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Abstract
At present, in the software industry, agile and non-agile software development approaches are followed and effort estima-
tion is an intrinsic part of both the approaches. This work investigates the application of deep belief network (DBN) along 
with antlion optimization (ALO) technique for effort prediction in both agile as well as non-agile software development 
environment. The study also provides a prediction interval of effort to handle uncertainty in estimation. This will help the 
project managers to estimate the effort in ranges instead of a crisp value. The proposed DBN-ALO approach is applied on 
four promise repository datasets for traditional software development (non-agile), and on three agile datasets. It provides 
the best results in all the evaluation criteria used. The proposed approach is also statistically validated using nonparametric 
tests, and it is found that DBN-ALO worked best for both agile and non-agile development approaches.

Keywords Software development effort · Deep belief network · Antlion optimization · Agile software development · Non-
agile software development

1 Introduction

Software effort estimation is the requirement of all the soft-
ware development firms. The project managers cannot evade 
this activity, and an accurate estimation is the need of the 
hour for software development. The accurate estimations 
will lead the project to success, and inaccurate estimations 
will result in its failure. There are many effort estimation 

approaches available in the literature for non-agile software 
development. These approaches are based on neural net-
works, fuzzy logic [1–3], and various other soft computing 
techniques [4, 5]. Recently, nature-inspired algorithms are 
getting attention from the researchers which comprises of 
firefly algorithm (FA), cuckoo search (CS), bat algorithm 
(BA), particle swarm optimization (PSO), etc. In software 
estimation studies also, these algorithms have been used 
by many researchers [6–9]. These algorithms are simpler 
to understand, implement, and also require less operators 
than evolutionary algorithms. Most importantly, when these 
algorithms are integrated with machine learning techniques, 
they increase the strength of the machine learning technique.

Nowadays, the software development paradigm is shift-
ing toward agile software development, which was incepted 
in 2001. These agile methodologies have advantages such 
as flexibility, respond to changes even in later stages of 
development, customer friendly, and delivers the working 
software rapidly [10]. The effort prediction aspect of agile 
software development is slow in its evolution in compari-
son with non-agile software development, and very fewer 
studies exist based on various machine learning approaches 
[11, 12]. This can be due to the lack of publicly available 
agile data in comparison with non-agile data, and moreover, 
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research in agile is more of a conceptual nature rather than 
model-driven.

This study provides a model-driven approach of effort 
estimation for agile and non-agile projects. An accurate esti-
mation is often necessary for agile and non-agile software 
projects. The model used for effort prediction in both the 
development approaches is DBN-ALO. Deep belief net-
work (DBN) is a powerful category of deep neural networks. 
Nowadays, it is extensively used in various applications due 
to its unique learning capability [13]. The meta-heuristic 
techniques are primarily used for obtaining optimal solu-
tions. ALO [14] is a meta-heuristic technique based on the 
hunting nature of antlions. It is chosen over other optimiza-
tion techniques due to its unique characteristics of explora-
tion and exploitation of the search space. As the algorithm is 
population-based, it has very few parameters to be adjusted, 
and local optimum avoidance is also high. To the best of our 
knowledge, none of the studies have reported DBN-ALO 
for effort estimation in both traditional and agile software 
development environments so far.

There are several effort estimation models present, but all 
these models do not provide 100% accurate results. There 
are some uncertainty and inaccuracy associated with these 
estimates. This estimation uncertainty is handled by provid-
ing a range of estimation into which the actual effort will 
presumably fall [15]. This range of estimation is known as 
prediction interval (PI) proposed by Jorgensen and Sjoberg 
[16]. Our study also computes a prediction interval (PI) of 
effort for software projects, which will help the software 
managers to predict the interval of effort estimate rather than 
single numeric effort value for a project.

The remaining paper is organized as follows. Section 2 
discusses the related work on effort estimation for both agile 
and non-agile environment. Section 3 briefly describes the 
background techniques used in the study. Section 4 describes 
the proposed work. Section 5 discusses the experimental 
setup and results. Section 6 provides the statistical analysis. 
Section 7 discusses the threats to validity, and Sect. 8 con-
cludes the paper.

2  Related Work

This section reviews the effort estimation work done in non-
agile and agile software development environment in the 
past few years, which comprises of different techniques and 
methodologies.

In the non-agile software development environment, the 
effort estimation studies are broadly classified into paramet-
ric and nonparametric studies. The parametric studies are 
based on mathematical equations, and nonparametric studies 
use various machine learning approaches. The nonparamet-
ric studies are preferred over parametric studies as they are 

more effective and robust in their results. They can easily 
model the complex relationships among the contributing fac-
tors and provide good reasoning capabilities. Though there 
are many nonparametric studies available in the literature, 
we have given only a few of them in brief.

Rijwani and Jain [1] used backpropagation feed-forward 
neural network for tuning the COCOMO (Constructive Cost 
Model) parameters. Laqrichi et al. [2] introduced uncertainty 
in effort estimation using neural networks based on boot-
strap technique. They evaluated their technique on ISBSG 
(International Software Benchmarking Standards Group) 
dataset, and it provided more realistic effort. Nassif et al. 
[3] compared Mamdani and Sugeno with constant output, 
and Sugeno with linear output fuzzy models, and performed 
regression analysis. They evaluated these models using 
standard accuracy measures used in effort estimation on 
ISBSG dataset, and concluded that Sugeno fuzzy inference 
system with linear output performed best in comparison with 
other models. Zare et al. [4] proposed a methodology for 
effort estimation with three levels of Bayesian network, and 
used fuzzy numbers to depict the interval of all the nodes of 
the network. They have also used evolutionary algorithms, 
and their proposed model provided more accurate results 
than the other models discussed in their work.

Sehra et al. [5] contributed a hybrid model for effort 
estimation using multi-criteria decision making (MCDM) 
approach and machine learning algorithm. Their model 
gave accurate results than bee colony optimization and basic 
radial basis function (RBF) kernel-based model. Kaushik 
et al. [6] provided a hybrid effort estimation approach by 
integrating cuckoo optimization algorithm and the fuzzy 
inference system. They evaluated their technique on promise 
datasets for effort estimation, and found their results at par 
than the other techniques discussed in their work. Kaushik 
et al. [7] integrated firefly algorithm with radial basis func-
tion network and functional link artificial neural network, 
and predicted software cost. They found their proposed 
methodology worked best, and used statistical tests to prove 
that. Sivanageswara Rao et al. [8] proposed multiobjective 
particle swarm optimization for tuning the COCOMO-
based projects, and found their model was better than the 
COCOMO model. Venkataiah et al. [9] provided ant colony 
optimization model for software cost prediction, and evalu-
ated their model on three datasets.

Abdelali et al. [17] provided a technique of effort esti-
mation using random forest. They provided this empirical 
approach by varying its key parameters, and validated their 
approach using ISBSG Release 8, Tukutuku, and COCOMO 
datasets. Pai et al. [18] proposed a software effort estima-
tion approach using neural network ensemble and regression 
analysis. They used 163 software development projects to 
validate the approach, and found that the project size is the 
main element in determining the effort of a project. They 
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also observed that neural networks ensemble technique out-
performs the regression analysis.

Benala and Mall [19] reported the use of differential evo-
lution for effort estimation in analogy-based software devel-
opment, and compared their approach with many existing 
approaches using datasets from promise repository. Ezghari 
and Zahi [20] proposed Consistent Fuzzy Analogy-based 
Software Effort Estimation (C-FASEE) model, which over-
came the drawbacks of Fuzzy Analogy-based Software 
Effort Estimation (FASEE). Their model was validated on 
13 project datasets, and it provided good estimation accu-
racy than the other models used for comparison. Abdelali 
et al. [21] proposed ensemble approach on optimal trees for 
effort estimation, and found their proposed approach worked 
well in comparison with random forest and regression trees 
models. Nguyen et al. [22] proposed a fixed window-based 
effort estimation model to calibrate COCOMO project data 
and improved the estimation accuracy of software projects.

In agile software development, the story point estimation 
is the commonly used effort estimation technique for real-
time agile projects, and most of the studies are based on it.

Satapathy and Rath [11] presented a study to improve 
the story point approach of effort estimation used in agile 
development environment with different machine learning 
approaches, and compared the performance of these tech-
niques with the other techniques existing in the literature. 
Panda et al. [12] contributed to agile effort estimation based 
on story point approach using different types of neural net-
works. They also compared the results of these models, 
and assessed them using standard effort evaluation crite-
ria. Ziauddin et al. [23] provided an effort estimation model 
for the agile projects based on story point approach, and 
validated their model using data collected from 21 agile 
projects. Martínez et al. [24] provided a Bayesian network 
technique to model the complexity and importance of user 
stories using planning poker in scrum projects. Their model 
was based on the data provided by the students and profes-
sionals, and found that their model gave better estimates than 
the traditional planning poker.

Dragicevic et al. [25] proposed a Bayesian model for 
effort prediction in agile development environment, which 
can be used during the planning stage of the project devel-
opment. They evaluated their model on the completed agile 
projects taken from the single software company, and used 
standard accuracy measures to assess the model. Tanveer 
[26] proposed a hybrid methodology of effort estimation 
for agile projects, which aimed at changing impact analysis 
for software artifacts. It also included the cost drivers as 
suggested by the experts for improving the effort estima-
tion. Tanveer et al. [27] contributed to effort estimation of 
agile projects from agile development team perspective, and 
presented a case study on three agile development teams of a 
German multinational software corporation. Bilgaiyan et al. 

[28] proposed effort estimation for 21 agile projects from six 
different software houses using feed-forward backpropaga-
tion ANN and Elman ANN. Their model was evaluated with 
three commonly used performance matrices for effort esti-
mation. Britto et al. [29] presented a study on effort estima-
tion of agile global software development by collaborating 
the results present in the literature survey of effort estimation 
and global software development context.

Usman et al. [30] investigated distributed large-scale 
agile projects to explore the effort estimation process, and 
identified various elements affecting their accuracy. Sata-
pathy et al. [31] optimized the story point approach using 
support vector regression (SVR) kernel methods, and found 
that support vector regression with RBF kernel (SVR-RBF) 
provided the best results for agile projects. Tung and Hanh 
[32] proposed an integration of artificial bee colony (ABC) 
and particle swarm optimization (PSO) for effort estima-
tion in agile software development environment. They used 
velocity and the story points as the main inputs, and found 
that their technique outperformed the earlier existing stud-
ies. Zakrani et al. [33] proposed an improved effort estima-
tion model for agile projects using support vector regression 
(SVR) optimized by grid search method, and found their 
model outperformed the SVR kernel methods.

All the techniques available on effort estimation in the 
literature for agile and non-agile projects are distinct, con-
tributed their best, and have their own merits and demerits. 
However, there is no standard technique that is commonly 
accepted for effort estimation. The recent studies in non-
agile context used machine learning and various other soft 
computing approaches for effort prediction, whereas in agile 
context the studies lack in using the above methods.

The current study is an attempt toward providing a model-
driven effort estimation approach for agile and non-agile 
projects. In order to improve the accuracy of predictions, 
data from real agile and non-agile projects are used. The 
novelty here is the integration of DBN and ALO, which is 
not available in the literature for both agile and non-agile 
contexts.

3  Background Techniques

This section provides some background concepts used in 
constructing the proposed framework.

3.1  Deep Belief Network (DBN)

DBN belongs to a set of deep neural networks. The heart 
of DBN is restricted Boltzmann machine (RBM). All the 
layers of DBN are placed upon each other as a stack of 
RBMs. The RBM is a two-layer neural network with a 
visible layer and a hidden layer as shown in Fig. 1. All the 
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visible layer neurons are connected to the hidden layer 
neurons, but the nodes of the same layer are not linked 
to each other. For learning, the inputs are mapped to the 
visible layer, where they are passed to hidden layer after 
multiplying with their respective weights, and passing 
through an activation function producing one output per 
hidden node.

The structure of DBN is shown in Fig. 2. In DBN, the 
outputs of hidden layer 1 are passed as input to hidden 
layer 2, until a final classifying layer is reached. DBN 
uses a greedy training approach and contrastive diver-
gence method to train the stack of RBMs. Since there is no 
intra-layer connection in RBM, and also it has the shape 
of bipartite graph, the hidden neurons are mutually inde-
pendent given the visible neurons, and vice versa. Given, 
m visible neurons and n hidden neurons, the conditional 
probability of hidden neurons H given visible neurons V, is 
P (H = 1|H). This is known as positive phase. Conversely, 
the conditional probability of V given H, is P (V = 1|H). 
This is known as negative phase.

3.1.1  Training of RBM

1. Map the training dataset to the neurons of the visible 
layer.

2. Positive Phase In this phase, all the hidden neurons are 
updated in parallel. Compute the positive statistics for 
edge Eij which is P (Hj = 1|V), and can be given as:

  Here, Bj is the bias associated with the hidden neuron 
Hj, Wij is the weight associated with the hidden neuron 
Hj and visible neuron Vi, and � represents the sigmoid 
function.

3. Negative Phase This phase reconstructs all the visible 
units. Compute the negative statistics for edge Eij which 
is P (Vi = 1|H), and can be given as:

  Here, Ai is the bias associated with the visible neuron 
Vi, Wij is the weight associated with the hidden neuron 
Hj and visible neuron Vi, and � represents the sigmoid 
function.

4. Update the weights The previous weight Wij is updated 
as:

  
where L is the learning weight.

5. Transpose the weights and repeat with all the training 
examples till the required threshold is achieved.

3.2  Antlion Optimization Algorithm

The antlion optimization algorithm (ALO) was proposed 
by Mirjalili [14]. It is a meta-heuristic technique based on 
the hunting mechanism of antlions. In this algorithm, ant-
lions catch the ants by building cone-shaped traps. Once 
the ants enter the trap, the antlions consume these ants, 
but many times the ants also try to evade the confinement. 
For such case, the antlions throw the soil toward the outer 
edge of the pit, so that the ants trying to escape slide down.

3.2.1  Random Walk of Ants

The location of ants and antlions is stored in two different 
matrices, and each of them is evaluated using a fitness 
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Fig. 1  Structure of RBM

Fig. 2  Structure of DBN
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function. The ants move randomly in the search space which 
is modeled as: 

where cs is the collective sum, n is the maximal number of 
iterations, s is the step of random walk, and y(s) is defined 
as:

where rno is the random number in the interval [0 1].
This random walk is restricted within the bounds of the 

search space which is done using min–max normalization 
equation given as follows.

where ei provides the minimal value of random walk, gs
i
 

provides the minimal of the ith variable at the sth iteration, 
and hs

i
 provides the maximal of the ith variable at the sth 

iteration.

3.2.2  Entrapping in Pits

The random walk of ants in the search space is affected 
by the antlion’s trap which is modeled using the equation:

where gs is the minimal value at the sth iteration, hs is the 
maximal value at the sth iteration, gs

i
 provides the minimal 

value for the ith ant, hs
i
 provides the maximal value for the 

ith ant, and Ant Ls
j
 is the location of the chosen jth antlion at 

the sth iteration.
The ants walk around a selected antlion randomly in a 

hyperspace as given by Eqs. (7) and (8).

3.2.3  Building Trap and Elitism

The antlions build the traps to catch the ants, but only the 
fitter antlions can catch the prey. This hunting capability of 
antlions is modeled by roulette wheel operator. The fittest 
antlion is obtained in every iteration, and termed as elite. 
The ants walk around the elite and the selected antlion by 
the roulette wheel which is given by:

(4)
Z(s) =

[
0, cs

(
2y
(
s1
)
− 1

)
, cs

(
2y
(
s2
)
− 1

)
,… , cs

(
2y
(
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)
− 1

)]

(5)y(s) =

{
1 if rno > 0.5

0 if rno ≤ 0.5

(6)Zs
i
=

(
Zs
i
− ei

)
×
(
hi − gs

i

)
(
hs
i
− ei

) + gi

(7)gs
i
= Ant Ls

j
+ gs

(8)hs
i
= Ant Ls

j
+ hs

(9)Ant s
i
=

Zs
A
+ Zs

E

2

where Zs
A
 is the random walk about the antlion at the sth 

iteration, Zs
E
 is the random walk surrounding the elite at the 

sth iteration, and Ants
i
 shows the location of the ith ant at 

the sth iteration.

3.2.4  Sliding Ants Toward Antlion

The ants trying to evade the trap are controlled by antlions 
by throwing soil outward so that the ants slide inside the 
trap. This is modeled using the equations:

where gs provides the minimal value at the sth iteration, hs 
provides the maximal value at the sth iteration, and L is a 
ratio given by:

where s is the current iteration, T is the maximal number of 
iterations, and w is a constant that regulates the accuracy of 
exploitation.

3.2.5  Capturing Prey and Rebuilding the Pit

The ants are caught and consumed by the antlions when 
they reach the bottom of the pit. This behavior of antlions 
moves them to the current position of the hunted ant. It also 
enhances their chance of catching a new prey, and is mod-
eled by:

where s is the current iteration, Ant Ls
j
 is the location of the 

chosen jth antlion at the sth iteration, and Ants
i
 is the location 

of the ith ant at the sth iteration.
The ALO algorithm is represented using a flow diagram 

in Fig. 3.

3.3  Story Point Approach

In an agile development approach, the project teams develop 
user stories of a project. A user story is the high-level descrip-
tion of the requirement which help the developers to estimate 
the effort to implement them. The user stories are assigned 
story points, which is a metric to estimate the effort of imple-
menting a user story. The proposed work uses the user story 
estimation approach as suggested by Ziauddin et al. [23]. It 
assigns the story point to a user story based upon its size and 

(10)gs =
gs

L

(11)hs =
hs

L

(12)L = 10W
s

T

(13)Ant Ls
j
= Ants

i
if f

(
Ants

i
> AntLs

j

)
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complexity. There is another important factor, velocity. It is 
the amount of work done in a sprint time, where sprint time 
is the time allocated for a specific work to get completed and 
reviewed. In various machine learning studies, the final veloc-
ity and the story points of an agile project are taken as input 
arguments to estimate the effort.

3.4  Prediction Interval Approach of Effort 
Estimation

Jorgensen and Sjoberg proposed prediction interval (PI) tech-
nique in empirical distribution [16]. In this technique, the 
effort PI of a new project depends on the estimation accuracy 
of earlier software projects. Each PI has a minimum and maxi-
mum effort value, and a confidence level. The confidence level 
suggests how much the PI comprises the effort.

The confidence level used in the study is 90%. The matrix 
used for the PI computation is balanced relative error (BRE) 
computed as:

To estimate PI of a new software project, completed pro-
jects of similar nature are required. We calculate the BRE val-
ues of all the completed projects, and find the minimum and 
maximum BRE. The PI of a new software project is calculated 
as:

4  Proposed Work

This work proposes DBN-ALO and investigates whether the 
same effort estimation technique can be used for both agile 
and non-agile software development approaches. It also finds 
an effort prediction interval of a software project (Sect. 3.4). 
The block diagram of DBN-ALO is given in Fig. 4. The 
work is evaluated on four datasets for non-agile software 
development, and three datasets for agile software devel-
opment. Before beginning the framework, all the data are 

(14)BRE =
Actual Effort − Estimated Effort

Min(Actual Effort, Estimated Effort)

(15)PI =

{
Estimated Effortnewproject

1−BRE
, BRE ≤ 0

Estimated Effort ⋅ (1 + BRE), BRE > 0

Fig. 3  Flow diagram of ALO

Fig. 4  Block diagram of DBN-ALO
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normalized. The normalized data are fed into DBN-ALO. 
The key element in DBN-ALO is to determine the number 
of RBM stacks, input nodes, hidden nodes in each RBM 
stack, and the output layer. The number of RBM stacks 
and the nodes at their hidden layer are determined through 
experiments. The number of nodes at the visible layer of 
each RBM is equivalent to the number of attributes used 
from the datasets. In our architecture, the number of nodes 
at the hidden layer of each RBM is five for non-agile inputs, 
and three for agile inputs. There is only one node at the 
output layer which provides the effort. The input data are 
mapped to the visible layer of DBN and processed according 
to the training algorithm as given in Sect. 3.1. This is passed 
through three RBM stacks. At the output layer, the effort is 
computed as a linear-weighted sum of the final RBM out-
puts. The backpropagation algorithm is run between the hid-
den layer of the final RBM and the output layer to reduce 
the error between the estimated and actual effort. Delta rule 
is employed to update the weights between them. The ALO 
is applied to initialize the weights between the hidden layer 
of the third RBM stack and the output layer as it provides 
the optimal value. Hence, this reduces the error in minimum 
time between the estimated value and the actual value of 

effort. The parameters and their values used in DBN-ALO 
are given in Table 1. These values are chosen after running 
the programme code of DBN-ALO multiple times with dif-
ferent values of these parameters, and the values which gave 
the best results are tabulated. The procedure of DBN-ALO 
is given in Fig. 5. This whole procedure is implemented in 
MATLAB R2018b.

5  Experimental Evaluation

In this section, first the dataset description is presented with 
its evaluation criteria, and then experimental details are 
given.

The DBN-ALO technique estimates the effort for both 
agile and non-agile software development approaches. The 
non-agile datasets used are COCOMO81, NASA93, CHINA, 
and MAXWELL. They are available from the public reposi-
tory of real-world project data [34] for software effort esti-
mation. The statistical details of these datasets are given in 
Table 2. The agile datasets used are Zia, Company Dataset-1 
(CD-1), and Company Dataset-2 (CD-2). The Zia dataset 
is available from Zia et al. [23], while Company Dataset-1 
and Company Dataset-2 are procured from the company on 
request in Delhi-NCR, India.

To validate the proposed technique, the agile datasets 
are extended using FF-SMOTE (firefly-synthetic minority 
oversampling technique) [35] as the original datasets have 
a very smaller number of projects. Originally, the Zia data-
set has only 21 input points, Company Dataset-1 (CD-1) 
has 23, and the Company Dataset-2 (CD-2) has 25 input 
points. All these datasets are extended to 100 inputs. The 
statistical details of these datasets are given in Table 3.

The cost estimation studies suffer from conclusion 
instability problem [36], in which the studies promote their 

Table 1  Parameters of DBN-ALO

Number of search agents 50
Maximum number of iterations 100
Number of variables 1
Upper bound of variable 1
Lower bound of variable 0
Number of RBM stacks 3
Weights between the layers in RBM 0.5
Bias present at all the layers of RBM 0.5

Fig. 5  Procedure for DBN-ALO
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contribution as the best estimator, but the sampling meth-
ods used in these studies to produce training and testing 
data are different. The authors, Kocaguneli and Menzies 
[36] contributed that Leave-One-Out (LOO) method deals 
with the problem of conclusion instability, whereas N-way 
methods adds to it. However, a study by Mittas et al. [37] 
used N-way sampling method, and found no biasness in 
their results. So, it can be concluded that there is no uni-
versal solution to the conclusion instability problem. In 
the current study, LOO is used for generating train and test 
datasets. All the data are normalized in the interval [0 1] 
using min–max normalization approach [36].

The evaluation of a model means how well our model 
is performing. If the deviation between the actual and the 
estimated value is large, it will lead to inaccurate estima-
tion, which will impact the cost of software development. 
The study uses widely accepted evaluation criteria used 
in the literature [38–40]. They are: MRE (magnitude of 
relative error), MMRE (mean magnitude of relative error), 
Pred (prediction), and SA (standard accuracy). A predic-
tion technique is considered better if it has low MRE, and 
MMRE values, and high Pred, and SA values. These evalu-
ation criteria are calculated as follows:

where m is the total number of projects in the dataset.

(16)MRE =
|Actual Effort − Estimated Estimated|

Actual Effort

(17)MMRE =
1

m

m∑

k=1

MREk

(18)MdMRE = Median (MRE)

where m is the total number of projects and p is the number 
of projects whose MRE is less than or equal to l. The value 
of l in the study is taken as 0.25.

where MAR (mean absolute residual) is calculated as:

MARPT is the MAR of the proposed technique, and MARRG 
is the mean of MARs obtained through large runs of random 
guessing. In random guessing procedure, the estimated effort 
for test instance is same as that of training instance chosen 
randomly with equal probability [40].

The experiments with the proposed technique are con-
ducted with agile and non-agile datasets, and using all the 
four evaluation criteria. To further explain in detail, first 
the non-agile framework is discussed, and then the agile 
framework is discussed.

The experiment starts by normalizing all the input 
datasets, which are fed to DBN-ALO model. The input 
passes through all the layers of DBN, and is processed 
as explained in the procedure for DBN-ALO (Fig. 5). We 
have selected Project 2 from COCOMO dataset to dem-
onstrate a numerical example for the non-agile dataset; 
the same method is followed for the rest of the datasets. 
This project has cost driver values as 0.88, 1.16, 0.85, 1, 
1.06, 1, 1.07, 1, 0.91, 1, 0.9, 0.95, 1.1, 1 and 1. All these 
15 values are mapped to the 15 visible layer neurons of the 
first RBM stack. The DBN then starts its positive phase to 
construct the hidden neurons (refer Eq. 1). Here, we have 

(19)Pred(l) =
p

m

(20)SA = 1 −
MARPT

MARRG

(21)MAR =

∑m

1
�Actual Effort − Estimated Effort�

m

Table 2  Statistical details for 
non-agile datasets

Datasets No. of 
features

Size Min. effort Max. effort Mean effort Skew

Zia 4 100 31.74 341 140.477 1.199
Company Dataset 1 4 100 1428.4 57,600 6781.39 6.18
Company Dataset 2 4 100 1119.2 52,880 6310.14 5.96

Table 3  Statistical details for 
agile datasets

Datasets No. of features Size Min. effort Max. effort Mean effort Skew

Cocomo 81 17 63 5.9 11,400 683.52 4.47
Nasa 93 24 93 8 8211 624 4.2
Maxwell 26 62 583 63,694 8223.21 3.34
China 19 499 26 54,620 3921.04 3.92
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used five hidden neurons for the non-agile input. The val-
ues obtained at this stage for these neurons are all 1. The 
negative phase now starts and updates the visible neurons 
(refer Eq. 2). The values obtained for the 15 visible neu-
rons are all 0.9959. The weights are now updated (refer 
Eq. 3), and the values of the hidden neurons are calculated 
again using these new weights. This completes the train-
ing of the first RBM stack. The second RBM is added on 
top of the first RBM by starting the positive phase, and 
the weights used are the transpose of the updated weights 
(refer Fig. 2), which are calculated in the training of the 
first RBM. This creates the first layer of second RBM stack 
consisting of 15 neurons. The values of all the neurons 
obtained are 0.9901. The negative phase now starts, and 
weights are updated again. This process continues till the 
addition of the third RBM stack. Now, the ALO procedure 
is called (refer Fig. 3) and the best value obtained through 
it for Project 2 is 0.0054. This value is taken as the weight 
between the final layer of the third RBM stack and the 
output layer. Now, the weighted sum of all the neurons 
of hidden layer is calculated and the output is estimated. 
The process continues till the desired error tolerance is 
attained, or a certain number of epochs are achieved. The 

estimated output obtained for effort of Project 2 is 1568, 
whereas the actual effort value in the dataset is 1600.

In this work, the proposed technique is compared with 
simple DBN, i.e., without ALO technique, and few of the 
earlier results [7, 41]. The earlier results by Kaushik et al. [7] 
are based on two neural networks functional link artificial 
neural network (FLANN) and radial basis function neural 
network (RBFN), which are integrated with firefly algorithm 
(FA), and intuitionistic fuzzy-C means (IFCM) clustering 
for software effort predictions. Another study by Benala 
et al. [41] proposed particle swarm-optimized functional 
link artificial neural network (PSO-FLANN), and evaluated 
the technique on three datasets COCOMO81, NASA93, and 
MAXWELL. All the results on non-agile datasets are given 
in Tables 4, 5, 6, 7 and 8. The results on SA are not avail-
able for the techniques, PSO-FLANN, FA-FLANN-IFCM, 
FA-RBFN-IFCM given by the researchers [7, 41]. So, SA is 
computed only for the proposed technique. From the results, 
it is found that DBN-ALO performs best for all the four data-
sets and on all the evaluation criteria. The power of DBN 
is enhanced after integrating it with ALO. The results of 
DBN-ALO technique are far ahead than those of the other 
techniques listed in the tables.

Table 4  Evaluation on 
COCOMO dataset

Techniques MMRE MdMRE PRED (25%)

Train set Test set Train set Test set Train set Test set

DBN-ALO 0.08 0.06 0.04 0.02 0.93 0.94
DBN 0.16 0.12 0.16 0.12 0.91 0.90
PSO-FLANN 0.43 0.37 0.48 0.42 0.39 0.52
FA-FLANN-IFCM 0.14 0.17 0.09 0.11 0.92 0.90
FA-RBFN-IFCM 0.17 0.22 0.18 0.19 0.89 0.87

Table 5  Evaluation on NASA93 
dataset

Techniques MMRE MdMRE PRED (25%)

Train set Test set Train set Test set Train set Test set

DBN-ALO 0.02 0.02 0.04 0.02 0.97 0.98
DBN 0.15 0.18 0.14 0.18 0.93 0.94
PSO-FLANN 0.49 0.34 0.44 0.45 0.39 0.50
FA-FLANN-IFCM 0.18 0.17 0.12 0.13 0.94 0.95
FA-RBFN-IFCM 0.17 0.14 0.15 0.16 0.89 0.90

Table 6  Evaluation on 
MAXWELL dataset

Techniques MMRE MdMRE PRED (25%)

Train set Test set Train set Test set Train set Test set

DBN-ALO 0.04 0.05 0.03 0.04 0.96 0.95
DBN 0.19 0.20 0.17 0.23 0.91 0.90
PSO-FLANN 0.55 0.38 0.49 0.42 0.32 0.48
FA-FLANN-IFCM 0.17 0.16 0.15 0.17 0.90 0.89
FA-RBFN-IFCM 0.13 0.14 0.12 0.11 0.90 0.91
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To evaluate the proposed technique on agile datasets, the 
same procedure of DBN-ALO (Fig. 5) is followed. Here, 
the architecture consists of three RBMs, each with two neu-
rons at the input layer and three neurons at the hidden layer. 
The inputs from the agile datasets are mapped to the first 
RBM, and processed in the similar manner as explained for 
non-agile framework. The inputs from the dataset comprise 
of story point value and the velocity. The estimated effort 
obtained for the first project from Zia dataset is 153.85, and 
its actual value is 156. Tables 9, 10, 11 and 12 show the 
result on three agile datasets for all the evaluation criteria. 
Here, the results of DBN-ALO are far better than the result 
of simple DBN for all the three datasets. Table 13 shows 

the results of decision tree (DT), stochastic gradient boost-
ing (SGB), random forest (RF), support vector regression 
with RBF kernel (SVR-RBF), support vector regression with 
RBF kernel optimized by grid search (SVR-RBF-GS), arti-
ficial bee colony–particle swarm optimization (ABC-PSO), 
and Zia et al.’s regression model, given by the authors [11, 
23, 31–33] on Zia dataset. They evaluated these techniques 
on 21 projects only. In order to do the comparative analy-
sis with these techniques, we also evaluated DBN-ALO on 
21 projects. The results on Zia dataset using the proposed 
work outperform the results given by the other techniques. 
It is only lacking behind in PRED (25%) by SVR-RBF-GS 
technique [33]. The authors of ABC-PSO algorithm [32] 

Table 7  Evaluation on CHINA 
dataset

Techniques MMRE MdMRE PRED (25%)

Train set Test set Train set Test set Train set Test set

DBN-ALO 0.03 0.04 0.02 0.03 0.96 0.94
DBN 0.17 0.16 0.16 0.17 0.94 0.93
FA-FLANN-IFCM 0.21 0.22 0.18 0.20 0.89 0.91
FA-RBFN-IFCM 0.16 0.15 0.17 0.18 0.89 0.90

Table 8  Evaluation of SA on non-agile datasets

Datasets DBN-ALO DBN

Train set Test set Train set Test set

COCOMO 0.980 0.985 0.931 0.921
NASA93 0.981 0.974 0.942 0.945
MAXWELL 0.982 0.988 0.920 0.910
CHINA 0.971 0.978 0.954 0.942

Table 9  Evaluation on ZIA 
dataset

Techniques MMRE MdMRE PRED (25%)

Train set Test set Train set Test set Train set Test set

DBN-ALO 0.07 0.08 0.06 0.05 0.96 0.97
DBN 0.17 0.14 0.15 0.13 0.95 0.96

Table 10  Evaluation on 
Company Dataset-1 (CD-1)

Techniques MMRE MdMRE PRED (25%)

Train set Test set Train Set Test set Train set Test set

DBN-ALO 0.03 0.06 0.02 0.06 0.97 0.97
DBN 0.15 0.15 0.14 0.12 0.90 0.92

Table 11  Evaluation on 
Company Dataset-2 (CD-2)

Techniques MMRE MdMRE PRED 25%)

Train set Test set Train set Test set Train set Test set

DBN-ALO 0.04 0.06 0.04 0.05 0.95 0.96
DBN 0.16 0.17 0.15 0.16 0.92 0.91

Table 12  Evaluation of SA on agile datasets

Datasets DBN-ALO DBN

Train set Test set Train set Test set

ZIA 0.974 0.985 0.961 0.962
CD-1 0.973 0.984 0.931 0.925
CD-2 0.980 0.988 0.929 0.930
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also evaluated PRED (8%),  R2, and MAR, and found the 
values 66.67%, 0.9734, and 3.12, respectively. We also cal-
culated these values for DBN-ALO, and found them to be 
99%, 0.9999, and 2.457, respectively, which are better than 
the results of ABC-PSO algorithm.

So, it can be concluded that the technique DBN-ALO 
can be used for effort estimation in both agile and non-agile 
datasets. The difference here lies only in the architecture 
of DBN-ALO used for both the software development 
approaches. Figure 6 shows the graphical comparison of 
agile and non-agile projects on the evaluation criteria, where 
DBN-ALO emerges out as the best in comparison with other 
techniques. The test data results of Maxwell and Zia dataset 
are depicted in the graph.

Now, the prediction interval (PI) calculation as dis-
cussed in Sect. 3.4 is demonstrated. The estimated effort 
value provided by DBN-ALO is the crisp value. To find 
the PI estimate of any software project, Eqs. (14) and (15) 
are used. Table 14 lists the actual effort values, estimated 
values (using DBN-ALO), and BREs of eight COCOMO 
projects. Using the BRE values of these projects, the PI of 
ninth COCOMO project is calculated.

Here, the minimum BRE is − 0.875 and the maximum 
BRE is 0.195 (Table 14). The estimated effort of the ninth 
project using DBN-ALO is 390, and the actual effort from 
the dataset is 423. The range of PI for this project is calcu-
lated as [390/ (1 − (−0.875)), 390 * (1 + 0.195)] = [208, 
466.05]. In this manner, the PI of any project can be calcu-
lated. The PI range of effort estimation of a project is more 
helpful to the project managers for estimations rather than 
crisp estimates as it handles uncertainty related to the crisp 
estimates.

6  Statistical Validations

The statistical validation finally confirms whether the pro-
posed approach is better than the other approaches or not. It 
is mainly used to judge the performance of a model among 
various other models with less variation. In software effort 
estimation studies, the dataset does not belong to any par-
ticular distribution, so nonparametric tests are recommended 
[7]. All these tests are performed on KEEL (Knowledge 
Extraction based on Evolutionary Learning) tool [42], and 
the statistical analysis is performed on MMRE metric. We 
performed Friedman test [43] in order to compare multiple 
techniques over the non-agile datasets. The Friedman test 
computation is given by:

where p is the total number of techniques, L̂i is the total rank 
of the ith dataset, and L̂j is the total rank of the jth technique. 
The test provides the lowest rank to the best technique. The 
test statistics FT is computed to know the statistical dif-
ferences among the techniques. This test is conducted on 
all the four non-agile datasets using the techniques DBN-
ALO, DBN, FA-FLANN-IFCM, and FA-RBFN-IFCM. Our 
null hypothesis assumed that all the techniques performed 
equally. The results of Friedman test are given in Table 15. 

(22)FT =
(p − 1)
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�
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�
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Table 13  Results on 21 projects of ZIA dataset [11]

Techniques MMRE MdMRE PRED (25%)

DT 0.3820 0.2896 38.0952
SGB 0.1632 0.1151 85.7143
RF 0.2516 0.2033 66.6667
SVR-RBF-GS 0.0620 0.0426 100
SVR-RBF 0.0747 NA 95.9052
ABC-PSO 0.0569 0.0333 NA
Zia et al.’s regres-

sion model
0.0719 0.0714 57.14

DBN-ALO 0.0225 0.0222 98.4321

Fig. 6  Graphical analysis of agile and non-agile projects

Table 14  PI calculation on COCOMO projects

Project Id Actual effort Estimated effort BRE

1 2040 2378 − 0.165
2 1600 1786 − 0.116
3 243 230 0.056
4 240 268 − 0.116
5 33 28 0.178
6 43 59 − 0.372
7 8 15 − 0.875
8 1075 899 0.195
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Here, N is the number of input non-agile datasets and the 
degree of freedom (df) is 3 as we have four techniques to 
compare. The standard χ2 value with 3 df and significance 
value α=0.05 is 7.815. Our null hypothesis is rejected as the 
χ2 value listed in the test statistic (Table 13) is more than 
7.815 and the p value is less than 0.05. So, it is deduced 
that the techniques are different. Figure 7 shows the average 
ranks of all the techniques as given by Friedman rank test. 
As our null hypothesis is rejected, Holm post-hoc test [44] is 
run to find the differences among the techniques with DBN-
ALO having rank 1 as the control method. Its test statistics 
is given in Table 16.

As per the Holm test statistics, DBN-ALO outperformed 
all other techniques as the Holm values are all less than 0.05.

The results of agile datasets are statistically validated 
using Wilcoxon signed-rank test [45], which compares the 
two algorithms based on positive and negative differences of 
their ranks. The two techniques to analyze on agile datasets 
are: DBN-ALO and DBN . The null hypothesis assumed 
here is that the two techniques performed equally. The alter-
native hypothesis assumed the two techniques performed dif-
ferently. The test statistics of the test is provided in Table 17.

Here, R+ shows the sum of ranks for the dataset in which 
the first algorithm outperformed the second and shows 
the sum of ranks for the opposite. From the test statistics 
(Table 17), the p value is less than 0.05, so the null hypoth-
esis is rejected, and the first algorithm DBN-ALO outper-
formed DBN. So, for the agile datasets, DBN-ALO is better 
than DBN, too.

7  Threats to Validity

The study deploys DBN-ALO for software effort estimation 
in both agile and non-agile software development environ-
ment. The results obtained and evaluated through various 
evaluation criteria also support the proposed technique. 
However, there are certain points to ponder upon regarding 
internal and external validities.

7.1  Internal Validity

The study uses three RBM stacks in DBN construction with 
three nodes at the hidden layer for the agile inputs, and five 
nodes for the non-agile inputs. This architecture of DBN 
gave best results with the chosen ALO parameters. It may 
not always work, if we vary the ALO parameters, or some 
other optimization technique is integrated with the chosen 
DBN structure. The choice of the sampling method used 
to generate train and test data also affects the result of a 
particular technique. In this study, LOO is used due to its 
advantages to generate the train and test data samples. Other 
sampling techniques can also be used to check the validity of 
the approach. In addition, the study is limited to numerical 
attributes of software project datasets, but many historical 
project datasets contain categorical attributes also. So, the 
scope of the study can be extended. The experiments are 
conducted with only Pred (0.25); this value can be varied to 
further test the proposed approach.

7.2  External Validity

The four non-agile datasets used for experiments are taken 
from PROMISE Software Engineering Repository [34]. The 
approach can be tested with real-time and recent non-agile 
datasets. Due to small size of the agile datasets, they are 
over-sampled with FF-SMOTE [35]. The actual strength of 
the technique can be measured with agile datasets, which do 
not require over sampling.

Table 15  Friedman rank test 
statistics on non-agile datasets

N 4

χ2 8.1
Df 3
p value 0.0439

0
1
2
3
4

1
3.25 3.25 2.5

Average Ranking of Friedman Test 

Fig. 7  Friedman rank test comparison on non-agile datasets

Table 16  Holm test statistics on 
non-agile datasets

Techniques Z Holm Hypothesis (α = 0.05)

DBN-ALO versus DBN 2.464752 0.008333 Rejected for DBN-ALO
DBN-ALO versus FA-FLANN-IFCM 2.464752 0.01 Rejected for DBN-ALO
DBN-ALO versus FA-RBFN-IFCM 1.643168 0.0125 Rejected for DBN-ALO

Table 17  Wilcoxon signed-rank test statistics on agile datasets

Techniques Rank posi-
tive  (R+)

Rank nega-
tive  (R−)

Hypothesis 
(α = 0.05)

p value

DBN-ALO 
versus 
DBN

100.0 5.0 Rejected 0.002584



2617Arabian Journal for Science and Engineering (2020) 45:2605–2618 

1 3

The non-agile input provided to DBN-ALO framework 
is 15, and the agile input is two. The technique must work 
well and give good results with varying number of input 
parameters. The proposed technique can be made robust by 
applying it on different types of project datasets.

8  Conclusion

The study does the comparative analysis of agile and non-
agile development approaches on effort estimation using 
DBN-ALO technique. It is found that the proposed tech-
nique DBN-ALO worked best for both the development 
approaches. An effort prediction interval is also calculated, 
which assigns a range of effort estimation to a software 
project. Four non-agile datasets and three agile datasets are 
used. The statistical validations using Friedman and Wil-
coxon signed-rank test also proved DBN-ALO performed 
well for both the development approaches, and outperformed 
other techniques used in the study.
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