
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 4, APRIL 1994 21 5

Software Development Cost Estimation
Using Function Points

Jack E. Matson, Bruce E. Barrett, and Joseph M. Mellichamp

Abstract-This paper presents an assessment of several pub-
lished statistical regression models that relate software develop-
ment effort to software size measured in function points. The
principal concern with published models has to do with the
number of observations upon which the models were based and
inattention to the assumptions inherent in regression analysis.
The research describes appropriate statistical procedures in the
context of a case study based on function point data for 104
software development projects and discusses limitations of the
resulting model in estimating development effort. The paper also
focuses on a problem with the current method for measuring
function points that constrains the effective use of function points
in regression models and suggests a modification to the approach
that should enhance the accuracy of prediction models based on
function points in the future.

Index Terms- Function points, regression analysis, cost esti-
mation

I. INTRODUCTION

N increasingly important facet of software development A is the ability to estimate the associated cost of develop-
ment early in the development life cycle. The primary factor
affecting software cost estimation is the size of the project;
however, estimating software size is a difficult problem that
requires specific knowledge of the system functions in terms of
scope, complexity, and interactions [141. A number of software
size metrics are identified in the literature; the most frequently
cited measures are lines of code and function point analysis.

A. Lines of Code

The traditional size metric for estimating software develop-
ment effort and for measuring productivity has been lines of
code (LOC). A large number of cost estimation models have
been proposed, most of which are a function of lines of code,
or thousands of lines of code (KLOC). Generally, the effort
estimation model consists of two parts. One part provides a
base estimate as a function of software size and is of the
following form:

E = A + B x (KLOC)C.

where E is the estimated effort in man-months; A. B. and
C are constants; and KLOC is the estimated number of

Manuscript received April 21, 1993; revised November 1993. Recom-

J . E. Matson is with the Department of Industrial Engineering, University

B. E. Barrett and J. M. Mellichamp are with the Department of Management

IEEE Log Number 9216525.

mended by R. DeMillo.

of Alabama. Tuscaloosa, AL 35487.

Science and Statistics, University of Alabama, Tuscaloosa, AL 35487.

thousands of line of code in the final system. The second
part modifies the base estimate to account for the influence of
environmental factors [151. Examples of environmental factors
include the use of such practices as structured code, top-
down design, structured walk-throughs, and chief programmer
teams; personnel ability; and hardware constraints [5] . As an
example, Boehm’s [4] COCOMO model uses lines of code
raised to a power between 1.05 and 1.20 to determine the
base estimate. The specific exponent depends on whether the
project is simple, average, or complex. The model then uses
15 cost influence factors as independent multipliers to adjust
the base estimate. Conte, Dunsmore, and Shen [7] identified
some typical models including the following:

E = 5 . 2 x (KLOC)o.91
E = 5.5 + 0.73 x (KLOC)1.16
E = 3 . 2 x (KLOC)1.05
E = 3.0 x (KLOC)l.l*
E = 2.8 x (KLOC)1.20
E = 5.288 x (KLOC)1.047

for KLOC > 9

(Walston-Felix model)
(Bailey-Basili model)
(Boehm simple model)
(Boehm average model)
(Boehm complex model)
(Doty model).

The definition of KLOC is important when comparing these
models. Some models include comment lines, and others do
not. Similarly, the definition of what effort (E) is being
estimated is equally important. Effort may represent only
coding at one extreme or the total analysis, design, coding, and
testing effort at the other extreme. As a result, it is difficult
to compare these models.

There are a number of problems with using LOC as the unit
of measure for software size. The primary problem is the lack
of a universally accepted definition for exactly what a line of
code really is. Jones [101 identified 1 1 major variations of line
counting methods. Since few authors state the line-counting
rules they used, much of the literature has an “uncertainty of
perhaps 500% attributable to line counting variations.” The
variations make it very difficult to compare studies using lines
of code as a measure of software size.

Another difficulty with lines of code as a measure of system
size is its language dependence. It is not possible to directly
compare projects developed by using different languages [161.
For example, the time per line for a high-level language may
be greater than for a lower-level language. There is no way to
accommodate the fact that fewer lines of code may be required
for a higher-level language to provide the same function.

Still another problem with the lines of code measure is the
fact that it is difficult to estimate the number of lines of code
that will be needed to develop a system from the information

0098-5589/94$04.00 0 1994 IEEE

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20. NO. 4. APRIL 1994

available at requirements or design phases of development [8].
If cost models based on size are to be useful, it is necessary
to be able to predict the size of the final product as early and
accurately as possible. Unfortunately, estimating software size
using the lines of code metric depends so much on previous
experience with similar projects that different experts can make
radically different estimates [7]. Finally, the lines of code
measure places undue emphasis on coding, which is only one
part of the implementation phase of a software development
project. Emrick [8] stated that coding accounts only for 10%
to 15% of the total effort on a large development system and
questioned whether the total effort is really linearly dependent
on the amount of code.

B . Function Point Analysis

Function point analysis is a method of quantifying the size
and complexity of a software system in terms of the functions
that the system delivers to the user. The function delivered is
unrelated to the language or tools used to develop a software
project [2]. Function point analysis is designed to measure
business-type applications; it is not appropriate for other types
of applications such as technical or scientific applications.
These applications generally deal with complex algorithms that
the function point method is not designed to handle [24].

The function point approach has features that overcome the
major problems with using lines of code as a measure of sys-
tem size. First, function points are independent of the language,
tools, or methodologies used for implementation; i.e., they
do not take into consideration programming languages, data
base management systems, processing hardware, or any other
data processing technology 1161, [24]. Second, function points
can be estimated from requirements specifications or design
specifications, thus making it possible to estimate development
effort in the early phases of development [16]. Since function
points are directly linked to the statement of requirements,
any change of requirements can easily be followed by a
reestimate [9]. Third, since function points are based on the
system user’s extemal view of the system, nontechnical users
of the software system have a better understanding of what
function points are measuring [12]. The method resolves many
of the inconsistencies that arise when using lines of code as
a software size measure.

Function points have been incorporated as an option in two
commercially available software packages, SPQR/20 [111 and
ESTIMACSTM [121, [22]. SPQW20 (software productivity,
quality, reliability) is based on a modified function point
method; ESTIMACSTM contains a module which estimates
function points. The primary difference in the SPQR/20 model
and the traditional function point method is in the way
complexity is handled. Whereas traditional function point
analysis is based on evaluating 14 factors, SPQR/20 separates
complexity into three categories: complexity of algorithms,
complexity of code, and complexity of data structures. The
SPQR/20 method makes it easier to evaluate the complexity
factors (three questions as opposed to the detail of 14 factors).
According to Porter [20], the SPQR/20 method did not seem
to differ from function point analysis. The method is available

in a commercial system, but documentation of the counting
practices is not available in the public domain. Traditional
function point analysis remains the industry standard, however,
and is the method of choice of the Intemational Function Point
Users Group.

ESTIMACST” [22] is a proprietary system designed to
give development effort estimates at the conception stage of
a project. At this early phase, the full details of the system
are not known, and normally only gross estimates are needed
to make “go” and “no-go” decisions. In addition to estimated
work effort, the system contains a module which will project
the expected function points. This also is a very high-level
estimate and generally is not very accurate [21].

In summary, function point analysis appears to have advan-
tages over lines of code as a measure of software size for use in
estimating software development cost, and there is widespread
industry support for this method. Unfortunately, there are few
published cost estimation models that use function points as
the key input parameter.

Briefly, raw function counts
are arrived at by considering a linear combination of five basic
software components (inputs, outputs, master files, interfaces,
and inquiries), each at one of three levels: low, average or
high. We may express this as follows:

Counting Function Points:

5 3

Function Count = wZjz i j ,
i=l j=1

where z i j is the count for component i at level j (e.g., outputs
at high complexity) and ui i j is the fixed weight assigned by
the Albrecht procedure. These function counts are also known
as unadjusted function points (UFP). The final number of
function points is arrived at by multiplying the UFP by an
adjustment factor that is determined by considering 14 aspects
of processing complexity. This adjustment factor allows the
UFP count to be modified by at most 435%. The final,
adjusted, FP count for the ktll project is then the following:

where Ck is between 0.65 and 1.35. (For a summary of the
mechanics of function point counting, see [12]. For a more
detailed account, see [23].)

Uses of Function Points: The collection of function point
data has two primary motivations. One is the desire by
managers to monitor levels of productivity, for example,
number of function points achieved per work hour expended.
From this perspective, the manager is not concerned with when
the function point counts are made, but only that the function
points accurately describe the “size” of the final software
project. In this instance, function points have an advantage
over LOC in that they provide a more objective measure of
software size by which to assess productivity.

Another use of function points, which is the focus of this ar-
ticle, is in the estimation of software development cost. There
are only a few previous studies that address this issue, though
it is arguably the most important potential use of function
point data. In Section 11, we briefly review the goals and

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

MATSON et ol : SOFTWARE DEVELOPMENT COST ESTIMATION 211

methodology of model selection and then examine two data
sets and associated cost estimation models from the literature,
pointing out some of the pitfalls of improper model selection
that may arise primarily as a result of too few data points. In
Section I11 we develop two cost estimation models utilizing a
comparatively large data set (n = 104) and examine the pre-
dictive properties of each. Finally, in Section IV, we point out
the limitations attendant with using function points to predict
software size and propose a new direction for future efforts in
the development of function point cost estimation models.

11. ESTIMATION MODELS FROM THE LITERATURE

In developing a useful regression model, a number of
concems must be addressed. The first is model adequacy, or
explanatory power of the independent variable(s) in accounting
for the variability of the dependent variable. This is typically
measured by the coefficient of multiple determination, R2.
However, a large value of R2 is not the only measure of
a good model. In some regard, it is not even the most
important. Estimation theory for linear regression is tied to
certain assumptions about the distribution of the residual or
error terms. If these are seriously violated, a large R2 may be
of little importance.

These concems come under the heading of model aptness,
which refers to the conformity of the behavior of the residuals
to the underlying assumptions about the errors in the model.
Specifically, the usual assumptions for the error values in
linear regression models are that these terms are distributed
as independent, normal random variables with mean zero and
identical variances. These assumptions are typically verified
with the aid of diagnostic plots. Most common are the normal
probability plot for verifying the normality of the residuals
and a scatter plot of the residuals versus the fitted values to
confirm the independence and homoscedasticity (i .e. , constant
variance) of the residuals. When one or more of these assump-
tions is violated, transformation of variables is often attempted
as a remedy.

A further concem is model stability, which refers to the
resistance to change in the fitted model under small perturba-
tions of the data. It is now generally recognized that residual
analysis alone is inadequate in answering the questions of
stability. This effect can be summarized by saying that the
ordinary least-squares criterion gives disproportionately large
weights to cases which are extreme in the predictor variables
in determining the fit, often resulting in small residuals for
those extreme or high leverage cases. Regression diagnostics,
then, is generally understood to be the class of methods used to
validate the probability assumptions about the errors, as well
as the assessment of the stability of the fitted model, distinct
from the probabilistic behavior of the errors.

By far, the most common approach for assessing model
stability is case deletion. Each case (or data point) is removed
in turn from the data and the various regression statistics,
such as the estimated regression coefficients, the fitted values
and the coefficient covariances, are recalculated. Cases whose
removal substantially alter the results obtained using the full
set of data are said to be influential. The most widely used

influence measure is Cook’s Distance [6] , which measures
changes in the estimated coefficients. This is the measure used
in this study.

In assessing the influence of specific cases, we rely on
a technique suggested by McCulloch and Meeter [18] and
Barrett and Ling [3] to examine Cook’s Distance. When inves-
tigating cases for their degree of influence, two components are
of interest: a leverage component and a residual component.
Since the influence may be expressed as a product of the
leverage component and the residual component, cases which
are large in one or both of these are candidates for high
influence. For ease of display, the logs of the leverage and
residual components are plotted. The contours of constant
influence are straight lines with slope of -1, and the sum
of the coordinates is the log of the influence.

A . The Alhrecht and Gaffney Model

Albrecht and Gaffney [2] collected data on 24 applica-
tions developed by IBM Data Processing Services. Using a
somewhat less refined counting method than that described
in (l) , they give the function point counts and the resulting
work-hours, which we call effort, for each project. Ordinary
least-squares regression was used to determine the fitted line
for the dependent variable, E (effort), expressed as a function
of the independent variable, FP. A scatter-plot of this data and
the resulting regression function are shown in Fig. l(a).

The explanatory power of the model is relatively high at
R2 = 87.4%. However, the residuals are troublesome in sev-
eral respects. From Fig. l(b) we note serious autocorrelation;
the first eight residuals are positive while eleven of the next
fifteen are negative. There is also some evidence that the
variability of the residuals is increasing as the number of
function points increases. Four of the five largest residuals
belong to the four observations with the largest function point
counts: {l}, {a}, {19}, and {20}. The normal probability
plot in Fig. l(c) also suggests that normality of the residuals
is suspect. In Fig. l(d), the influence plot shows that cases
{ l} and (2) are highly influential, due in large part to their
high leverage or extremeness in the independent variable.
The Albrecht and Gaffney model also has the unfortunate
property that function point counts of less than 245 result in
the prediction of negative work-hours for completion.

The basic problem with fitting a model to this data is the
relatively few cases with function point counts greater than
1200. For example, if the four cases with function point
counts exceeding 1200 are removed, a very different fitted
line will result. There are two possibilities to consider here:
(1) the relationship between FP and E is not linear; and
(2) the relationship is linear but the error variance increases
with the number of function points. In the latter situation,
cases with large values of FP should be down-weighted in the
regression. In either event, the model as suggested by Albrecht
and Gaffney is inappropriate.

The plot of residuals in Fig. l(b) suggests that the relation-
ship may involve a quadratic term. We might, for example,
fit E versus FP2 or versus FP. The deficient normal
probability plot suggests that transformation of the dependent
variable, E , is the better choice.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

278

1w

7s

E 50

.
. *

.

. . ..**'
I .

1 0 1

Normal Scores
(C)

lEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20, NO. 4, APRIL 1994

I

w J " t * I *
I (1 9)

0 25 50 75
Predicted

(b)

0.75

-1.30

-2.25

-3.m

8 6 4 2
Log-Residual Component

(4
Fig. 1 . Regression diagnostics for the Albrecht and Gaffney model using the IBM data. (a) Regression of Developmental Effort
(E) versus Function Points (FP) Effort is measured in thousands of work-hours. (b) Studentized Residuals versus Predicted Values
for the model in (a). The error terms appear nonrandom and show a strong quadratic component. (c) Normal Probability Plot of
residuals for the model in (a). (d) Leverage-Residual plot of Cook's Distance. Cases that lie along the same dashed contour have the
same influence. Moving from one contour line to an adjacent line represents an increase or decrease in influence by a factor to 4.

The summary analyses for this transformation are given in
Fig. 2. The value of R2 is about the same at 89.9% while
the residual plot (Fig. 2(b)) supports the independence and
homoscedastiscity of the error terms. The normal probability
plot (Fig. 2(c)) is much improved with only case (5) showing
as unusual and in need of further investigation. The influence
plot (Fig. 2(d)) shows that the influence of cases (1) and (2) is
substantially mitigated. Of greater interest for our purposes we
note that the prediction intervals for the transformed model are
substantially narrower. For example, suppose we are interested
in prediction of a new observation at the mean value of Fp (i.e.,
FP = 647.625). The original model (Albrecht and Gaffney)
yields a 90% prediction interval of 3.81 to 39.93 thousands of
work-hours while that of the transformed model is from 6.76
to 29.92. Of course, neither interval is especially tight due in
part to the small number of observations. However, even if the
Albrecht and Gaffney model produced a narrower confidence
interval we would still prefer the transformed model because
probability statements concerning the intervals are predicated
on the model assumptions. The degree to which these are
violated determines the validity of the prediction interval.

B. The Kemerer Model

Kemmerer [12] also developed a cost estimation model
using function points and linear regression. The data set
consists of observations from 15 software projects undertaken
by a national consulting and development firm identified

only as the ABC company. A scatter-plot of the data and
the resulting least-squares line are shown in Fig. 3(a). The
dependent variable, Effort, is measured in man-months where
one man-month is 152 work-hours. We use this scale for
ease of reference with Kemmerer [12]. Rescaling the units
of the dependent variable does not impact on the analysis of
the model. We also note that Kemerer reports the adjusred
R2 while we have used the unadjusted R2 throughout this
article. These are largely comparable measures related by the
expression 1-R: = (l - R 2) (n - 1) / (n - p) , wherey-1 is
the number of predictors. The adjustment factor compensates
for adding variables whose marginal contribution is small.
Preference for either measure is inconsequential in practice.

It is clear from Fig. 3(a) that model fit is inappropriate in
several respects. The greatest anomaly is case (3) which is a
very high leverage point and tends to pull the regression line
towards itself. If case (3) were removed, a vastly different
fitted equation would result. Also, the predicted values for the
smallest two projects are negative. Another shortcoming of
the model is the large mean-squared-error (mse) which results
in wide prediction intervals. (See the Appendix section for
details.) This large mse, along with the gross violation of
model assumptions renders the resulting inferences virtually
meaningless.

As was the case with the Albrecht and Gaffney model, the
small number of data points make it impossible to determine
whether the true relationship is nonlinear, or linear but with

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

MATSON ef 01.: SOFTWARE DEVELOPMENT COST ESTIMATION 219

10.0 A

7.5 -.

3 15

2.50

1.25

0.00

-1.25

15)

. ..

1 0 I

3.75 f . 15)

t . . '

0 15

-1.50

-2.25

-3.00

.
. .

.
2 4 6 8 10

Predicted

(b)

8 6 -4 2

Normal Scores Log-Residual Component

Fig. 2. Regression diagnostics for the transformed IBM data. (a) Regression of Sqrt (Developmental Effort), (E) versus Function
Points (FP). Effort is measured in thousands of work-hours. (b) Studentized Residuals versus Predicted Values for the model in (a).
(c) Normal Probability Plot of residuals for the model in (a). (d) Leverage-Residual plot of Cook's Distance. Cases that lie along
the same dashed contour have the same influence. Moving from one contour line to an adjacent line represents an increase or
decrease in influence by a factor of 4.

error variance increasing with project size. In the latter in-
stance, case (3) may be a rather ordinary observation. Fig. 3(b)
presents two altemative polynomial models which certainly are
a better fit to the data. We do not mean to suggest that either of
these is the "correct" functional form of the true relationship,
but rather that there are some fairly simple altematives which
provide a much better fit. Without further information about
case { 3) and possibly additional data points, the relationship
is most uncertain.

We also take the opportunity with this data set to point out
certain common misconceptions about the importance of R2
in model assessment. Briefly, in developing a linear model for
the purpose of prediction, we are interested in a point estimate
and some measure of the uncertainty of the point estimate.
This is typically assessed by a confidence interval on a future
value, also known as a prediction interval. (For additional
details on prediction intervals as well as altemative methods of
assessing predictive power, see the Appendix.) All of the usual
inferential statistics are based on the assumptions of normality,
independence, and homoscedastiscity of the residuals. If these
are seriously violated, the prediction intervals are invalid.

A regression model may be fit (that is, the least-squares
estimates calculated) for any set of data, even if the func-
tional form of model is entirely misspecified or there is
nonconformity of the residuals to the model assumptions. Such
inappropriate models may sometimes have very impressive
values of R2. As an illustration, Fig. 4 presents three regression
models associated with Kemerer's ABC data. Equation (a) is

.

Fig. 3. Kemerer's ABC data: Effort (man-months) versus Function Points.
(a) Kemerer's model for ABC data set: Effort in man-months versus Func-
tionpoints. One man-month equals 152 hours. (b) Altemative modelsfor the
ABC data: A simple cubic term model and a polynomial model of order 3.

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

280 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 4. APRIL 1994

4500

3000

E

1500

a

loo0

750

E
500

250

(b) E=-743.19+ 1.0347FP @ = 9 1 2 % MSE=216818
(C) E = 39.69 + 0.1370 FP RZ =46.0% MSE= 5567

0 1250 2500 3750 5000

FP

(a)

{31

distance of the point from the mean of E. Geometrically, as
case { 16) becomes more extreme, the first 14 points become,
by comparison, clumped together so that they behave as a
single point. That is, in a relative sense, they become more and
more similar. The regression is essentially fitting only “two”
points: the cluster of fourteen and the extreme case { 16).

Eliminating case { 3) and case { 16) from consideration, we
would anticipate the remaining 14 points would be better fit
than with one of these extreme cases present. Visual inspection
of line (c) supports this view. However, the value of R2 drops
to 46%. Kemerer notes that case (3) is outlying, but upon
recognizing the drop in R2 when case (3) is removed, he
concludes that it is better to keep it in. But if we are to follow
through with this reasoning, case { 16) were it present, would
be even more desirable. This reasoning is completely counter
intuitive and indeed, faulty.

What factors, in addition to R2, should be considered when
assessing a regression model? For the purpose of estimation,
the mse plays a vital role. We observe that though it has the
smallest R2, line (c) also has the smallest associated mse
(see Fig. 4). For a fixed level of confidence, the width of
the prediction interval is determined primarily by mse. Hence,
equation (c) is much more appealing since it will produce
narrower prediction intervals over the relevant range of the
independent variable. Of course, one should not summarily
discard cases simply because they do not fit. The appropriate
disposition or accommodation of case { 3) requires further
investigation. The point is that reliance on R2 alone for
assessing the appropriateness and strength of a regression
model is erroneous.

Kemerer also reports that an important finding of his study
is that the Albrecht and Gaffney estimation model was val-
idated by his independent study. Specifically, using a single

Fig. 4. Kemerer’s ABC Data: Examining the Multiple Correlation Coeffi-
cient and Mean Squared Error. (a) Kemerer’s ABC Data: Effort in man-months
(E) versus Function Points (FP). Equation (a) is the regression line for the
original 15 cases. Equation (b) is the line with case { 3 } deleted and the
artificial case { 16) included. Equation (c) is the line for the 14 cases exclusive

regression on all 24 + 14 = 39 data points with the units of
,qffOort similarly scaled, the null hypothesis that the two models
were different not be rejected at the ”% confidence
level. This finding is however. weak on two counts. First.

of 13) and the artificial case, {IG}. (b) Enlarged view of Fig. 4(a) for the
original 15 cases of the ABC data. both models are s;;”what suspect, as we have demonstrated.

Perhaps if case (3) were not present in Kemerer’s data, the

that reported by Kemerer for the original fifteen data points.
Equation (b) is the least-squares line for the original data,
excluding case (3) but then adding an even more extreme
artificial data point labeled case { 16). Altematively, one might
think of this situation as moving case (3) to an even more
extreme and outlying position. Equation (c) is the regression
line for the fourteen data points exclusive of cases (3) and

Visual inspection and intuition tell us that line (b) fits the
first fourteen quite poorly in its attempt to accommodate case
{ 16). Yet, it has the largest R2 among the three lines at 91.2%.
In fact, by making case { 16) even more extreme, values of
R2 which are arbitrarily close to 100% may be achieved. To
understand this phenomenon, recall that R2 is the proportion of
the total variability about the mean explained by the regression.
As case (16) becomes more extreme, the total variability
increases, but at the same time the distance of a point from the
fitted line is, relatively, a proportionally smaller amount of the

(161.

hypothesis test would have had a different outcome. Secondly,
both models are based on relatively small samples with
large mse’s. As a result, the respective estimated regression
coefficients have large confidence intervals which make it
unlikely that any differences in the models will be detected
unless the differences are dramatic.

We do not mean to be overly critical of either Albrecht
and Gaffney or Kemerer; each has contributed significantly
to the theory and practice of software development effort
measurement. We mean only to point out that the acquisition
of a good regression model requires a fair amount of data
as well as careful and thoughtful analysis of the underlying
model assumptions.

111. LARGE SAMPLE COST ESTIMATION RESULTS

In this section we present the results of our analysis of
function point data from 104 projects obtained from a ma-
jor corporation. There were several reasons for using this

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

MATSON ef al.: SOFrWARE DEVELOPMENT COST ESTIMATION 28 I

Mmo

45000

E
3m

lMD0

750 15a) 2250 3W0
Fp

- I (a) . . I .

I .
I-

-1.25 0.00 1.25 2.50

. I .

-12 9 3

Normal Scores Log-Residual Component
(C) (d)

Fig. 5. Regression diagnostics for the original variables in the model (2). (a) Regression of Developmental Effort (E) versus
Function Points (FF’). Effort is measured in work-hours. (b) Studentized Residuals versus Predicted Values for the model in (a).
(c) Normal Probability Plot of residuals for the model in (a). (d) Leverage-Residual plot of Cook’s Distance. Cases that lie along
the same dashed contour have the same influence. Moving from one contour line to an adjacent line represents an increase or
decrease in influence by a factor of 4.

company’s data. First, the company has a well-trained and
experienced systems development staff and encourages the
use of current software development methodologies and tools.
Furthermore, the company is interested in the use of function
point analysis and has used function points to measure produc-
tivity and quality for several years. The accumulated historical
project data includes development effort and function points.
Managers at this company were willing to provide project data
and to participate in the research effort.

The set of project data represents a wide range of software
applications. Included are data for systems which run on
MVS and UNIX operating systems, which are programmed
in COBOL, PL/I, and C, and which use IMS, IDMS, IN-
FORMIX, INGRESS, and other data base management sys-
tems. Finally, the company has well defined procedures for
reporting development hours spent on their software devel-
opment projects. Since the objective of the study was the
estimation of effort using a model based on actual development
effort, it was important that the actual effort data be accurate
and consistent. The record-keeping procedures at this company
ensured that such was the case.

The 104 projects used in developing our cost estimation
model represent a large sample compared to most other
published studies. According to Moseley [19], “it is not
uncommon to find in the literature estimation models that
are based on sample sizes of fifteen to thirty projects.” The
projects in this study represent medium-to-large business ap-
plications, ranging in size from 119 function points to 3472

function points. Project data included the following infor-
mation: software size in function points, development effort
in hours, operating system, data base management system,
and programming language. We will initially concentrate on
using the single independent variable, FP, fqr prediction and
subsequently discuss the inclusion of additional variables.

A scatter-plot of the data (Fig. 5(a)) suggests that a linear
relationship is present and we fit our initial model,

E = 585.7 + 15.12 FP (2)

where the developmental effort is given in work-hours. From
the residual plot in Fig. 5(b), the variability of the error terms
seems to increase as development effort increases, placing the
assumption of homoscedasticity of the residuals in serious
doubt. This observation also supports our intuition that the
absolute precision with which we may predict the effort
for large projects is less than that for small projects. For
example, if we consider a large project as merely the sum
of several smaller independent projects, the variance of the
error terms for the sum is additive. We also note that the
normal probability plot of the residuals in Fig. 5(c) departs
from the straight line that one would expect were the normality
assumption met.

For the data in this study, cases {68}, {14}, {66}, and
(51) are high leverage points, as seen in Fig. 5(a). Fig. 5(d) is
a graphical display of the leverage component, the residual
component, and the resulting influence for each case. For
example, case (68) has both the largest leverage component

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

282

6.25 1. 2 .
5.25 6.00 6.75 7.50

Ln-W

(a) . .

..-
-3.0 4. e

t
-1.25 0.00 1.25 2.50

NomalScores

(C)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 4, APRIL 1994

I 0 -

. . .

.
0 . .

8 9 IO

Predicted

(b)

-11 8 5 2

Log-Residual Component
(4

Fig. 6. Regression diagnostics for the transformed variables in the model(3). (a) Regression for the transformed variables, Ln-E
versus L n R . Efforts is measured in work-hours. (b) Studentized Residuals versus Predicted Values for the model in (a). (c)
Normal Probability Plot of residuals for the model in (a). (d) Leverage-Residual plot of Cook’s Distance. Cases that lie along
the same dashed contour have the same influence. Moving from one contour line to an adjacent line represents an increase or
decrease in influence by a factor of 4.

and the largest residual component, and therefore, the greatest
influence. Its influence is approximately five times that of
the next most influential point (case (60)) and is certainly
large enough to warrant our concem. Case { 14) is also a high
leverage point, but its influence is negligible since its residual
value is close to zero.

In order to overcome the difficulties with the model assump-
tions and model stability, we applied a logarithmic transfor-
mation to both the dependent and independent variables. This
transformation is particularly useful in that linearity of the
original relationship is preserved while stabilizing the error
variance. The resulting data and fitted line,

In E = 2.51 + 1.00(In FP) (3)

are displayed in Fig. 6(a). The plots in Fig. 6(b) and 6(c)
indicate that the residuals are more well behaved than those
of the original model in (2). Standard tests for linearity and
the normality, independence, and homoscedasticity of the
residuals confirm the visual analysis.

The stability of the model is also improved. The leverage-
residual influence plot in Fig. 6(d) shows that the high leverage
cases are now associated with much smaller residuals, so
their influence is greatly mitigated. Indeed, the most highly
influential point for the transformed data is case { 18}, which
has an influence value one-tenth that of the most influential
case of the original data (case (68)). We conclude that the
model using the transformed data (3) is appropriate in all
aspects and superior to the model using the original data (2) .

Retrospectively, the data sets examined in Section I1 are
now more readily understood. In view of our results here,
the log-linear relationship between effort and function points
may apply generally to other studies. It is only due to lack of
data that the relationship remains hidden in the earlier studies.
The apparent lack of linearity in each of those models was
primarily a result of very few points with large FP values
and an increasing error variance. For example, case { 3) from
Kemerer’s data fits rather well into a log-log transformation.
Fig. 7 shows the combined data sets of Section I1 (with the
exception of Albrecht and Gaffney case (5)) with a log-log
transformation applied. We caution that this plot is meant to
illustrate only a rough, qualitative compliance with the model
developed for our own data set. Without further details and
reconciliation, it would be presumptuous to combine the data
for any confident analysis.

Having established the aptness and stability of the model
in (3), we turn our attention to its predictive power. As noted
earlier in discussing the models of Albrecht and Gaffney and
Kemerer, the width of the prediction interval is a more relevant
measure of a model’s usefulness than is R2. For the present
model (3) we first construct prediction intervals for R2 in
the usual manner and then apply the exponential function to
translate the interval back to the work-hour units of the original
dependent variable, E. The prediction interval arrived at in this
way is not symmetric about the point estimate. For example,
a new observation at FP = 2981 (i.e., In FP = 8) yields
a point estimate of 4964 work hours and a 90% prediction

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

MATSON et al.: SOFTWARE DEVELOPMENT COST ESTIMATION

6.25 -

w, 5.00

3

3.75 -

283

--

I ..

level - Upper Relative Upper Relative
bound width bound width

e /

0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

I

. .

28822 3.90 18984 3.44
21275 2.88 14419 2.61
17355 2.35 11989 2.17
14770 2.00 10359 1.87
12866 1.74 9141 1.65
1 1 368 1.54 8171 1.48
10 137 1.37 7366 1.33

9094 1.23 6675 1.21
8187 1 . 1 1 6069 1.10
7383 1.00 5526 1.00

5.z 6.00 6.75 7.50

LnJP

Fig. 7.
line is that for log-log transformed data.

Combined data sets of Albrecht and Gaffney, excluding case (5) (denoted by o), and Kemerer (denoted by .r). Regression

interval of from 1287 to 19145 work-hours. In absolute terms,
larger function point values produce wider prediction intervals
when translated back into the original units; but in relation
to the magnitude of the point estimate, the interval widths
for a given level of confidence are very nearly constant across
the relevant range of function point values. Also, in presenting
these results we have considered only the one-sided, upper-tail
prediction value since managers are generally more concerned
with possible cost overruns than coming in under budget.
The one-sided intervals allow for a smaller upper bound. For
example, from Table I we see that for FP = 600 the estimated
work-hours is 7383 (i.e., the value at a = 0.50) with a 90%
upper bound of 21275, which is 2.88 times the point estimate.
A different value of FP will produce a different interval, but
using this model one may say, for example, that a future
project will result in work-hours less than approximately twice
the estimated value with 80% probability. These prediction
intervals apply to the prediction of a single new observation.
If one is fortunate enough to have several new projects of
similar size, the prediction interval for the average number of
work-hours is significantly tighter.

We next attempted improve the fit by employing a multiple
regression model which considered the additional independent
variables operating system, data base management system,
and programming language. With the FP variable in the
model, inclusion of these additional variables resulted in only
a modest improvement. Indeed, programming language and
operating systems contributed almost no marginal information
and only two of the four data base types were significant. The
fitted multiple regression equation is given by

In E = 3.397 + 0.914(ln FP) - 0.629DBl - 0.877DB2 (4)

where DB1 and DB2 are indicator variables for the presence
or absence of the IMS and INGRESS data bases, respectively.
The upper confidence bounds and relative interval lengths for
this model (at the level FP = 600 and with the IMS data base

TABLE I
PREDIf2lON INTERVALS FOR EFFORT AT

F P = GOO, FOR THE DATA SET OF SECTION I11

Confidence I Model (3) I Model (4)

present) are given in Table I. Comparison with the simple
regression model in (3) shows a slight improvement.

When dealing with effort estimation models, there are
other approaches to assessing the usefulness of the model
for prediction which stem from the basic premise that the
seriousness of prediction errors is related to the size of the
project. This was, in fact the point of view we adopted in
presenting our confidence interval results in Table I. That is,
the width of the confidence intervals in absolute terms is larger
for larger projects, but the relative widths, given in terms of
the predicted effort are nearly constant for a fixed value of CY.

Others have suggested similarly motivated summary mea-
sures of predictive power. One such approach, suggested by
Conte, Dunsmore, and Shen [7], is to measure the (absolute)
relative error. That is, the absolute difference in the observed

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

284 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20, NO. 4, APRIL 1994

and fitted values for Effort divided by the actual observed
Effort. (See the Appendix section for further details.) These
authors suggest that the average of these relative errors should
be less than 0.25 for a good model. In our study, the model
in (3) had an average relative error of 0.87 when transformed
back to the original units while the model (4) gave a value
of 0.7 1.

A related measure of Conte, Dunsmore, and Shen [7] is the
percentage of observations whose predicted values are within a
certain percentage of their actual values. In their judgement, an
acceptable effort prediction model will have at least 75% of all
predicted values fall within 25% of their actual observations.
In our study, only 64% of the predicted values fell within 25%
of their observations for the model (3) and only 68% for the
model (4). Hence, by both of these relative error goodness-
of-fit criteria, the function point models developed here are
deemed somewhat less than adequate.

Iv. CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY

In the previous sections we have demonstrated some of the
pitfalls encountered in developing good regression models and
have provided a software cost estimation model based on a
relatively large data set. Several questions remain. First, how
useful is the model in practice within the environment in which
it was developed? Secondly, how portable is the model to
other organizations? And finally, can the model be improved
by additional data collection?

As for the practical, same site, usefulness of the model, it
seems a very broad tool at best. Many experienced managers
would likely be able to estimate the final cost of a project
(in hours) to within a factor of two nearly 80% of the time
without the aid of function points or a cost estimation model.
Though perhaps they will not estimate to within 33% of the
final cost, on average, 65% of the time (see Table 1). In any
event, it is still preferable to be able to deliver more precision
in an estimate of developmental effort.

In considering this problem, the sources of variability must
be identified. Within a single organization, there are sometimes
significant differences in the function point counts for the
same project as determined by separate individuals. This arises
from subjective assessments in both the raw counts and the
adjustment factor. Suggestions for reducing or eliminating this
source of variability include using a single rater for all projects
or using a single group of raters for each project to arrive at
an average [24]. Kemerer [13] and Matson and Mellichamp
[171 have suggested more automated approaches to overcome
this inter-rater variability. Another source of variability is the
different abilities and productivity levels of various project
teams. One possibility for mitigating this variability is to take
personnel into account in the adjustment factor.

At a specific site or even within an organization, it may be
possible to control variability as described above. However,
the use of a model developed from the data of one organization
for prediction at another requires more care. For example,
the external organization would need to know, specifically,
how work-hours were counted. Even so, it is unlikely that
the external organization will be able to completely control

for all inter-organizational differences that may impact the
model. Therefore, we recommend that organizations using
models developed elsewhere begin to collect their own data
for model building. Since this may take quite some time, it
may be necessary to make use of an “adopted” model from an
organization which is qualitatively similar.

As we have demonstrated, function points, even in concert
with other predictors, seem only moderately helpful in soft-
ware development cost estimation. However, we believe that
this situation may be markedly improved by making better use
of available information. The function point value for a given
project is a linear combination of other variables, multiplied
by an adjustment factor. The method of FP calculations used
for our data set takes a linear combination of 15 variables
(see (1)) with predetermined coefficients which are given in
Kemerer [131. For qualitative assessment of productivity, i t
may be useful to combine the available information into a
single measure of utility such as function points. However, for
the purpose of estimation, the predetermined coefficients of the
individual components unnecessarily constrain the regression
to a less than optimal solution. It would be preferable to use all
15 variables (each times the adjustment factor) as predictors
in the model since this will allow the estimation method to
select the best weights. This will necessitate a somewhat larger
minimum sample size than with just the single variable, but
the potential improvement in the model may be significant.
Certainly, the 104 observations in the data we have presented
are sufficient for such an analysis. Unfortunately, we were
unable to obtain the individual component values for this data
set from which the function point counts were calculated. It
may also be useful to first perform a principal components
analysis to reduce the number of predictor variables from 15
or more down to a more manageable number. Even if one
is intent on a single summary predictor such as FP, the first
principal component will provide a set of weights for a linear
combination of the components which is likely to be superior
to the preassigned weights.

To illustrate the potential improvement, we return to the
data of Albrecht and Gaffney, discussed in Section 11. The
function points calculations for this data set differ from the
current definition in several respects. First, interfaces were
considered as master files and not counted separately, so
that there are only four basic components (inputs, outputs,
master files, and inquiries) rather than five. Also, these four
components were each held at only one complexity level rather
than low, average, and high. Finally, the adjustment factor had
a range of 2~25% rather than 2Z350/0. The resulting function
point calculation for the kth observation is,

where [:I; is the adjustment factor and the coefficients (4, 5 , 4,
and 10) are those currently used for these components at the
average level of complexity. The specific values for each of
these variables are given in Table 11.

In fitting a model using the four components as predictors
(rather than FP) we take the position that the adjustment
factor, c k , acts multiplicatively with each variable, Denoting
the adjusted predictors by, for example, ckIN = IN , we first

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

MATSON et al.: SOFTWARE DEVELOPMENT COST ESTIMATION 285

considered

TABLE I1
CONSTITUENT COMFONENTS FOR F P CALCULATIONS: ALBRECHT AND GAFFNEY DATA

Case No. IN OUT INQ FILE ADJ FP EFFORT

1 25 150 75 60 1 .00 1750 102.4
2 193 98 70 36 I .oo I902 105.2
3 70 27 0 12 0.80 428 1 1 . 1
4 40 60 20 12 1.15 759 21.1
5 10 69 1 9 0.90 43 I 28.8
6 13 19 0 23 0.75 283 10.0
7 34 14 0 5 0.80 205 8.0
8 17 17 15 5 1.10 289 4.9
9 45 64 14 16 0.95 680 12.9

10 40 60 20 15 1.15 794 19.0
11 41 27 29 5 1.10 512 10.8
12 33 17 8 5 0.75 224 2.9
13 28 41 16 1 1 0.85 417 7.5
14 43 40 20 35 0.85 682 12.0
15 7 12 13 8 0.95 209 4. I
16 28 38 24 9 1.05 512 15.8
17 42 57 12 5 1.10 606 18.3
18 27 20 24 6 1.10 400 8.9
19 48 66 13 50 1.15 1235 38.1
20 69 112 21 39 1.20 1572 61.2
21 25 28 4 22 1.05 500 3.6
22 61 68 0 11 1 .oo 694 11.8
23 15 15 6 3 1.05 199 0.5
24 12 15 0 15 0.95 260 6.1

The IBM data of Albrecht and Gaffney. The function point values are arrived at by, for example, in case (201, F P =
(4(69) + 5(112) + 4(21) + 10(39)]1.20 = 1572.

the model

However, this model resulted in a fit which exhibited many of
the same shortcomings as the original Albrecht and Gaffney
model. After some exploration, we selected the model in which
each predictor variable is transformed by taking its square. The
fitted equation for the transformed data is

E = 3.80 + 0.00119 S2 + 0.00210 OUT + 0.00608 INQ
- 2 - 2

- 2 + 0.0045 FILE (5)

This model is superior in several respects. The residuals are
very well behaved, although, as before, case (5) appears to
be an outlier in need of further investigation. The value of R2
is 97.5% and the value of mse is 25.7 which is less than one-
fourth that of the Albrecht and Gaffney model. This results in
prediction intervals less than one-half as wide.

We suspect that the functional form for the model in (5)
may turn out differently if more data were available and we
cannot recommend any model, based on such a small sample
size. The key point is that improved results may be achieved
by unbundling the function point variable into its constituent
components. This direction seems to offer a strong possibility
of more precise prediction in future studies.

APPENDIX
ASSESSING THE PREDICTIVE POWER OF A REGRESSION MODEL

One of the primary uses of any regression model is in
the prediction of future values of the dependent variable at

some specified levels of the independent variables. For ease
of discussion, consider the simple regression model

where the error terms ~i are assumed to be independent,
normally distributed random variables with zero mean and
identical variance, c2. (Generalizations to more than one
independent variable are straightforward.) The least-squares
fitted model is denoted by = bo + blXi , with residuals
ei = (y ~ - Y i) .

Now, the true line in (AI) is unknown and Y h is a point
estimate of the true mean at level h. Also, the estimated
variance of Y h is given by

where mse = 5 e! is the sample estimate of
c 2 . m (1 - a)100% confidence interval on the true mean
value at level h is Y h f tLu/2,n-2s;,.

When the goal is the prediction of some single future value
at level xh rather than the mean, one must consider two
sources of variability. First is the vaibility associated with
the location of the true mean, which is given in (A2) and
secondly, the variability for the probability distribution of a
single value about its mean, which is 02, estimated by mse.
Hence, the estimated variance for a future value at level I r

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

2x6 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 20, NO. 4. APRIL 1994

is mse + S2 and the corresponding (1 -a) lOO% prediction
interval is Y,, f ta/2,n-2(mse + sf). From the expression in
(A2) we note that values Xh far away from x result in larger
variances and hence wider prediction intervals.

The width of the prediction intervals gives an indication of
the usefulness of the model in assessing future values. For a
fixed level of a, a sample size, n, and a given level of future
prediction, h, this width is controlled by the value of mse. As
illustrated in Section 111, mse is sometimes more indicitive of
model usefulness than is R2.

There are other approaches to assessing the acceptability
of effort prediction models. Conte, Dunsmore, and Shen [7]
introduced a measure, the mean magnitude of relative error,
defined by

I’

The implicit assumption in this summary measure is that the
seriousness of the absolute error is proportional to the size
of the observation. For effort estimation models, this seems
reasonable. For example, an ablolute error of four days on
a small project may be comparable to an absolute error of
several weeks on a much larger project. In this setting, the
use of relative error may be more appealing. These same
authors report that they consider a value of MRE _< 0.25 to
be acceptable for estimation effort models.

A companion summary measure related to MRE is the
prediction at level e. PRED(C) = :, where IC is the number of
observations whose MRE is less than or equal to e and n is
the sample size. Conte, Dunsmore, and Shen [7] conclude that
a good effort estimation model should have PRED(0.25) 2
0.75. That is, 75%) of the fitted or predicted values should fall
within 25% of their actual observations.

These methods are ad hoc procedures which make no
assumption conceming the distribution of the observations.
They are specifically suited to the situation where the errors are
increasing with the size of the observation. Indeed, if the model
assumptions in (Al) have been met, the relative error measures
are inappropriate since the error variance is constant. In dealing
with the problem of increasing variance, (i.e., residuals), one
approach is to transform the variables in the model in order
to meet the assumptions in (Al). This was the approach taken
in this article. In this instance, the calculation of the relative
error measures MRE and PRED(&) should be done using the
original observations and the corresponding fitted values which
have been transformed back into the original units.

-

-

B. W. Boehm, Soffware Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.
B. W. Boehm and P. N. Papaccio, “Understanding and controlling soft-
ware costs,” IEEE Trans. Software Eng.. vol. 14, pp. 1462-1477, Oct.
1988.
R. D. Cook, “Detection of influential observations in linear regression,”
Technomefrics, vol. 19, pp. 15-18, 1977.
S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engineering
Merrics and Models.
R. D. Emrick, “In search of a better metric for measuring productivity of
application development,” Int. Function Point Users Group Conf. P roc.,
1987.
D. Ince, “Software metrics,” Measurement for Software Conrrol and
Assurance. B. A. Kitchenham and B. Littlewood, eds. New York:

Menlo Park, CA: Benjamin Cummings, 1986.

Elsevier, 1989.
C. Jones. Proprammina Productivirv. New York: McGraw-Hill, 1986.
-, “A short history of function and feature points,” Int. Function
Point Users Group Con$ Proc., 1988.
C. F. Kemerer, “An empirical validation of software cost estimation
models,” Commun. ACM, vol. 30, no. 5, pp. 416-429, 1987.
-, “Reliability of function points measurements,” Commun. ACM,

L. A. Laranjeira, “Software size estimation of object-oriented systems,”
IEEE Trans. Software Eng.. vol. 16, pp. 64-71, Jan. 1990.
W. E. Lehder, D. P. Smith, and W. D. Yu, “Software estimation technol-
ogy,” AT&T Tech. J . , vol. 67, pp. 10-18, July-Aug. 1988.
G. C. Low and D. R. Jeffery, “Function points in the estimation and
evaluation of the software process,” IEEE Trans. Software Eng., vol.
16, pp. 64-71, 1990.
J. E. Matson and J. M. Mellichamp, “An object-oriented tool for function
point analysis,” Expert Sysr., vol. 10, pp. 3-14, Feb. 1993.
C. E. McCulloch and D. Meeter, “Discussion of Outliers,” by R. J.
Beckman and R. D. Cook, Technomefrics, vol. 25, pp. 152-155, 1983.
C. W. Moseley, “A timescale estimating model for rule-based systems,”
Ph.D. diss., North Tex. State Univ., 1987.
B. Porter, “A critical comparison of function point counting techniques,”
Int. Function Point Users Group Con6 Proc., 1988.
C. Richards, “Estimating function points,” I n f . Function Point Users
Group Con$ Proc., 1989.
H. A. Rubin, “Macro-estimation of software development parameters:
The ESTIMACS system,” SOFTFAIR Conf. Software Dev. Tools, Tech-
niques, and Alternatives, 1983, pp. 109-1 18.
J. Sprouls, IFPUG Function Point Counting Practices Manual Release
3.0, Int. Function Point Users Group, Westerfield, OH, 1990.
C. R. Symons, “Function point analysis: Difficulties and improvements,”
IEEE Trans. Sofhyare Eng., vol. 14, pp. 2-11, Jan. 1988.

vol. 36, pp. 85-97, 1993.

J.E. Matson received the M.S. in industrial en-
gineering from Mississippi State University and
the Ph.D. degree in management science from the
University of Alabama.

He is an Assistant Professor in the Department
of Industrial Engineering at the University of Al-
abama. In addition, he has more than I O years of
industrial experience with AT&T and Southem Bell.
His research interests include computer systems
engineering and simulation.

B.E. Barrett received the B.S. in biology from
the College of Charleston and the M.S and Ph D.
degrees in mathematical science from Clemson Uni-

He is Assistant Professor of statistic5 at the Man-
derson School of Business, University of Alabama,
Tuscaloosa, AL His primary areas of research in-
terest are regrewon diagnostics and statistical com-
puting

Dr Barrett has publiqhed articles in Journal of the
Amer i t an Staristrcal Assoc ration. Journal of Compu-

REFERENCES

I I] A J Albrecht, “Measuring application development productivity,” versity, Clemson, SC
in Proyranrmiiry Pioduc r i i it\ Issues for the Eiyhties. C Jones, ed.
Wdshington, DC. IEEE Computer Society Pre\g, 1981

121 A J Albrecht dnd J E Gaffney, “Softwdre function. source lines of
code, and development effort prediction A software science validation,”
IEEE T,ans SojtHare Eny . vol. SE-9, no 6, pp 639-648, June 1983

131 B E Barrett dnd R F Ling, “General classes of influence measures
for multivdridte regre\sion.” I Amerrcan Stutrvical A s ~ o c , vol 87, pp
184-191. 1992 tatronul urd Graphic a1 Starirric 7. and Starrstrc s and Compurrnp

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

MATSON er al.: SOITWARE DEVELOPMENT COST ESTIMATION

J.M. Mellichamp received the B.S. degree in in-
dustrial engineering from the Georgia Institute of
Technology and the Ph.D. degree in engineering
management from Clemson University, Clemson,
s c .

He is a Professor of management science at the
Manderson Graduate School of Business, University
of Alabama, Tuscaloosa, AL. His primary areas
of research are simulation and knowledge-based
systems, with an emphasis in the use of knowledge-
based systems and simulation methods to design

complex systems.
Dr. Mellichamp has published numerous articles in such journals as Man-

agement Science, Simulation, Expert Systems, Interfaces, Decision Sciences,
International Journal of Production Research, Harvard Business Review, and
IEEE NETWORKS. He is a member of the Institute of Management Science
and the Society for Computer Simulation.

287

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 28,2023 at 03:04:50 UTC from IEEE Xplore. Restrictions apply.

