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Software Development Cost Estimation 
Using Function Points 

Jack E. Matson, Bruce E. Barrett, and Joseph M. Mellichamp 

Abstract-This paper presents an assessment of several pub- 
lished statistical regression models that relate software develop- 
ment effort to software size measured in function points. The 
principal concern with published models has to do with the 
number of observations upon which the models were based and 
inattention to the assumptions inherent in regression analysis. 
The research describes appropriate statistical procedures in the 
context of a case study based on function point data for 104 
software development projects and discusses limitations of the 
resulting model in estimating development effort. The paper also 
focuses on a problem with the current method for measuring 
function points that constrains the effective use of function points 
in regression models and suggests a modification to the approach 
that should enhance the accuracy of prediction models based on 
function points in the future. 

Index Terms- Function points, regression analysis, cost esti- 
mation 

I. INTRODUCTION 

N increasingly important facet of software development A is the ability to estimate the associated cost of develop- 
ment early in the development life cycle. The primary factor 
affecting software cost estimation is the size of the project; 
however, estimating software size is a difficult problem that 
requires specific knowledge of the system functions in terms of 
scope, complexity, and interactions [ 141. A number of software 
size metrics are identified in the literature; the most frequently 
cited measures are lines of code and function point analysis. 

A.  Lines of Code 

The traditional size metric for estimating software develop- 
ment effort and for measuring productivity has been lines of 
code (LOC). A large number of cost estimation models have 
been proposed, most of which are a function of lines of code, 
or thousands of lines of code (KLOC). Generally, the effort 
estimation model consists of two parts. One part provides a 
base estimate as a function of software size and is of the 
following form: 

E = A + B x (KLOC)C. 

where E is the estimated effort in man-months; A. B. and 
C are constants; and KLOC is the estimated number of 

Manuscript received April 21, 1993; revised November 1993. Recom- 

J .  E. Matson is with the Department of Industrial Engineering, University 

B.  E. Barrett and J. M. Mellichamp are with the Department of Management 

IEEE Log Number 9216525. 

mended by R. DeMillo. 

of Alabama. Tuscaloosa, AL 35487. 

Science and Statistics, University of Alabama, Tuscaloosa, AL 35487. 

thousands of line of code in the final system. The second 
part modifies the base estimate to account for the influence of 
environmental factors [ 151. Examples of environmental factors 
include the use of such practices as structured code, top- 
down design, structured walk-throughs, and chief programmer 
teams; personnel ability; and hardware constraints [ 5 ] .  As an 
example, Boehm’s [4] COCOMO model uses lines of code 
raised to a power between 1.05 and 1.20 to determine the 
base estimate. The specific exponent depends on whether the 
project is simple, average, or complex. The model then uses 
15 cost influence factors as independent multipliers to adjust 
the base estimate. Conte, Dunsmore, and Shen [7] identified 
some typical models including the following: 

E = 5 . 2  x (KLOC)o.91 
E = 5.5 + 0.73 x (KLOC)1.16 
E = 3 . 2  x (KLOC)1.05 
E = 3.0 x (KLOC)l.l* 
E = 2.8 x (KLOC)1.20 
E = 5.288 x (KLOC)1.047 

for KLOC > 9 

(Walston-Felix model) 
(Bailey-Basili model) 
(Boehm simple model) 
(Boehm average model) 
(Boehm complex model) 
(Doty model). 

The definition of KLOC is important when comparing these 
models. Some models include comment lines, and others do 
not. Similarly, the definition of what effort ( E )  is being 
estimated is equally important. Effort may represent only 
coding at one extreme or the total analysis, design, coding, and 
testing effort at the other extreme. As a result, it is difficult 
to compare these models. 

There are a number of problems with using LOC as the unit 
of measure for software size. The primary problem is the lack 
of a universally accepted definition for exactly what a line of 
code really is. Jones [ 101 identified 1 1 major variations of line 
counting methods. Since few authors state the line-counting 
rules they used, much of the literature has an “uncertainty of 
perhaps 500% attributable to line counting variations.” The 
variations make it very difficult to compare studies using lines 
of code as a measure of software size. 

Another difficulty with lines of code as a measure of system 
size is its language dependence. It is not possible to directly 
compare projects developed by using different languages [ 161. 
For example, the time per line for a high-level language may 
be greater than for a lower-level language. There is no way to 
accommodate the fact that fewer lines of code may be required 
for a higher-level language to provide the same function. 

Still another problem with the lines of code measure is the 
fact that it is difficult to estimate the number of lines of code 
that will be needed to develop a system from the information 
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available at requirements or design phases of development [8]. 
If cost models based on size are to be useful, it is necessary 
to be able to predict the size of the final product as early and 
accurately as possible. Unfortunately, estimating software size 
using the lines of code metric depends so much on previous 
experience with similar projects that different experts can make 
radically different estimates [7]. Finally, the lines of code 
measure places undue emphasis on coding, which is only one 
part of the implementation phase of a software development 
project. Emrick [8] stated that coding accounts only for 10% 
to 15% of the total effort on a large development system and 
questioned whether the total effort is really linearly dependent 
on the amount of code. 

B .  Function Point Analysis 

Function point analysis is a method of quantifying the size 
and complexity of a software system in terms of the functions 
that the system delivers to the user. The function delivered is 
unrelated to the language or tools used to develop a software 
project [2]. Function point analysis is designed to measure 
business-type applications; it is not appropriate for other types 
of applications such as technical or scientific applications. 
These applications generally deal with complex algorithms that 
the function point method is not designed to handle [24]. 

The function point approach has features that overcome the 
major problems with using lines of code as a measure of sys- 
tem size. First, function points are independent of the language, 
tools, or methodologies used for implementation; i.e., they 
do not take into consideration programming languages, data 
base management systems, processing hardware, or any other 
data processing technology 1161, [24]. Second, function points 
can be estimated from requirements specifications or design 
specifications, thus making it possible to estimate development 
effort in the early phases of development [16]. Since function 
points are directly linked to the statement of requirements, 
any change of requirements can easily be followed by a 
reestimate [9]. Third, since function points are based on the 
system user’s extemal view of the system, nontechnical users 
of the software system have a better understanding of what 
function points are measuring [12]. The method resolves many 
of the inconsistencies that arise when using lines of code as 
a software size measure. 

Function points have been incorporated as an option in two 
commercially available software packages, SPQR/20 [ 111 and 
ESTIMACSTM [ 121, [22]. SPQW20 (software productivity, 
quality, reliability) is based on a modified function point 
method; ESTIMACSTM contains a module which estimates 
function points. The primary difference in the SPQR/20 model 
and the traditional function point method is in the way 
complexity is handled. Whereas traditional function point 
analysis is based on evaluating 14 factors, SPQR/20 separates 
complexity into three categories: complexity of algorithms, 
complexity of code, and complexity of data structures. The 
SPQR/20 method makes it easier to evaluate the complexity 
factors (three questions as opposed to the detail of 14 factors). 
According to Porter [20], the SPQR/20 method did not seem 
to differ from function point analysis. The method is available 

in a commercial system, but documentation of the counting 
practices is not available in the public domain. Traditional 
function point analysis remains the industry standard, however, 
and is the method of choice of the Intemational Function Point 
Users Group. 

ESTIMACST” [22] is a proprietary system designed to 
give development effort estimates at the conception stage of 
a project. At this early phase, the full details of the system 
are not known, and normally only gross estimates are needed 
to make “go” and “no-go” decisions. In addition to estimated 
work effort, the system contains a module which will project 
the expected function points. This also is a very high-level 
estimate and generally is not very accurate [21]. 

In summary, function point analysis appears to have advan- 
tages over lines of code as a measure of software size for use in 
estimating software development cost, and there is widespread 
industry support for this method. Unfortunately, there are few 
published cost estimation models that use function points as 
the key input parameter. 

Briefly, raw function counts 
are arrived at by considering a linear combination of five basic 
software components (inputs, outputs, master files, interfaces, 
and inquiries), each at one of three levels: low, average or 
high. We may express this as follows: 

Counting Function Points: 

5 3  

Function Count = wZjz i j ,  
i=l  j=1 

where z i j  is the count for component i at level j (e.g., outputs 
at high complexity) and ui i j  is the fixed weight assigned by 
the Albrecht procedure. These function counts are also known 
as unadjusted function points (UFP). The final number of 
function points is arrived at by multiplying the UFP by an 
adjustment factor that is determined by considering 14 aspects 
of processing complexity. This adjustment factor allows the 
UFP count to be modified by at most 435%. The final, 
adjusted, FP count for the ktll project is then the following: 

where Ck is between 0.65 and 1.35. (For a summary of the 
mechanics of function point counting, see [12]. For a more 
detailed account, see [23].) 

Uses of Function Points: The collection of function point 
data has two primary motivations. One is the desire by 
managers to monitor levels of productivity, for example, 
number of function points achieved per work hour expended. 
From this perspective, the manager is not concerned with when 
the function point counts are made, but only that the function 
points accurately describe the “size” of the final software 
project. In this instance, function points have an advantage 
over LOC in that they provide a more objective measure of 
software size by which to assess productivity. 

Another use of function points, which is the focus of this ar- 
ticle, is in the estimation of software development cost. There 
are only a few previous studies that address this issue, though 
it  is arguably the most important potential use of function 
point data. In Section 11, we briefly review the goals and 
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methodology of model selection and then examine two data 
sets and associated cost estimation models from the literature, 
pointing out some of the pitfalls of improper model selection 
that may arise primarily as a result of too few data points. In 
Section I11 we develop two cost estimation models utilizing a 
comparatively large data set (n  = 104) and examine the pre- 
dictive properties of each. Finally, in Section IV, we point out 
the limitations attendant with using function points to predict 
software size and propose a new direction for future efforts in 
the development of function point cost estimation models. 

11. ESTIMATION MODELS FROM THE LITERATURE 

In developing a useful regression model, a number of 
concems must be addressed. The first is model adequacy, or 
explanatory power of the independent variable(s) in accounting 
for the variability of the dependent variable. This is typically 
measured by the coefficient of multiple determination, R2. 
However, a large value of R2 is not the only measure of 
a good model. In some regard, it is not even the most 
important. Estimation theory for linear regression is tied to 
certain assumptions about the distribution of the residual or 
error terms. If these are seriously violated, a large R2 may be 
of little importance. 

These concems come under the heading of model aptness, 
which refers to the conformity of the behavior of the residuals 
to the underlying assumptions about the errors in the model. 
Specifically, the usual assumptions for the error values in 
linear regression models are that these terms are distributed 
as independent, normal random variables with mean zero and 
identical variances. These assumptions are typically verified 
with the aid of diagnostic plots. Most common are the normal 
probability plot for verifying the normality of the residuals 
and a scatter plot of the residuals versus the fitted values to 
confirm the independence and homoscedasticity (i .e. ,  constant 
variance) of the residuals. When one or more of these assump- 
tions is violated, transformation of variables is often attempted 
as a remedy. 

A further concem is model stability, which refers to the 
resistance to change in the fitted model under small perturba- 
tions of the data. It is now generally recognized that residual 
analysis alone is inadequate in answering the questions of 
stability. This effect can be summarized by saying that the 
ordinary least-squares criterion gives disproportionately large 
weights to cases which are extreme in the predictor variables 
in determining the fit, often resulting in small residuals for 
those extreme or high leverage cases. Regression diagnostics, 
then, is generally understood to be the class of methods used to 
validate the probability assumptions about the errors, as well 
as the assessment of the stability of the fitted model, distinct 
from the probabilistic behavior of the errors. 

By far, the most common approach for assessing model 
stability is case deletion. Each case (or data point) is removed 
in turn from the data and the various regression statistics, 
such as the estimated regression coefficients, the fitted values 
and the coefficient covariances, are recalculated. Cases whose 
removal substantially alter the results obtained using the full 
set of data are said to be influential. The most widely used 

influence measure is Cook’s Distance [ 6 ] ,  which measures 
changes in the estimated coefficients. This is the measure used 
in this study. 

In assessing the influence of specific cases, we rely on 
a technique suggested by McCulloch and Meeter [18] and 
Barrett and Ling [3] to examine Cook’s Distance. When inves- 
tigating cases for their degree of influence, two components are 
of interest: a leverage component and a residual component. 
Since the influence may be expressed as a product of the 
leverage component and the residual component, cases which 
are large in one or both of these are candidates for high 
influence. For ease of display, the logs of the leverage and 
residual components are plotted. The contours of constant 
influence are straight lines with slope of -1, and the sum 
of the coordinates is the log of the influence. 

A .  The Alhrecht and Gaffney Model 

Albrecht and Gaffney [ 2 ]  collected data on 24 applica- 
tions developed by IBM Data Processing Services. Using a 
somewhat less refined counting method than that described 
in ( l ) ,  they give the function point counts and the resulting 
work-hours, which we call effort, for each project. Ordinary 
least-squares regression was used to determine the fitted line 
for the dependent variable, E (effort), expressed as a function 
of the independent variable, FP. A scatter-plot of this data and 
the resulting regression function are shown in Fig. l(a). 

The explanatory power of the model is relatively high at 
R2 = 87.4%. However, the residuals are troublesome in sev- 
eral respects. From Fig. l(b) we note serious autocorrelation; 
the first eight residuals are positive while eleven of the next 
fifteen are negative. There is also some evidence that the 
variability of the residuals is increasing as the number of 
function points increases. Four of the five largest residuals 
belong to the four observations with the largest function point 
counts: {l}, {a}, {19}, and {20}. The normal probability 
plot in Fig. l(c) also suggests that normality of the residuals 
is suspect. In Fig. l(d), the influence plot shows that cases 
{ l} and ( 2 )  are highly influential, due in large part to their 
high leverage or extremeness in the independent variable. 
The Albrecht and Gaffney model also has the unfortunate 
property that function point counts of less than 245 result in 
the prediction of negative work-hours for completion. 

The basic problem with fitting a model to this data is the 
relatively few cases with function point counts greater than 
1200. For example, if the four cases with function point 
counts exceeding 1200 are removed, a very different fitted 
line will result. There are two possibilities to consider here: 
( 1 )  the relationship between FP and E is not linear; and 
(2) the relationship is linear but the error variance increases 
with the number of function points. In the latter situation, 
cases with large values of FP should be down-weighted in the 
regression. In either event, the model as suggested by Albrecht 
and Gaffney is inappropriate. 

The plot of residuals in Fig. l(b) suggests that the relation- 
ship may involve a quadratic term. We might, for example, 
fit E versus FP2 or versus FP. The deficient normal 
probability plot suggests that transformation of the dependent 
variable, E ,  is the better choice. 
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Fig. 1 .  Regression diagnostics for the Albrecht and Gaffney model using the IBM data. (a) Regression of Developmental Effort 
(E) versus Function Points (FP) Effort is measured in thousands of work-hours. (b) Studentized Residuals versus Predicted Values 
for the model in (a). The error terms appear nonrandom and show a strong quadratic component. (c) Normal Probability Plot of 
residuals for the model in (a). (d) Leverage-Residual plot of Cook's Distance. Cases that lie along the same dashed contour have the 
same influence. Moving from one contour line to an adjacent line represents an increase or decrease in influence by a factor to 4. 

The summary analyses for this transformation are given in 
Fig. 2. The value of R2 is about the same at 89.9% while 
the residual plot (Fig. 2(b)) supports the independence and 
homoscedastiscity of the error terms. The normal probability 
plot (Fig. 2(c)) is much improved with only case (5 )  showing 
as unusual and in need of further investigation. The influence 
plot (Fig. 2(d)) shows that the influence of cases ( 1 )  and (2) is 
substantially mitigated. Of greater interest for our purposes we 
note that the prediction intervals for the transformed model are 
substantially narrower. For example, suppose we are interested 
in prediction of a new observation at the mean value of Fp (i.e.,  
FP = 647.625). The original model (Albrecht and Gaffney) 
yields a 90% prediction interval of 3.81 to 39.93 thousands of 
work-hours while that of the transformed model is from 6.76 
to 29.92. Of course, neither interval is especially tight due in 
part to the small number of observations. However, even if the 
Albrecht and Gaffney model produced a narrower confidence 
interval we would still prefer the transformed model because 
probability statements concerning the intervals are predicated 
on the model assumptions. The degree to which these are 
violated determines the validity of the prediction interval. 

B.  The Kemerer Model 

Kemmerer [12] also developed a cost estimation model 
using function points and linear regression. The data set 
consists of observations from 15 software projects undertaken 
by a national consulting and development firm identified 

only as the ABC company. A scatter-plot of the data and 
the resulting least-squares line are shown in Fig. 3(a). The 
dependent variable, Effort, is measured in man-months where 
one man-month is 152 work-hours. We use this scale for 
ease of reference with Kemmerer [12]. Rescaling the units 
of the dependent variable does not impact on the analysis of 
the model. We also note that Kemerer reports the adjusred 
R2 while we have used the unadjusted R2 throughout this 
article. These are largely comparable measures related by the 
expression 1-R: = ( l - R 2 ) ( n - 1 ) / ( n - p ) ,  wherey-1  is 
the number of predictors. The adjustment factor compensates 
for adding variables whose marginal contribution is small. 
Preference for either measure is inconsequential in practice. 

It is clear from Fig. 3(a) that model fit is inappropriate in 
several respects. The greatest anomaly is case (3) which is a 
very high leverage point and tends to pull the regression line 
towards itself. If case ( 3 )  were removed, a vastly different 
fitted equation would result. Also, the predicted values for the 
smallest two projects are negative. Another shortcoming of 
the model is the large mean-squared-error (mse) which results 
in wide prediction intervals. (See the Appendix section for 
details.) This large mse, along with the gross violation of 
model assumptions renders the resulting inferences virtually 
meaningless. 

As was the case with the Albrecht and Gaffney model, the 
small number of data points make it  impossible to determine 
whether the true relationship is nonlinear, or linear but with 
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Fig. 2. Regression diagnostics for the transformed IBM data. (a) Regression of Sqrt (Developmental Effort), (E) versus Function 
Points (FP). Effort is measured in thousands of work-hours. (b) Studentized Residuals versus Predicted Values for the model in (a). 
(c) Normal Probability Plot of residuals for the model in (a). (d) Leverage-Residual plot of Cook's Distance. Cases that lie along 
the same dashed contour have the same influence. Moving from one contour line to an adjacent line represents an increase or 
decrease in influence by a factor of 4. 

error variance increasing with project size. In the latter in- 
stance, case (3) may be a rather ordinary observation. Fig. 3(b) 
presents two altemative polynomial models which certainly are 
a better fit to the data. We do not mean to suggest that either of 
these is the "correct" functional form of the true relationship, 
but rather that there are some fairly simple altematives which 
provide a much better fit. Without further information about 
case { 3) and possibly additional data points, the relationship 
is most uncertain. 

We also take the opportunity with this data set to point out 
certain common misconceptions about the importance of R2 
in model assessment. Briefly, in developing a linear model for 
the purpose of prediction, we are interested in a point estimate 
and some measure of the uncertainty of the point estimate. 
This is typically assessed by a confidence interval on a future 
value, also known as a prediction interval. (For additional 
details on prediction intervals as well as altemative methods of 
assessing predictive power, see the Appendix.) All of the usual 
inferential statistics are based on the assumptions of normality, 
independence, and homoscedastiscity of the residuals. If these 
are seriously violated, the prediction intervals are invalid. 

A regression model may be fit (that is, the least-squares 
estimates calculated) for any set of data, even if the func- 
tional form of model is entirely misspecified or there is 
nonconformity of the residuals to the model assumptions. Such 
inappropriate models may sometimes have very impressive 
values of R2. As an illustration, Fig. 4 presents three regression 
models associated with Kemerer's ABC data. Equation (a) is 

. 

Fig. 3. Kemerer's ABC data: Effort (man-months) versus Function Points. 
(a) Kemerer's model for ABC data set: Effort in man-months versus Func- 
tionpoints. One man-month equals 152 hours. (b) Altemative modelsfor the 
ABC data: A simple cubic term model and a polynomial model of order 3. 
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distance of the point from the mean of E. Geometrically, as 
case { 16) becomes more extreme, the first 14 points become, 
by comparison, clumped together so that they behave as a 
single point. That is, in a relative sense, they become more and 
more similar. The regression is essentially fitting only “two” 
points: the cluster of fourteen and the extreme case { 16). 

Eliminating case { 3 )  and case { 16) from consideration, we 
would anticipate the remaining 14 points would be better fit 
than with one of these extreme cases present. Visual inspection 
of line (c) supports this view. However, the value of R2 drops 
to 46%. Kemerer notes that case ( 3 )  is outlying, but upon 
recognizing the drop in R2 when case ( 3 )  is removed, he 
concludes that it is better to keep it in. But if we are to follow 
through with this reasoning, case { 16) were it  present, would 
be even more desirable. This reasoning is completely counter 
intuitive and indeed, faulty. 

What factors, in addition to R2, should be considered when 
assessing a regression model? For the purpose of estimation, 
the mse plays a vital role. We observe that though it has the 
smallest R2, line (c) also has the smallest associated mse 
(see Fig. 4). For a fixed level of confidence, the width of 
the prediction interval is determined primarily by mse. Hence, 
equation (c) is much more appealing since it will produce 
narrower prediction intervals over the relevant range of the 
independent variable. Of course, one should not summarily 
discard cases simply because they do not fit. The appropriate 
disposition or accommodation of case { 3 )  requires further 
investigation. The point is that reliance on R2 alone for 
assessing the appropriateness and strength of a regression 
model is erroneous. 

Kemerer also reports that an important finding of his study 
is that the Albrecht and Gaffney estimation model was val- 
idated by his independent study. Specifically, using a single 

Fig. 4. Kemerer’s ABC Data: Examining the Multiple Correlation Coeffi- 
cient and Mean Squared Error. (a) Kemerer’s ABC Data: Effort in man-months 
(E) versus Function Points (FP). Equation (a) is the regression line for the 
original 15 cases. Equation (b) is the line with case { 3 }  deleted and the 
artificial case { 16) included. Equation (c) is the line for the 14 cases exclusive 

regression on all 24 + 14 = 39 data points with the units of 
,qffOort similarly scaled, the null hypothesis that the two models 
were different not be rejected at the ”% confidence 
level. This finding is however. weak on two counts. First. 

of 13) and the artificial case, {IG}. (b) Enlarged view of Fig. 4(a) for the 
original 15 cases of the ABC data. both models are s;;”what suspect, as we have demonstrated. 

Perhaps if case ( 3 )  were not present in Kemerer’s data, the 

that reported by Kemerer for the original fifteen data points. 
Equation (b) is the least-squares line for the original data, 
excluding case ( 3 )  but then adding an even more extreme 
artificial data point labeled case { 16). Altematively, one might 
think of this situation as moving case ( 3 )  to an even more 
extreme and outlying position. Equation (c) is the regression 
line for the fourteen data points exclusive of cases ( 3 )  and 

Visual inspection and intuition tell us that line (b) fits the 
first fourteen quite poorly in its attempt to accommodate case 
{ 16). Yet, it has the largest R2 among the three lines at 91.2%. 
In fact, by making case { 16) even more extreme, values of 
R2 which are arbitrarily close to 100% may be achieved. To 
understand this phenomenon, recall that R2 is the proportion of 
the total variability about the mean explained by the regression. 
As case (16) becomes more extreme, the total variability 
increases, but at the same time the distance of a point from the 
fitted line is, relatively, a proportionally smaller amount of the 

(161. 

hypothesis test would have had a different outcome. Secondly, 
both models are based on relatively small samples with 
large mse’s. As a result, the respective estimated regression 
coefficients have large confidence intervals which make it 
unlikely that any differences in the models will be detected 
unless the differences are dramatic. 

We do not mean to be overly critical of either Albrecht 
and Gaffney or Kemerer; each has contributed significantly 
to the theory and practice of software development effort 
measurement. We mean only to point out that the acquisition 
of a good regression model requires a fair amount of data 
as well as careful and thoughtful analysis of the underlying 
model assumptions. 

111. LARGE SAMPLE COST ESTIMATION RESULTS 

In this section we present the results of our analysis of 
function point data from 104 projects obtained from a ma- 
jor corporation. There were several reasons for using this 
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Fig. 5. Regression diagnostics for the original variables in the model (2). (a) Regression of Developmental Effort (E) versus 
Function Points (FF’). Effort is measured in work-hours. (b) Studentized Residuals versus Predicted Values for the model in (a). 
(c) Normal Probability Plot of residuals for the model in (a). (d) Leverage-Residual plot of Cook’s Distance. Cases that lie along 
the same dashed contour have the same influence. Moving from one contour line to an adjacent line represents an increase or 
decrease in influence by a factor of 4. 

company’s data. First, the company has a well-trained and 
experienced systems development staff and encourages the 
use of current software development methodologies and tools. 
Furthermore, the company is interested in the use of function 
point analysis and has used function points to measure produc- 
tivity and quality for several years. The accumulated historical 
project data includes development effort and function points. 
Managers at this company were willing to provide project data 
and to participate in the research effort. 

The set of project data represents a wide range of software 
applications. Included are data for systems which run on 
MVS and UNIX operating systems, which are programmed 
in COBOL, PL/I, and C, and which use IMS, IDMS, IN- 
FORMIX, INGRESS, and other data base management sys- 
tems. Finally, the company has well defined procedures for 
reporting development hours spent on their software devel- 
opment projects. Since the objective of the study was the 
estimation of effort using a model based on actual development 
effort, it was important that the actual effort data be accurate 
and consistent. The record-keeping procedures at this company 
ensured that such was the case. 

The 104 projects used in developing our cost estimation 
model represent a large sample compared to most other 
published studies. According to Moseley [19], “it is not 
uncommon to find in the literature estimation models that 
are based on sample sizes of fifteen to thirty projects.” The 
projects in this study represent medium-to-large business ap- 
plications, ranging in size from 119 function points to 3472 

function points. Project data included the following infor- 
mation: software size in function points, development effort 
in hours, operating system, data base management system, 
and programming language. We will initially concentrate on 
using the single independent variable, FP, fqr prediction and 
subsequently discuss the inclusion of additional variables. 

A scatter-plot of the data (Fig. 5(a)) suggests that a linear 
relationship is present and we fit our initial model, 

E = 585.7 + 15.12 FP (2) 

where the developmental effort is given in work-hours. From 
the residual plot in Fig. 5(b), the variability of the error terms 
seems to increase as development effort increases, placing the 
assumption of homoscedasticity of the residuals in serious 
doubt. This observation also supports our intuition that the 
absolute precision with which we may predict the effort 
for large projects is less than that for small projects. For 
example, if we consider a large project as merely the sum 
of several smaller independent projects, the variance of the 
error terms for the sum is additive. We also note that the 
normal probability plot of the residuals in Fig. 5(c) departs 
from the straight line that one would expect were the normality 
assumption met. 

For the data in this study, cases {68}, {14}, {66}, and 
(51) are high leverage points, as seen in Fig. 5(a). Fig. 5(d) is 
a graphical display of the leverage component, the residual 
component, and the resulting influence for each case. For 
example, case (68) has both the largest leverage component 
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Fig. 6. Regression diagnostics for the transformed variables in the model(3). (a) Regression for the transformed variables, Ln-E 
versus L n R .  Efforts is measured in work-hours. (b) Studentized Residuals versus Predicted Values for the model in (a). (c) 
Normal Probability Plot of residuals for the model in (a). (d) Leverage-Residual plot of Cook’s Distance. Cases that lie along 
the same dashed contour have the same influence. Moving from one contour line to an adjacent line represents an increase or 
decrease in influence by a factor of 4. 

and the largest residual component, and therefore, the greatest 
influence. Its influence is approximately five times that of 
the next most influential point (case (60)) and is certainly 
large enough to warrant our concem. Case { 14) is also a high 
leverage point, but its influence is negligible since its residual 
value is close to zero. 

In order to overcome the difficulties with the model assump- 
tions and model stability, we applied a logarithmic transfor- 
mation to both the dependent and independent variables. This 
transformation is particularly useful in that linearity of the 
original relationship is preserved while stabilizing the error 
variance. The resulting data and fitted line, 

In E = 2.51 + 1.00( In FP) (3) 

are displayed in Fig. 6(a). The plots in Fig. 6(b) and 6(c) 
indicate that the residuals are more well behaved than those 
of the original model in (2). Standard tests for linearity and 
the normality, independence, and homoscedasticity of the 
residuals confirm the visual analysis. 

The stability of the model is also improved. The leverage- 
residual influence plot in Fig. 6(d) shows that the high leverage 
cases are now associated with much smaller residuals, so 
their influence is greatly mitigated. Indeed, the most highly 
influential point for the transformed data is case { 18}, which 
has an influence value one-tenth that of the most influential 
case of the original data (case (68)). We conclude that the 
model using the transformed data (3) is appropriate in all 
aspects and superior to the model using the original data ( 2 ) .  

Retrospectively, the data sets examined in Section I1 are 
now more readily understood. In view of our results here, 
the log-linear relationship between effort and function points 
may apply generally to other studies. It is only due to lack of 
data that the relationship remains hidden in the earlier studies. 
The apparent lack of linearity in each of those models was 
primarily a result of very few points with large FP values 
and an increasing error variance. For example, case { 3) from 
Kemerer’s data fits rather well into a log-log transformation. 
Fig. 7 shows the combined data sets of Section I1 (with the 
exception of Albrecht and Gaffney case (5)) with a log-log 
transformation applied. We caution that this plot is meant to 
illustrate only a rough, qualitative compliance with the model 
developed for our own data set. Without further details and 
reconciliation, it would be presumptuous to combine the data 
for any confident analysis. 

Having established the aptness and stability of the model 
in (3), we turn our attention to its predictive power. As noted 
earlier in discussing the models of Albrecht and Gaffney and 
Kemerer, the width of the prediction interval is a more relevant 
measure of a model’s usefulness than is R2. For the present 
model ( 3 )  we first construct prediction intervals for R2 in 
the usual manner and then apply the exponential function to 
translate the interval back to the work-hour units of the original 
dependent variable, E. The prediction interval arrived at in this 
way is not symmetric about the point estimate. For example, 
a new observation at FP = 2981 (i.e., In FP = 8) yields 
a point estimate of 4964 work hours and a 90% prediction 
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Combined data sets of Albrecht and Gaffney, excluding case ( 5 )  (denoted by o), and Kemerer (denoted by .r). Regression 

interval of from 1287 to 19145 work-hours. In absolute terms, 
larger function point values produce wider prediction intervals 
when translated back into the original units; but in relation 
to the magnitude of the point estimate, the interval widths 
for a given level of confidence are very nearly constant across 
the relevant range of function point values. Also, in presenting 
these results we have considered only the one-sided, upper-tail 
prediction value since managers are generally more concerned 
with possible cost overruns than coming in under budget. 
The one-sided intervals allow for a smaller upper bound. For 
example, from Table I we see that for FP = 600 the estimated 
work-hours is 7383 (i.e., the value at a = 0.50) with a 90% 
upper bound of 21275, which is 2.88 times the point estimate. 
A different value of FP will produce a different interval, but 
using this model one may say, for example, that a future 
project will result in work-hours less than approximately twice 
the estimated value with 80% probability. These prediction 
intervals apply to the prediction of a single new observation. 
If one is fortunate enough to have several new projects of 
similar size, the prediction interval for the average number of 
work-hours is significantly tighter. 

We next attempted improve the fit by employing a multiple 
regression model which considered the additional independent 
variables operating system, data base management system, 
and programming language. With the FP variable in the 
model, inclusion of these additional variables resulted in only 
a modest improvement. Indeed, programming language and 
operating systems contributed almost no marginal information 
and only two of the four data base types were significant. The 
fitted multiple regression equation is given by 

In E = 3.397 + 0.914(ln FP) - 0.629DBl - 0.877DB2 (4) 

where DB1 and DB2 are indicator variables for the presence 
or absence of the IMS and INGRESS data bases, respectively. 
The upper confidence bounds and relative interval lengths for 
this model (at the level FP = 600 and with the IMS data base 

TABLE I 
PREDIf2lON INTERVALS FOR EFFORT AT 

F P  = GOO, FOR THE DATA SET OF SECTION I11 

Confidence I Model (3) I Model (4) 

present) are given in Table I. Comparison with the simple 
regression model in (3) shows a slight improvement. 

When dealing with effort estimation models, there are 
other approaches to assessing the usefulness of the model 
for prediction which stem from the basic premise that the 
seriousness of prediction errors is related to the size of the 
project. This was, in fact the point of view we adopted in 
presenting our confidence interval results in Table I. That is, 
the width of the confidence intervals in absolute terms is larger 
for larger projects, but the relative widths, given in terms of 
the predicted effort are nearly constant for a fixed value of CY. 

Others have suggested similarly motivated summary mea- 
sures of predictive power. One such approach, suggested by 
Conte, Dunsmore, and Shen [7], is to measure the (absolute) 
relative error. That is, the absolute difference in the observed 
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and fitted values for Effort divided by the actual observed 
Effort. (See the Appendix section for further details.) These 
authors suggest that the average of these relative errors should 
be less than 0.25 for a good model. In our study, the model 
in (3) had an average relative error of 0.87 when transformed 
back to the original units while the model (4) gave a value 
of 0.7 1. 

A related measure of Conte, Dunsmore, and Shen [7] is the 
percentage of observations whose predicted values are within a 
certain percentage of their actual values. In their judgement, an 
acceptable effort prediction model will have at least 75% of all 
predicted values fall within 25% of their actual observations. 
In our study, only 64% of the predicted values fell within 25% 
of their observations for the model (3) and only 68% for the 
model (4). Hence, by both of these relative error goodness- 
of-fit criteria, the function point models developed here are 
deemed somewhat less than adequate. 

Iv. CONCLUSION AND SUGGESTIONS FOR FURTHER STUDY 

In the previous sections we have demonstrated some of the 
pitfalls encountered in developing good regression models and 
have provided a software cost estimation model based on a 
relatively large data set. Several questions remain. First, how 
useful is the model in practice within the environment in which 
it was developed? Secondly, how portable is the model to 
other organizations? And finally, can the model be improved 
by additional data collection? 

As for the practical, same site, usefulness of the model, it 
seems a very broad tool at best. Many experienced managers 
would likely be able to estimate the final cost of a project 
(in hours) to within a factor of two nearly 80% of the time 
without the aid of function points or a cost estimation model. 
Though perhaps they will not estimate to within 33% of the 
final cost, on average, 65% of the time (see Table 1). In any 
event, it is still preferable to be able to deliver more precision 
in an estimate of developmental effort. 

In considering this problem, the sources of variability must 
be identified. Within a single organization, there are sometimes 
significant differences in the function point counts for the 
same project as determined by separate individuals. This arises 
from subjective assessments in both the raw counts and the 
adjustment factor. Suggestions for reducing or eliminating this 
source of variability include using a single rater for all projects 
or using a single group of raters for each project to arrive at 
an average [24]. Kemerer [13] and Matson and Mellichamp 
[ 171 have suggested more automated approaches to overcome 
this inter-rater variability. Another source of variability is the 
different abilities and productivity levels of various project 
teams. One possibility for mitigating this variability is to take 
personnel into account in the adjustment factor. 

At a specific site or even within an organization, it may be 
possible to control variability as described above. However, 
the use of a model developed from the data of one organization 
for prediction at another requires more care. For example, 
the external organization would need to know, specifically, 
how work-hours were counted. Even so, it is unlikely that 
the external organization will be able to completely control 

for all inter-organizational differences that may impact the 
model. Therefore, we recommend that organizations using 
models developed elsewhere begin to collect their own data 
for model building. Since this may take quite some time, it 
may be necessary to make use of an “adopted” model from an 
organization which is qualitatively similar. 

As we have demonstrated, function points, even in concert 
with other predictors, seem only moderately helpful in soft- 
ware development cost estimation. However, we believe that 
this situation may be markedly improved by making better use 
of available information. The function point value for a given 
project is a linear combination of other variables, multiplied 
by an adjustment factor. The method of FP calculations used 
for our data set takes a linear combination of 15 variables 
(see (1)) with predetermined coefficients which are given in 
Kemerer [ 131. For qualitative assessment of productivity, i t  
may be useful to combine the available information into a 
single measure of utility such as function points. However, for 
the purpose of estimation, the predetermined coefficients of the 
individual components unnecessarily constrain the regression 
to a less than optimal solution. It would be preferable to use all 
15 variables (each times the adjustment factor) as predictors 
in the model since this will allow the estimation method to 
select the best weights. This will necessitate a somewhat larger 
minimum sample size than with just the single variable, but 
the potential improvement in the model may be significant. 
Certainly, the 104 observations in the data we have presented 
are sufficient for such an analysis. Unfortunately, we were 
unable to obtain the individual component values for this data 
set from which the function point counts were calculated. It 
may also be useful to first perform a principal components 
analysis to reduce the number of predictor variables from 15 
or more down to a more manageable number. Even if one 
is intent on a single summary predictor such as FP, the first 
principal component will provide a set of weights for a linear 
combination of the components which is likely to be superior 
to the preassigned weights. 

To illustrate the potential improvement, we return to the 
data of Albrecht and Gaffney, discussed in Section 11. The 
function points calculations for this data set differ from the 
current definition in several respects. First, interfaces were 
considered as master files and not counted separately, so 
that there are only four basic components (inputs, outputs, 
master files, and inquiries) rather than five. Also, these four 
components were each held at only one complexity level rather 
than low, average, and high. Finally, the adjustment factor had 
a range of 2~25% rather than 2Z350/0. The resulting function 
point calculation for the kth observation is, 

where [:I; is the adjustment factor and the coefficients (4, 5 ,  4, 
and 10) are those currently used for these components at the 
average level of complexity. The specific values for each of 
these variables are given in Table 11. 

In fitting a model using the four components as predictors 
(rather than FP) we take the position that the adjustment 
factor, c k ,  acts multiplicatively with each variable, Denoting 
the adjusted predictors by, for example, ckIN = IN , we first 
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considered 

TABLE I1 
CONSTITUENT COMFONENTS FOR F P  CALCULATIONS: ALBRECHT AND GAFFNEY DATA 

Case No. IN OUT INQ FILE ADJ FP EFFORT 

1 25 150 75 60 1 .00 1750 102.4 
2 193 98 70 36 I .oo I902 105.2 
3 70 27 0 12 0.80 428 1 1 . 1  
4 40 60 20 12 1.15 759 21.1 
5 10 69 1 9 0.90 43 I 28.8 
6 13 19 0 23 0.75 283 10.0 
7 34 14 0 5 0.80 205 8.0 
8 17 17 15 5 1.10 289 4.9 
9 45 64 14 16 0.95 680 12.9 

10 40 60 20 15 1.15 794 19.0 
11 41 27 29 5 1.10 512 10.8 
12 33 17 8 5 0.75 224 2.9 
13 28 41 16 1 1  0.85 417 7.5 
14 43 40 20 35 0.85 682 12.0 
15 7 12 13 8 0.95 209 4. I 
16 28 38 24 9 1.05 512 15.8 
17 42 57 12 5 1.10 606 18.3 
18 27 20 24 6 1.10 400 8.9 
19 48 66 13 50 1.15 1235 38.1 
20 69 112 21 39 1.20 1572 61.2 
21 25 28 4 22 1.05 500 3.6 
22 61 68 0 11 1 .oo 694 11.8 
23 15 15 6 3 1.05 199 0.5 
24 12 15 0 15 0.95 260 6.1 

The IBM data of Albrecht and Gaffney. The function point values are arrived at by, for example, in case (201, F P  = 
(4(69) + 5(112) + 4(21) + 10(39)]1.20 = 1572. 

the model 

However, this model resulted in a fit which exhibited many of 
the same shortcomings as the original Albrecht and Gaffney 
model. After some exploration, we selected the model in which 
each predictor variable is transformed by taking its square. The 
fitted equation for the transformed data is 

E = 3.80 + 0.00119 S2 + 0.00210 OUT + 0.00608 INQ 
- 2  - 2  

- 2  + 0.0045 FILE ( 5 )  

This model is superior in several respects. The residuals are 
very well behaved, although, as before, case (5) appears to 
be an outlier in need of further investigation. The value of R2 
is 97.5% and the value of mse is 25.7 which is less than one- 
fourth that of the Albrecht and Gaffney model. This results in 
prediction intervals less than one-half as wide. 

We suspect that the functional form for the model in (5) 
may turn out differently if more data were available and we 
cannot recommend any model, based on such a small sample 
size. The key point is that improved results may be achieved 
by unbundling the function point variable into its constituent 
components. This direction seems to offer a strong possibility 
of more precise prediction in future studies. 

APPENDIX 
ASSESSING THE PREDICTIVE POWER OF A REGRESSION MODEL 

One of the primary uses of any regression model is in 
the prediction of future values of the dependent variable at 

some specified levels of the independent variables. For ease 
of discussion, consider the simple regression model 

where the error terms ~i are assumed to be independent, 
normally distributed random variables with zero mean and 
identical variance, c2. (Generalizations to more than one 
independent variable are straightforward.) The least-squares 
fitted model is denoted by = bo + blXi ,  with residuals 
ei = ( y ~  - Y i ) .  

Now, the true line in (AI) is unknown and Y h  is a point 
estimate of the true mean at level h. Also, the estimated 
variance of Y h  is given by 

where mse = 5 e! is the sample estimate of 
c 2 . m ( 1  - a)100% confidence interval on the true mean 
value at level h is Y h  f tLu/2,n-2s;,. 

When the goal is the prediction of some single future value 
at level xh rather than the mean, one must consider two 
sources of variability. First is the vaibility associated with 
the location of the true mean, which is given in (A2) and 
secondly, the variability for the probability distribution of a 
single value about its mean, which is 02,  estimated by mse. 
Hence, the estimated variance for a future value at level I r  
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is mse + S2 and the corresponding (1 -a)  lOO% prediction 
interval is Y,, f ta/2,n-2(mse + sf). From the expression in 
(A2) we note that values Xh far away from x result in larger 
variances and hence wider prediction intervals. 

The width of the prediction intervals gives an indication of 
the usefulness of the model in assessing future values. For a 
fixed level of a,  a sample size, n, and a given level of future 
prediction, h, this width is controlled by the value of mse. As 
illustrated in Section 111, mse is sometimes more indicitive of 
model usefulness than is R2. 

There are other approaches to assessing the acceptability 
of effort prediction models. Conte, Dunsmore, and Shen [7] 
introduced a measure, the mean magnitude of relative error, 
defined by 

I’ 

The implicit assumption in this summary measure is that the 
seriousness of the absolute error is proportional to the size 
of the observation. For effort estimation models, this seems 
reasonable. For example, an ablolute error of four days on 
a small project may be comparable to an absolute error of 
several weeks on a much larger project. In this setting, the 
use of relative error may be more appealing. These same 
authors report that they consider a value of MRE _< 0.25 to 
be acceptable for estimation effort models. 

A companion summary measure related to MRE is the 
prediction at level e. PRED(C) = :, where IC is the number of 
observations whose MRE is less than or equal to e and n is 
the sample size. Conte, Dunsmore, and Shen [7] conclude that 
a good effort estimation model should have PRED(0.25) 2 
0.75. That is, 75%) of the fitted or predicted values should fall 
within 25% of their actual observations. 

These methods are ad hoc procedures which make no 
assumption conceming the distribution of the observations. 
They are specifically suited to the situation where the errors are 
increasing with the size of the observation. Indeed, if the model 
assumptions in (Al)  have been met, the relative error measures 
are inappropriate since the error variance is constant. In dealing 
with the problem of increasing variance, (i.e., residuals), one 
approach is to transform the variables in the model in order 
to meet the assumptions in (Al).  This was the approach taken 
in this article. In this instance, the calculation of the relative 
error measures MRE and PRED(&) should be done using the 
original observations and the corresponding fitted values which 
have been transformed back into the original units. 
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