
Question 1 (2 + 7 + 5 + 6 = 20 marks)

(a) State the Least Upper Bound axiom.

(b) State the formal ε − N definition for the convergence of a se-
quence. By using this formal definition of convergence of a

sequence, show that the sequence

{
2n2 + 1

3n2 + 2

}
converges to 2/3.

It is NOT sufficient to use arithmetic of limits theorem.

(c) Show that if a sequence {an} is convergent then there exists a
positive constant M < ∞ such that for each n ∈ N, |an| < M.

(d) (i) State the definition of a Cauchy sequence.

(ii) Show that the sequence xn =
n∑

k=1

1

k
satisfies the condition

|xn+1 − xn| < 1

n+ 1
,

but the sequence {xn} is not Cauchy.
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Question 2 (8 + 5 + 3 + 4 = 20 marks)

(a) Classify the following statements as true or false. If true, briefly
explain why. Stating a relevant theorem is sufficient. If false,
explain why not or provide a counterexample.

(i) If the absolute value |f | of a function f is continuous on
(0, 1), then f must be continuous.

(ii) Every continuous function on a compact interval is uni-
formly continuous.

(iii) If f is bounded on (a, b) then f is bounded on [a, b] and
attains its maximum and minimum values on [a, b].

(iv) If f and g are uniformly continuous on X ⊆ R, then fg is
uniformly continuous on X.

(b) Using the ε− δ definition of continuity, prove that the function

f(x) =
x

1 + x
is continuous at x = 1.

(c) Consider the sequence with nth term xn = sin(n). Explain why
{xn} has a convergent subsequence.

(d) Let f be a continuous function on an interval I. Suppose that
there is a constant K > 0 such that |f(x) − f(y)| ≤ K|x − y|
for all x, y ∈ I. Let {an} be a Cauchy sequence with an ∈ I for
each n. Prove that {f(an)} is also a Cauchy sequence.
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Question 3 (6 + 10 + 4 = 20 marks)

(a) (i) Use the ε-δ definition for limits to show that

lim
x→1

2x2

3x2 + 7
=

1

5
.

(ii) State Rolle’s Theorem.

(b) (i) State the Mean Value Theorem. Use it to prove that if
f ′(x) = 0 for every x ∈ (a, b), then f is constant on (a, b).

(ii) Show that the function

f(x) =

{
e−

1
x2 x �= 0

0 x = 0

is differentiable at x = 0 and f ′(0) = 0.

(c) Prove that if f and g are differentiable at x0 then fg is differ-
entiable at x0 and

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).
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Question 4 (6 + 4 + 6 + 4= 20 marks)

(a) Test the following series for convergence.

(i)
∞∑
n=1

en

(2n)!
, (ii)

∞∑
n=1

(−1)nn2

n2 + 1
.

(b) Let

∞∑
n=1

an and

∞∑
n=1

bn be two convergent series. Show that

∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn.

(c) (i) State the Weierstrass M-Test.

(ii) Show that the series of functions
∞∑
n=1

cos(2n+ 1)x

(n + 1)2

is uniformly convergent on R.

(d) Show that the sequence of functions fn(x) =
x3 cos(nx)
x2+n2 converges

uniformly on [0, 1]. What is the limit?
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Question 5 (5 + 7 + 3 + 5 = 20 marks)

(a) (i) Define the radius of convergence of a power series.

(ii) Find the radius of convergence for the power series

∞∑
n=1

n

2n
x2n+2.

(b) (i) State Taylor’s Theorem.

(ii) Observe that tan−1 x =

∫ x

0

dt

1 + t2
. By computing the Tay-

lor series expansion of f(t) =
1

1 + t2
, establish Gregory’s

series for π. That is, show that

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

(c) Suppose that the radius of convergence of the power series
∞∑
n=1

anx
n is R1 and the radius of convergence of

∞∑
n=1

bnx
n is

R2. What is the radius of convergence of the power series
∞∑
n=1

(an + bn)x
n ? Briefly justify your answer.

(d) Let f be at least 3 times continuously differentiable on (a, b).
Let x0 ∈ (a, b). By considering the Taylor expansion of f show
that

lim
h→0

f(x0 + h)− 2f(x0) + f(x0 − h)

h2
= f ′′(x0).

(Hint: Using the substitution x − x0 = h in the usual Taylor
expansion show that for some c ∈ (x0, x0 + h)

f(x0 + h) = f(x0) + f ′(x0)h+
f ′′(x0)

2
h2 +

f ′′′(c)
3!

h3.

Then use this to find an expression for f(x0 − h). Then add
these together.)
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Question 6 (8 + 6 + 6= 20 marks)

(a) Let [a, b] be a closed interval in R and f : [a, b] → R be a
bounded function.
(i) Let P be a partition of [a, b]. Define the upper and lower

sums of f on P .

(ii) Define the upper and lower integrals of f on P.

(iii) Define: f is Riemann integrable on [a, b].

(iv) State Riemann’s condition for a function to be integrable.

(b) Let f be a continuous function on [a, b] which is non-negative.

Suppose that
∫ b

a
f(x)dx = 0. Show that f(x) = 0 for all x ∈

[a, b].

(c) Show that if {fn} is a sequence of continuous functions on [a, b]
which converges uniformly to f on [a, b], then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.


