Question 1 (2 + 7 + 5 + 6 = 20 marks)

- (a) State the Least Upper Bound axiom.
- (b) State the formal ϵN definition for the convergence of a sequence. By using this formal definition of convergence of a sequence, show that the sequence $\left\{\frac{2n^2+1}{3n^2+2}\right\}$ converges to 2/3. It is NOT sufficient to use arithmetic of limits theorem.
- (c) Show that if a sequence $\{a_n\}$ is convergent then there exists a positive constant $M < \infty$ such that for each $n \in \mathbb{N}, |a_n| < M$.
- (d) (i) State the definition of a Cauchy sequence.

(ii) Show that the sequence $x_n = \sum_{k=1}^n \frac{1}{k}$ satisfies the condition $|x_{n+1} - x_n| < \frac{1}{n+1},$

but the sequence $\{x_n\}$ is not Cauchy.

Question 2 (8 + 5 + 3 + 4 = 20 marks)

- (a) Classify the following statements as true or false. If true, briefly explain why. Stating a relevant theorem is sufficient. If false, explain why not or provide a counterexample.
 - (i) If the absolute value |f| of a function f is continuous on (0, 1), then f must be continuous.
 - (ii) Every continuous function on a compact interval is uniformly continuous.
 - (iii) If f is bounded on (a, b) then f is bounded on [a, b] and attains its maximum and minimum values on [a, b].
 - (iv) If f and g are uniformly continuous on $X \subseteq \mathbb{R}$, then fg is uniformly continuous on X.
- (b) Using the $\epsilon \delta$ definition of continuity, prove that the function $f(x) = \frac{x}{1+x}$ is continuous at x = 1.
- (c) Consider the sequence with *n*th term $x_n = \sin(n)$. Explain why $\{x_n\}$ has a convergent subsequence.
- (d) Let f be a continuous function on an interval I. Suppose that there is a constant K > 0 such that $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in I$. Let $\{a_n\}$ be a Cauchy sequence with $a_n \in I$ for each n. Prove that $\{f(a_n)\}$ is also a Cauchy sequence.

(a) (i) Use the ϵ - δ definition for limits to show that

$$\lim_{x \to 1} \frac{2x^2}{3x^2 + 7} = \frac{1}{5}.$$

- (ii) State Rolle's Theorem.
- (b) (i) State the Mean Value Theorem. Use it to prove that if f'(x) = 0 for every $x \in (a, b)$, then f is constant on (a, b).
 - (ii) Show that the function

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

is differentiable at x = 0 and f'(0) = 0.

(c) Prove that if f and g are differentiable at x_0 then fg is differentiable at x_0 and

 $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$

Question 4 (6 + 4 + 6 + 4 = 20 marks)

(a) Test the following series for convergence.

(i)
$$\sum_{n=1}^{\infty} \frac{e^n}{(2n)!}$$
, (ii) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^2 + 1}$.
(b) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two convergent series. Show that $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

- (c) (i) State the Weierstrass *M*-Test.
 - (ii) Show that the series of functions

$$\sum_{n=1}^{\infty} \frac{\cos(2n+1)x}{(n+1)^2}$$

is uniformly convergent on \mathbb{R} .

(d) Show that the sequence of functions $f_n(x) = \frac{x^3 \cos(nx)}{x^2 + n^2}$ converges uniformly on [0, 1]. What is the limit?

Question 5 (5 + 7 + 3 + 5 = 20 marks)

- (a) (i) Define the radius of convergence of a power series.
 - (ii) Find the radius of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{n}{2^n} x^{2n+2}.$$

- (b) (i) State Taylor's Theorem.
 - (ii) Observe that $\tan^{-1} x = \int_0^x \frac{dt}{1+t^2}$. By computing the Taylor series expansion of $f(t) = \frac{1}{1+t^2}$, establish Gregory's series for π . That is, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

- (c) Suppose that the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n x^n$ is R_1 and the radius of convergence of $\sum_{n=1}^{\infty} b_n x^n$ is R_2 . What is the radius of convergence of the power series $\sum_{n=1}^{\infty} (a_n + b_n) x^n$? Briefly justify your answer.
- (d) Let f be at least 3 times continuously differentiable on (a, b). Let $x_0 \in (a, b)$. By considering the Taylor expansion of f show that

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} = f''(x_0).$$

(Hint: Using the substitution $x - x_0 = h$ in the usual Taylor expansion show that for some $c \in (x_0, x_0 + h)$

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(c)}{3!}h^3.$$

Then use this to find an expression for $f(x_0 - h)$. Then add these together.)

Question 6 (8 + 6 + 6 = 20 marks)

- (a) Let [a,b] be a closed interval in \mathbb{R} and $f:[a,b] \to \mathbb{R}$ be a bounded function.
 - (i) Let P be a partition of [a, b]. Define the upper and lower sums of f on P.
 - (ii) Define the upper and lower integrals of f on P.
 - (iii) Define: f is Riemann integrable on [a, b].
 - (iv) State Riemann's condition for a function to be integrable.
- (b) Let f be a continuous function on [a, b] which is non-negative. Suppose that $\int_a^b f(x)dx = 0$. Show that f(x) = 0 for all $x \in [a, b]$.
- (c) Show that if $\{f_n\}$ is a sequence of continuous functions on [a, b] which converges uniformly to f on [a, b], then

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$$