
I.J. Information Technology and Computer Science, 2018, 3, 35-51
Published Online March 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2018.03.05

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Machine Learning Application to Improve

COCOMO Model using Neural Networks

Somya Goyal
Vaish College of Engineering/CSE Department, Rohtak, 124001, INDIA

E-mail: somyagoyal1988@gmail.com

ANUBHA Parashar
Manipal University/CSE Department, Jaipur, 303007, INDIA

E-mail: anubhaparashar1025@gmail.com

Received: 13 November 2017; Accepted: 08 January 2018; Published: 08 March 2018

Abstract—Millions of companies expend billions of

dollars on trillions of software for the development and

maintenance. Still many projects result in failure causing

heavy financial loss. Major reason is the inefficient effort

estimation techniques which are not so suitable for the

current development methods. The continuous change in

the software development technology makes effort

estimation more challenging. Till date, no estimation

method has been found full-proof to accurately

pre-compute the time, money, effort (man-hours) and

other resources required to successfully complete the

project resulting either over-estimated budget or

under-estimated budget. Here a machine learning

COCOMO is proposed which is a novel non-algorithmic

approach to effort estimation. This estimation technique

performs well within their pre-specified domains and

beyond so. As development methods have undergone

revolutionaries but estimation techniques are not so

modified to cope up with the modern development skills,

so the need of training the models to work with updated

development methods is being satiated just by finding out

the patterns and associations among the domain specific

data sets via neural networks along with carriage of

desired COCOMO features. This paper estimates the

effort by training proposed neural network using already

published data-set and later on, the testing is done. The

validation clearly shows that the performance of

algorithmic method is improved by the proposed machine

learning method.

Index Terms—COCOMO (Constructive Cost Model),

Correlation, Machine Learning, MMRE (Mean Magnitude

of Relative Error), Neural Network, Software Effort

Estimation.

I. INTRODUCTION

Every domain of our life is covered with overwhelming

applications of computers now-a-days. No aspect left

untouched by computers i.e. hardware and software. It is

found that the prices for computer hardware has decreased

in comparison of software which is continuously

increasing. Software Industry annually spend the billions

on the acquisition and maintenance of software [1].

Object-oriented programming, computer-aided

software engineering (CASE), COTS, Agile Methodology

and other technology are in use for software development,

but software effort estimation has somewhere lagged

behind in terms of advancements. One major resource for

software product is Man-power, the effort. Estimation

models first compute the effort required to complete the

project, that can be further converted into dollars. The

current estimation models dishearten project managers by

over-estimated budget or under-estimated budget resulting

into a complete failure. Various models for software cost

estimation are available in market.

The most popular one is the Constructive Cost Model,

or COCOMO developed by Barry Boehm [2]. The basis

for COCOMO is a database of sixty-three projects created

at TRW during the 1960's and 1970's and is published in

Boehm's book, Software Engineering Economics. The

popularity of COCOMO lies in its ease of application and

its non-proprietary nature. Other models, like ESTIMACS

are proprietary. In all these models the inputs and the

relationships are domain specific which are fully

dependent on the experts opinion. For this reason, such

models tend to perform poor or even fail when their

application boundaries are tried to be changed.

In such scenario, there is a need of a technique that can

substitute the expert-judgement. The destined answer is

Machine Learning. Data Collection, Knowledge

acquisition, classification, pattern recognition and much

more can be done easily and efficiently. Here we tried to

apply Machine Learning to Software Engineering in Effort

Estimation. Neural Network allows to model a complex

set of relationship between the dependent variable and the

independent variables. If we consider effort as dependent

attribute and cost drivers with software size as

independent entities then, neural network can be

implemented as machine learning tool.

The overall objective is to design a methodology for

machine learning based approach to software effort

estimation using neural networks. Because current

estimation models provide only marginal results within

36 Machine Learning Application to Improve COCOMO Model using Neural Networks

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

their domain specific applications otherwise, tend to fail

when applied for latest development methods. The

performance of proposed model based on

machine-learning technique is evaluated and analyzed in

comparison to the traditional models.

This proposed model uses the COCOMO data set for

training phase and the Kemmerer data set for testing

purposes. Then, the effectiveness of machine-learning

technique to the effort estimation field is determined and

post-analysis conclusion is drawn.

With this research work, we tried not only to develop a

better opportunity for cost estimation but also tried to

apply machine learning to software engineering.

This paper is structured into six sections as follows:

Section II, discusses the background of the research work

theme. Section III, covers the literature survey

highlighting the various accuracy reports of COCOMO

model and brings a torch on the contributions made by

various researchers. Section IV, provides the experimental

set-up which includes the design of proposed model and

the training/testing data sets. Detailed architecture of

proposed model is comprised of multiple network

configurations to carry out the experiment. Section V,

shows how machine learning is applied using the training

data set as the means for knowledge acquisition via neural

network. Then, the resulting model is tested using testing

data set. The training and testing data-set are different to

determine the capability of the models to generalize. In

section VI displays the findings of work. The results of

experiments with multiple neural networks configurations

are analyzed on overall performance against actual project

effort and against each other. Section VII, sums up the

analysis with the conclusions made out of the entire

research work.

II. BACKGROUND

Effort estimation is all time catch for software industry

when it comes to the point of accuracy. Various software

developers, Engineers and reseachers contributed to this

area. Multiple techniques and paradigms are already

available in the industry and machine learning is one of the

growing approach in this area. The stems of the current

work lies in the COCOMO empirical equation and neural

network technology.

The remaining section brings light on the stem and

expansion of the proposed work.

A. Effort Estimation

A big challenge is being faced by software developers in

name of effort estimation. A wide range of techniques are

being employed for effort estimation like Analogy based

estimation [3], estimation by expert [4], rule induction

techniques [5], algorithmic techniques with empirical

strategies [6], artificial neural network designed methods

[7, 8, 9], decision tree based strategies [10], Bayesian

network techniques [11] and fuzzy logic based estimation

structures [12] and ad-hoc approach based [13].

Software Estimation Models are categorized into

Algorithmic and Non Algorithmic techniques as shown in

Fig.1. which are further classified as Linear/non linear

models, Discrete models, Multiplicative models, Power

Function models [14].

Algorithmic models are formula based models derived

from some project data. These compute effort by

performing some calibration on the pre-specified formulae.

Some examples are:

a) COCOMO model [1, 2]

b) Putnams’ model and SLIM [16]

c) Function Point Analysis (FPA) [15]

d) ESTIMACS

Fig.1. Software Estimation Models

The Constructive Cost Model COCOMO, was

developed by Barry Boehm in the late 1970's, during his

tenure at TRW, and published in 1981, Software

Engineering Economics. This model is a hierarchy of three

models basic, Intermediate and detailed. It is based on a

study of 63 projects developed at TRW from the period of

1964 to 1979. Three development modes were defined as

organic, semidetached, and embedded [2].

Initially, three development modes were defined then;

calibration was made using the original 56 project

database to get better accuracy. Few more projects were

added to the original database resulting into the famous 63

project database. COCOMO relies on empirically derived

relationships among the various cost drivers [2]. This

model is popular because of the ease of its application and

availability.

The basic COCOMO equations take the form:

Effort Applied,

E = a ∙ (SLOC) b [man-months] (1)

Development Time,

D = c ∙ (Effort Applied) d [months] (2)

where, SLOC is the estimated number of delivered lines

(expressed in thousands) of code for project, The

coefficients a, b, c and d are dependent upon the three

modes of development of projects.

Non-Algorithmic models were introduced in 1990s. The

inability of algorithmic methods to reason directed the

path to the exploration of non-algorithmic methods.

Examples are:

a) Case-based reasoning (CBR)

b) Analogy Based Estimation

c) Delphi Techniques

 Machine Learning Application to Improve COCOMO Model using Neural Networks 37

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Estimation techniques are being experimented

considering fusion with soft computing approach.

Hodgkinson et al. [17] concluded that estimation by expert

judgment performed better to regression based models. A

Neuro-fuzzy approach [18], came into light considering

the linguistic attributes of a fuzzy system and combining

them with a neural network. Burgess et al. applied genetic

programming to carry software effort estimation [19].

B. Machine Learning

Machine learning based effort estimation falls under

non-algorithmic approach. It covers the use of neural

network, genetic algorithms and CBR techniques.

The neural network paradigm grew out from the idea of

imitating the human brain. Initial efforts were made by

early artificial intelligence researchers. In 1958, Frank

Rosenblatt defined a neural network structure called a

perceptron [20]. He outlined the principles about storing

the information in connecting weights. This research

introduced all kind of training algorithms, supervised and

unsupervised. Next milestone in the colored paradigm of

neural network was the work done by John Hopfield [20].

The Defense Advanced Research Projects Agency

sponsored a neural network review in 1988 and published

a report on the field [21].

Neural Network is a massively parallel adaptive

network of simple nonlinear computing elements called

Neurons, which are intended to abstract and model some

of the functionality of the human nervous system in an

attempt to partially capture some of its computational

strengths [22, 23, 24].

Fig.2. A basic neuron

Basic Components of a neural network as shown in fig.

2.:

i) neurons,

ii) activation function,

iii) signal function,

iv) pattern of connectivity,

v) activity aggregation rule,

vi) activation rule,

vii) learning rule and

viii) environment [25].

1

i n

i i

i

u W X




 ()y u b  

where

x1 ,x2, … , xn are the input signals ,

w1,w2, …, wn are the synaptic weights,

u is the linear combiner output,

b is the bias,

Φ is the activation function and

y is the output signal of the neuron.

First up, a neural network is created then, it is trained

which involves the modification of the weights in the

connections between network layers with the objective to

achieve the target output, is called learning. There are two

classes of learning: Supervised Learning and

Unsupervised Learning [23, 24].

In supervised training, both the inputs and the outputs

are provided. The network then processes the inputs,

compares its resulting outputs against the desired outputs

and error is calculated.

In unsupervised training, the network is provided with

inputs but not with desired outputs. The system itself must

then decide what features it will use to group the input data

[22].

Architecture of neural network: feed-forward neural

network, is the architecture in which the network has no

loops. Feed-back (recurrent) is an architecture in which

loops occurs in the network [23, 24].

Further, Network can be a single-layered network or a

multi-layered network. In single layer architecture, it

consists of a single layer of output nodes, the inputs

neurons are connected directly to the outputs neurons via a

series of weights. But in multi layer architecture, there is

an additional layer of neurons present between input and

output layers. That layer is called hidden layer [23, 24].

Any number of hidden layers can be added according to

the requirement of the situation and accuracy desired. In

this paper we have used multiple layer feed forward neural

network.

The most popular networks and the selected one in my

work, is the back-propagation network. It is named after

the training method used in this network. The network is a

feed-forward network constructed of input layer of

neurons, an output layer of neurons, and one or more

hidden layers of neurons. Each neuron (or node) is defined

by a transfer function.

In the case of the back-propagation network, the

function usually has a sigmoid or S-shape that ranges

asymptotically between zero and one. The reason for

choosing the sigmoid is that the function must be

continuously differentiable and should be asymptotic for

infinitely large positive and negative values of the

independent variables [21]. The neurons in each layer are

then assigned a weighted connection to each neuron in the

following layer. These connection weights are established

randomly upon initialization of training and then

re-calculated as the network is presented with the training

patterns until the error of the output is minimized. The

method that adjusts the weights is known as the

38 Machine Learning Application to Improve COCOMO Model using Neural Networks

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Generalized Delta Rule which is a method based on

derivatives that allows for the connection weights to be

adjusted to obtain the least-mean square of the error in the

output [21].

Bias neurons, if used, imply provide a constant input

signal to the neurons in a particular layer and relieve some

of the pressure from the learning process for the

connection weights.

A simple network diagram is shown in Fig. 3.

Fig.3. A Simplified Back-propagation Network

During the training process, the connection weights

(and threshold values) are adjusted using the following

equation [22]:

() () * () _ _w new w old a Delta w output activation level  

where w, stands for the new and old values of the

connection weight and is a constant that defines the

magnitude of the effect of Delta on the weight. Delta

describes a function that is proportional to the negative of

the derivative of the error with respect to the connection

weight and output_activation_ level is the output of the

neuron.

This back-propagation of error mechanism allows the

weights at all layers to be adjusted as the training process

is performed, including any connections between hidden

layer neurons.

A back-propagation network is capable of generalizing

and feature detection because it is trained with different

examples whose features become embedded in the weights

of the hidden layer nodes [21]. An example of the

operation of a neural network is provided by Maren and

involves a neural network designed to solve an XOR

classification problem.

Applications of Neural networks are in the areas of

filtering, image and voice recognition, financial analysis,

and.

III. RELATED WORKS

Although, extensive research work has been carried out

in past few decades for an accurate estimation technique.

But, we are lagging behind somewhere because traditional

techniques like COCOMO model are not suitable for

current market trends.

MayaZaki and Mori [26]
In 1985, the accuracy of COCOMO model was reported

by MayaZaki and Mori [26], in consideration of the study

of 33 software projects. The MMRE was found at 165.6%.

Kemerer [27]

In 1987 Kemerer [27], in the paper entitled An

Empirical Validation of Software Cost Estimation Models

compared the accuracy of 4 estimation models FPA,

COCOMO, SLIM, and ESTIMACS. He analyzed many

COCOMO models. COCOMO Intermediate showed the

least Mean Magnitude of Relative Error (MMRE). The

Mean Magnitude of Relative Error (MMRE) of the 15

projects was 583.82%. Likewise, He presented project

data for SLIM, ESTIMACS and FP Models.

Table I shows the effort estimate (man-month), the

actual effort (man-month), and percentage MRE data of

the 15 software projects using COCOMO for the effort

estimation.

Kemerer used data collected from 15 completed

software projects to produce results. Each model was

tested for predictive capability for effort estimation. The

result made was that the models require substantial

calibration. He also identified the main attributes which

affect software productivity [27].

Chandrasekaran and Kumar [28]
In 2012, another case study was reported while applying

both COCOMO model and Function Point Analysis for

 Machine Learning Application to Improve COCOMO Model using Neural Networks 39

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

the software project effort estimation by Chandrasekaran

and Kumar [28], He published the accuracy report with

percentage MMRE (8.4%) for the COCOMO model

estimation.

Table 1. Kemerer Data-Set

DETAILS OF THE SOFTWARE PROJECTS FROM KEMERER [27]

Project No.
Estimated Effort

(person month)

Actual Effort

(person month)
MRE (%)

1 917.56 287.00 219.71

2 151.66 82.50 83.83

3 6,182.65 1,107.30 458.35

4 558.98 86.90 543.25

5 1,344.20 336.30 299.70

6 313.36 84.00 273.05

7 234.78 23.20 911.98

8 1,165.70 130.30 794.63

9 4,248.73 116.00 3,562.70

10 180.29 72.00 150.40

11 1,520.04 258.70 487.57

12 558.12 230.70 141.82

13 1,073.47 157.00 583.74

14 629.22 246.90 154.85

15 133.94 69.90 91.62

MMRE 583.82

Tharwon Arnuphaptrairong [29]

In 2016, Arnuphaptrairong made a literature survey to

find which software effort estimation model is more

accurate? He reported that Use Case Point Analysis

outperforms other models with the least weighted average

Mean Magnitude of Relative Error (MMRE) of 39.11%,

compare to 90.38% for Function Point Analysis and

284.61% for COCOMO model. It indicates that there is

still need to improve the estimation performance but the

question is how.

The availability of accuracy reports tabulated in Table

2., satisfying research criteria is found to be low. Only 3

studies are made available [29] from the contributions of

MayaZaki and Mori in 1985 [26], Kemerer in 1987 [27],

and Chandrasekaran and Kumar in 2012 [28].

Table 2. COCOMO accuracy reports

SUMMARY OF THREE COCOMO STUDIES [29]

S. No. Contributor

Number of

Software

 project

MMRE (%)

1 MayaZaki and Mori 33 165.60

2 Kemerer 15 583.82

3
Chandrasekaran and

Kumar
1 8.4

Weighted Average MMRE 284.61

Therefore other techniques like machine learning,

exploratory data analysis now dominating the field [30].

Machine Learning is suitable to the effort estimation due

to it can learn from previous data. It associates the

dependent (effort) and independent variables (cost drivers).

It generalizes the training data set and produces acceptable

result for any unseen data.

Most of the work in the application of neural network to

effort estimation made use of feed-forward multi-layer

Perceptron, Back-propagation algorithm and sigmoid

function. Various models are introduced for solving

multiple real life problems [31].

IV. EXPERIMENTAL SET-UP

Proposed methodology for training the neural network

to predict the effort required for successful completion of

software project, at early level of development accurately,

can be given by following algorithm as shown in fig. 4.:

Step I. Define the training datasets with input-target

vectors. Process the dataset, if required. Input comprises of

the independent attributes and target is dependent entity

(effort).

Step II. Define the testing datasets with input attributes

compatible with those of training dataset.

Step III. Design the network which would implement

machine learning by absorbing the information gathered

during training phase. Size of network, size of layers,

transfer function, training algorithm, training function,

performance function and other parameters should be

supplied.

Step IV. Initialize the network.

Step V. Feed the network with training data (as in

stepI)allowing the capture of associations among data

which would be further used for effort prediction.

Step VI. After training, test the performance of the

learned network by supplying the testing dataset as in Step

II.

Step VII. Analyze the performance of the network by

comparing the estimated effort and the actual effort.

Retrain the network (repeat from step V) if performance is

not satisfactory.

40 Machine Learning Application to Improve COCOMO Model using Neural Networks

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Fig.4. Proposed Methodology

A. Data Collection Preparation

The experimental set-up for any machine-learning

technique is a two-step process. It includes training and

testing of neural network. For each step, specific relevant

data set is required. We selected COCOMO dataset (63

projects database by Boehm) for training [2] and the

Kemmerer dataset (15 projects database by Kemmerer)

[27] for testing.

After making the selection of dataset, the next crucial

aspect is data preparation. It is about paying special

attention towards how the data is being fed to the network,

because the entire performance is very sensitive to the data

and its presentation.

Here, this experiment requires three transformations.

First, the KDSI is transformed into its corresponding

logarithmic value. Second, the actual effort values are

translated into logarithmic values. Third, the mode of

project is represented with combination of 3-digit Boolean

value where Embedded= 1 0 0, Semi-detached= 0 1 0,

Organic= 0 0 1 . The basic reason behind these

conversions is that all input variables should vary over a

roughly similar range between the minimum and

maximum values.

Sample Input-output Vector demonstrating

transformations shown in Table 3.

The training data set consists of 63 samples.

"COCOMO_Inputs" is a 20 x 63 matrix of values.

"COCOMO_Targets" is an 1 x 63 matrix. All of the 63

COCOMO projects were used as the training set, and

Kemmerer data set of 15 projects were used as the testing

set with "KER_Inputs" is a 20 x 15 matrix of values.

"KER_Targets" is an 1 x 15 matrix..

Table 3. Sample Input-output Vector demonstrating transformations

B. Proposed Model

Designing the neural network is an iterative process.

Prior to the training, no configuration can be said the best

arrangement. Various network configurations iteratively

trained in the ranges of Number of Hidden Neurons: 1-10;

 Machine Learning Application to Improve COCOMO Model using Neural Networks 41

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

12-20; 20-30 and Number of Hidden Layers: 1-2 ; 1-2 ; 1-2

to search for the best-performing configurations. Our

worthy efforts lead us to following six top configurations

of network.

The proposed model SG [N1/N2] is a feed forward

back-propagation multilayer neural network, comprised of

one input layer, one output layer and two hidden layers

shown in fig. 5.

The size of input layer is 20 input neurons where each

neuron represents one particular software attribute on

which effort depends. Output layer produces effort

estimated as a single output. The size of hidden layers

varies in different configurations. Other parameters are

same in all six configurations like transfer function,

training function etc.

Proposed model with five Configurations:

Configuration I. SG1 [5/8] with N1=5; N2=8;

Configuration II. SG2 [8/9] with N1=8; N2=9;

Configuration III. SG3 [11/10] with N1=11; N2=10;

Configuration IV. SG4 [16/19] with N1=16; N2=19;

Configuration V. SG5 [18/15] with N1=18; N2=15;

Configuration VI. SG6 [24/25] with N1=24; N2=25;

where N1 = number of neurons in 1st Hidden Layer and

N2 = number of neurons in 2nd Hidden Layer

The sigmoid function is selected as transfer function at

hidden layers. The sigmoid or S-shape that ranges

asymptotically between zero and one. The reason for

choosing the sigmoid is that the function must be

continuously differentiable and should be asymptotic for

infinitely large positive and negative values of the

independent variables [11]. At output layer pure linear

function is selected as transfer function. While training,

Mean Squared Error is Performance function. For training

back-propagation algorithm based on Delta rule is

employed via Levenberg-Marquardt back-propagation

function.

Fig.5. Overall Architecture of Proposed Model

C. Performance Evaluation Criteria

The performance of proposed model can be evaluated as

the degree to which the model’s estimated effort (Effort

Estimated) matches the actual effort (Effort Actual). If the

model would be perfect, then for every project Effort

Estimated = Effort Actual.

Boehm [2] introduced percentage error test with

Estimated Actual

Actual

Effort Effort
Percentage Error

Effort




Estimation may vary as over-estimation or as

under-estimation; Overestimation results into either less

production (Parkinson’s law: “Work expands to fill the

time available for its completion”) or add so-called “gold

plating” [2]. Underestimation may lead the project

understaffed and new staff would be appointed as the

deadlines approaches. This results in a heavy loss

(Brooks’s law: “Adding man-power to a late software

project makes it later”) [32]. Conte et al. [33] suggested a

magnitude of relative error, or MRE Test taking in

consideration both under-estimation and over-estimation.

Estimated Actual

Actual

Effort Effort
MRE

Effort




ESTIMATION ACCURACY EVALUATION

CRITERIA # 1

The Magnitude of Relative Error (MRE) and the Mean

Magnitude of Relative Error (MMRE) [34], [35] are used

to evaluate the accuracy of the cost estimation models.

They are defined as:

i i

i

y y
MRE

y




where yi is the actual value and ỹi is the estimate.

42 Machine Learning Application to Improve COCOMO Model using Neural Networks

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

1

i n

i

i

MRE

MMRE
n






where n is the number of estimates; and is the Magnitude

of Relative Error (MRE) of the ith estimate. The perfect

value of the MRE, MMRE test would be zero.

ESTIMATION ACCURACY EVALUATION

CRITERIA # 2

The Standard Deviation of Magnitude of Relative Error

(SDMRE) is adopted as another evaluation criteria defined

as: the standard deviation of MRE for all n estimations

made. The perfect value of the SDMRE test would be zero.

ESTIMATION ACCURACY EVALUATION

CRITERIA # 3

The Correlation co-efficient, Squared R, is next

measurement criteria. This entity reflects the degree to

which the model’s estimation correlate with the actual

results. Albrecht’s test by performing the linear

Regression with actual Effort as the dependent variable

and the estimated Effort as the independent variable; is

carried out for all proposed models. The perfect value of

the R2 test would be one.

V. TRAINING AND TESTING THE PROPOSED MODEL

The proposed model SG [N1/N2] is a feed forward

back-propagation multilayer neural network, comprised of

one input layer, one output layer and two hidden layers

shown in fig.6. The size of input layer is 20 input neurons

where each neuron represents one particular software

attribute on which effort depends. Output layer produces

effort estimated as a single output. The size of hidden

layers varies in different configurations. Other parameters

are same in all six configurations like transfer function,

training function etc.

Proposed model with five Configurations:

Configuration I. SG1 [5/8] with N1=5; N2=8;

Configuration II. SG2 [8/9] with N1=8; N2=9;

Configuration III. SG3 [11/10] with N1=11; N2=10;

Configuration IV. SG4 [16/19] with N1=16; N2=19;

Configuration V. SG5 [18/15] with N1=18; N2=15;

Configuration VI. SG6 [24/25] with N1=24; N2=25;

where N1 = number of neurons in 1st Hidden Layer and

N2 = number of neurons in 2nd Hidden Layer

Fig.6. Proposed Model SG[N1/ N2]

A. Training of Model SG1 through SG6 with 63 Project COCOMO Dataset

Table 4. 63 Project COCOMO Dataset for Training

Total KDSI AAF RELY DATA CPLX TIME STOR VIRT TURN ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED MODE1 MODE2 MODE3 Effort

2.03307 1 0.88 1.16 0.7 1 1.06 1.15 1.07 1.19 1.13 1.17 1.1 1 1.24 1.1 1.04 1 0 0 3.30963

2.46686 0.85 0.88 1.16 0.85 1 1.06 1 1.07 1 0.91 1 0.9 0.95 1.1 1 1 1 0 0 3.20412

2.12057 1 1 1.16 0.85 1 1 0.87 0.94 0.86 0.82 0.86 0.9 0.95 0.91 0.91 1 0 1 0 2.3856

1.77815 0.76 0.75 1.16 0.7 1 1 0.87 1 1.19 0.91 1.42 1 0.95 1.24 1 1.04 0 0 1 2.38021

1.20412 1 0.88 0.94 1 1 1 0.87 1 1 1 0.86 0.9 0.95 1.24 1 1 0 0 1 1.51851

0.60206 1 0.75 1 0.85 1 1.21 1 1 1.46 1 1.42 0.9 0.95 1.24 1.1 1 0 0 1 1.63346

0.83884 1 0.75 1 1 1 1 0.87 0.87 1 1 1 0.9 0.95 0.91 0.91 1 0 0 1 0.90309

1.34242 1 1.15 0.94 1.3 1.66 1.56 1.3 1 0.71 0.91 1 1.21 1.14 1.1 1.1 1.08 1 0 0 3.0314

1.47712 1 1.15 0.94 1.3 1.3 1.21 1.15 1 0.86 1 0.86 1.1 1.07 0.91 1 1 1 0 0 2.62634

1.46239 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9 1 1 1 1 1 0 0 2.5065

1.50515 0.63 1.4 0.94 1.3 1.11 1.56 1 1.07 0.86 0.82 0.86 0.9 1 1 1 1 1 0 0 2.33845

1.5682 1 1.15 0.94 1.3 1.11 1.06 1 1 0.86 0.82 0.86 1 0.95 0.91 1 1.08 1 0 0 2.30319

1.39794 0.96 1.15 0.94 1.3 1.11 1.06 1.15 1 0.71 1 0.7 1.1 1 0.82 1 1 1 0 0 1.89762

 Machine Learning Application to Improve COCOMO Model using Neural Networks 43

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

0.47712 1 1.15 0.94 1.65 1.3 1.56 1.15 1 0.86 1 0.7 1.1 1.07 1.1 1.24 1.23 0 1 0 1.86332

0.59106 1 1.4 0.94 1.3 1.3 1.06 1.15 0.87 0.86 1.13 0.86 1.21 1.14 0.91 1 1.23 1 0 0 1.78533

0.78533 0.6 1.4 1 1.3 1.3 1.56 1 0.87 0.86 1 0.86 1 1 1 1 1 1 0 0 1.60206

0.5563 0.53 1.4 1 1.3 1.3 1.56 1 0.87 0.86 0.82 0.86 1 1 1 1 1 1 0 0 0.95424

2.50515 1 1.15 1.16 1.15 1.3 1.21 1 1.07 0.86 1 1 1 1 1.24 1.1 1.08 1 0 0 4.0569

3.06069 0.84 1.15 1.08 1 1.11 1.21 0.87 0.94 0.71 0.91 1 1 1 0.91 0.91 1 1 0 0 3.81954

2.47567 0.96 1.4 1.08 1.3 1.11 1.21 1.15 1.07 0.71 0.82 1.08 1.1 1.07 1.24 1 1.08 0 1 0 3.80618

2.4014 1 1 1.16 1.15 1.06 1.14 0.87 0.87 0.86 1 1 1 1 0.91 0.91 1 1 0 0 3.39005

2.07188 0.92 1.15 1 1 1.27 1.06 1 1 0.86 0.82 0.86 0.9 1 0.91 1 1.23 1 0 0 2.85973

1.88649 0.98 1.15 1 1 1.08 1.06 1 1 0.86 0.82 0.86 0.9 1 1 1 1.23 1 0 0 2.73158

1.95424 1 0.88 1 0.85 1.06 1.06 1 0.87 1 1.29 1 1.1 0.95 0.82 0.83 1 0 1 0 2.65609

1.57978 1 1.15 1.16 1.3 1.15 1.06 1 0.87 0.86 1 0.86 1.1 1 0.82 0.91 1.08 1 0 0 2.7185

1.68124 1 0.94 1 0.85 1.07 1.06 1.15 1.07 0.86 1 0.86 1.1 1 0.91 1.1 1.08 1 0 0 2.58771

0.97312 1 1.15 0.94 1.15 1.35 1.21 1 0.87 1 1 1 1 1 0.82 1.1 1.08 1 0 0 1.94448

1.11394 1 1.15 1.08 1.3 1.11 1.21 1.15 1.07 0.86 1 0.86 1.1 1.07 1.1 1.1 1 0 0 1 1.99122

0.33041 1 0.88 1 1 1 1 1 1 1.1 1.29 0.86 1 1 0.91 0.91 1.23 0 1 0 0.86332

0.29666 1 0.88 1 1 1 1 1 1 1.1 1.29 0.86 1 1 0.91 0.91 1.23 0 1 0 0.77085

1.79239 0.81 1.4 1.08 1 1.48 1.56 1.15 1.07 0.86 0.82 0.86 1.1 1.07 1 1 1 1 0 0 3.02653

2.59106 0.67 0.88 1.08 0.85 1 1 1 1 0.71 0.82 1 1 1 1.1 1.1 1 0 1 0 2.84633

1.62324 0.96 1.4 1.08 1.3 1.48 1.56 1.15 0.94 0.86 0.82 0.86 0.9 1 0.91 0.91 1 1 0 0 2.78175

1.36172 0.96 1.15 1.08 1 1.06 1 1 0.87 1 1 1 1 1 0.91 1.1 1.23 1 0 0 2.36172

1.11394 1 0.75 0.94 1.3 1.06 1.21 1.15 1 1 0.91 1 1.1 1 1.24 1.24 1 1 0 0 1.91381

1.17609 0.81 0.88 1.08 0.85 1 1 0.87 0.87 1.19 1 1.17 0.9 0.95 1 0.91 1.04 0 1 0 1.74036

1.77815 0.56 0.88 0.94 0.7 1 1.06 1 1 0.86 0.82 0.86 1 1 1 1 1 0 0 1 1.67209

1.17609 1 1 1 1.15 1 1 0.87 0.87 0.71 0.91 1 0.9 0.95 0.82 0.91 1 0 0 1 1.07918

0.47712 0.83 1 0.94 1.3 1 1 1 0.87 0.86 0.82 1.17 1 1 1.1 1 1 0 0 1 0.90309

0.72427 1 0.88 0.94 1 1 1 0.87 0.87 1 0.82 0.7 0.9 0.95 0.91 0.91 1 0 0 1 0.77815

1.65801 0.43 0.88 1.04 1.07 1 1.06 0.87 1.07 0.86 1 0.93 0.9 0.95 0.95 0.95 1.04 0 0 1 1.65321

1.45636 0.98 1 1.04 1.07 1 1.21 0.87 1.07 0.86 1 1 0.9 0.95 1 1 1.04 0 0 1 1.91907

1.48572 0.98 0.88 1.04 1.07 1.06 1.21 0.87 1.07 1 1 1 0.9 0.95 1.1 1 1.04 0 0 1 1.93951

1.54406 0.91 0.88 1.04 1.07 1 1.06 0.87 1.07 1 1 1 0.9 0.95 1 0.95 1.04 0 0 1 2.0253

1.86332 0.78 0.88 1.04 1.07 1 1.06 0.87 1.07 1 1 0.86 0.9 0.95 1 1 1.04 0 0 1 2.10037

1.36172 1 0.75 0.94 1.3 1 1 0.87 0.87 0.71 0.82 0.7 1.1 1.07 1.1 1 1.04 0 0 1 1.5563

2.66651 0.67 0.88 0.94 0.85 1 1 0.87 1 1.19 0.91 1.17 0.9 0.95 1.1 1 1.04 0 1 0 3.10448

1.95904 1 1 1 0.85 1 1 1 0.87 0.71 1 0.7 1.1 1 0.82 0.91 1 0 1 0 2.19312

1.38021 1 1.15 1 1 1.3 1.21 1 0.87 0.86 1 0.86 1.1 1 1 1 1 1 0 0 2.24551

1 1 0.88 1 1 1 1 1 1.15 1.19 1 1.42 1 0.95 1.24 1.1 1.04 0 0 1 2.08636

0.91381 1 0.88 0.94 0.85 1 1.06 1.15 1 1 1 1 1.1 1.07 1.24 1.1 1 0 0 1 1.61278

0.72427 1 0.88 0.94 1.15 1.11 1.21 1.3 1 0.71 1 0.7 1.1 1.07 1 1.1 1.08 0 1 0 1.14612

0.64345 1 1 0.94 1 1 1.06 1.15 0.87 1 0.82 1 1 0.95 0.91 1.1 1 0 0 1 1.30103

0.79934 1 0.88 0.94 0.7 1 1 0.87 0.87 0.86 0.82 1.17 0.9 0.95 1.1 1 1 0 0 1 1.25527

1.43136 1 1.15 0.94 1.3 1.3 1.21 1 1 0.86 0.91 1 1.1 1.07 1.1 1.1 1.08 1 0 0 2.98136

1.23044 0.87 1 0.94 1.15 1.11 1.21 1.3 1 1 1 1 1.1 1.07 1.1 1.1 1.23 1 0 0 2.37474

1.39794 1 1.4 0.94 1.3 1.66 1.21 1 1 0.71 0.82 0.7 0.9 0.93 0.91 1 1 1 0 0 2.11394

1.36172 0.9 1 0.94 1.15 1.06 1.06 1 0.87 1 1 1 1 1 0.91 1 1 0 0 1 1.84509

0.82607 1 1.15 0.94 1.3 1.11 1.06 1 1 0.86 1.13 0.86 1.1 1.07 1.1 1.1 1.08 0 0 1 1.75587

1.44715 1 1 0.94 1.15 1 1 0.87 0.87 0.86 1 0.86 0.9 1 0.82 1 1 0 0 1 1.69897

0.95904 1 0.88 0.94 1.3 1.11 1.21 1.15 1 0.78 0.82 0.7 1.21 1.14 0.91 1.24 1 0 1 0 1.57978

1 1 1 0.94 1.15 1 1 1 0.87 0.71 0.82 0.86 1 1 0.82 1 1 1 0 0 1.17609

44 Machine Learning Application to Improve COCOMO Model using Neural Networks

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

B. Testing of Model SG1 through SG6 with 15 Project KEMERER Dataset

Table 5. Kemerer Dataset

Total

KDSI
AAF RELY DATA CPLX TIME STOR VIRT TURN ACAP AEXP PCAP VEXP LEXP MODP TOOL SCED MODE1 MODE2 MODE3 Effort

2.40414 1 1.15 1.08 1.15 1 1.06 0.87 1 0.86 1.13 0.86 1 1 0.82 0.91 1.02 0 1 0 2.45788

1.60745 1 1 1 1 1 1 0.87 1 1 1.07 0.86 1 1 1 1 1 0 1 0 1.91645

2.65321 1 1 1.16 1 1.3 1.21 0.87 1 0.86 1.13 1 1 1.03 0.91 1 1 1 0 0 3.04426

2.33122 1 1 1.08 0.92 1 1 0.87 0.93 0.8 0.89 0.85 0.97 0.95 1 1 1.02 0 1 0 1.93019

2.65311 1 1 0.94 1 1 1 0.93 0.87 0.78 1.13 0.93 1.1 1.03 1 0.91 1.07 0 0 1 2.52673

1.69897 1 1 1.16 1 1.11 1.06 1 0.87 0.86 1.13 0.86 0.95 0.97 0.91 1 1.23 1 0 0 1.92428

1.63346 1 1 1.16 1 1.11 1.06 1 0.87 0.86 1.13 0.7 0.95 1.07 0.91 1 1.23 1 0 0 1.36549

2.22271 1 1.15 1.16 1 1 1 1 0.93 1 0.95 1 0.95 0.97 1 1 1.16 0 1 0 2.11494

2.46089 1 1 1.16 1.15 1.11 1.06 0.87 0.87 1 1.13 1.06 1.1 1 1 1 1.08 1 0 0 2.06446

1.59106 1 1 1.16 1 1.11 1 0.93 1.03 0.71 1 0.7 1.1 1.14 1.05 1 1.23 0 1 0 1.85733

2.40517 1 1.16 1 1 1 1 1 1 0.86 1.13 0.86 1 1 0.86 1 1.23 0 1 0 2.4128

2.10924 1 1 1.16 1 1 1 0.87 0.87 0.86 1.07 0.86 1 1.03 1.1 0.95 1.08 0 1 0 2.36305

2.2079 1 1 1.16 1 1.06 1 0.87 0.87 1.19 1 0.78 1.21 0.97 1.1 1 1.08 0 1 0 2.19589

2.21695 1 1 1.16 1 1 1 0.87 0.87 0.86 1.21 0.93 1.1 1.1 0.95 0.91 1.04 0 0 1 2.39252

1.77959 1 1 1 1 1 1 1 0.87 0.71 0.91 0.86 1.1 1.03 0.91 0.91 1 0 1 0 1.84447

Fig.7. Sample Training of Model SG[N1/ N2]

Fig.8. Sample Testing of Model SG[N1/ N2]

 Machine Learning Application to Improve COCOMO Model using Neural Networks 45

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

VI. EXPERIMENT RESULTS AND ANALYSIS OF

PERFORMANCE

The analysis on the performance of the proposed model

with all six configuration is made taking in consideration

evaluation criteria MRE, MMRE SDMRE and correlation

coefficient, squared R. Selection of these aforementioned

criterion is purely inspired from the work done by great

Kemerer [27], that the analysis of the performance of

various software cost estimation models using the same

Kermerer 15 project data set and these three performance

criteria.

Kermerer data for 15 projects is being used in the testing

of our proposed model. The closer MRE/MMRE/SDMRE

value is to zero, the greater is the accuracy of the model.

The closer R-squared measure is to one, the better is the

correlation between the estimates of each model and the

actual project results.

A. Performance of the proposed model

Our experimentation begins with the training of

proposed models shown fig. 9, using entire 63 project

COCOMO data set which is followed by testing using 15

project Kemmerer data set.

Table 6. Performance statistics for Configuration I: SG1: N1=5; N2=8;

Configuration I : SG1: N1=5; N2=8;

Project

No.

Actual Effort (in

MM)

Estimated Effort

(in MM)
Error %

1 287.00 400.32 0.39

2 82.50 81.39 -0.013

3 1107.31 682.66 -0.38

4 86.90 246.18 1.89

5 336.30 145.50 -0.56

6 84.00 449.07 4.34

7 23.20 504.79 20.75

8 130.30 471.7 2.62

9 116.00 746.61 5.43

10 72.00 218.75 2.038

11 258.70 606.17 1.34

12 230.70 220.21 -0.04

13 157.00 90.48 -0.42

14 246.90 176.46 -0.28

15 69.90 36.84 -0.47

MMRE

244.24

Standard Deviation SDMRE

539.42

Fig.9. Proposed Model SG[N1/ N2]

Proposed Model SG[N1/ N2] with six top

Configurations:

I. SG1 [5/8] with N1=5; N2=8;

II. SG2 [8/9] with N1=8; N2=9;

III. SG3 [11/10] with N1=11; N2=10;

IV. SG4 [16/19] with N1=16; N2=19;

V. SG5 [18/15] with N1=18; N2=15;

VI. SG6 [24/25] with N1=24; N2=25;

Fig.10. Correlation Coefficient SG 1 [5 / 8]

Table 7. Performance statistics for Configuration II: SG2: N1=8; N2=9;

Configuration III : SG3: N1=11; N2=10;

Project

No.

Actual Effort

(in MM)

Estimated

Effort

(in MM)

Error %

1 287.00 1412.07 3.92

2 82.50 222.89 1.70

3 1107.31 4615.97 3.16

4 86.90 709.90 7.33

5 336.30 3545.32 9.54

6 84.00 391.53 3.66

7 23.20 120.71 4.20

8 130.30 674.71 4.17

9 116.00 3485.23 29.04

10 72.00 80.184 0.11

11 258.70 654.12 1.52

12 230.70 287.37 0.24

13 157.00 179.52 0.14

14 246.90 351.78 0.42

15 69.90 67.17 -0.03

MMRE

461.16

Standard Deviation SDMRE

731.40

46 Machine Learning Application to Improve COCOMO Model using Neural Networks

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Performance statistics for Configuration I: SG1: N1=5;

N2=8; is shown in Table VI with 0.737 correlation

coefficient displayed in fig.10. Minimum MRE is 0.013

and maximum MRE is 20.75.

Performance statistics for Configuration II: SG2:

N1=8; N2=9; is shown in Table VII with 0.786 correlation

coefficient fig.11. Minimum MRE is 0.05 and maximum

MRE is 34.02.

Fig.11. Correlation Coefficient SG 2 [8 / 9]

Performance statistics for Configuration III: SG3:

N1=11; N2=10; is shown in Table VIII with 0.8516

correlation coefficient displayed fig.12. Minimum MRE is

0.03 and maximum MRE is 29.04. The estimation is fairly

good correlated with actual effort.

Table 8. Performance statistics for Configuration III: SG3: N1=11;

N2=10;

Configuration II : SG2: N1=8; N2=9;

Project

No.

Actual Effort

(in MM)

Estimated

Effort (in MM)
Error %

1 287.00 531.04 0.85

2 82.50 322.16 2.90

3 1107.31 907.79 -0.18

4 86.90 1125.75 12.22

5 336.30 530.77 0.57

6 84.00 181.76 1.16

7 23.20 167.18 6.20

8 130.30 169.76 0.30

9 116.00 4062.85 34.024

10 72.00 280.68 2.89

11 258.70 144.30 -0.44

12 230.70 736.35 2.19

13 157.00 148.40 -0.05

14 246.90 1455.58 4.89

15 69.90 605.96 7.66

MMRE

501.52

Standard Deviation SDMRE

876.43

Performance statistics for Configuration IV: SG4:

N1=16; N2=19; is shown in Table IX with 0.929

correlation coefficient displayed fig.12. Minimum MRE is

0.70 and maximum MRE is 20.20. The estimation is

strongly correlated with actual effort nearly to the perfect

score (~1).

Fig.12. Correlation Coefficient SG 3 [11 / 10]

Table 9. Performance statistics for Configuration IV: SG4: N1=16;

N2=19;

Configuration IV : SG4: N1=16; N2=19;

Project

No.

Actual

Effort

(in MM)

Estimated

Effort

(in MM)

Error %

1 287.00 81.91 -0.71

2 82.50 10.38 -0.87

3 1107.31 6522.10 4.89

4 86.90 520.21 5.10

5 336.30 6.10 -0.98

6 84.00 689.01 7.20

7 23.20 199.29 7.59

8 130.30 494.36 2.79

9 116.00 2460.13 20.20

10 72.00 380.59 4.28

11 258.70 98.49 -0.61

12 230.70 394.09 0.70

13 157.00 1245.69 6.93

14 246.90 48.49 -0.80

15 69.90 418.91 4.99

MMRE

404.82

Standard Deviation SDMRE

550.98

Performance statistics for Configuration V: SG5:

N1=18; N2=15; is shown in Table X with 0.904

correlation coefficient displayed in fig. 14. Minimum

MRE is 0.03 and maximum MRE is 10.33. The estimation

is strongly correlated with actual effort nearly to the

perfect score (~1). The overall deviation is very low.

 Machine Learning Application to Improve COCOMO Model using Neural Networks 47

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Fig.13. Correlation Coefficient SG 4 [16 / 19]

Table 10. Performance statistics for Configuration V: SG5: N1=18;

N2=15;

Configuration V : SG5: N1=18; N2=15;

Project

No.

Actual

Effort

 (in MM)

Estimated

Effort

(in MM)

Error %

1 287.00 651.20 1.26

2 82.50 104.06 0.26

3 1107.31 3816.78 2.44

4 86.90 165.35 0.94

5 336.30 141.49 -0.57

6 84.00 79.44 -0.05

7 23.20 97.43 3.19

8 130.30 723.60 4.55

9 116.00 1047.97 8.03

10 72.00 815.94 10.33

11 258.70 572.57 1.21

12 230.70 164.05 -0.28

13 157.00 162.67 0.03

14 246.90 324.18 0.31

15 69.90 253.49 2.62

MMRE 228.70

Standard Deviation SDMRE 317.65

Fig.14. Correlation Coefficient SG 5 [18 / 15]

Performance statistics for Configuration VI : SG6:

N1=24; N2=25; is shown in Table 11 with 0.831

correlation coefficient displayed in fig. 15. Minimum

MRE is 0.15 and maximum MRE is 15.75. The estimation

is nicely correlated with actual effort.

Table 11. Performance statistics for Configuration VI: SG6: N1=24;

N2=25;

Configuration VI : SG6: N1=24; N2=25;

Project

No.

Actual

Effort (in

MM)

Estimated

Effort (in MM)
Error %

1 287.00 85.54 -0.70

2 82.50 6.86 -0.91

3 1107.31 3537.47 2.19

4 86.90 98.19 0.15

5 336.30 14.62 -0.95

6 84.00 609.75 6.25

7 23.20 388.72 15.75

8 130.30 247.99 0.90

9 116.00 1024.60 7.83

10 72.00 292.15 3.05

11 258.70 73.58 -0.71

12 230.70 131.65 -0.42

13 157.00 763.08 3.86

14 246.90 48.69 -0.80

15 69.90 209.64 1.99

MMRE 249.95

Standard Deviation SDMRE 457.11

Overall performance as in Table 12 of all configurations

suggests that SG5 is the best performer among all six top

configurations. SG5 with 18 neurons at hidden layer 1 and

15 neurons at hidden layer 2 gives the best results with

minimum MMRE and Standard deviation. The correlation

coefficient is quite high. Fig. 16 shows the bar plot for

SG1 through SG6.

Fig.15. Correlation Coefficient SG 6[24 / 25]

48 Machine Learning Application to Improve COCOMO Model using Neural Networks

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Table 12. Performance of Proposed Model (SG)

Performance of Proposed Model (SG)

Configuration Approach MMRE %

Standard

Deviation

SDMRE %

Correlation

(Estimated Vs.

Actual)

I SG1 [5/8] 244.24 539.42 0.737

II SG2 [8/9] 501.52 876.43 0.786

III SG3 [11,10] 461.16 731.40 0.851

IV SG4 [16/19] 404.82 550.98 0.929

V SG5 [18/15] 228.70 317.65 0.904

VI SG6 [24/25] 249.95 457.11 0.831

Fig.16. The bar plot for SG1 through SG6.

B. Comparison of proposed model with traditional models

At this step of experimentation, it is possible to compare

the estimating capability of the machine learning based

proposed model with traditional models referring the

results obtained by Kemmerer [27]. Various models are

SLIM, ESTIMACS,

Function Points, and COCOMO. These results shown in

Table 13 serve as an indication about the machine

generated models’ capability to generalize across multiple

development domains that seems critical for any model

while considering the success of the project.

Table 13. Comparison of proposed model with traditional models

Model MMRE %
Standard
 Deviation
SDMRE %

Correlation
(Estimated Vs.

Actual)

SG1 [5/8] 244.24 539.42 0.737

SG2 [8/9] 501.52 876.43 0.786

SG3 [11,10] 461.16 731.40 0.851

SG4 [16/19] 404.82 550.98 0.929

SG5 [18/15] 228.70 317.65 0.904

SG6 [24/25] 249.95 457.11 0.831

ESTIMACS [27] 85.48 70.36 0.134

Function Point [27] 102.74 112.11 0.553

SLIM [27] 771.87 661.33 0.878

Intermediate-COCO
MO [27]

583.82 862.79 0.599

 Machine Learning Application to Improve COCOMO Model using Neural Networks 49

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Table 14. Comparison of proposed model with traditional models

Model MMRE %

SG1 [5/8] 244.24

SG2 [8/9] 501.52

SG3 [11,10] 461.16

SG4 [16/19] 404.82

SG5 [18/15] 228.70

SG6 [24/25] 249.95

MayaZaki and Mori (1985) 165.60

Kemerer (1987) 583.82

Chandrasekaran and Kumar (2012) 8.4

Weighted Average 284.61

The best network is SG5 [18/15] with an accuracy

greater than that of either SLIM or Intermediate

COCOMO and a correlation factor higher than all of the

traditional models. While none of the networks could be

considered truly accurate, the results of this experiment

indicate that networks are worth strong consideration

shown in fig. 17.

Only SLIM has somewhat comparable Correlation

coefficient with SG5 as shown in fig. 18, but MMRE and

standard deviation are worse.

C. Comparison of proposed model with traditional

models

The proposed model with configuration SG5 [18/15]

shows MMRE at 228.70 % while till date COCOMO

accuracy reported is with MMRE at 284.61. It clearly

reflects the improvement in COCOMO model while

sustaining the desirable features of COCOMO and

machine learning aspect of Neural network shown in

Table 14.

Fig.17. Comparative analysis of Models

Fig.18. SG5 Performance Vs. SLIM Performance

VII. CONCLUSION

Accurate effort estimation is highly crucial in the

software development. Through this presented work, first

up major accuracy reports of COCOMO performance are

reviewed. Along this, wide range of estimation methods is

reviewed. It is found that every method played important

role in software development history. Various research

reports have been contributed by dignified authors. But no

model is adaptive to the latest development methods,

resulting into the project failures. In such scenario,

Machine learning is the answer to find out the relationship

existing among the software project attributes and the

effort required for the successful completion of the project.

The core objective for this entire work is to apply machine

learning technique to improve performance of COCOMO

estimation model.

50 Machine Learning Application to Improve COCOMO Model using Neural Networks

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

Neural network finds out such relationships during the

training phase and then can be exploited to predict the

estimate for unseen data. Our traditional estimation

techniques are not able to capture and record such patterns

as ML techniques do. Hence, ML based models are

superior to the traditional models. Neural network as a tool

deployed in the research work carried out here. Neural

networks are having a strong capability to capture and

learn the project data and predict effort with accuracy and

a high degree of correlation with the project actual values.

The proposed model shows best performance to

generalize on the data and make estimates better than those

of other well-known models. Proposed models SG5

trained using COCOMO dataset and tested for KEMERER

dataset gives best 0.9 Correlation coefficient with 228.70

MMRE % and 317.65 SDMRE % which is superior to

reported accuracy of COCOMO that is 284.61 MMRE %.

This feature of making estimation across domains is

critical when applied to the new development domains.

Our proposed model performed quite well. An advantage

of deploying neural networks is the ease to set up and train

them within the range of project personnel. Further,

proposed model is self-calibrating sort of tool when fed

with data of newly completed projects and retrained.

Although, accuracy of the proposed model is not as that of

algorithmic models, but it is worthy as per their

performance and ability to deal with non-numeric, or

symbolic, data. The proposed can be directly applied

within an organization at the earliest stages of project to

capture the likely magnitude of the project under

consideration. The models SG1 through SG6 are fairly

accurate and strongly correlated. These results indicate

that machine learning shows great usefulness as an

exciting new approach to the cost estimation problem.

REFERENCES

[1] Boehm, B. W., “Software Engineering Economics”, IEEE

Transactions on Software Engineering, SE-1O, 1, pp. 4-21,

January 1984.

[2] Boehm, B. W., “Software Engineering Economics”,

Prentice-Hall Inc., Englewood Cliffs, NJ, 1981.

[3] Chiu NH, Huang SJ, “The Adjusted Analogy-Based

Software Effort Estimation Based on Similarity Distances”,

Journal of Systems and Software, Vol. 80, No. 4, pp.

628-640, 2007.

[4] Jorgen M., Sjoberg D.I.K, “The Impact of Customer

Expectation on Software Development Effort Estimates”,

International Journal of Project Management, Elsevier, pp.

317-325, 2004.

[5] Jeffery R., Ruhe M., Wieczorek I., “Using Public Domain

Metrics to Estimate Software Development Effort”, In

Proceedings of the 7th International Symposium on

Software Metrics, IEEE Computer Society, pp. 1627, 2001.

[6] Kaczmarek J., Kucharski M., “Size and Effort Estimation

for Applications Written in Java”, Journal of Information

and Software Technology, Vol. 46, No. 9, pp. 589-60,

2004.

[7] Heiat A., “Comparison of Artificial Neural Network and

Regression Models for Estimating Software Development

Effort”, Journal of Information and Software Technology,

Vol. 44, No. 15, pp. 911-922, 2002.

[8] Srinivasan K. and Fisher D., “Machine Learning

Approaches to Estimating Software Development Effort”,

IEEE Transactions on Software Engineering, Vol. 21, pp.

126-137, 1995.

[9] Venkatachalam A.R., “Software Cost Estimation Using

Artificial Neural Networks”, In Proceedings of the

International Joint Conference on Neural Networks, 1993.

[10] Selby R.W. and Porter A.A., “Learning from

Examples-Generation and Evaluation of Decision Trees for

Software Resource Analysis”, IEEE Transactions on

Software Engineering, Vol. 14, pp. 1743-1757, 1988.

[11] Subramanian G.H., Pendharkar P.C. and Wallace M., An

Empirical Study of the Effect of Complexity, Platform, and

Program Type on Software Development Effort of

Business Applications, Empirical Software Engineering

Journal, Vol. 11, pp. 541-553, 2006.

[12] Huang S.J., Lin C.Y., Chiu N.H., Fuzzy Decision Tree

Approach for Embedding Risk Assessment Information

into Software Cost Estimation Model, Journal of

Information Science and Engineering, Vol. 22, Num. 2, pp.

297313, 2006.

[13] Somya Goyal, Anubha Parashar," Selecting the COTS

Components Using Ad-hoc Approach ", International

Journal of Wireless and Microwave Technologies(IJWMT),

Vol.7, No.5, pp. 22-31, 2017.DOI:

10.5815/ijwmt.2017.05.03

[14] Abbas S.A., et. al. “Cost Estimation-A Survey of

Well-known Historic Cost Estimation Techniques”,

Journal of Emerging Trends in Computing and Information

Sciences, Vol. 3, No. 2, pp. 612-636, 2012.

[15] B.Boehm, C. Abts, S.Chulani, Software Development Cost

Estimation ApproachesA Survey ,University of Southern

California Centre for Software Engineering, Technical

Report, USC-CSE-2000-505, 2000.

[16] L.H. Putnam, A general empirical solution to the macro

software sizing and estimating problem, IEEE transactions

on Software Engineering, 1978, Vol. 2, pp. 345- 361.

[17] A.C. Hodgkinson, and P.W. Garratt, “A neuro fuzzy cost

estimator)”, Proceedings of Third International

Conference on Software Engineering and Applications,

1999, pp. 401-406.

[18] M. Shepper and C. Schofield, Estimating software project

effort using analogies, IEEE Tran. Software Engineering,

vol. 23, pp. 736743, 1997.

[19] Burgess C.J. and Lefley M., “Can genetic programming

improve software effort estimation? A comparative

evaluation”, Information and Software Technology, 2001,

Vol. 43, No. 14, pp. 863 -873.

[20] Eberhart, R. C., and Dobbins, R.W., “Neural Netwok PC

Tools-A Practical Guide”, Academic Press Inc., San Diego

CA, 1990.

[21] Maren, A., Hurston, C., and Pap, R., “Handbook of Neural

Computing Applications”, Academic Press Inc., San Diego,

CA, 1990.

[22] Simon Haykin, “Neural Networks-A Comprehensive

Foundation”, Second Edition, Prentice Hall, 1998.

[23] N. K. Bose and P. Liang, “Neural Network Fundamentals

with Graphs, Algorithms and Applications”, Tata McGraw

Hill Edition,1998.

[24] B. Yegnanarayana, “Artificial Neural Networks”, Prentice

Hall of India, 2003.

[25] Zahedi F., “An Introduction to Neural Networks and a

Comparison with Artificial Intelligence and Expert

Systems”, INTERFACES, 21:2 (March-April 1991), pp.

25-38.

[26] Y. MayaZaki and K. Mori, “COCOMO Evaluation and

tailoring,” in Proceeding of the 8th International

Conference on Software Engineering of the IEEE, 1985,

pp.292-299.

 Machine Learning Application to Improve COCOMO Model using Neural Networks 51

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 3, 35-51

[27] C.F. Kemerer, “An empirical validation of software cost

estimation models”, Communication of the ACM, vol.30,

no.5, 1987, pp.416-429.

[28] R. Chandrasekaran and R. V. Kumar, “On the Estimation of

the Software Effort and Schedule using Constructive Cost

Model-II and Function Point Analysis,” International

Journal of Computer Applications, vol.44, no.9, 2012,

pp3844.

[29] Tharwon Arnuphaptrairong, “A Literature Survey on the

Accuracy of Software Effort Estimation Models”,

Proceedings of the International MultiConference of

Engineers and Computer Scientists 2016 Vol II, IMECS

2016, March 16 - 18, 2016, Hong Kong.

[30] K.K. Aggarwal, Yogesh Singh, Pravin Chandra and

Manimala Puri, “Evaluation of various training algorithms

in a neural network model for software engineering

applications”, ACM SIGSOFT Software Engineering , July

2005, Volume 3Number 4 , page1-4.

[31] Mrinal Kanti Ghose, Roheet Bhatnagar and Vandana

Bhattacharjee, “Comparing Some Neural Network Models

for Software Development Effort Prediction”, IEEE, 2011.

[32] Brooks, F.P., “The Mythical Man-Month”,

Addison-Wesley, Reading Mass, 1975.

[33] Conte. S., Dunsmore, H. and Shen, V. , “Software

Engineering Metrics and Models”, Benjamin/Cummings,

Menlo Park. Calif., 1986.

[34] R. Jeffery, M. Ruhe and I. Wieczorek, “Using Public

Domain Metrics to Estimate Software Development

Effort”, Proceedings, Seventh International Software

Metrics Symposium, 2001. METRICS 2001, p.16-27.

[35] S.D. Conte, H.E. Dunsmore, V.Y. Shen, “Software

Engineering Metrics and Models”, The

Benjamin/Cummings Publishing Company, Inc., 1986.

Authors’ Profiles

Somya Goyal is graduated gold medalist and

post graduated majoring in Computer Science

& Engineering, from VCE Rohtak. She owns

UGC-NET & GATE like certifications and

ISOC, IAENG like memberships. Her research

interests include Software Engineering, Data

Warehousing & Mining, Network Technology,

Computational Intelligence, Machine Learning

and Brain Computer Interaction.

ANUBHA Parashar is presently working as

Assistant Professor in Manipal University

Jaipur. She is graduated in Computer Science

and Engineering from PDMCE Bahadurgarh

and post graduated in Computer Science and

Engineering from VCE Rohtak. Her research

interests include Machine Learning, Humanoid

Robotics (locomotion & push recovery), Biometrics Gait, Neural

Networks, IOT, Artificial Intelligence and Soft Computing.

How to cite this paper: Somya Goyal, ANUBHA Parashar,

"Machine Learning Application to Improve COCOMO Model

using Neural Networks", International Journal of Information

Technology and Computer Science(IJITCS), Vol.10, No.3,

pp.35-51, 2018. DOI: 10.5815/ijitcs.2018.03.05

