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Abstract. We present a short proof of Stirling’s formula that uses only a

basic knowledge of calculus.

1. Introduction

Numerous proofs [1, 2, 3, 6, 7, 8] of Stirling’s formula of varying levels of

sophistication have appeared in the literature. For instance, the proof in [6] in-

vokes Lebesgue’s dominated convergence theorem while [7] uses Poisson distribu-

tion from probability theory; familiarity with these ideas cannot be expected of

students in first year calculus courses. While the ideas in [8] are elementary, the

work done in achieving a slight improvement to the barebones Stirling’s formula

does not clearly convey the basic idea behind this asymptotic formula. In this note,

we present a short proof of Stirling’s formula that uses only a basic knowledge of

calculus.

We shall first prove that

n! ∼ C
√
n
(n

e

)n

(1.1)

for some constant C and subsequently prove that C =
√
2π. It is a curious

fact that the discovery of (1.1) is due to de Moivre and Stirling’s contribution to

Stirling’s formula is recognising that C =
√
2π. The first rigorous proof that the

constant is
√
2π is to be found in de Moivre’s monograph “Miscellanea Analytica”

[5] consisting of results about summation of series. This proof is also the widely

known proof that uses Wallis’s product formula. While Stirling offers no proof of

his claim, it is likely that Stirling’s own reasoning involves Wallis’s formula. In

his extensive analyses of Stirling’s works, I. Tweddle [9] suggests that the digits

of
√
π may have been known to Stirling; Stirling computes the first nine places

of
√
π using Bessel’s interpolation formula [9, p. 244] but “he certainly offers no

proof here for the introduction of π”.
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2. Proof of Stirling’s Formula

We begin with the following easy observation about the logarithm function

2.1. Observation. For |x| < 1, we have the following convergent Taylor expan-

sion centered at 0

log(1− x) = −
∞
∑

k=1

xk

k
.

This tells us that, for |x| < 1, we have

| − log(1− x)− x| 6
∞
∑

k=2

|x|k =
|x|2

1− |x| .

Changing x to −x gives us

| log(1 + x) − x| 6 |x|2
1− |x| . (2.1)

2.2. The proof. We now study the function log n! which is

n
∑

k=1

log k =

∫ n+ 1

2

1

2

log t dt+

n
∑

k=1

(

log k −
∫ k+ 1

2

k− 1

2

log t dt

)

. (2.2)

The first integral is evaluated easily

I1 :=

∫ n+ 1

2

1

2

log t dt =

(

n+
1

2

)

log

(

n+
1

2

)

− n+
log 2

2
. (2.3)

Now, note that

log

(

n+
1

2

)

= logn+ log

(

1 +
1

2n

)

and our observation (2.1) gives

∣

∣

∣

∣

log

(

1 +
1

2n

)

− 1

2n

∣

∣

∣

∣

6

(

1

2n

)2

1− 1

2n

6
1

2n2

where the last inequality holds since 1− (2n)−1 > 1

2
for n > 1. Hence we have

log

(

n+
1

2

)

= logn+
1

2n
+O

(

1

n2

)

so that the integral (2.3) becomes

I1 =

(

n+
1

2

)

logn− n+
1 + log 2

2
+O

(

1

n

)

. (2.4)

Let us now consider the sum on the right hand side of (2.2). The kth summand

is
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log k −
∫ k+ 1

2

k− 1

2

log t dt

= log k −
{(

k +
1

2

)

log

(

k +
1

2

)

−
(

k − 1

2

)

log

(

k − 1

2

)

− 1

}

= log k −
{

k log

(

k + 1/2

k − 1/2

)

+
1

2
log

(

k2 − 1

4

)

− 1

}

. (2.5)

Now, when |x| < 1, considering the Taylor expansions of the functions log(1 + x)

and log(1− x), we have

log

(

1 + x

1− x

)

= 2x+O(x3) (2.6)

so that we get

log

(

k + 1/2

k − 1/2

)

= log

(

1 + 1/2k

1− 1/2k

)

=
1

k
+O(k−3). (2.7)

Finally, writing

log

(

k2 − 1

4

)

= log k2 + log

(

1− 1

4k2

)

, (2.8)

for k > 1, we have from our observation (2.1) that
∣

∣

∣

∣

log

(

1− 1

4k2

)

+
1

4k2

∣

∣

∣

∣

6

1

16k4

1− 1

4k2

6
1

12k4
(2.9)

so that log(1 − 1

4k2 ) = O(k−2). Thus, (2.8) becomes

log

(

k2 − 1

4

)

= 2 log k +O(k−2). (2.10)

Putting (2.7) and (2.10) together into (2.5), our summand now becomes

log k −
{

k

(

1

k
+O(k−3)

)

+
1

2

(

2 log k +O(k−2)
)

− 1

}

= O(k−2).

In particular, the sum converges as n → ∞ by the comparison test. Thus, we

estimate the sum on the right hand side of (2.2) by passing to the infinite sum:

writing Sk for the kth summand, we get

n
∑

k=1

Sk =
∑

k>0

Sk −
∑

k>n

Sk

= A+O(n−1)

for some constant A, since
∑

k>n k−2 = O(n−1) by comparison with the integral.

Putting all this together, we have proved that, for some constant A′,

logn! =

(

n+
1

2

)

log(n)− n+A′ + rn (2.11)
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where rn = O(n−1). Exponentiating, we get

n! ∼ C
√
n
(n

e

)n

(2.12)

for some constant C.

2.3. The constant. We describe a method to arrive at the constant C in (1.1).

For every non-negative integer n, consider the integral

In :=

∫ π/2

0

sinn θ dθ. (2.13)

By integrating by parts, we have the following recurrence

In =
n− 1

n
In−2. (2.14)

In particular, as n → ∞, we must have

In
In−2

→ 1.

It is immediate from (2.13) that I0 = π
2

and I1 = 1. Thus, using (2.14), an

induction on n shows that

I2n =

(

2n

n

)

π

22n+1
and I2n+1 =

22n(n!)2

(2n+ 1)!
.

Now, since 0 6 sin θ 6 1 when θ ∈ [0, π
2
], it follows that In−2 > In−1 > In and so

lim
n→∞

In
In−1

= 1.

Computing along the even subsequence, we are immediately led to a limit due to

de Moivre and Stirling [4, pp. 243–254]

1 = lim
n→∞

I2n
I2n−1

= lim
n→∞

πn

24n

(

2n

n

)2

. (2.15)

Now, if the asymptotic formula (1.1) holds, then, we must have that C =
√
2π in

(1.1). To see this, we use the de Moivre’s formula (2.15)

lim
n→∞

√
n

22n

(

2n

n

)

=
1√
π

lim
n→∞

√
n

22n
C
√
2n
(

2n
e

)2n

(

C
√
n
(

n
e

)n)2
=

1√
π

lim
n→∞

√
2

C
=

1√
π

thus proving our claim.
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