Stirling's Formula:

nl ~ V27 n(n‘ + 1/2) g_n‘

Proof of Stirling's Formula
First take the log of n! to get

log(n!) = log(1) + log(2) + - - - +log(n) .

Since the log function is increasing on the interval (ﬂ, r::cn) , we get

f log(z)dz < log(n) < f log(z)dz

for i > 1. Add the above inequalities, with n = 1,2, -- - N, we get

j:{ log(z)dz < log(N1) < j;NH log(z)dz

Though the first integral is improper, it is easy to show that in fact it is convergent. Using the anti-
derivative of log{z) (being z log(z) — z), we get

nlog(n) —n <log(n!) < (n+1)log(n+1)—n.
Next, set
= log(n!) — (n + ) log(n) +
We have

d;-¢ﬂ1=(: )k@(nll)—l.

Easy algebraic manipulation gives
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Using the Taylor expansion

for-1<t<1, we get
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This implies
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We recognize a geometric series. Therefore we have

1 1 1 /1 1
O0<dy—dnpr < §{2n+1)2_1 =E(E_n+l) -

From this we get

1.
the sequence {dﬂ} is decreasing;

1
the sequence {dﬂ - E} is increasing.
T

This will imply that {dﬂ} converges to a number C with

. . 1
A dn = lim dn — 550 = C

and that C>d, - 1/12=1 - 1/12 = 11/12. Taking the exponential of d,, we get
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The final step in the proof is to show that e = v/ 27 . This will be done via Wallis formula (and

Wallis integrals). Indeed, recall the limit
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Rewriting this formula, we get
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nl ~ n(n + 1/2)e_nec )

Playing with the numbers, we get

Using the approximation

we get
2211(n2n+18—2n626) 1 =
(2n)@n+12)e=2meC Joy © V2
Easy algebra gives
e ~ V21

since we are dealing with constants, we get in fact et = 4/ 27 . This completes the proof of Stirling's

formula.



