86 0.82 0.86 1 0.95 0.91 1 1.08 1 0 0 2.30319 

1.39794 0.96 1.15 0.94 1.3 1.11 1.06 1.15 1 0.71 1 0.7 1.1 1 0.82 1 1 1 0 0 1.89762 
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0.47712 1 1.15 0.94 1.65 1.3 1.56 1.15 1 0.86 1 0.7 1.1 1.07 1.1 1.24 1.23 0 1 0 1.86332 

0.59106 1 1.4 0.94 1.3 1.3 1.06 1.15 0.87 0.86 1.13 0.86 1.21 1.14 0.91 1 1.23 1 0 0 1.78533 

0.78533 0.6 1.4 1 1.3 1.3 1.56 1 0.87 0.86 1 0.86 1 1 1 1 1 1 0 0 1.60206 

0.5563 0.53 1.4 1 1.3 1.3 1.56 1 0.87 0.86 0.82 0.86 1 1 1 1 1 1 0 0 0.95424 

2.50515 1 1.15 1.16 1.15 1.3 1.21 1 1.07 0.86 1 1 1 1 1.24 1.1 1.08 1 0 0 4.0569 

3.06069 0.84 1.15 1.08 1 1.11 1.21 0.87 0.94 0.71 0.91 1 1 1 0.91 0.91 1 1 0 0 3.81954 

2.47567 0.96 1.4 1.08 1.3 1.11 1.21 1.15 1.07 0.71 0.82 1.08 1.1 1.07 1.24 1 1.08 0 1 0 3.80618 

2.4014 1 1 1.16 1.15 1.06 1.14 0.87 0.87 0.86 1 1 1 1 0.91 0.91 1 1 0 0 3.39005 

2.07188 0.92 1.15 1 1 1.27 1.06 1 1 0.86 0.82 0.86 0.9 1 0.91 1 1.23 1 0 0 2.85973 

1.88649 0.98 1.15 1 1 1.08 1.06 1 1 0.86 0.82 0.86 0.9 1 1 1 1.23 1 0 0 2.73158 

1.95424 1 0.88 1 0.85 1.06 1.06 1 0.87 1 1.29 1 1.1 0.95 0.82 0.83 1 0 1 0 2.65609 

1.57978 1 1.15 1.16 1.3 1.15 1.06 1 0.87 0.86 1 0.86 1.1 1 0.82 0.91 1.08 1 0 0 2.7185 

1.68124 1 0.94 1 0.85 1.07 1.06 1.15 1.07 0.86 1 0.86 1.1 1 0.91 1.1 1.08 1 0 0 2.58771 

0.97312 1 1.15 0.94 1.15 1.35 1.21 1 0.87 1 1 1 1 1 0.82 1.1 1.08 1 0 0 1.94448 

1.11394 1 1.15 1.08 1.3 1.11 1.21 1.15 1.07 0.86 1 0.86 1.1 1.07 1.1 1.1 1 0 0 1 1.99122 

0.33041 1 0.88 1 1 1 1 1 1 1.1 1.29 0.86 1 1 0.91 0.91 1.23 0 1 0 0.86332 

0.29666 1 0.88 1 1 1 1 1 1 1.1 1.29 0.86 1 1 0.91 0.91 1.23 0 1 0 0.77085 

1.79239 0.81 1.4 1.08 1 1.48 1.56 1.15 1.07 0.86 0.82 0.86 1.1 1.07 1 1 1 1 0 0 3.02653 

2.59106 0.67 0.88 1.08 0.85 1 1 1 1 0.71 0.82 1 1 1 1.1 1.1 1 0 1 0 2.84633 

1.62324 0.96 1.4 1.08 1.3 1.48 1.56 1.15 0.94 0.86 0.82 0.86 0.9 1 0.91 0.91 1 1 0 0 2.78175 

1.36172 0.96 1.15 1.08 1 1.06 1 1 0.87 1 1 1 1 1 0.91 1.1 1.23 1 0 0 2.36172 

1.11394 1 0.75 0.94 1.3 1.06 1.21 1.15 1 1 0.91 1 1.1 1 1.24 1.24 1 1 0 0 1.91381 

1.17609 0.81 0.88 1.08 0.85 1 1 0.87 0.87 1.19 1 1.17 0.9 0.95 1 0.91 1.04 0 1 0 1.74036 

1.77815 0.56 0.88 0.94 0.7 1 1.06 1 1 0.86 0.82 0.86 1 1 1 1 1 0 0 1 1.67209 

1.17609 1 1 1 1.15 1 1 0.87 0.87 0.71 0.91 1 0.9 0.95 0.82 0.91 1 0 0 1 1.07918 

0.47712 0.83 1 0.94 1.3 1 1 1 0.87 0.86 0.82 1.17 1 1 1.1 1 1 0 0 1 0.90309 

0.72427 1 0.88 0.94 1 1 1 0.87 0.87 1 0.82 0.7 0.9 0.95 0.91 0.91 1 0 0 1 0.77815 

1.65801 0.43 0.88 1.04 1.07 1 1.06 0.87 1.07 0.86 1 0.93 0.9 0.95 0.95 0.95 1.04 0 0 1 1.65321 

1.45636 0.98 1 1.04 1.07 1 1.21 0.87 1.07 0.86 1 1 0.9 0.95 1 1 1.04 0 0 1 1.91907 

1.48572 0.98 0.88 1.04 1.07 1.06 1.21 0.87 1.07 1 1 1 0.9 0.95 1.1 1 1.04 0 0 1 1.93951 

1.54406 0.91 0.88 1.04 1.07 1 1.06 0.87 1.07 1 1 1 0.9 0.95 1 0.95 1.04 0 0 1 2.0253 

1.86332 0.78 0.88 1.04 1.07 1 1.06 0.87 1.07 1 1 0.86 0.9 0.95 1 1 1.04 0 0 1 2.10037 

1.36172 1 0.75 0.94 1.3 1 1 0.87 0.87 0.71 0.82 0.7 1.1 1.07 1.1 1 1.04 0 0 1 1.5563 

2.66651 0.67 0.88 0.94 0.85 1 1 0.87 1 1.19 0.91 1.17 0.9 0.95 1.1 1 1.04 0 1 0 3.10448 

1.95904 1 1 1 0.85 1 1 1 0.87 0.71 1 0.7 1.1 1 0.82 0.91 1 0 1 0 2.19312 

1.38021 1 1.15 1 1 1.3 1.21 1 0.87 0.86 1 0.86 1.1 1 1 1 1 1 0 0 2.24551 

1 1 0.88 1 1 1 1 1 1.15 1.19 1 1.42 1 0.95 1.24 1.1 1.04 0 0 1 2.08636 

0.91381 1 0.88 0.94 0.85 1 1.06 1.15 1 1 1 1 1.1 1.07 1.24 1.1 1 0 0 1 1.61278 

0.72427 1 0.88 0.94 1.15 1.11 1.21 1.3 1 0.71 1 0.7 1.1 1.07 1 1.1 1.08 0 1 0 1.14612 

0.64345 1 1 0.94 1 1 1.06 1.15 0.87 1 0.82 1 1 0.95 0.91 1.1 1 0 0 1 1.30103 

0.79934 1 0.88 0.94 0.7 1 1 0.87 0.87 0.86 0.82 1.17 0.9 0.95 1.1 1 1 0 0 1 1.25527 

1.43136 1 1.15 0.94 1.3 1.3 1.21 1 1 0.86 0.91 1 1.1 1.07 1.1 1.1 1.08 1 0 0 2.98136 

1.23044 0.87 1 0.94 1.15 1.11 1.21 1.3 1 1 1 1 1.1 1.07 1.1 1.1 1.23 1 0 0 2.37474 

1.39794 1 1.4 0.94 1.3 1.66 1.21 1 1 0.71 0.82 0.7 0.9 0.93 0.91 1 1 1 0 0 2.11394 

1.36172 0.9 1 0.94 1.15 1.06 1.06 1 0.87 1 1 1 1 1 0.91 1 1 0 0 1 1.84509 

0.82607 1 1.15 0.94 1.3 1.11 1.06 1 1 0.86 1.13 0.86 1.1 1.07 1.1 1.1 1.08 0 0 1 1.75587 

1.44715 1 1 0.94 1.15 1 1 0.87 0.87 0.86 1 0.86 0.9 1 0.82 1 1 0 0 1 1.69897 

0.95904 1 0.88 0.94 1.3 1.11 1.21 1.15 1 0.78 0.82 0.7 1.21 1.14 0.91 1.24 1 0 1 0 1.57978 

1 1 1 0.94 1.15 1 1 1 0.87 0.71 0.82 0.86 1 1 0.82 1 1 1 0 0 1.17609 

 



44 Machine Learning Application to Improve COCOMO Model using Neural Networks  

Copyright © 2018 MECS                                            I.J. Information Technology and Computer Science, 2018, 3, 35-51 

B.  Testing of Model SG1 through SG6 with 15 Project KEMERER Dataset 

Table 5. Kemerer Dataset 

Total 

KDSI 
AAF RELY DATA CPLX TIME STOR VIRT TURN ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED MODE1 MODE2 MODE3 Effort 

2.40414 1 1.15 1.08 1.15 1 1.06 0.87 1 0.86 1.13 0.86 1 1 0.82 0.91 1.02 0 1 0 2.45788 

1.60745 1 1 1 1 1 1 0.87 1 1 1.07 0.86 1 1 1 1 1 0 1 0 1.91645 

2.65321 1 1 1.16 1 1.3 1.21 0.87 1 0.86 1.13 1 1 1.03 0.91 1 1 1 0 0 3.04426 

2.33122 1 1 1.08 0.92 1 1 0.87 0.93 0.8 0.89 0.85 0.97 0.95 1 1 1.02 0 1 0 1.93019 

2.65311 1 1 0.94 1 1 1 0.93 0.87 0.78 1.13 0.93 1.1 1.03 1 0.91 1.07 0 0 1 2.52673 

1.69897 1 1 1.16 1 1.11 1.06 1 0.87 0.86 1.13 0.86 0.95 0.97 0.91 1 1.23 1 0 0 1.92428 

1.63346 1 1 1.16 1 1.11 1.06 1 0.87 0.86 1.13 0.7 0.95 1.07 0.91 1 1.23 1 0 0 1.36549 

2.22271 1 1.15 1.16 1 1 1 1 0.93 1 0.95 1 0.95 0.97 1 1 1.16 0 1 0 2.11494 

2.46089 1 1 1.16 1.15 1.11 1.06 0.87 0.87 1 1.13 1.06 1.1 1 1 1 1.08 1 0 0 2.06446 

1.59106 1 1 1.16 1 1.11 1 0.93 1.03 0.71 1 0.7 1.1 1.14 1.05 1 1.23 0 1 0 1.85733 

2.40517 1 1.16 1 1 1 1 1 1 0.86 1.13 0.86 1 1 0.86 1 1.23 0 1 0 2.4128 

2.10924 1 1 1.16 1 1 1 0.87 0.87 0.86 1.07 0.86 1 1.03 1.1 0.95 1.08 0 1 0 2.36305 

2.2079 1 1 1.16 1 1.06 1 0.87 0.87 1.19 1 0.78 1.21 0.97 1.1 1 1.08 0 1 0 2.19589 

2.21695 1 1 1.16 1 1 1 0.87 0.87 0.86 1.21 0.93 1.1 1.1 0.95 0.91 1.04 0 0 1 2.39252 

1.77959 1 1 1 1 1 1 1 0.87 0.71 0.91 0.86 1.1 1.03 0.91 0.91 1 0 1 0 1.84447 

 

 
Fig.7. Sample Training of Model SG[N1/ N2] 

 
Fig.8. Sample Testing of Model SG[N1/ N2] 

 

 

 

 

 

 

 

 

 

 

 

 



 Machine Learning Application to Improve COCOMO Model using Neural Networks 45 

Copyright © 2018 MECS                                            I.J. Information Technology and Computer Science, 2018, 3, 35-51 

VI.  EXPERIMENT RESULTS AND ANALYSIS OF 

PERFORMANCE 

The analysis on the performance of the proposed model 

with all six configuration is made taking in consideration 

evaluation criteria MRE, MMRE SDMRE and correlation 

coefficient, squared R. Selection of these aforementioned 

criterion is purely inspired from the work done by great 

Kemerer [27], that the analysis of the performance of 

various software cost estimation models using the same 

Kermerer 15 project data set and these three performance 

criteria.  

Kermerer data for 15 projects is being used in the testing 

of our proposed model. The closer MRE/MMRE/SDMRE 

value is to zero, the greater is the accuracy of the model. 

The closer R-squared measure is to one, the better is the 

correlation between the estimates of each model and the 

actual project results.  

A.  Performance of the proposed model 

Our experimentation begins with the training of 

proposed models shown fig. 9, using entire 63 project 

COCOMO data set which is followed by testing using 15 

project Kemmerer data set. 

Table 6. Performance statistics for Configuration I: SG1: N1=5; N2=8; 

Configuration  I : SG1: N1=5; N2=8; 

Project 

No. 

Actual Effort (in 

MM) 

Estimated Effort 

(in MM) 
Error % 

1 287.00 400.32 0.39 

2 82.50 81.39 -0.013 

3 1107.31 682.66 -0.38 

4 86.90 246.18 1.89 

5 336.30 145.50 -0.56 

6 84.00 449.07 4.34 

7 23.20 504.79 20.75 

8 130.30 471.7 2.62 

9 116.00 746.61 5.43 

10 72.00 218.75 2.038 

11 258.70 606.17 1.34 

12 230.70 220.21 -0.04 

13 157.00 90.48 -0.42 

14 246.90 176.46 -0.28 

15 69.90 36.84 -0.47 

MMRE 

244.24 

Standard Deviation SDMRE 

539.42 

 

 

Fig.9. Proposed Model SG[N1/ N2] 

Proposed Model SG[N1/ N2] with six top 

Configurations: 

 

I. SG1 [5/8] with N1=5; N2=8; 

II. SG2 [8/9] with N1=8; N2=9; 

III. SG3 [11/10] with N1=11; N2=10; 

IV. SG4 [16/19] with N1=16; N2=19; 

V. SG5 [18/15] with N1=18; N2=15; 

VI. SG6 [24/25] with N1=24; N2=25; 

 

 

Fig.10. Correlation Coefficient SG 1 [5 / 8] 

Table 7. Performance statistics for Configuration II: SG2: N1=8; N2=9; 

Configuration  III : SG3: N1=11; N2=10; 

Project 

No. 

Actual Effort 

(in MM) 

Estimated 

Effort 

(in MM) 

Error % 

1 287.00 1412.07 3.92 

2 82.50 222.89 1.70 

3 1107.31 4615.97 3.16 

4 86.90 709.90 7.33 

5 336.30 3545.32 9.54 

6 84.00 391.53 3.66 

7 23.20 120.71 4.20 

8 130.30 674.71 4.17 

9 116.00 3485.23 29.04 

10 72.00 80.184 0.11 

11 258.70 654.12 1.52 

12 230.70 287.37 0.24 

13 157.00 179.52 0.14 

14 246.90 351.78 0.42 

15 69.90 67.17 -0.03 

MMRE 

461.16 

Standard Deviation SDMRE 

731.40 
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Performance statistics for Configuration I: SG1: N1=5; 

N2=8; is shown in Table VI with 0.737 correlation 

coefficient displayed in fig.10. Minimum MRE is 0.013 

and maximum MRE is 20.75. 

Performance statistics for Configuration II: SG2: 

N1=8; N2=9; is shown in Table VII with 0.786 correlation 

coefficient fig.11. Minimum MRE is 0.05 and maximum 

MRE is 34.02. 

 

 

Fig.11. Correlation Coefficient SG 2 [8 / 9] 

 

Performance statistics for Configuration III: SG3: 

N1=11; N2=10; is shown in Table VIII with 0.8516 

correlation coefficient displayed fig.12. Minimum MRE is 

0.03 and maximum MRE is 29.04. The estimation is fairly 

good correlated with actual effort. 

Table 8. Performance statistics for Configuration III: SG3: N1=11; 

N2=10; 

Configuration  II : SG2: N1=8; N2=9; 

Project 

No. 

Actual Effort 

(in MM) 

Estimated 

Effort (in MM) 
Error % 

1 287.00 531.04 0.85 

2 82.50 322.16 2.90 

3 1107.31 907.79 -0.18 

4 86.90 1125.75 12.22 

5 336.30 530.77 0.57 

6 84.00 181.76 1.16 

7 23.20 167.18 6.20 

8 130.30 169.76 0.30 

9 116.00 4062.85 34.024 

10 72.00 280.68 2.89 

11 258.70 144.30 -0.44 

12 230.70 736.35 2.19 

13 157.00 148.40 -0.05 

14 246.90 1455.58 4.89 

15 69.90 605.96 7.66 

MMRE 

501.52 

Standard Deviation  SDMRE 

876.43 

 

 

 

Performance statistics for Configuration IV: SG4: 

N1=16; N2=19; is shown in Table IX with 0.929 

correlation coefficient displayed fig.12. Minimum MRE is 

0.70 and maximum MRE is 20.20. The estimation is 

strongly correlated with actual effort nearly to the perfect 

score (~1).  

 

 

Fig.12. Correlation Coefficient SG 3 [11 / 10] 

Table 9. Performance statistics for Configuration  IV: SG4: N1=16; 

N2=19; 

Configuration  IV : SG4: N1=16; N2=19; 

Project 

No. 

Actual 

Effort 

(in MM) 

Estimated 

Effort 

(in MM) 

Error % 

1 287.00 81.91 -0.71 

2 82.50 10.38 -0.87 

3 1107.31 6522.10 4.89 

4 86.90 520.21 5.10 

5 336.30 6.10 -0.98 

6 84.00 689.01 7.20 

7 23.20 199.29 7.59 

8 130.30 494.36 2.79 

9 116.00 2460.13 20.20 

10 72.00 380.59 4.28 

11 258.70 98.49 -0.61 

12 230.70 394.09 0.70 

13 157.00 1245.69 6.93 

14 246.90 48.49 -0.80 

15 69.90 418.91 4.99 

MMRE 

404.82 

Standard Deviation SDMRE 

550.98 

 

Performance statistics for Configuration V: SG5: 

N1=18; N2=15; is shown in Table X with 0.904 

correlation coefficient displayed in fig. 14. Minimum 

MRE is 0.03 and maximum MRE is 10.33. The estimation 

is strongly correlated with actual effort nearly to the 

perfect score (~1). The overall  deviation is very low. 
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Fig.13. Correlation Coefficient SG 4 [ 16 / 19 ] 

Table 10. Performance statistics for Configuration V: SG5: N1=18; 

N2=15; 

Configuration V : SG5: N1=18; N2=15; 

Project 

No. 

Actual 

Effort 

 (in MM) 

Estimated 

Effort 

(in MM) 

Error % 

1 287.00 651.20 1.26 

2 82.50 104.06 0.26 

3 1107.31 3816.78 2.44 

4 86.90 165.35 0.94 

5 336.30 141.49 -0.57 

6 84.00 79.44 -0.05 

7 23.20 97.43 3.19 

8 130.30 723.60 4.55 

9 116.00 1047.97 8.03 

10 72.00 815.94 10.33 

11 258.70 572.57 1.21 

12 230.70 164.05 -0.28 

13 157.00 162.67 0.03 

14 246.90 324.18 0.31 

15 69.90 253.49 2.62 

MMRE   228.70 

Standard Deviation SDMRE   317.65 

 

 

Fig.14. Correlation Coefficient SG 5 [18 / 15] 

 

 

Performance statistics for Configuration VI : SG6: 

N1=24; N2=25; is shown in Table 11 with 0.831 

correlation coefficient displayed in fig. 15. Minimum 

MRE is 0.15 and maximum MRE is 15.75. The estimation 

is nicely correlated with actual effort. 

Table 11. Performance statistics for Configuration VI: SG6: N1=24; 

N2=25; 

Configuration VI : SG6: N1=24; N2=25; 

Project 

No. 

Actual 

Effort (in 

MM) 

Estimated 

Effort (in MM) 
Error % 

1 287.00 85.54 -0.70 

2 82.50 6.86 -0.91 

3 1107.31 3537.47 2.19 

4 86.90 98.19 0.15 

5 336.30 14.62 -0.95 

6 84.00 609.75 6.25 

7 23.20 388.72 15.75 

8 130.30 247.99 0.90 

9 116.00 1024.60 7.83 

10 72.00 292.15 3.05 

11 258.70 73.58 -0.71 

12 230.70 131.65 -0.42 

13 157.00 763.08 3.86 

14 246.90 48.69 -0.80 

15 69.90 209.64 1.99 

MMRE    249.95 

Standard Deviation SDMRE     457.11 

 

Overall performance as in Table 12 of all configurations 

suggests that SG5 is the best performer among all six top 

configurations. SG5 with 18 neurons at hidden layer 1 and 

15 neurons at hidden layer 2 gives the best results with 

minimum MMRE and Standard deviation. The correlation 

coefficient is quite high. Fig. 16 shows the bar plot for 

SG1 through SG6. 

 

 

Fig.15. Correlation Coefficient SG 6[24 / 25] 
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Table 12. Performance of Proposed Model (SG) 

Performance of Proposed Model (SG) 

Configuration Approach MMRE % 

Standard 

Deviation 

SDMRE % 

Correlation 

(Estimated Vs. 

Actual) 

I SG1 [5/8] 244.24 539.42 0.737 

II SG2 [8/9] 501.52 876.43 0.786 

III SG3 [11,10] 461.16 731.40 0.851 

IV SG4 [16/19] 404.82 550.98 0.929 

V SG5 [18/15] 228.70 317.65 0.904 

VI SG6 [24/25] 249.95 457.11 0.831 

 

 

Fig.16. The bar plot for SG1 through SG6. 

 

B.  Comparison of proposed model with traditional models 

At this step of experimentation, it is possible to compare 

the estimating capability of the machine learning based 

proposed model with traditional models referring the 

results obtained by Kemmerer [27]. Various models are 

SLIM, ESTIMACS,  

Function Points, and COCOMO. These results shown in 

Table 13 serve as an indication about the machine 

generated models’ capability to generalize across multiple 

development domains that seems critical for any model 

while considering the success of the project. 

Table 13. Comparison of proposed model with traditional models 

Model MMRE % 
Standard 
 Deviation  
SDMRE % 

Correlation  
(Estimated Vs. 

Actual) 

SG1 [5/8] 244.24 539.42 0.737 

SG2 [8/9] 501.52 876.43 0.786 

SG3 [11,10] 461.16 731.40 0.851 

SG4 [16/19] 404.82 550.98 0.929 

SG5 [18/15] 228.70 317.65 0.904 

SG6 [24/25] 249.95 457.11 0.831 

ESTIMACS  [27] 85.48 70.36 0.134 

Function Point [27] 102.74 112.11 0.553 

SLIM [27] 771.87 661.33 0.878 

Intermediate-COCO
MO  [27] 

583.82 862.79 0.599 
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Table 14. Comparison of proposed model with traditional models 

Model MMRE % 

SG1 [5/8] 244.24 

SG2 [8/9] 501.52 

SG3 [11,10] 461.16 

SG4 [16/19] 404.82 

SG5 [18/15] 228.70 

SG6 [24/25] 249.95 

  

MayaZaki and Mori (1985) 165.60 

Kemerer (1987) 583.82 

Chandrasekaran and Kumar (2012) 8.4 

Weighted Average 284.61 

 

The best network is SG5 [18/15] with an accuracy 

greater than that of either SLIM or Intermediate 

COCOMO and a correlation factor higher than all of the 

traditional models.  While none of the networks could be 

considered truly accurate, the results of this experiment 

indicate that networks are worth strong consideration 

shown in fig. 17.  

Only SLIM has somewhat comparable Correlation 

coefficient with SG5 as shown in fig. 18, but MMRE and 

standard deviation are worse. 

C.  Comparison of proposed model with traditional 

models 

The proposed model with configuration SG5 [18/15] 

shows MMRE at 228.70 % while till date COCOMO 

accuracy reported is with MMRE at 284.61. It clearly 

reflects the improvement in COCOMO model while 

sustaining the desirable features of COCOMO and 

machine learning aspect of Neural network shown in 

Table 14.   

 

 

Fig.17. Comparative analysis of Models 

 

 

Fig.18. SG5 Performance Vs. SLIM Performance 

 

VII.  CONCLUSION 

Accurate effort estimation is highly crucial in the 

software development. Through this presented work, first 

up major accuracy reports of COCOMO performance are 

reviewed. Along this, wide range of estimation methods is 

reviewed. It is found that every method played important 

role in software development history. Various research 

reports have been contributed by dignified authors. But no 

model is adaptive to the latest development methods, 

resulting into the project failures. In such scenario, 

Machine learning is the answer to find out the relationship 

existing among the software project attributes and the 

effort required for the successful completion of the project. 

The core objective for this entire work is to apply machine 

learning technique to improve performance of COCOMO 

estimation model.  
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Neural network finds out such relationships during the 

training phase and then can be exploited to predict the 

estimate for unseen data. Our traditional estimation 

techniques are not able to capture and record such patterns 

as ML techniques do. Hence, ML based models are 

superior to the traditional models. Neural network as a tool 

deployed in the research work carried out here. Neural 

networks are having a strong capability to capture and 

learn the project data and predict effort with accuracy and 

a high degree of correlation with the project actual values.  

The proposed model shows best performance to 

generalize on the data and make estimates better than those 

of other well-known models. Proposed models SG5 

trained using COCOMO dataset and tested for KEMERER 

dataset gives best 0.9 Correlation coefficient with 228.70 

MMRE % and 317.65 SDMRE % which is superior to 

reported accuracy of COCOMO that is 284.61  MMRE %.  

This feature of making estimation across domains is 

critical when applied to the new development domains. 

Our proposed model performed quite well. An advantage 

of deploying neural networks is the ease to set up and train 

them within the range of project personnel. Further, 

proposed model is self-calibrating sort of tool when fed 

with data of newly completed projects and retrained. 

Although, accuracy of the proposed model is not as that of 

algorithmic models, but it is worthy as per their 

performance and ability to deal with non-numeric, or 

symbolic, data. The proposed can be directly applied 

within an organization at the earliest stages of project to 

capture the likely magnitude of the project under 

consideration. The models SG1 through SG6 are fairly 

accurate and strongly correlated. These results indicate 

that machine learning shows great usefulness as an 

exciting new approach to the cost estimation problem. 
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