Real Analysis 35007 Friday Class Test One 2023 Answer All Questions. Time allowed. One Hour. Each Question is worth five marks

- (1) Let a sequence have *n*th term $a_n = \frac{4n^2 + 6}{5n^2 + 1}$. Use the definition of a limit to prove that the sequence converges to $\frac{4}{5}$.
- (2) Use the ratio test to determine whether the series $\sum_{n=1}^{\infty} \frac{e^{3n}}{(3n)!}$ is convergent or divergent.
- (3) Let $f(x) = x^4 + 6x^2$. Use the $\epsilon \delta$ definition of continuity to prove that f is continuous on the interval [0, 1]. Notice that $x^4 - y^4 = (x^2 - y^2)(x^2 + y^2)$. Then factorise $(x^4 - y^4)$.
- (4) Prove that $|\tan(2x) \tan(2y)| \le 4|x-y|$ on the interval $[0, \frac{\pi}{8})$. (Hint: Mean Value Theorem)
- (5) Determine a Taylor series expansion for $f(x) = x \ln(1+2x)$ around the point a = 0.

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \frac{1}{3!}f'''(a)(x-a)^3 + \cdots$$

Real Analysis 35007 Friday Class Test Two 2023 Answer All Questions. Time allowed. One Hour. Each Question is worth five marks

- (1) Let a sequence have *n*th term $a_n = \frac{3n+6}{7n+11}$. Use the definition of a limit to prove that the sequence converges to $\frac{3}{7}$.
- (2) Use the ratio test to determine whether the series $\sum_{n=1}^{\infty} \frac{(2n)!}{(3n)!}$ is convergent or divergent.
- (3) Let $f(x) = x^3 + 4x^2$. Use the $\epsilon \delta$ definition of continuity to prove that f is continuous on the interval [0, 2].
- (4) Prove that $|\cos(x^2) \cos(y^2)| \le \sqrt{2\pi}|x y|$ on the interval $[0, \sqrt{\frac{\pi}{2}}]$. (Hint: Mean Value Theorem)
- (5) Determine a Taylor series expansion for $f(x) = x^3 \cos(2x)$ around the point a = 0.

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \frac{1}{3!}f'''(a)(x-a)^3 + \cdots$$

Real Analysis 35007 Wednesday Class Test 2023 Answer All Questions. Time allowed: One Hour. Each Question is worth five marks

- (1) Define a sequence by setting $a_n = \frac{n^2 3}{4n^2 + 1}$. Use the definition of a limit to prove that the sequence converges to $\frac{1}{4}$.
- (2) Prove that the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 2}$ is divergent using the comparison test. You may assume that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is divergent for $p \leq 1$.
- (3) Let $f(x) = x^4 + 3x$. Use the $\epsilon \delta$ definition of continuity to prove that f is continuous on the interval [0, 2].
- (4) Prove that $|e^{\sin x} e^{\sin y}| \le e|x y|$ on the interval $[0, \frac{\pi}{2}]$. (Hint: Mean Value Theorem).
- (5) Determine a Taylor series expansion for $f(x) = x \sinh(3x)$ around the point a = 0. Recall that $\sinh z = \frac{1}{2}(e^z - e^{-z})$. Hint: You can just find the series for $\sinh(3x)$ and the answer follows from that.

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \frac{1}{3!}f'''(a)(x-a)^3 + \cdots$$

Real Analysis 35007. Thursday Class Test 2023. Answer All Questions. Time allowed. One Hour. Each Question is worth five marks

- (1) Let a sequence have *n*th term $a_n = \frac{2n^2}{8n^2 + 1}$. Use the definition of a limit to prove that the sequence converges to $\frac{1}{4}$.
- (2) Prove that the series $\sum_{n=1}^{\infty} \frac{n}{2n+n^3}$ is convergent using the comparison test. You may assume that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for p > 1.
- (3) Let $f(x) = 4x^3 + 3x$. Use the $\epsilon \delta$ definition of continuity to prove that f is continuous on the interval [0, 3].
- (4) Prove that $|\sin(2x) \sin(2y)| \le 2|x y|$ on the interval $[0, \infty)$. (Hint: Mean Value Theorem)
- (5) Determine a Taylor series expansion for $f(x) = x^3 \cosh(2x)$ around the point a = 0. Recall that $\cosh z = \frac{1}{2}(e^z + e^{-z})$. Hint: You can just find the series for $\cosh(2x)$ and the answer follows from that.

$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \frac{1}{3!}f'''(a)(x-a)^3 + \cdots$$