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PREFACE

This book is intended to serve as a text for the course in analysis that is usually
taken by advanced undergraduates or by first-year students who study mathe-
matics.

The present edition covers essentially the same topics as the second one,
with some additions, a few minor omissions, and considerable rearrangement. I
hope that these changes will make the material more accessible amd more attrac-
tive to the students who take such a course.

Experience has convinced me that it is pedagogically unsound (though
logically correct) to start off with the construction of the real numbers from the
rational ones. At the beginning, most students simply fail to appreciate the need
for doing this. Accordingly, the real number system is introduced as an ordered
field with the least-upper-bound property, and a few interesting applications of
this property are quickly made. However, Dedekind’s construction is not omit-
ted. It is now in an Appendix to Chapter 1, where it may be studied and enjoyed
whenever the time seems ripe.

The material on functions of several variables is almost completely re-
written, with many details filled in, and with more examples and more motiva-
tion. The proof of the inverse function theorem—the key item in Chapter 9—is
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simplified by means of the fixed point theorem about contraction mappings.
Differential forms are discussed in much greater detail. Several applications of
Stokes’ theorem are included.

As regards other changes, the chapter on the Riemann-Stieltjes integral
has been trimmed a bit, a short do-it-yourself section on the gamma function
has been added to Chapter 8, and there is a large number of new exercises, most
of them with fairly detailed hints.

I have also included several references to articles appearing in the American
Mathematical Monthly and in Mathematics Magazine, in the hope that students
will develop the habit of looking into the journal literature. Most of these
references were kindly supplied by R. B. Burckel.

Over the years, many people, students as well as teachers, have sent me
corrections, criticisms, and other comments concerning the previous editions
of this book. I have appreciated these, and I take this opportunity to express
my sincere thanks to all who have written me.

WALTER RUDIN



THE REAL AND COMPLEX NUMBER SYSTEMS

INTRODUCTION

A satisfactory discussion of the main concepts of analysis (such as convergence,
continuity, differentiation, and integration) must be based on an accurately
defined number concept. We shall not, however, enter into any discussion of
the axioms that govern the arithmetic of the integers, but assume familiarity
with the rational numbers (i.e., the numbers of the form m/n, where m and n
are integers and n # 0).

The rational number system is inadequate for many purposes, both as a
field and as an ordered set. (These terms will be defined in Secs. 1.6 and 1.12.)
For instance, there is no rational p such that p?> =2. (We shall prove this
presently.) This leads to the introduction of so-called ‘‘irrational numbers”
which are often written as infinite decimal expansions and are considered to be
“approximated’’ by the corresponding finite decimals. Thus the sequence

“tends to \/2.” But unless the irrational number ,/2 has been clearly defined,
the question must arise: Just what is it that this sequence ‘‘tends to”?
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This sort of question can be answered as soon as the so-called ‘‘real
number system’” is constructed.

1.1 Example We now show that the equation
¢y =2

is not satisfied by any rational p. If there were such a p, we could write p = m/n
where m and » are integers that are not both even. Let us assume this is done.
Then (1) implies

® m? = 2n?,

This shows that m? is even. Hence m is even (if m were odd, m? would be odd),
and so m? is divisible by 4. It follows that the right side of (2) is divisible by 4,
so that n? is even, which implies that n is even.

The assumption that (1) holds thus leads to the conclusion that both m
and n are even, contrary to our choice of m and n. Hence (1) is impossible for
rational p.

We now examine this situation a little more closely. Let A be the set of
all positive rationals p such that p? < 2 and let B consist of all positive rationals
p such that p?> > 2. We shall show that 4 contains no largest number and B con-
tains no smallest.

More explicitly, for every p in A we can find a rational q in A4 such that
p < q, and for every p in B we can find a rational ¢ in B such that g < p.

To do this, we associate with each rational p > 0 the number

Then

If p is in 4 then p? —2 <0, (3) shows that ¢ > p, and (4) shows that
g® < 2. Thus qis in A.

If p is in B then p? — 2 > 0, (3) shows that 0 < g < p, and (4) shows that
q* > 2. Thusgqisin B.

1.2 Remark The purpose of the above discussion has been to show that the
rational number system has certain gaps, in spite of the fact that between any
two rationals there is another: If r < s then r < (r + 5)/2 < 5. The real number
system fills these gaps. This is the principal reason for the fundamental role
which it plays in analysis.
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In order to elucidate its structure, as wel as that of the complex numbers,
we start with a brief discussion of the genera concepts of ordered set and field.

Here is some of the standard set-theoretic terminology that will be used
throughout this book.

1.3 Dfinitions If A isany set (whose elements may be numbers or any other
objects), we write x € A to indicate that x is a member (or an element) of A.

If x isnot a member of A, we write: x ¢ A.

The set which contains no element will be called theempty set. If a set has
at least one element, it is called nonempty.

If A and B are sets, and if every element of A isan element of B, we say
that A isasubset of B, and write A ¢ B, or B> A. If, in addition, thereis an
element of B whichisnot in A, then A issaid to be aproper subset of B. Note
that A c A for every set A.

If Ac Band B cA, wewrite A =B, Otherwise A # B.

14 Definition Throughout Chap. 1, the set of al rational numbers will be
denoted by Q.

ORDERED SETS

15 Definition Let S beaset. Anorder on Sisarelation, denoted by <, with
the following two properties:

(i) If xeSandy e S then one and only one of the statements

X<y, x=), Yy <Xx
is true.

(i) fx,y,zeS,if x<yandy <z thenx <z

The statement” x <y" may be read as"x islessthany" or *x issmaller
thany" or" x precedesy".

It is often convenient to writey > x in placeof x <y.

The notation x <y indicatesthat x <y or x =y, without specifyingwhich
of these two isto hold. In other words, x <y isthe negation of x >vy.

1.6 Definition Anordered set isa set .S in which an order is defined.
For example, Q isan ordered set if r < s isdefined to mean that s —r isa
positive rational number.

1.7 Dédfinition Suppose S is an ordered set, and E = S. If there exists a
B < S such that x < g for every x € E, we say that E isbounded above, and call
B an upper bound of E.

Lower bounds are defined in the same way (with = in placeof 1).
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1.8 Definition Suppose S is an ordered set, E < S, and E is bounded above.
Suppose there exists an « € S with the following properties:

(i) aisan upper bound of E.
(i) If y <athen y isnot an upper bound of E.

Then o is called the least upper boundd E [that there is at most one such
o is clear from (ii)] or thesupremumd E, and we write

o =supE.

The greatest lower bound, or infimum, of a set E which is bounded below
is defined in the same manner: The statement

o =infE

means that a is a lower bound of E and that no § with § > ais a lower bound
of E.

19 Examples

(a) Consider the sets A and B of Example 1.1 as subsets of the ordered
st Q. Theset A is bounded above. In fact, the upper bounds of A are
exactly the members of B. Since B contains no smallest member, A has
no least upper boundin Q.

Similarly, B is bounded below: The set of all lower bounds of B
consists of A and of al re Q withr < 0. Since A has no lasgest member,
B has no greatest lower boundin Q.

(b) If a=supE exists, then a may or may not be a member of E. For
instance, let E; be the set of adl re Q with r < 0. Let E, be the set of all
reQwithr<0. Then

sup E; =sup £, =0,

and 0 ¢ E,, 0€E,.
() Let E consist of al numbers 1/, where n=1, 2, 3,.... Then
sup E =1, whichisin E, and inf E =0, whichisnot in E.

110 Definition Anordered set Sissaid to have the least-upper-boundproperty
if the following istrue:
If E< S, Eisnot empty, and E is bounded above, then sup E existsin S.
Example1.9(@) showsthat Q doesnot have the least-upper-bound property.
We shall now show that there is a close relation between greatest lower
bounds and least upper bounds, and that every ordered set with the |least-upper-
bound property aso has the greatest-lower-bound property.
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111 Theorem SupposesS isanordered sat with the least-upper-bound property,
B< S, B is not empty, and B is bounded below. Let L be the set of all lower
boundsof B. Then

a=supL

existsin S, and a = inf B.

In particular,inf B existsin S.

Proof Since B is bounded below, L is not empty. Since L consists of
exactly those ye .S which satisfy the inequality y < x for every x e B, we
see that every x E B is an upper bound of L. Thus L is bounded above.
Our hypothesis about S implies therefore that L has a supremum in S;
cdl it a.

If y <a then (see Definition 1.8) y is not an upper bound of L,
hencey ¢ B. It followsthat a < x for every xe B. Thusa€eL.

If a< fthen g ¢L,sinceaisan upper bound of L.

We have shown that ael but g¢L if §>a. In other words, a
isa lower bound of B, but g isnot if 5 > a. This meansthat a= inf B.

FIELDS

112 Definition A field is a set F with two operations, called addition and
multiplication, which satisfy the following so-called "'fidd axioms™ (A), (M),
and (D):

(A) Axiomsfor addition

(M)

(Al) If xe Fand y&e F, then their sum x t yisin F.

(A2) Addition is commutative: x t+ y=y+ x for al x, ye F.

(A3) Addition isassociative: (xty)tz=x*+(yt2)foral x,y,ze F.
(A4) F contains an element 0 such that 0 + x = x for every xe F.

(A5) To every x e F corresponds an element —x e F such that

x+(—x)=0.

Axiomsfor multiplication

(M1) If xe Fand y e F, then their product xy isin F.

(M2) Multiplication is commutative: xy = yx for al x, ye F.

(M3) Multiplication is associdtive: (xy)z = x(yz) for dl x, y, ze F.
(M4) F contains an element 1 # 0 such that | x = x for every xe
{M5) If xe Fand x # 0 then there exists an element 1/x e F such that

x-(1/x)=1
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(D)

The distributive law

x(y+2)=xy+ xz

holds for all x, y, z€ F.

113

1.14

Remarks

(a) One usually writes (in any field)
x—y,g, x+y+z xpz, x%, x3,2x, 3x, . ..
in place of
x+(—y),x'(}}),(x+y)+z,(xy)z,xx,xxx,x+x,x+x+x,....

(b) The field axioms clearly hold in Q, the set of all rational numbers, if
addition and multiplication have their customary meaning. Thus Q is a
field,

(c) Although it is not our purpose to study fields (or any other algebraic
structures) in detail, it is worthwhile to prove that some familiar properties
of Q are consequences of the field axioms; once we do this, we will not
need to do it again for the real numbers and for the complex numbers.

Proposition The axioms for addition imply the following statements.
(@ Ifx+y=x+ztheny=z.
) Ifx+y=xtheny=0.

(¢) If x+y=0theny= —x.
d) —(-x)=x

Statement (a) is a cancellation law. Note that (b) asserts the uniqueness

of the element whose existence is assumed in (A4), and that (c) does the same
for (AS5).

Proof If x + y=x 4 z, the axioms (A) give

y=0+y=(—x+x)+y=—x+{x+Yy)
=~x+x+2)=(-x+x)+z=0+z=12z

This proves (@). Take z =0 in (@) to obtain (b). Take z = —x in (a) to
obtain (c).
Since —x + x =0, (¢) (with —x in place of x) gives (d).
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1.16

zeF.

1.17
that
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Proposition The axioms for multiplication imply the following statements.

(@ Ifx#0and xy=xztheny=z.
b) Ifx#0and xy=xtheny=1.

(¢©) Ifx#0and xy=1 theny=1/x.
d) Ifx+#0 then 1/(1/x) = x.

The proof is so similar to that of Proposition 1.14 that we omit it.

Proposition The field axioms imply the following statements, for any x, y,

(@) O0x=0.

b Ifx+#0andy#0 then xy #0.
(©) (—=x)y = —(xp)=x(-y).

@ (—=x)(=y)=xy.

Proof Ox + Ox = (0 + 0)x = O0x. Hence 1.14(d) implies that Ox =0, and
(a) holds.
Next, assume x # 0, y # 0, but xy = 0. Then (a) gives

1\ /1 1\ /1
=G Ho-G)G)e-e
Y/ Ax Y/ \X
a contradiction. Thus (b) holds.
The first equality in (¢) comes from
(=x)y+xy=(-x+x)y=0y=0,

combined with 1.14(c); the other half of (¢) is proved in the same way.
Finally,
(=x)(=y) = = [x(=»]= —[- ()] = xy

by (¢) and 1.14(d).

Definition An ordered field is a field F which is also an ordered set, such

() x+y<x+zifx,y,zeFandy<z,
(ii) xy>0ifxeF,yeF,x>0,andy > 0.

If x > 0, we call x positive; if x <0, x is negative.

field:

For example, Q is an ordered field.
All the familiar rules for working with inequalities apply in every ordered
Multiplication by positive [negative] quantities preserves [reverses] in-

equalities, no square is negative, etc. The following proposition lists some of
these.
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1.18 Proposition Thefollowing statements are true in every ordered field.

(& Ifx>0then —x <0, and vice versa.

(b) Ifx>0andy <z then xy <xz.

(© Ifx<Oandy <z then xy> xz.

(d) Ifx #0 then x> > 0. Inparticular, 1> 0.
(& Ifo<x<ythen0<1/y <1/x.

Pr oof

@ Ifx>0then0= —x+ x> —x+0,sothat —x <0. If x <0 then
0=—-x+x< —-x+0,s0tha —x > 0. This proves (a).

(b) Since z>y, we have z—y >y —y =0, hence x(z-y) >0, and
therefore

xz=x(z —-y) T xy >0+ xy =xy.

(© By (), (b), and Proposition 1.16(c),
=[xz == (- -y >0,

so that x(z — y) < 0, hence xz < xy.
(d) If x>0, part (i) of Definition 1.17 gives x> > 0. If x <0, then
—x >0, hence (—x)*>0. But x*=(—x)% by Proposition 1.16(d).
Sincel=12%1>0.
(@ Ify>0andv=<0,thenyw <0. Buty.(l/y)=1>0. Hencel/y > 0.

Likewise, 1/x > 0. If we multiply both sides of the inequality x <y by
the positive quantity (1/x)(1/y), we obtain 1/y < 1/x.

THE REAL FIELD

We now state the existence theorem which is the core of this chapter.

119 Theorem Thereexistsan ordered field R which has the least-upper-bound

property.
Moreover, R contains Q as a subfield.

The second statement means that Q = R and that the operations of
addition and multiplication in R, when applied to membersof Q, coincidewith
the usua operations on rational numbers; also, the positive rational numbers
are positive elements of R.

The members of R are called real numbers.

The proof of Theorem 1.19is rather long and a bit tedious and is therefore
presented in an Appendix to Chap. 1. The proof actually constructs R from Q.
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The next theorem could be extracted from this construction with very
little extra effort. However, we prefer to derive it from Theorem 1.19 since this
provides a good illustration of what one can do with the least-upper-bound

property.

1.20 Theorem

(a) Ifxe R, ye R, and x > 0, then there is a positive integer n such that
nx > y.

(b) Ifxe R,ye R,and x < y,thenthereexistsap € Qsuchthat x < p <.

Part (a)is usualy referred to as the archimedean property of R. Part (b)
may be stated by saying that Q isdensein R: Between any two real numbers
thereis a rational one.

Proof

a) Let A bethe set of al nx, wheren runsthrough the positive integers.
If (a) were false, then y would be an upper bound of A. But then A hasa
least upper bound in R. Put a=supA. Since x>0, a- x<a, and
o — X isnot an upper bound of A. Hence 2 — x < mx for some positive
integer m. But then a < (m + 1)x € A, which is impossible, since « is an
upper bound of A.

(b) Since x <y, we have y — x >0, and (a) furnishes a positive integer
n such that

n(y - x)> 1.

Apply (a) again, to obtain positive integers m, and sz, such that m, > nx,
m, > —nx, Then
—my < nx < My,

Hence there is an integer m (with —m, < m < m,) such that
m—1<nx<m,
If we combine these inequalities, we obtain
nx<m<1+nx<ny.

Since n > 0, it follows that

This proves (b),with p= m/n.
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We shall now prove the existence of nth roots of positive reals. This
proof will show how the difficulty pointed out in the Introduction (irration-

aity of ./2) can be handled in R.

121 Theorem For every real x>0 and every integer n> 0 there is one
and only one positive real y such that y' = x.

This number y is written {'/; or x'/

Proof That thereisat most onesuch yisclear, since0 <y, <y, implies
Y] <y¥;.

Let E be the set consisting of al positive real numbers ¢ such that
t"<x

If r=x/(1+x)then0<r<1 Hencet"<t<x. ThusteE, and
Eis not empty.

If t>1+ xthent">¢> x, sothat t¢ E. Thus 1 * x is an upper
bound of E.

Hence Theorem 1.19 implies the existence of

y=supE.

To prove that y"= x we will show that each of the inequalities y" < x
and y" > x leads to a contradiction.

The identity b"—a'=(b-a)p" ! +p"~2at+ - +a"') yieds
the inequality

b" - a"<(b—amp*!

when 0 <a<b.

Assume y" < x. Choose hsothat 0 <h < 1 and

he X2V
Puta=y,b=y*h. Then
(yth)' —y <hn(y T hy~ ' <mny+1yt<x-y"

Thus (y+ h'<x, and yt he E. Since y+h>y, this contradicts the
fact that y is an upper bound of E.
Assume y" > x. Put

y-x

nyn—l

Then0 <k <vy. If t = y— k, we conclude that
Y=<y —(y -k <kmyl=y —x

Thus t"> x, and ¢ ¢ E. It follows that y — k is an upper bound of E.

k =
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But y — k <y, which contradicts the fact that y is the least upper bound
of E.

Hence y" = x, and the proof is complete.
Coradllary If aand b are positive real numbers and n is a positive integer, then

(ab)l/n — al/nbl/n-
Proof Puta =a'", f=5b'" Then

ab = o"p" = («f)",
since multiplication is commutative. [Axiom (M2) in Definition 1.12.]
The uniqueness assertion of Theorem 1.21 shows therefore that

(ab)'" = aff = a'"b'I",

1.22 Decimals We conclude this section by pointing out the relation between
real numbers and decimals.

Letx > 0 bereal. Let n, bethelargest integer such that n, < x. (Note that
the existence of n, depends on the archimedean property of R.) Having chosen

Mo, Ny, vy He_q, l€t n, be the largest integer such that
o+ k4 4ok <
710 T

Let E be the set of these numbers

L Y
&) n0+10+ +10k

Then x = sup E. The decimal expansion of x is

(k=0,1,2,...).

©) ng . mnyNy ..t
Conversely, for any infinite decimal (6)the set E of numbers(5) is bounded
above, and (6)is the decimal expansion of sup E.

Since we shall never use decimals, we do not enter into a detailed
discussion.

THE EXTENDED REAL NUMBER SYSTEM

1.23 Definition The extended real number system consists of the real field R
and two symbols, + o and —co. We preserve the origina order in R, and
define

-0 <x< 4o
for every x e R.
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It isthen clear that + oo is an upper bound of every subset of the extended
real number system, and that every nonempty subset has a least upper bound.
If, for example, E is a nonempty set of real numbers which is not bounded
above in R, then sup E = * w0 in the extended real number system.

Exactly the same remarks apply to lower bounds.

The extended real number system does not form afield, but it is customary
to make the following conventions:

(@) If xisrea then

X X
X+ o= +4+0w, X — 00 = -—00, —=—=0,
+0 —oo
(b) [fx>0then x:(+)= 400, x (—00)=—o0.
(© 1fx<0thenx:(+o)= —00, x*(—00)= +00.

When it is desired to make the distinction between rea numbers on the
one hand and the symbols * o and — o on the other quite explicit, the former
are calledfinite.

THE COMPLEX FIELD

1.24 Definition A complex number is an ordered pair (a, b) of rea numbers.
" Ordered" means that (a, b) and (b, a) are regarded as distinct if a # b.

Letx = (a b),y = (c, d) be two complex numbers. We write x =y if and
only if a=cand b=d. (Note that this definition is not entirely superfluous;
think of equality of rational numbers, represented as quotients of integers.) We
define

x+y=(a+c b+d),

xy = (ac — bd, ad T bc¢).

1.25 'Thexren These definitions d addition and multiplication turn the set d
all complex numbersinto afield, with (0, 0) and (1, 0) in theroled 0 and 1.

Proof We simply verify the field axioms, as listed in Definition 1.12.
(Of course, we use the field structure of R.)

Let x = (a, b),y = (¢, d), z = (e.f).
(Al) isclear.
(A2) x+y=(a+ce,b+d)=(c+ad+bd)=y+x
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(A3) x+y)+z=(a+c, b+d)+(ef)
=(a+c+eb+d+))
=(a, )T cted+f=xt @ +2).
(Ad) x+0=(ab)+(0,0)=(a,b)=x.
(A5) Put —x=(-a,—b). Then x + (— x)=(0,0)=0.
(M1) isclear.
(M2) xy=(ac-bd,ad * bc)=(ca- db,da* ch)=
(M3) (xp)z = (ac— bd, ad T be)e, )
= (ace — bde — adf — bcf, acf — bdf + ade + bce)
= (a,b)(ce — df, cf T de) = x(y2).
(M4) 1x =(1,0)(a, b) = (a, b) = x.
(M35) If x #0 then (a,b) # (0,0), which means that at least one of the
real numbers a, b is different from 0. Hence a* + 5% > 0, by Proposition
1.18(d), and we can define

1_( a —b)
x \a* +b2 a*+b?

Then

1 b

= (a, b)( et 2_+b2)=(1,0)=1.
(D) x(y+z):(a,b)(c+e,d+f)
= (ac + ae — bd — bf, ad + af + bc + be)
= (ac— bd,ad * bc) T (ae— &/, af T be)
=xy T xz.

1.26 Theorem For any real nutnbers a and b we have
(a,00F (5,0)=(atb,0), (a0)b, 0) = (ab,0).
The proof istrivial.

Theorem 1.26 shows that the complex numbers of the form (a,0) have the
same arithmetic properties as the corresponding real numbers a. We can there-
fore identify (a,0) with a. Thisidentification gives us the real field as a subfield
of the complex field.

The reader may have noticed that we have defined the complex numbers
without any reference to the mysterious square root of —1. We now show that
the notation (a,b) is equivalent to the more customary a + bi.

1.27 Definition i = (0, 1).
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128 Theorem i?= -1,
Proof i2=(0,1)0,1)=(-1,0)= —1.

1.29 Theorem Ifaand b arereal, then(a,b)=at bi.
Proof
at bi=(a,0 * (b,0)0, 1)
=(a,0)*(0,b)=(a,b).

1.30 Definition If a, b are real and z=a T bi, then the complex number
z =a - bi is called the conjugate of z. The numbers a and b are the real part
and the imaginary part of z, respectively.

We shall occasionally write

a = Re(z2), b =1m(z2).
131 Theorem If z and w are complex, then

(b) zw
(c) z1tZ=2Re(2), z~z=2iIm(),

(d) zZz isreal and positive (except when z=0).

Proof (a),(b),and (c)are quite trivial. To prove (d),write z=a * bi,
and note that zz = a® * b2,

1.32 Definition If zis a complex number, its absolute value |z| is the non-
negative square root of zz; that is, |z| = (z2)"/%.

The existence (and uniqueness) of |z| follows from Theorem 121 and
part (d) of Theorem 131.

Note that when x is real, then X = x, hence | x| =\/x2. Thus |x| =x
ifx>0, x| = —-xif x<O.

1.33 Theorem Let zand w be complex numbers. Then

& |z] = |z

© 2wl < 121w,

(d) |Rez|<|z|,
24wl < |7] + |w
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Proof (a)and (b)are trivial. Put z=a+ bi, w=c+di, witha, b, ¢, d
real. Then

|zw|? = (ac — bd)* + (ad+ bc)?=(a? T p2)(c2 +d?) = |z|*|w|?
or |zw|? = (|z| |wl)?. Now (c)follows from the uniqueness assertion of
Theorem 1.21.

To prove (d), note that a < a? + b?, hence
la| =/a* < Ja* T b2

To prove (e), note that zw is the conjugate of zw, so that zw + zw =
2 Re(zw). Hence

[z+w|>=(C+W)Z+W) =22+ 2% + 2w+ wiw
= |z|* + 2 Re (zw) + |w|?
< lz|? +2[z®| + jw|?
= |z|? + 2]z [w] + [w|> = (2] + [w])*.
Now (e)follows by taking square roots.

1.34 Notation If x;, ..

., X, are complex numbers, we write

Xp X4 X, =) X
j=1

We conclude this section with an important inequality, usually known as
the Schwarz inequality.

1.35 Theorem If a,,

..., a and by, ..., b, are complex numbers, then
n _ 2 n ) n 5
Yoa;b| <3 la|* ) |b]2

Jj=1 j=1 j=1

Proof Put A=ZX|q;|? B==x|b;|? C=2Xa;b;(inal sumsin this proof,
jruns over the values 1, ..., n). If B=0, then b, = -+ =5, =0, and the

conclusion is trivial. Assume therefore that B > 0. By Theorem 1.31 we
have

Y |Ba; — Cb,|* = ¥ (Ba; — Cb;)(Ba; — Cb,)
=B*Y |a;)|* —BCY a;b
= B’4 - B|C|?
= B(AB — |C|?).

j = BCY a;b+ |C|12Y |b;|?
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Since each term in the first sum is nonnegative, we see that
B(4B - |C|¥) =0.
Since B > 0, it followsthat AB — | C|? = 0. Thisisthe desired inequality.

EUCLIDEAN SPACES

1.36 Definitions For each positive integer k, let R* be the set of all ordered
k-tuples
X= (X5, X2, ..., %),

where x,, ..., x, are rea numbers, cdled the coordinates of x. The elements o
R“ are called points, or vectors, especialy when k > 1. We shall denote vectors
by boldfaced letters. If y =(yy, ..., ) and if « is a real number, put

x-+-y=(x1 + Vis oo X+ Vs
X = (AXq, .. vy 0X)

so that X +y e R* and ax e R. This defines addition of vectors, as wdl as
multiplication of a vector by a real number (a scalar). These two operations
satisfy the commutative, associative, and distributive laws (the proof is trivial,
in view of the analogous laws for the real numbers) and make R into a vector
space over the real field. The zero element of R (sometimes called the origin or
the null vector) is the point 0, al of whose coordinates are 0.

We aso define the so-called " inner product™ (or scalar product) of x and
Y by

and the norm of x by
k 1/2
== (§ 1)
1

The structure now defined (the vector space R* with the above inner
product and norm) is called euclidean k-space.

1.37 Theorem Supposex, Y, z € R¥ andaisrea. Then

(@ |x|=0;
(b) |x| =0ifandonly if x=0;
(© |ax| = |af|x];

@ |x-y| < |x||yl;
(e |x+y|<Ix|+]yl|;
f) |x—z|<|x-y| +|y—z|.
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Proof (a), (b), and (c) are obvious, and (d) is an immediate consequence
of the Schwarzinequality. By (d) we have

x+y|*’=x+y) - x+Yy
=X"X+2x'y+y-y
< Ix|* +2]x|{y| + |y|?
= (x| + [y

so that () is proved. Finadly, (f) follows from (€) if we replace x by
x—yandybyy-z

138 Remarks Theorem 1.37 (a), (b), and (f) will allow us (see Chap. 2) to
regard R" as a metric space.

R! (the st of all real numbers) is usually caled the line, or the rea line.
Likewise, R? iscalled the plane, or the complex plane (compare Definitions 1.24
and 1.36). In these two cases the norm is just the absolute value of the corre-
sponding real or complex number.

APPENDIX

Theorem 1.19 will be proved in this appendix by constructing R from Q. We
shal divide the construction into severa steps.

Step 1 The members of R will be certain subsets of Q, caled cuts. A cut is,
by definition, any set a<= Q with the following three properties.

(1) aisnot empty, and a # Q.
() Ifpeage Q,andg<p,thenqgea
(I1I) If pea, thenp <rfor somerea

The lettersp, q, 1, ... will alwaysdenote rational numbers, and a, 8, v, ...
will denote cuts.

Note that (I1I) simply saysthat a has no largest member: (II) impliestwo
facts which will be used freely:

If peaand g ¢ a then p < g.
If ré¢ xand r < s then s ¢ a.

Step 2 Define™a< $ to mean: aisa proper subset of .
Let us check that this meets the requirements of Definition 1.5.
Ifa<pand g <vyitisclearthata <y. (A proper subset of a proper sub-
st is a proper subset.) Itisalso clear that at most one of the three relations

a<f, a=4, p<a
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can hold for any pair «, 8. To show that at least one holds, assume that the
first two fail. Then « is not a subset of . Hence there isa pe « with p ¢ §.
If ge g, it follows that q<p (since p¢ ), hence ge «, by (Il). Thus f < «.
Since f # «, we conclude: 8 < «.

Thus R is now an ordered set.

Step 3 Theordered set R has the least-upper-bound property.

To prove this, let A be a nonempty subset of R, and assume that § e R
is an upper bound of A. Definey to be the union of all x € A. In other words,
pey if and only if pe« for some «e A. We shall prove that y e R and that
y =supA.

Since A is not empty, there existsan «, € A. This «, isnot empty. Since
%, cy, yisnot empty. Next,y c f (sincea c g for every « € A), and therefore
y # Q. Thusy satisfies property (I). To prove (II) and (111), pick pey. Then
pea, for some a; e A. If gq<p, then qea,, hence ge y; this proves (II). If
r €a; is so chosen that r > p, we seethat r e y (since 2, = y), and therefore y
satisfies (111).

ThusyeR.

It isclear that « <y for every a € A.

Suppose 6 <y. Then thereisan sey and that s¢6. Sincesey, sea
for some € A. Hence 6 < «, and 6 is not an upper bound of A.

This gives the desired result: y = sup A.

Step4 If xe Rand B € R wedefinex + f to bethe set of al sumsr + s, where
reaand sep.
We define 0* to bethe set of all negative rational numbers. It isclear that
0* is a cut. We verify that the axioms for addition (see Definition 1.12) hold in
R, with 0* playing the role of 0.
(Al) We have to show that « + f is a cut. It is clear that at § is a
nonempty subset of Q. Taker ¢a, S ¢B. Thenr *+s >r +5 for all
choices of rea, sef. Thus ' Ts'¢at B. It follows that o + g has
property (1).

Pick peat . Then p=r*+s, with rea, sef. If q<p, then
q-s<r,soq-sea and q=(q—s)tseat f. Thus (II) holds.
Chooseteasothat t>r. Thenp<ttsand t+seat 3. Thus(ll)
holds.

(A2) ot pisthesetofalr +s,withrea, se B. By thesame definition,
Bt aistheset of al str. Sincerts=s+rforalreQ seQ, we
havea Tt =81 a

(A3) As above, this follows from the associative law in Q.

(A4) Ifreaandse0*, thenr +s<r hencer *sed. Thusa+0* <.
To obtain the opposite inclusion, pick pe «, and pick rea, r > p. Then
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p—re0*and p=r+(p—ryea+0* Thusa < a+ 0*. We conclude
thata+ 0 =a.
(A5) Fix aeR. Let f bethe set of al p with the following property:

Thereexistsr > 0 such that —p — r ¢ a.

In other words, some rational number smaller than —p fails to
bein a.

Weshow that § € R and that a + f§ = 0*,

Ifs¢xandp= —s - 1,then —p — 1 ¢, hence pe . So pis not
empty. Ifgea,then —g¢ 8. So f # Q. Hence 8 satisfies(l).

Pick pe 8, and pick r>0, so that —p —réa. If q<p, then
—gq—-r>—p—r, hence —g-ré¢a. Thus gef, and (I} holds. Put
t=p+(+/2). Then t>p, and —t—-(r/2)= —p —réa, sO that tef.
Hence § satisfies (111).

We have proved that § e R.

If reaxand se B, then --s¢ a, hence r < —s, r + s <0. Thus
a+ f<O.

To prove the opposite inclusion, pick v € 0%, put w = —»/2. Then
w > 0, and there is an integer n such that rw € & but (n + 1)w ¢ a. (Note
that this depends on the fact that Q has the archimedean property!) Put
p=—-(n+2w. Thenpef, since —p — w ¢ «, and

v=nw+pea+f
Thus O* < o + .
We conclude that « + g = 0*.
This B will of course be denoted by —a.

Step 5 Having proved that the addition defined in Step 4 satisfies Axioms (A)
of Definition 1.12, it follows that Proposition 1.14 is valid in R, and we can
prove one of the requirements of Definition 1.17:

Ifa B, yeRandf <y thena + g <aty.

Indeed, it is obvious from the definition of + in Rthat « + f = « T y; if
we had « + f =o + y, the cancellation law (Proposition 1.14) would imply
p=r

It also followsthat « > O* if and only if —a < 0%,

Step 6 Multiplication is a little more bothersome than addition in the present
context, since products of negative rationals are positive. For this reason we
confine ourselves first to R*, the set of all ae R with « > 0*.

If ce R and B € R*, we define af to be the set of all p such that p < rs
for some choiceof rea, se f,r >0, s>0.

We define 1* to bethe set of al q < 1.
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Then the axioms (M )and (D) of Definition 1.12 hold, with R* in place of F,

and with 1* in the role of 1.
The proofs are so similar to the ones given in detail in Step 4 that we omit

them.
Note, in particular, that the second requirement of Definition 1.17 holds:

If a>0*and § >0* then «ff > 0*.

Step 7 We complete the definition of multiplication by setting «0* = 0*a = 0%,
and by setting
(—a)(~p) ifa<O* f<0%
af = { ~[(—0)p] ifa<O0* f>0%
—[e.(—p)) if a>0*,p <O
The products on the right were defined in Step 6.

Having proved (in Step 6) that the axioms (M) hold in R*, it is now
perfectly ssmple to prove them in R, by repeated application of the identity
y = —(—17) which is part of Proposition 1.14. (See Step 5.)

The proof of the distributive law

B+ y)=af + ay
breaks into cases. For instance, suppose a > 0%, 8 <0*, B+ >0*. Then
iyn:R(P) + 1) + (=), and (since we already know that the distributive law holds
ay = a(f + 7) + o« ().
But o' (=)= —(aff). Thus
aff oy =a(f +y).
The other cases are handled in the same way.

We have now completed the proof that R is an orderedfield with the Jeast-
upper-bound property.

Step 8 We associate with each re Q the set r* which consists of al pe Q
suchthat p <r. Itisclear that each r* isacut; that is, r* € R. These cuts satisfy
the following relations:

(a) r* +s =(r+s*
(b) r*s* = (rs)*,
(c) r* <s*ifandonly ifr <s.

To prove (a), choose per* +s*. Then p=u*tov, where u<r, v <s.
Hence p <r t s, which says that pe (r T s)*.
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Conversely, suppose pe(r+s)*. Then p<rts. Choose t so that
2t=r+ s —p, put
rr=r—t,s=s5—1

Thenr' er*,s'es*, andp=r *, sothat per* +s*.

This proves(a). The proof of (b)is similar.

Ifr<sthenres* butrér*; hencer* < s*.

If r* < s*, then there is a pes* such that p¢r*. Hencer<p<s, so
that r <s.

This proves (c).

Step 9 Wesaw in Step 8 that the replacement of the rational numbersr by the
corresponding ' rational cuts" r* e R preserves sums, products, and order. This
fact may be expressed by saying that the ordered field Q is isomorphic to the
ordered fidd Q* whose elements are the rational cuts. Of course, r* is by no
means the same as r, but the properties we are concerned with (arithmetic and
order) are the same in the two fields.

It is this identification of Q with Q* which allows us to regard Q as a
subfield of R.

The second part of Theorem 1.19 is to be understood in terms of this
identification. Note that the same phenomenon occurs when the real numbers
are regarded as a subfield of the complex field, and it also occurs at a much
more elementary level, when the integers are identified with a certain subset of Q.

It is a fact, which we will not prove here, that any two orderedfields with
the least-upper-bound property are isomorphic. The first part of Theorem 1.19
therefore characterizes the real field R completely.

The books by Landau and Thurston cited in the Bibliography are entirely
devoted to number systems. Chapter 1 of Knopp's book contains a more
leisurely description of how R can be obtained from Q. Another construction,
in which each real number is defined to be an equivalence class of Cauchy
sequences of rational numbers (see Chap. 3), is carried out in Sec. 5 of the book
by Hewitt and Stromberg.

The cuts in Q which we used here were invented by Dedekind. The
construction of R from Q by means of Cauchy sequences is due to Cantor.
Both Cantor and Dedekind published their constructionsin 1872.

EXERCISES

Unless the contrary is explicitly stated, dl numbers that are mentioned in these exer-
cisesare understood to be redl.

1. If risrationa (r=0) and x isirrational, provethat r + x and rx are irrational.
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(]

. Prove that there is no rational number whose square is 12.

. Prove Proposition 1.15,

. Let E be a nonempty subset of an ordered set; suppose « is a lower bound of E
and 8 is an upper bound of E. Prove that « <.

5. Let A be a nonempty set of real numbers which is bounded below. Let —A4 be

the set of all numbers — x, where x € 4. Prove that

inf 4 = —sup(— A).

W

6. Fix b>1,
(@) If m, n, p, q are integers, n >0, g >0, and r = m/n = p/q, prove that
(bm)l/n — (bp)l/q.
Hence it makes sense to define b” = (b™)!/",
(b) Prove that b"** = p"b* if r and s are rational.,

(¢) If x is real, define B(x) to be the set of all numbers b‘, where ¢ is rational and
t < x. Prove that

b” =sup B(r)
when r is rational. Hence it makes sense to define
b* = sup B(x)

for every real x.
(d) Prove that b**¥ = b*b* for all real x and y.

7. Fix b>1, y >0, and prove that there is a unique real x such that b* =y, by
completing the following outline. (This x is called the logarithm of y to the base b.)
(a) For any positive integer n, b" — 1 >n(b — 1).

(b) Hence b — 1 = n(bt/"—1).

(¢) ft>1and n> (b — 1)/(t — 1), then b/ < 1,

(d) If w is such that 4” < y, then b**“/™ < y for sufficiently large n; to see this,
apply part (c) witht =y - b~".

(e) If b* >y, then b*~'» > y for sufficiently large ».

(f) Let A4 be the set of all w such that 5™ < y, and show that x = sup A satisfies
b* =y.

(g) Prove that this x is unique.

8. Prove that no order can be defined in the complex field that turns it into an ordered
field. Hint: —1 is a square.

9. Suppose z=a-+ bi, w=c-+di. Define z<w if a<e¢, and also if a=c but
b < d. Prove that this turns the set of all complex numbers into an ordered set.
(This type of order relation is called a dictionary order, or lexicographic order, for
obvious reasons.) Does this ordered set have the least-upper-bound property ?

10. Suppose z = a + bi, w = u -+ iv, and

B |w| +u 172 B |w| — u 1/2
a—(—z ’ b= 2 .




11.

12.

13.

14.

16.

17.

18.

19.
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Provethat z2 = w if v > 0 and that (2)2 = wif v < 0. Conclude that every complex
number (with one exception!) has two complex square roots.

If z is a complex number, prove that thereexists an r > 0 and a complex number
w with |w| =1 such that z =rw. Are wand r aways uniquely determined by z?
If z,, ..., z, are complex, prove that

lzvtza+o bz <z Flz| + 4 |z
If x, y arecomplex, prove that
x| = Il < lx =yl
If z isacomplex number such that |z| = 1, that is, such that zZ = 1, compute
[1+z[2 4|1 -2z~
Under what conditions does equality hold in the Schwarz inequality?

Suppose £ >3, x,ye R, |[x —y| =d >0, and r > 0. Prove

(@) If 2r >d, there are infinitely many z € R* such that
|z—x| = |z—y| =r.

(&) If 2r =d, there is exactly one such z,

(c) If 2r <4, thereis no such z,

How must these statements be modified if kis2 or 1?
Prove that

|x +y|* +[x—y[* =2[x|* +2|y|?
if xeR* and y e R*. Interpret this geometrically, as a statement about parallel-
ograms.
If k=2 and x € R%, prove that there existsy € R* such that y %0 but x -y =0.
Isthisalso true if k=17
Supposea€ R, b e R*. Find ce Rand r > 0 such that

fx —a| =2|x—b]|

if and only if |x —¢| =r.
(Solution: 3¢ =4b—a, 3r =2|b—al.)

. With referenceto the Appendix, suppose that property (111) wereomitted from the

definitionof acut. Keep the same definitions of order and addition. Show that
the resulting ordered set has the least-upper-bound property, that addition satisfies
axioms (A1) to (A4) (with adlightly different zero-element!) but that (AS) fails.
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BASIC TOPOLOGY

FINITE, COUNTABLE, AND UNCOUNTABLE SETS

We begin this section with a definition of the function concept.

2.1 Definition Consider two sets A and B, whose elements may be any objects
whatsoever, and suppose that with each element x of A there is associated, in
some manner, an element of B, which we denote by f(x). Then f issaid to be a
function from A to B (or a mapping of A into B). The set A is called the domain
of f (we also say f'is defined on A), and the elements f(x) are caled the values
off. The set of al values off is called the range off.

22 Definition Let A and B be two sets and let f be a mapping of A into B.
If Ec A,f(E) is defined to be the set of al elements f(x),for xe E. We call
f(E)the image of E under f. In this notation, f (A)isthe range off. Itisclear
that f(A) c B. Iff (A)= B, wesay thatf'maps A onto B. (Note that, according
to this usage, onto is more specificthan into.)

If E c B,f YE) denotes the set of al x e A such that f(x) e E. We call
f = (E)the inverseimage of E under £. If ye B, f~}(y) isthe set of al xe A
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such that f(x) =y. If, for each y e B,f ~!(y) consists of at most one element
of A, then f is said to be a 1-1 (one-to-one) mapping of A into B. This may
also be expressed as follows: f is a 1-1 mapping of A into B provided that
S(xy) # f(x,) whenever x, #X,, X, €A, X, €4.

(The notation x; # X, means that x; and x, are distinct elements; other-
wise we write X, = x,.)

2.3 Déefinition If there exists a 1-1 mapping of A onto B, we say that A and B
can be put in 1-1 correspondence, or that A and B have the same cardinal number,
or, briefly, that A and B are equivalent, and we write A ~ B. This relation
clearly has the following properties:

1t is reflexive: A ~ A.
It issymmetric: If A ~ B, then B~ A.
Itis transitive: If A~ Band B~ C, then A ~ C.

Any relation with these three properties is called an equivalence relation.

2.4 Dédfinition For any positive integer n, let J, be the set whose elements are
theintegers1, 2, ..., n; let Ibe the set consisting of all positiveintegers. For any
set A, we say:

(a) Aisjiniteif A ~J, for somen (the empty set is also considered to be
finite).

(b) A isinfinite if A is not finite.

(c) A iscountableif A ~J.

(d) A isuncountable if A is neither finite nor countable.

(e) A isatmost countable if A is finite or countable.

Countable sets are sometimes called enumerable, or denumerable.

For two finite sets A and B, we evidently have A ~ B if and only if 4 and
B contain the same number of elements. For infinite sets, however, the idea of
" having the same number of elements' becomes quite vague, whereas the notion
of 1-1 correspondence retains its clarity.

25 Example Let A be the set of dl integers. Then A is countable. For,
consider the following arrangement of the sets A and J:

A: 0
1

o —
Nl
So—
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We can, in this example, even give an explicit formula for a function f
from Jto A which sets up a 1-1 correspondence:

(n even),

[T

Sy =-

J-”; L (nodd).

2.6 Remark A finite set cannot be equivalent to one of its proper subsets.
That this is, however, possible for infinite sets, is shown by Example 2.5, in
which Jis a proper subset of A.

In fact, we could replace Definition 2.4(d) by the statement: A isinfinite if
A is equivalent to one of its proper subsets.

2.7 Dsefinition By a sequence, we mean a function f defined on the set Jof all
positive integers. Iff (n)=x,, for s e J, it is customary to denote the sequence
f by the symbol {x,), or sometimes by x;, x,, x3,.... The values off, that is,
the elements x,,, are called the terms of the sequence. If Aisaset and if x, € A
for al neJ,then {x,} issaid to be a sequencein A, or a sequence of elementsof A.

Note that the terms x,, x, , x5, ... of a sequence need not be distinct.

Since every countable set is the range of a 1-1 function defined on J, we
may regard every countable set as the range of a sequence of distinct terms.
Speaking more loosely, we may say that the elements of any countable set can
be ""arranged in a segquence.”

Sometimes it is convenient to replace Jin this definition by the set of all
nonnegative integers, i.e., to start with 0 rather than with 1.

2.8 Theorem Every infinite subset of a countable set A is countable.

Proof Suppose E = A, and E isinfinite. Arrange the elements x of A in
a sequence{x,) of distinct elements. Construct a sequence {n,} asfollows:

Let n, be the smallest positive integer such that x,, € E. Having
chosen ny, ..., n,_ (k=2,3,4,...), let n, be the smallest integer greater
than »,_, such that x,, € E.

Putting f(k) = x, (k=1,2,3,...), we obtain a 1-1 correspondence
between E and J.

The theorem shows that, roughly speaking, countable sets represent
the "smallest" infinity: No uncountable set can be a subset of a countable
Set.

2.9 Ddfinition Let A and Q be sets, and suppose that with each element a of
A thereis associated a subset of Q which we denote by £, .
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The set whose elements are the sets E, will be denoted by {E,}. Instead
of speaking of sets of sets, we shall sometimes speak of a collection of sets, or

a family of sets.
The union of the sets E, isdefined to be the set S such that X S if and only

if Xe E, for at least oneas A. We use the notation

s={E.

ac A

If A consists of the integers 1, 2, ..., n, one usually writes

5= MQI Em

3) S=E,VE,u"UE,.

If A isthe set of dl positive integers, the usua notation is
S= En.
m=1

The symbol <o in (4) merely indicates that the union of a countable col-
lection of setsis taken, and should not be confused with the symbols +co, —co,

introduced in Definition 1.23.
The intersection of the sets E, is defined to be the set P such that x e P if

and only if X € E, for every ae A. We use the notation

P=)E,,

acAd

szD1Em=El NnE,n " nE,

(N P=(\E,,
asfor unions. If A n B isnot empty, we say that A and B intersect; otherwise

they are disjoint.

210 Examples

(a) Suppose E; consists of 1,2,3 and E, consists of 2, 3,4. Then
E, u E, consists of 1, 2, 3, 4, whereas E; n E, consists of 2, 3.
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(b) Let A be the set of real numbers x such that 0 < x < 1. For every
x € A, let E, be the set of real numbers y such that 0 < y < x. Then

G) E ,cEifandonlyif 0<x<z<1;
(ii) U E = Ey;

xeA
(iii) () E, is empty;

xeA

(i) and (ii) are clear. To prove (iii), we note that for every y >0, y ¢ E,
if x<y. Hence y¢N,c4 E,.

2.11 Remarks Many properties of unions and intersections are quite similar
to those of sums and products; in fact, the words sum and product were some-
times used in this connection, and the symbols X and IT were written in place

of | ) and ).

The commutative and associative laws are trivial:
®) AUB=Bu A; AnB=Bn A
C)] AuvB)UC=Av(Bu(); AnNB)nC=An(BnO).

Thus the omission of parentheses in (3) and (6) is justified.
The distributive law also holds:

(10) An(BuC)y=AnB)u{dn().

To prove this, let the left and right members of (10) be denoted by E and F,
respectively.

Suppose xe€ E. Then xe A and xe B u C, that is, x e B or x € C (pos-
sibly both). Hence xe A n Bor x€ A n C, so that xe F. Thus Ec F.

Next, suppose xe F. Then xeA n Borxe An C. Thatis, xe€ A4, and
xeBu C. Hence xe A n (B u C), so that Fc E.

It follows that E = F.

We list a few more relations which are easily verified:

11 Ac AV B,

(12) AnBc A

If O denotes the empty set, then

(13) Au0=A4, An0=0.
If A = B, then

14 Av B=B, AnB=A4.
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212 Theorem Let{E),n=1,2,3, ..., beasequence of countablesets, and put

(15) s=JE.
n=1
Then S is countable.

Proof Let every set E, be arranged in a sequence {x,.},k=1,2,3, ...
and consider the infinite array

(16)

in which the elements of £, form the nth row. The array contains all
elements of S. As indicated by the arrows, these elements can be
arranged in a sequence

(17 Xits X215 X125 X31- X225 X135 X415 X325 X23+ X145 -0+

If any two of the sets E, have elements in common, these will appear more
than once in (17). Hence there is a subset T of the set of all positive
integers such that S~ T, which shows that S is at most countable
(Theorem 2.8). Since E; < S, and E, is infinite, S isinfinite, and thus
countable.

Corollary Suppose A is at most countable, and, for every ae A, B, is at most
countable. Put

T= U B,.
ac A
Then T isat most countable.

For T is equivalent to a subset of (15).

2.13 Theorem Let A be a countable set, and let B, be the set of all n-tuples
(a,,...,a,), wherea,e A (k=1,...,n), and the elements a,, ..., a, need not be
distinct. Then B, is countable.

Proof That B, is countable is evident, since B, = A. Suppose B,_, is
countable (n=2, 3, 4....). The elements of B, are of the form

(18) (b,a) (beB,_, acA).

For every fixed b, the set of pairs (b,a) is equivalent to A, and hence
countable. Thus B, is the union of a countable set of countable sets. By
Theorem 2.12, B, is countable.

The theorem follows by induction.
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Corollary Theset d all rational numbersis countable.

Proof We apply Theorem 2.13, with » = 2, noting that every rational r
is of the form b/a, where a and b are integers. The set of pairs(a, b), and
therefore the set of fractions b/a, is countable.

In fact, even the set of al algebraic numbers is countable (see Exer-
cise 2).

That not al infinite sets are, however, countable, is shown by the next
theorem.

214 Theorem Let A betheset d all sequences whose elements are the digits0
and 1. Thisset A isuncountable.
The elements of A are sequenceslike 1,0,0,1,0,1,1,1,....

Proof Let E be a countable subset of A, and let E consist of the se-
guences s, s, , 53, .... We construct a sequence s as follows. If the nth
digit in s, is 1, we let the nth digit of s be 0, and vice versa. Then the
sequence s differs from every member of E in at least one place; hence
s¢ E But clearly se A, so that Eis a proper subset of A.

We have shown that every countable subset of A is a proper subset
of A. It follows that A is uncountable (for otherwise A would be a proper
subset of A, which is absurd).

Theideaof the above proof wasfirst used by Cantor, and iscalled Cantor's
diagonal process; for, if the sequences s,, s,, 55, ... are placed in an array like
(16), it is the elements on the diagonal which are involved in the construction of
the new sequence.

Readers who are familiar with the binary representation of the red
numbers (base 2 instead of 10) will notice that Theorem 2.14 implies that the
set of dl rea numbers is uncountable. We shall give a second proof of this
fact in Theorem 2.43.

METRIC SPACES

2.15 Definition A set X, whose elements we shall call points, is said to be a
metric space if with any two points p and g of X there is associated a read
number d(p, q), caled the distance from p to g, such that

(@) d(p,q)>0if p+#gq;dp.p)=0;
() d(p,q) =d(q,p);
(¢) d(p,q) <d(p,r)+d(r,q), for any r e X.

Any function with these three properties is called a distancefunction, or
ametric.
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2.16 Examples The most important examples of metric spaces, from our
standpoint, are the euclidean spaces R¥, especidly R' (the real line) and R? (the
complex plane); the distance in R is defined by

(19) dx,y) =|x—y| (x,yeR".

By Theorem 1.37, the conditions of Definition 2.15 are satisfied by (19).

I'tisimportant to observe that every subset Y of a metric space X isa metric
space in its own right, with the same distance function. For it is clear that if
conditions (a) to (c) of Definition 2.15 hold for p, q, r € X, they also hold if we
restrictp,qg. r toliein Y.

Thus every subset of a euclidean space is a metric space. Other examples
are the spaces ¢(K) and #?(w), which are discussed in Chaps. 7 and 11, respec-
tively.

2.17 Definition By the segment (g, b) we mean the set of al real numbers x
such that a< x < b.

By the interval [a. b] we mean the set of al read numbers x such that
a<x<b

Occasionally we shall also encounter " half-open intervals'™ [a, b) and (a, b];
the first consists of al x such that a < x < b, the second of al x such that
a<x<h.

If a; < b;fori=1,...,k, theset of al pointsx ={x,, ..., x) in R whose
coordinates satisfy the inequalities a; < x; < b; (1 <i<Kk) is caled a k-cell.
Thus a 1-cell is an interval, a 2-cdll is a rectangle, etc.

If x e R* and r > 0, the open (or closed) ball B with center at x and radius r
is defined to be the set of all y € R* such that |y — x| <r(or |y — x| <r).

We call a set E = R* convex if

X+ (1 —-ADyekE

whenever xe E,ye E,and 0 < A < 1.
For example, bals are convex. For if |y—x| <r, |z —=X| <r, and
0< 1< 1, wehave

|y + (1 =Dz —x| =4y --x) + (1 -z -x)|
SAMy—x|+A=-D]z—x| <ir+ {1 =Dr
=r.

The same proof applies to closed balls. It is also easy to see that k-cells are
Convex.
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2.18 Definition Let X bea metric space. All points and sets mentioned below
are understood to be elements and subsets of X.

(a) A neighborhood of p is a set N,(p) consisting of all g such that
d(p,q) <r,for somer > 0. Thenumber riscaled theradiusof N.(p).

(b) A point pis a limit point of the set E if every neighborhood of p
contains a point q # p such that qe E.

(c) If pe Eand pis not alimit point of E, then p is caled an isolated
point of E.

(d) Eisclosedif every limit point of E isa point of E.

(e) A point pisan interior point of E if thereisa neighborhood N of p
such that N < E.

(f) Eisopenif every point of E isan interior point of E.

(g) The complement of E (denoted by E°)is the set of al points pe X
such that p¢ E.

(h) E is perfect if E is closed and if every point of E is a limit point
of E.

(i) Eisbounded if thereis a real number M and a point ge X such that
d(p,q)< M for al peE.

E isdensein X if every point of X isa limit point of E, or a point of
E (or both).

Let us note that in R' neighborhoods are segments, whereas in R? neigh-
borhoods are interiors of circles.

2.19 Theorem Every neighborhood isun open set.

Proof Consider a neighborhood E = N,(p), and let q be any point of E.
Then there isa positive real number h such that

d(p,q)=r—h,
For al points s such that d(g, s) < h, we have then
dp,s)y<d(p,q)+d(g,s)<r—h+h=r,
so that s € E. Thusqisan interior point of E.
220 Theorem If pisa limit point of a set E, then every neighborhood of p
contains infinitely many points of E.

Proof Suppose there is a neighborhood N of p which contains only a
finite number of points of E. Let g,..., g, be those points of N n E,
which are distinct from p, and put

r= min d(, q,)

| <m<n
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[we use this notation to denote the smallest of the numbers d(p, ¢y), ...,
d(p, ¢,). The minimum of afinite set of positive numbers is clearly posi-
tive, so that r > 0.

The neighborhood N,(p) contains no point g of E such that q # p,

so that p is not a limit point of E. This contradiction establishes the
theorem.

Corollary A finite point set hasno limit points.

221 Examples Let usconsider the following subsets of R?:

(@ The set of all complex z such that |z| < 1.

() The set of al complex z such that |z| < 1.

(c) A nonempty finite set.

(d) The set of al integers.

(e) The set consisting of the numbers 1/n(n=1, 2,3,...). Let usnote
that this set E has a limit point (namely, z =0) but that no point of E is
a limit point of E; we wish to stress the difference between having a limit
point and containing one.

(f) The set of al complex numbers (that is, R?).

(g) The segment (a,b).

Let us note that (d),(e),(g)can be regarded also as subsets of R'.
Some properties of these sets are tabulated below:

Closed Open Perfect Bounded

(@) No Yes No Yes
) Yes No Yes Yes
(o) Yes No No Yes
@ Yes No No No
) No No No Yes
N Yes Yes Yes No
(9) No No Yes

In (g), we left the second entry blank. The reason is that the segment
(a,b)isnot open if we regard it as a subset of R, butitisan open subset of R'.

222 Thexrem Let{E,} bea/(finiteor infinite) collection of setsE,. Then
(20) (U Ea)‘ =) (E9).

Proof Let A and B be the left and right members of (20). If x e A, then

x ¢, E,, hence x ¢ E, for any a, hencex = EL foreverya, sothat x = ES.
Thus A < B.



34 PRINCIPLES OF MATHEMATICAL ANALYSIS

2.23

Conversely, if X € B, then X € E; for every a, hence X ¢ E, for any o,
hencex ¢ |J, E,, so that X e (U, E,)°. Thus Bc A.
It follows that A = B.

Theorem A set Eisopen if and only if its complement is closed.

Proof First, suppose E€is closed. Choose x € E. Then x ¢ E®, and x is
not a limit point of E®. Hence there exists a neighborhood N of X such
that E°~ N is empty, that is, N c E. Thus X is an interior point of E,
and E is open.

Next, suppose E is open. Let X be a limit point of ES. Then every
neighborhood of x containsa point of EC, so that X is not an interior point
of E. Since E is open, this means that x € EC. It follows that E®is closed.

Corollary Aset Fisclosedif and only if its complement is open.

2.24 Theorem

2y

(a) For any collection {G,} of open sets, |, G, isopen.

(b) For any collection {F,} of closed sets, (), F, is closed.

(c) For anyfinite collection Gy, ..., G, of open sets,Ni=1 G; is open.
(d) For anyfinite collection Fi, ..., F, of closed sets,| /-, F; is closed.

Proof Put G ={J,G, If XxeG, then xe G, for some a. Since X is an
interior point of G,, X isaso aninterior point of G, and G isopen. This
proves (a).

By Theorem 2.22,

(O Fa)” = U (FD»

and F7 is open, by Theorem 2.23. Hence (a) implies that (21) is open so
that N, F, is closed.

Next, put H=\{., G;. For any X € H, there exist neighborhoods
N,; of x, with radii r;, such that N; cG;(i=1,...,n). Put

Fr=mingry, ..., r),

and let N be the neighborhood of x of radiusr. Then N c G, fori =1,
.., h,s0that N cH, and His open.
By taking complements, (d)follows from (c):
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225 Examples In parts(c)and (d)of the preceding theorem, the finiteness of
11
the collections is essential. For let G, bethesegment(— = ’—l) (n=1,2,3,...).

Then G, isan open subset of R'. Put G = N>, G,. Then G consists of asingle
point (namely, X = 0) and is therefore not an open subset of R!.

Thus theintersection of an infinite collection of open sets need not be open.
Similarly, the union of an infinite collection of closed sets need not be closed.

2.26 Definition If X isa metric space, if E c X, and if E' denotes the set of
al limit points of Ein X, then the closure of Eisthesst E=E U E'.

227 Theorem If X isametric spaceand E c X, then

(a) Eisclosed,
(b) E=Eifandonlyif Eisclosed,
(c) E cFfor every closed set F ¢ X such that E c .

By (a)and (c), E 1s the smallest closed subset of X that contains E.

Proof

(a) Ifpe Xandp¢ E thenpisneither a point of E nor alimit point of E.
Hence p has a neighborhood which does not intersect E. The complement
of E istherefore open. Hence E is closed.

(b) If E=E, (a) implies that Eis closed. If Eisclosed, then E' cE
[by Definitions 2.18(d) and 2.261, hence E = E.

(c) If Fisclosed and F> E, then F> F, hence F> E'. Thus F= E.

2.28 Theorem Let Ebeanonempty set of real numbers which is bounded above.
Lety =sup E. Thenye E. Henceye E if E isclosed.

Compare this with the examples in Sec. 1.9.

Proof If ye Ethen ye E. Assumey¢ E. For every h > 0 there exists
then a point X e Esuch that y — # < X <y, for otherwise y — h would be
an upper bound of E. Thus y isa limit point of E. Henceye E.

229 Remark Suppose Ec Y < X, where Xisa metric space. To say that E
is an open subset of X means that to each point p € E there is associated a
positive number r such that the conditions d(p, q) <r,qe X imply that qe E.
But we have already observed (Sec. 2.16) that Y isalso a metric space, so that
our definitions may equally well be made within ¥. To be quite explicit, let us
say that Eisopenrelativeto Y if to each p e E there is associated an r > 0 such
that ge E whenever d(p,q)<r and ge Y. Example 2.21(g) showed that a set
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may be open relative to Y without being an open subset of X. However, there
is a simple relation between these concepts, which we now state.

230 Theorem Suppose Y < X. A subset E of Y is open relative to Y if and
only if E = Y ~ G for some open subset G of X.

Proof Suppose E is open relative to Y. To each p € E there is a positive
number r, such that the conditions d(p,q) <r,,q€ Y imply that g € E.
Let V, be the set of all g € X such that d(p, g) < r,, and define
G=V,.
pekE

Then G is an open subset of X, by Theorems 2.19 and 2.24.

Since pe V, forall pe E, it is clear that Ec G n Y.

By our choice of V,, we have ¥, n Y = E for every p € E, so that
Gn YcE. Thus E=G n Y, and one half of the theorem is proved.

Conversely, if G is open in X and E=G n Y, every pe E has a
neighborhood ¥V, = G. Then V, n Y < E, so that Eis open relative to Y.

COMPACT SETS

2.31 Definition By an open cover of a set E in a metric space X we mean a
collection {G,} of open subsets of X such that £ < |J, G,.

2.32 Definition A subset K of a metric space X is said to be compact if every
open cover of K contains a finite subcover.

More explicitly, the requirement is that if {G,} is an open cover of K, then
there are finitely many indices «;, ..., o, such that

KcG, v uG,,.

The notion of compactness is of great importance in analysis, especially
in connection with continuity (Chap. 4).

It is clear that every finite set is compact. The existence of a large class of
infinite compact sets in R* will follow from Theorem 2.41.

We observed earlier (in Sec. 2.29) that if £ < Y < X, then E may be open
relative to Y without being open relative to X. The property of being open thus
depends on the space in which E is embedded. The same is true of the property
of being closed.

Compactness, however, behaves better, as we shall now see. To formu-
late the next theorem, let us say, temporarily, that K is compact relative to X if
the requirements of Definition 2.32 are met.
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Theorem Suppose K = Y < X. Then K is compact relative to X if and

only if K is compact relative to Y.

By virtue of this theorem we are able, in many situations, to regard com-

pact sets as metric spaces in their own right, without paying any attention to
any embedding space. In particular, although it makes little sense to talk of
open spaces, or of closed spaces (every metric space X is an open subset of itself,
and is a closed subset of itself), it does make sense to talk of compact metric
spaces.

(22)

(23)

2.34

2.35

Proof Suppose K is compact relative to X, and let {V,} be a collection
of sets, open relative to Y, such that K = |J, V,. By theorem 2.30, there
are sets G, , open relative to X, such that V, = Y n G, for all «; and since
K is compact relative to X, we have

KcG, urugG,,

for some choice of finitely many indices oy, ..., ®,. Since K < Y, (22)
implies

KcV,, u--ub,.

This proves that K is compact relative to Y.

Conversely, suppose K is compact relative to Y, let {G,} be a col-
lection of open subsets of X which covers K, and put ¥V, = Y n G,. Then
(23) will hold for some choice of «,,...,a,; and since V, < G,, (23)
implies (22).

This completes the proof.

Theorem Compact subsets of metric spaces are closed.

Proof Let K be a compact subset of a metric space X. We shall prove
that the complement of K is an open subset of X.

Suppose pe X, p¢ K. Ifge K, let ¥, and W, be neighborhoods of p
and g, respectively, of radius less than 1d(p, q) [see Definition 2.18(a)].
Since K is compact, there are finitely many points ¢4, ..., g, in K such that

KeW,u-uW, =W

If V=V, n-nV,, then Vis a neighborhood of p which does not
intersect W. Hence V < K¢, so that p is an interior point of K¢. The
theorem follows.

Theorem Closed subsets of compact sets are compact.

Proof Suppose F « K < X, Fis closed (relative to X), and K is compact.
Let {V,} be an open cover of F. If F*is adjoined to {},}, we obtain an



38 PRINCIPLES OF MATHEMATICAL ANALYSIS

open cover © of K. Since K is compact, there is a finite subcollection ®
of Q which covers K, and hence F. If F¢is a member of ®, we may remove
it from ® and still retain an open cover of F. We have thus shown that a
finite subcollection of {V,} covers F.

Corollary If F is closed and K is compact, then F ~ K is compact.

Proof Theorems 2.24(b) and 2.34 show that Fn K is closed; since
F N K< K, Theorem 2.35 shows that F~ K is compact.

2.36 Theorem If{K,}is a collection of compact subsets of a metric space X such
that the intersection of every finite subcollection of {K,} is nonempty, then (| K,
is nonempty.

Proof Fix a member K, of {K,} and put G, = K. Assume that no point
of K, belongs to every K,. Then the sets G, form an open cover of K| ;
and since K, is compact, there are finitely many indices a5, ..., &, such
that K, ¢ G,, U *** U G,,,. But this means that

KKinK,nnKk,

is empty, in contradiction to our hypothesis.

Corollary If {K,} is a sequence of nonempty compact sets such that K, > K, ,,
n=1,23,...), then\Y K, is not empty.

237 Theorem If E is an infinite subset of a compact set K, then E has a limit
point in K.

Proof If no point of K were a limit point of E, then each ¢ € K would
have a neighborhood ¥, which contains at most one point of E (namely,
g, if ge E). It is clear that no finite subcollection of {}/;} can cover E;
and the same is true of K, since £ = K. This contradicts the compactness
of K.

2.38 Theorem If {I} is a sequence of intervals in R, such that I, o1 .,
(n=1,2,3,...), then NT I, is not empty.

Proof If I, =|[a,, b,], let E be the set of all a,. Then E is nonempty and
bounded above (by b;). Let x be the sup of E. If m and n are positive
integers, then

a, < Am i n < bm+n Sbm’

so that x < b,, for each m. Since it is obvious that a,, < x, we see that
xel,form=1,23,....
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Theorem Let k be apositive integer. If{l,) isa sequence d k-cells such

that I, > I,,,(n=1,23...), then NP I, isnot empty.

240

Proof Let I, consist of al pointsx =(x,, ..., x;) such that
an’jﬁijb,,’j (ISjSk;n=1»2,3,-'-)’

and put I, ; =[a,; b,;]. For each j, the sequence {/,;} satisfies the
hypotheses of Theorem 2.38. Hence there are real numbers x(1 < j < k)
such that

a, <xt<b,, (<j<k;n=123..).

Setting x* = (x¥, ..., xf), we see that x* eI, for n=1,2,3,.... The
theorem follows.

Theorem Every k-cell is compact.

Proof Let I be a k-cell, consisting of all points X =(x,, ..., x,) such
that a, <x; < b; (1 <j< k). Put

~fpn-o”

Then |x —y| <4, ifxel,yel

Suppose, to get a contradiction, that there exists an open cover {G)
of 1 which contains no finite subcover of 1. Put ¢; =(a; T )/2. The
intervals [4;, ¢] and [c;, b;] then determine 2* k-cells Q; whose unioniis|.
At least one of these sets Q;, cdl it I,, cannot be covered by any finite
subcollection of {G,) (otherwise I could be so covered). We next subdivide
1, and continue the process. We obtain a sequence{l,) with the following
properties:

(b) 1, isnot covered by any finite subcollection of {G,);
() ifxel,andyel,, then |x —y| <27"4.

@ Io[ol,ol;>

By (a) and Theorem 2.39, there is a point x* which liesin every I,.
For some «, x* € G,. Since G, is open, there exists r >0 such that
ly — x*| <rimpliesthat ye G,. If nisso large that 27" < r (there is
such an n, for otherwise 2' < 4/r for al posgtive integers n, which is
absurd since R is archimedean), then (c) implies that I, = G,, which con-
tradicts (b).

This completes the proof.

The equivalence of (a) and (b) in the next theorem is known asthe Heine-

Borel theorem.
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241 Theorem IfasetE in R* hasoned thefollowing three properties, then it
has the other two:

(a) Eisclosed and bounded.
(b) Eiscompact.
(c) Everyinfinitesubset d Ehasalimitpoint in E.

Proof If (a) holds, then E <= I for some k-cell I, and (b) follows from
Theorems 2.40 and 2.35. Theorem 2.37 shows that (b) implies (c). It
remains to be shown that (c) implies (a).

If Eis not bounded, then E contains points x, with

|x,| >n (n=1,2,3..).

The set S consisting of these points x, is infinite and clearly has no limit
point in R*, hence has nonein E. Thus (c) implies that E is bounded.

If Eisnot closed, then there is a point x, € R* which isa limit point
of E but not a point of E. Forn=1,2,3,..., there are points x € E
such that (X, — x| < 1/n. Let Sbe the set of these points x, . Then Sis
infinite (otherwise |x — x,| would have a constant positive value, for
infinitely many n), S has x, as a limit point, and S has no other limit
point in R, Forify € R*y # x,, then

|x, —¥| = |xo —¥| — |x, — %]
1 1
> |xo —y| _;ZEIXO_YI

for al but finitely many n; this shows that y is not a limit point of S
(Theorem 2.20).
Thus S has no limit point in E; hence E must be closed if (¢) holds.

We should remark, at this point, that (b) and (c) are equivalent in any
metric space (Exercise 26) but that (a) does not, in general, imply (b) and (c).
Examples are furnished by Exercise 16 and by the space ¥2, which is dis-
cussed in Chap. 11.

242 Theorem (Weierstrass) Every bounded infinite subset & R* has a limit
point in R.

Proof Being bounded, the set Ein question is a subset of a k-call | < R,
By Theorem 2.40, | is compact, and so E has a limit point in I, by
Theorem 2.37.
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PERFECT SETS

243 Theorem Let P bea nonempty perfect set in R*. Then Pis uncountable.

Proof Since P has limit points, P must be infinite. Suppose P is count-
able, and denote the pointsof P by X,, x,, X5, .... Weshall construct a
sequence{ V, , ¢f neighborhoods, as follows.

Let ¥, be any neighborhood of x,. If ¥, consists of all y e R* such
that |y — X, | < r, theclosure V; of V, is the set of all ye R* such that
ly —x,[ <r.

Suppose V, has been constructed, so that V, » P is not empty. Since
every point of Pis a limit point of P, there is a neighborhood ¥, ,, such
that (i) V,,, =V, , (i) x,¢ V,,., (iii) V,., n Pis not empty. By (iii),
V, .+, satisfies our induction hypothesis, and the construction can proceed.

Put K =V, ~nP. Since V, is closed and bounded, V, is compact.
Since x, ¢ K, ., no point of Pliesin N7 K,, Since K, ,= P, this implies
that N7 K ,isempty. But each K, is nonempty, by (iii), and K, » K, 1,
by (i); this contradicts the Corollary to Theorem 2. 36.

Corollary Ecery interva [a, b] (a <b) is uncountable. In particular, t/e set d
all real numbers is uncountable.

244 The Cantor st The set which we are now going to construct shows
that there exist perfect sets in R' which contain no segment.

Let E, be the interval [0, 1]. Remove the segment (3, %), and let £, be
the union of theintervals

[0, 31 3, 11.

Remove the middle thirds of these intervals, and let E, be the union of the
intervals

[0, 5], (3. 31 [$, 31, [, 1].
Continuing in this way, we obtain a sequence of compact sets E,, such that

(@ EoE >E; >,
(b) E, isthe union of 2" intervals, each of length 37"

The set
P E
n=1

is called the Cantor set. P is clearly compact, and Theorem 2. 36 shows that P
is not empty.
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No segment of the form

3k+1 3%k+2
(24) ( 3m ? 3m )’
where k and m are positive integers, has a point in common with P. Since every
segment («, ff) contains a segment of the form (24), if
m B«
ITmM< c
P contains no segment.

To show that Pis perfect, it is enough to show that P contains no isolated
point. Let x € P, and let S be any segment containing x. Let I, be that interval
of E, which contains x. Choose n large enough, so that I, = S. Let x, be an
endpoint of I,, such that x, # x.

It follows from the construction of P that x, € P. Hence x isa limit point
of P, and Pis perfect.

One of the most interesting properties of the Cantor set is that it provides
us with an example of an uncountable set of measure zero (the concept of
measure will be discussed in Chap. 11).

CONNECTED SETS

2.45 Definition Two subsets A and B of a metric space X are said to be
separated if both An B and 4 n B are empty, i.e., if no point of A liesin the
closure of B and no point of B liesin the closure of A.

A set E < X issaid to be connected if E is not a union of two nonempty
separated sets.

246 Remark Separated sets are of course digjoint, but disjoint sets need not
be separated. For example, the interval [0,1] and the segment (1, 2) are not
separated, since 1 is a limit point of (1, 2). However, the segments (0, 1) and
(1. 2) are separated.

The connected subsets of the line have a particularly simple structure:

247 Theorem A subset E of thereal line R? isconnected jf and only if it has the
following property: If xe E,ye E,and x <z <y, then Ze E.

Proof If thereexist x € E. y € E, and some z e (X, y) such that z¢ E, then
E = A, u B, where

A, = En (-, 2), B, = En (z, ).
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Since x € A, and y € B,, A and B are nonempty. Since A, = (- o0, z) and
B, = (z, ), they are separated. Hence E is not connected.

To prove the converse, suppose Eis not connected. Then there are
nonempty separated sets A and Bsuchthat A U B =E. Pickxe A,ye B,
and assume (without loss of generality) that x <y. Define

z=sup(AnNI[xvy]).

By Theorem 2.28, ze A; hence z¢ B. In particular, x <z <.

If z¢ A, it followsthat X<z<yandz¢E.

If ze A, then z¢ B, hence there exists z, such that z< z, <y and
z,¢B. Thenx<z,<yandz¢E.

EXERCISES

o U AW

Prove that the empty set is a subset of every set.
A complex number z is said to be algebraic if there are integersas, ..., a,, not al
zero, such that

apz"+a2"'+-++a,_,z4+a,=0,
Prove that the set of dl algebraic numbers iscountable. Hint: For every positive
integer N there are only finitely many equations with

n+ |ao| + |a| + -+ |a. =N.

. Prove that there exist real humbers which are not algebraic.

Is the set of dl irrational real numbers countable?
Construct a bounded set of real numbers with exactly three limit points.

. Let E' be the set of all limit pointsof aset E. Prove that E' isclosed. Prove that

E and £ have the same limit points. (Recall that £ = Eu E'.) Do Eand E'aways
have the same limit points?

. Let A,, 4;, As, ... be subsets of a metric space.

(@ If Bo= {Ji—1 A:, prove that B, = | Ji_; 4, forn=1,2,3, ....
(&) f B=J, A, provethat B> |J&, 4.
Show, by an example, that this inclusion can be proper.

. Is every point of every open set E < R? a limit point of E? Answer the same

guestion for closed setsin R

. Let E° denote the set of all interior points of a set E. [See Definition 2.18(e);

E° is called the interior of E.]

(a) Prove that E° is aways open.

(b) Prove that E isopen if and only if E° =E.

(c) If G< E and G isopen, prove that G < E°.

(d) Prove that the complement of E* is the closure of the complement of E.
(e) Do E and £ always have the same interiors?

(f) Do Eand E” always have the same closures?
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Let X be an infinite set. Forp € X and g € X, define

1 (fp # q)
d =
(p,q) 0 i p =),

Prove that this is a metric. Which subsets of the resulting metric space are open?
Which areclosed? Which are compact?
For x € R* and y € R?, define

dl(x9 y) == (x - y)zy

da(x, y) = V]x =,

d3(x3y):‘x2 —yzla

da(x, y) =|x —2y|,

_|x=yl
dS(X,y) = 1 +|X—y| .
Determine. for each of these, whether it isa metric or not.
Let K = R! consist of 0 and the numbers 1/n, forn=1,2, 3,.... Provethat Kis
compact directly from the definition (without using the Heine-Borel theorem).

. Construct a compact set of real numbers whose limit points form a countabl e set.
14.

Give an example of an open cover of the segment (0, 1) which has no finite sub-
cover.

Show that Theorem 2.36 and its Corollary become false (in R!, for example) if the
word " compact" is replaced by "closed" or by " bounded."

Regard Q, the set of all rational numbers, as a metric space, withd(p,q) =|p — ¢q|.
Let E be the set of all pe Q such that 2<p? <3. Show that E is closed and
bounded in Q, but that Eis not compact. Is Eopenin Q?

Let E be the set of all x € [0. 1] whose decimal expansion contains only the digits
4 and 7. Is Ecountable? IsEdensein [0, 11? Is Ecompact? Is E perfect?

I's there a nonempty perfect set in R' which contains no rational number?

(@ If A and B are digjoint closed sets in some metric space X, prove that they
are separated.

(b) Prove the same for disjoint open sets.

(c) Fixpe X, 8 >0, define A to betheset of al ¢ € X for which d(p, q) <8, define
B similarly, with = in place of <. Provethat A and B are separated.

(d) Prove that every connected metric space with at least two points is uncount-
able. Hint: Use(c).

Are closures and interiors of connected sets always connected? (Look at subsets
of R2)

Let A and B be separated subsets of some R, suppose a€ A, b e B, and define

p&)=(0—t)a+tb
for re R'. Put Ag =p~'(4), Bo=p '(B). [Thus < A, if and only if p(t) e A]
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(a) Provethat 4o and B, are separated subsets of R'.

(b) Prove that there exists fo € (0, 1) such that p{zo) ¢ A B.

(c) Prove that every convex subset of R* is connected.

A metric space is called separable if it contains a countable dense subset. Show
that R* is separable. Hint: Consider the set of points which have only rational
coordinates.

A collection {¥,} of open subsets of X is said to be a base for X if the following
is true: For every x € X and every open set G < X such that xe G, we have
x € V, < G for some a. In other words, every open set in X is the union of a
subcollection of {V}.

Prove that every separable metric space has a countable base. Hint: Take
all neighborhoods with rational radius and center in some countable dense subset
of X.

Let X bea metric space in which every infinite subset has a limit point. Provethat
Xisseparable. Hint: Fix 6>0, and pick x; € X. Having chosen xi, ..., x;€ X,
choose x;.; € X, if possible, so that d(x;, x;,,)>6fori=1, ...,/ Show that
this process must stop after a finite number of steps, and that X can therefore be
covered by finitely many neighborhoodsof radius8. Take6=1/n(n=1,2,3,...),
and consider the centers of the corresponding neighborhoods.

Prove that every compact metric space K has a countable base, and that K is
therefore separable. Hint: For every positive integer n, there are finitely many
neighborhoods of radius 1/# whose union covers K.

Let X be a metric space in which every infinite subset has a limit point. Prove
that X is compact. Hint: By Exercises 23 and 24, X has a countable base. It
follows that every open cover of X has a countablesubcover {G.}, n=1,2, 3, ....
If nofinitesubcollection of {G} covers X, then thecomplement F, of G, v .- U G,
is nonempty for each n, but ()} F, isempty. If Eisa set which contains a point
from each F,, consider a limit point of E, and obtain a contradiction.

Define a point p in a metric space X to be a condensation point of a set E< X if
every neighborhood of p contains uncountably many points of E.

Suppose E < R*, E is uncountable, and let P be the set of all condensation
points of E. Provethat Pis perfect and that at most countably many points of £
are not in P. In other words, show that P° n E is at most countable. Hint: Let
{V.; be a countable base of R, let i be the union of those ¥, for which E n V,,
is at most countable, and show that P= W«.

Prove that every closed set in a separable metric space is the union of a (possibly
empty) perfect set and a set which isat most countable. (Corollary: Every count-
able closed set in R* hasisolated points) Hint: Use Exercise 27.

Prove that every open set in R! is the union of an at most countabl e collection of
disjoint segments. Hint: Use Exercise 22.
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30. Imitate the proof of Theorem 2.43 to obtain the following result:

If R*= {J¢F,, where each F, isa closed subset of R¥, then at least one Fa
has a nonempty interior.

Eguivalent statement: If G, isa dense open subset of R, forn=1, 2,3, ...,
then (7G. is not empty (in fact, it isdense in R) .

(Thisisa special case of Baire's theorem; see Exercise 22, Chap. 3, for the general
case.)
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NUMERICAL SEQUENCES AND SERIES

As the title indicates, this chapter will deal primarily with sequences and series
of complex numbers. The basic facts about convergence, however, are just as
easily explained in a more general setting. The first three sections will therefore
be concerned with sequences in euclidean spaces, or even in metric spaces.

CONVERGENT SEQUENCES

3.1 Definition A sequence{p,} in a metric space X is said to converge if there
isa point p e X with the following property: For every ¢ > 0 there is an integer
N such that n > N implies that d(p,, p) < ¢. (Hered denotes the distancein X.)

In this case we also say that {p,} converges to p, or that p is the limit of
{p.} [see Theorem 3.2(b)], and we write p, — p, or

lim p,=p.

n—o

If {p,) does not converge, it is said to diverge.
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It might be wel to point out that our definition of ** convergent sequence’
depends not only on{p,) but also on X; for instance, the sequence {1/n} con-
vergesin R! (to 0), but fails to converge in the set of all positive real numbers
[with d(x,y) =[x — »|]. In cases of possible ambiguity, we can be more
precise and specify ** convergent in X" rather than ** convergent.

We recall that the set of al pointsp, (h=1,2,3,...) is the range of {p,).
The range of a sequence may be a finite set, or it may be infinite. The sequence
{p,) issaid to be bounded if its range is bounded.

As examples, consider the following sequences of complex numbers
(that is, X = R?):

(@ Ifs,=1/n thenlim,., . s, =0; the rangeisinfinite, and the sequence
is bounded.

(b) If s, =n? the sequence {s) is unbounded, is divergent, and has
infinite range.

(©) If s, =17 [(~ 1)"/n), the sequence {s,} converges to 1, is bounded,
and has infinite range.

(dy If s, =1i" the sequence {s,} is divergent, is bounded, and has finite
range.

(e Ifs,=1(n=1,2,3,...), then {s,} converges to 1, is bounded, and
has finite range.

We now summarize some important properties of convergent sequences
in metric spaces.

3.2 Theorem Let{p,) bea sequencein a metric space X.

(& {p) convergestop e X if and only if every neighborhood of p contains
p, for all butfinitely many n.

(b) Ifpe X p'eX, andif{p,} convergestop andtop', thenp' =p.

(c) If {p,) converges, then {p,} is bounded.

(d) If Ec Xandifpisalimitpointd E, then there isa sequence{p,) in E

such that p = limp, .

Proof (a) Suppose p, —»p and let V be a neighborhood of p. For
some ¢ > 0, the conditions d(g,p) <&, g X imply ge V. Correspond-
ing to this ¢, there exists N such that n> N implies d(p,,p) <& Thus
n> N impliesp, € V.

Conversely, suppose every neighborhood of p contains al but
finitely many of thep,. Fix ¢ >0, and let V be the set of al ge X such
that d(p, ) <e. By assumption, there exists N (corresponding to this V)
such that p, e V if n=N. Thus d(p,,p) <¢ if n=N; hence p, »p.
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(b) Lete>0 begiven. Thereexist integers N, N' such that
E
n>=N implies d(p.,p) <3

n>N' implies d(p",p')<§-
Hence if » = max (N, N'), we have

d(p, p’) < d(p, p,) + d(p,, p) <e.

Since £ was arbitrary, we conclude that d(p, p') = 0.
(c) Suppose p, »p. There is an integer N such that » > N
implies d(p,, p)< 1. Put

r=max {1, d(p;, p), ..., d(py, p)}.

Thend(p,,p)<rforn=1,2,3,....

(d) For each positive integer n, there is a point p, € E such that
d(p,,p) <1/n. Given >0, choose N so that Ne> 1. If n >N, it
follows that d(p,, p) < ¢. Hencep, —p.

This completes the proof.

For sequences in R we can study the relation between convergence, on

the one hand, and the algebraic operations on the other. We first consider
sequences of complex numbers.

3.3 Theorem Suppose {s.}, {r,} are complex sequences, and lim,, s,=S5,

lirn,,,

t, =1 Then
(a) lim(s, t 1) =s+1t;

n= o

(b) lirncs, = cs, Iirn(c+ s) =c t s, for any number c;

H— o n— oo
(c) lims,t, = st;

n—ao

(d) lirn E = l,provideds,, #0(n=12,3,..), and s #0.

n=w Sy )
Proof

(a) Givene >0, there exist integers Ny, N, such that

. . E
n>N, implies [s,—s] <—2,

n>N, implies |t,—t|<g
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If N =max (N,, ¥N,), then » > N implies
|+ 1) — S+ D] < |5, — s + |1, — 1] <e.
This proves (a). The proof of (b)is trivial.
(c) We use the identity
1) Sty — L =(5, — ), — )+ s(t, — ) + 1(s, — ).
Given ¢ > 0, there are integers Ny, N, such that
n>N, implies |s,—s| <./e
n>N, implies |1, —t| <. /e
If we take N = max (N,,N,), » = Nimplies
| (s, — 8$)(t, — )| <,
so that

lim (s, — s)(t, — t)=0.

n- o

We now apply (a)and (b)to (1), and conclude that

lim (s,2, — st)=0.

[ ksl

(d) Choosing m such that |s, —s| < 3[s| if n = m, we see that

|5,] > %[s[  (nz=m).

Given ¢ > 0, there is an integer N > m such that » > N implies
|S,, —S‘ <%‘S|28‘
Hence, for n > N,

1 1

s, $

S, — 8

<—ls —s| <e.
5,8 |s|2l" |

34 Theorem
(a) Suppose X, € R‘(n=1,2,3,..)ad

X, = (al,na s ak,n)'

Then {x,} convergesto x =(or, ..., o) ifandonlyif
@ lima; =0,  (1<j<k).

n—
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(b) Suppose{X,), {y,} are sequencesin R*, {B,} isa sequence of real numbers,
and x, —» x,Y, =V, B, = fB. Then
limx,ty)=x+ty, limx,'y,=x.y, lim§g,x,=px

n— oo n=w n—=+aoc

Pr oof
(a) If x, — X, theinequalities

,a'j-'l - a1| < lxn - X|,
which follow immediately from the definition of thenormin R¥, show that
(2) holds.
Conversely, if (2) holds, then to each ¢ >0 there corresponds an
integer N such that n = N implies
€ .
- < —= (1=<j<k).

Jk

iaj,n

Hence n > N implies

x
Z|aj,n_a‘j‘21 <g,

% -xl={3

so that x,,— X. This proves (a).
Part (b) follows from (a) and Theorem 3.3.

SUBSEQUENCES

3.5 Definition Given a sequence {p,}, consider a sequence {n,) of positive

integers, such that n, <#n, <n, <.... Then the sequence {p,} is caled a
subseguence of {p,}. If {p,,} converges, its limit is caled a subsequential limit
of {p,}.

It is clear that {p,} converges to p if and only if every subsequence of

{p,,}converges to p. We leave the details of the proof to the reader.

3.6 Theorem

(a) If {ps} is a sequence in a compact metric space X, then some sub-
sequence of {p,) converges to a point of X.
(b) Every bounded sequence in R¥ contains a convergent subsequence.
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Proof

(a) Let E bethe range of {p,). 1f E is finite then thereisapeE and a
sequence{n;} withn, <n, <nz <---, such that

Puy =Pny, =" =D

The subseguence {p,,} so obtained converges evidently to p.

If E isinfinite, Theorem 2.37 shows that E has a limit point p e X.
Choose n, so that d(p, p,,) < 1. Having chosenn,, ..., n;_;, we see from
Theorem 2.20 that there is an integer n; > n;_, such that d(p, p,,) < 1/i.
Then {p,,} converges to p.

(b) Thisfollowsfrom (a),since Theorem 2.41 implies that every bounded
subset of R¥ liesin a compact subset of R*.

3.7 Theorem The subsequential limits of a sequence {p,) in a metric space X
form a closed subset of X.

Proof Let E* be the set of all subsequential limits of {p,) and let q be a
limit point of E*. We have to show that q € E*.

Choose n, so that p,, # 0. (If no such n, exists, then E* has only
one point, and there is nothing to prove.) Put 6 =d(q, p, ). Suppose
n,, ..., n;_; are chosen. Sinceqisalimit point of E*, there isan x € E*
with d(x,q)<27'8. Since x € E*, there is an n;>n;_, such that
d(x, p,,) <27'6. Thus

d(g, pp) <2'7'
fori=1,2,3,.... Thissaysthat {p,} convergestoq. Henceqe E*.

CAUCHY SEQUENCES

3.8 Definition A sequence {p,) in a metric space X is said to be a Cauchy
sequence if for every ¢ > 0 thereis an integer N such that d(p,, p,.) <eifn>N
and m > N.

In our discussion of Cauchy sequences, as wdl as in other situations
which will arise later, the following geometric concept will be useful.

3.9 Définition Let E be a nonempty subset of a metric space X, and let Sbe
the set of al rea numbers of the form d(p, q), with pe E and g€ E. The sup
of Sis caled the diameter of E.
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If{p,} isasequencein X and if Ey consists of the points py, Pyu1s Py+r2s vves

it is clear from the two preceding definitions that {p,} is a Cauchy sequence
fand only if

3.10

311

N-
Theorem
(a) If E isthe closure of a set E in a metric space X, then
diam E = diam E.
(b) If K, is a sequence of compact sets in X such that K, > K, .,
(n=1,2,3,...) and if

lim diam K, =0,

n=cw

then (7K, consists of exactly one point.
Proof

(a) Since Ec E, itisclear that
diam E< diam E.

Fix £ >0, and choose pe E, g € E. By the definition of E, there are
points p',q’, in E such that d(p, p') < e, d(¢,q') < &. Hence

d(p.q) <d(p,p') + d(p’' q') + d(q', q)
<2e+d(p’,q)<2e+ diamE.

It follows that
diam E < 2¢ + diam E,

and since ¢ was arbitrary, (a)is proved.

(b) Put K= (\¥K,. By Theorem 2.36, K is not empty. If K contains
more than one point, then diam K > 0. But for each n, X, = K, so that
diam K, = diam K. This contradicts the assumption that diam X, — 0.

Theorem

(a) Inanymetric space X, every convergent sequence isa Cauchy sequence.

(b) If X'isa compact metric space and if {p,} is a Cauchy sequence in X,
then{p,) converges to some point of X.

(c) In R, every Cauchy sequence converges.

Note: The difference between the definition of convergence and
the definition of a Cauchy sequence is that the limit is explicitly involved
in the former, but not in the latter. Thus Theorem 3.11(5) may enable us
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3)

to decide whether or not a given sequence converges without knowledge
of the limit to which it may converge.

The fact (contained in Theorem 3.11) that a sequence converges in
R* if and only if it is a Cauchy sequence is usually called the Cauchy
criterion for convergence.

Pr oof

(@ If p,op and if ¢ >0, there is an integer N such that d(p, p,) < ¢
fordl n= N. Hence

d(pr, Pm) < d(py, p) + d(p, pr) <2
assoon asn > N and m> N. Thus{p,} isa Cauchy segquence.

(b) Let {p,} be a Cauchy sequence in the compact space X. For
N=1, 23, ..., let Ey be the set consisting of Pn, Py+1> PN+2s -
Then

limdiam Ey =0,

N-oow
by Definition 3.9 and Theorem 3.10(a). Being a closed subset of the
compact space X, each E, is compact (Theorem 2.35). Also Ey = Ey .,
so that Ey = Ey+,.

Theorem 3.10(b) shows now that there is a unique p € X which lies
inevery E,.

Let e>0 be given. By (3) there is an integer N, such that
diam Ey <¢ if N> N,. Since p € Ey, it follows that d(p,q) <& for
every qe Ey, hence for every qe Ey. In other words, d(p, p,) <e¢ if
n> N,. This says precisely that p, — p.

(¢) Let {x,} be a Cauchy sequence in R¢. Define Ey as in (b), with x;,
in place of p;. For some N, diam Ey < 1. The range of {x,} is the union
of Ey and the finite set {x{,...,Xy_;}. Hence{x,) is bounded. Since
every bounded subset of R* has compact closurein R* (Theorem 2.41),
(c) follows from (b).

3.12 Definition A metric space in which every Cauchy sequence converges is
said to be complete.

Thus Theorem 3.11 says that all compact metric spaces and all Euclidean

spaces are complete. Theorem 3.11 implies also that every closed subset £ of a
complete metric space X iscomplete. (Every Cauchy sequence in E is a Cauchy
sequence in X. hence it converges to somep ¢ X, and actually p € E since E is
closed.) An example of a metric space which is not complete is the space of all
rational numbers, with d(x,y) = |x —y]|.
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Theorem 3.2(¢) and example (d) of Definition 3.1 show that convergent
sequences are bounded, but that bounded sequences in R¥ need not converge.
However, there is one important case in which convergence is equivalent to
boundedness; this happens for monotonic sequences in R:.

3.13 Definition A sequence {s,} of real numbersis said to be
(a) monotonically increasing if s, < s,+; (N=1,2,3,...);
(6) monotonically decreasing if s, = 5,43 (N=1,2,3,...).

The class of monotonic sequences consists of the increasing and the
decreasing sequences.

3.14 Theorem Suppose {s,} is monotonic. Then {s,) converges if and only if it
is bounded.

Proof Suppose s, < s, (the proof is analogousin the other case).
Let E be the range of {s,}. If {s,} is bounded, let s be the least upper
bound of E. Then

S, <5 n=1,2,3..).
For every e > 0, there is an integer N such that
S—e<Ssy <,

for otherwise s — ¢ would be an upper bound of E. Since {s,} increases,
n > N therefore implies

s—e <8, <5,

which shows that {s,} converges (to s).
The converse follows from Theorem 3.2(c).

UPPER AND LOWER LIMITS

3.15 Definition Let {s,} be a sequence of real numbers with the following
property: For every real M there is an integer N such that n= N implies
s, = M. We then write

S, — + 0.
Similarly, if for every rea M there is an integer N such that n > N implies
5, < M, we write
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It should be noted that we now use the symbol — (introduced in Defini-
tion 3.1) for certain types of divergent sequences, as wel as for convergent
sequences, but that the definitions of convergence and of limit, given in Defini-
tion 3.1, are in no way changed.

3.16 Definition Let {s,} be a sequence of real numbers. Let E be the set of
numbers x (in the extended real number system) such that s, — x for some
subsequence {s,,}. This set E contains all subsequential limits as defined in
Definition 3.5, plus possibly the numbers +co, — co.

We now recall Definitions 1.8 and 1.23 and put

s* =supE,
sy =Inf E

The numbers s*, s, are caled the upper and lower limits of {s}; we use the
notation

limsups, =s*, liminf s, = s4.
3.17 Theorem Let{s} bea sequenceof real numbers. Let E and s* have the
same meaning as in Definition 3.16. Then s* has thefollowing two properties:

(@ s eE
(b) If x> s*, thereisan integer N such that n > N impliess, < x.

Moreouer, s* is the only number with the properties (a) and (b).

Of course, an analogous result is true for sy.

Pr oof

(@) If s* = 400, then Eisnot bounded above; hence{s,} is not bounded
above, and thereis a subsequence {s,, } such that s, — +co.

If s* isreal, then Eis bounded above, and at least one subsequential
limit exists, so that (a) follows from Theorems 3.7 and 2.28.

If s* = — 0, then E contains only one element, namely — o, and
there is no subsequential limit. Hence, for any real M, s, > M for at
most a finite number of values of n, so that s, - -0,

This establishes (a) in all cases.

(b) Suppose there is a number x >s* such that s, > x for infinitely
many values of n. In that case, there is a number y € E such that
y = X > s*, contradicting the definition of s*.

Thus s* satisfies(a) and (b).

To show the uniqueness, suppose there are two numbers, p and g,
which satisfy (a) and (b), and supposep < . Choosex suchthatp <x <q.
Sincep satisfies(b), we haves, < x for n = N. But then qcannot satisfy (a).
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3.18 Examples

(a) Let {s,} be a sequence containing all rationals. Then every real
number is a subsequential limit, and

lim sup s, = + o0, liminfs, = — 0.

(b) Lets,=(—1"/[1 + (1/n)]. Then
limsups, =1, liminfs, = —1.

(¢) For a real-valued sequence {s,}, lim s, = 5 if and only if

n— o

lim sup s, = lim inf s, = 5.

n—+ o R~

We close this section with a theorem which is useful, and whose proof is
quite trivial:

3.19 Theorem Ifs,<t, for n> N, where N is fixed, then

lim inf s, < lim inf ¢,

n—o B o

lim sup s, <limsup ¢,.

n-—w n— o

SOME SPECIAL SEQUENCES

We shall now compute the limits of some sequences which occur frequently.
The proofs will all be based on the following remark: If 0 < x, < s, for n > N,
where N is some fixed number, and if s, =0, then x, - 0.

3.20 Theorem

1
(@ If p>0,thenlim — =0.

n—'oon

() Ifp>0,thenlim¥p=1.

n—w

(© limY/n=1

n
d) Ifp>0andaisreal, then lim —— =0.
d Ifp m =

(e) If |x| <1, thenlim x" = 0.

.B—=
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Proof

(a) Taken> (1/e)"/?. (Note that the archimedean property of the real
number system is used here.)

(b) If p>1, put x,:\"/;)—l. Then x, >0, and, by the binomial
theorem,

1+ nx,1 L+ x)=p,
so that

p—1
n

O<x, <

Hencex, —»0. Ifp=1, (b)istrivial, andif 0 < p < 1, theresult is obtained
by taking reciprocals.
(© Putx,=2n—1 Thenx, >0, and, by the binomia theorem,

nn —1)

n=(1+4+x)"= Txf

Hence

OSx,,gA/ 2 (n=2).

n—1

(d) Let k be an integer such that k > a, kK > 0. For n > 2k,

me o =1 (n—k+1) n*p*
A+p>@p = x P> o

Hence

“ 2k
0<(1:1—T'<p—kna—k (n>2k).

Sincea — k <0, n* % +0, by (a).
(e) Takea =0in(d).

SERIES

In the remainder of this chapter, al sequences and series under consideration
will be complex-valued, unless the contrary is explicitly stated. Extensions of
some of the theorems which follow, to series with terms in R¥, are mentioned
in Exercise 15.
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3.21 Definition Given a sequence{a,), we use the notation

2 a (p<q)

to denote the sum a, +a,, T.'-+ a,. With {a) we associate a segquence
{s,}, where

Sp= 2. 4.
k=1
For {s,) we also use the symbolic expression

a,+a,ta +
or, more concisely,

(4) ;a".

The symbol (4) we call an infinite series, or just a series. The numbers
s, are called the partial sums of the series. If {s,) converges to s, we say that
the series converges, and write
a, =S,

n

Mg

1

n

The number s is called the sum of the series; but it should be clearly under-
stood that s is the limit of a sequence of sums, and is not obtained simply by
addition.

If {s,} diverges, the seriesis said to diverge.

Sometimes, for convenience of notation, we shall consider series of the
form

) Lo

And frequently, when there is no possible ambiguity, or when the distinction
is immaterial, we shall simply write Za, in place of (4) or (5).

It is clear that every theorem about sequences can be stated in terms of
series (putting a, =s,, and a, = s, — S,—; for n> 1), and vice versa. But it is
nevertheless useful to consider both concepts.

The Cauchy criterion (Theorem 3.11) can be restated in the following
form:

3.22 Theorem Zg, convergesif and only if for every e > 0 there is an integer
N such that

(6)

ifm=nz=N.

<e

m
2
k=n
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In particular, by taking m = n, (6) becomes

la,| 1 ¢ (n=N).
I n other words:

3.23 Theorem |f Za, converges, then lim,_, , a, = 0.

The condition a, =0 is not, however, sufficient to ensure convergence
of Zaq,. For instance, the series

N

2
n=1
diverges; for the proof we refer to Theorem 3.28.

Theorem 3.14, concerning monotonic sequences, also has an immediate
counterpart for series.

324 Theorem A series of nonnegative terms converges if and only if its
partial sumsform a bounded sequence.

We now turn to a convergence test of a different nature, the so-called
" comparison test.”

325 Theorem
(a) Ifla,] <c, for n= No, where N, is some fixed integer, and if Cc,
converges, then Za, converges.
(b) Ifa, 2d,=0forn=Ny,andif x4, diverges, then Za, diverges.
Note that (b) applies only to series of nonnegative terms a,.
Proof Given e >0, there exists N > N, such that m > n > n implies

m
Y o <g,
k=n

by the Cauchy criterion. Hence

m
2
k=n

[ngE]

m
<Y lal €)Y e <e,
k k=n

n

and (a)follows.
Next, (b) follows from (a), for if Za, converges, so must Zd, [note
that (b) aso follows from Theorem 3.24].

1 The expression ‘‘ nonnegative' always refers to real numbers.
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The comparison test is a very useful one; to use it efficiently, we have to
become familiar with a number of series of nonnegative terms whose conver-
gence or divergence is known.

SERIES OF NONNEGATIVE TERMS

The simplest of al is perhaps the geometric series.

326 Theorem If 0 <x <1, then

If x > 1, the series diverges.

Proof If x # 1,

1 _xn+1

K=o 1 —x
The result follows if we let n » o0, For x =1, we get
T+14+1+,
which evidently diverges.
In many cases which occur in applications, the terms of the series decrease
monotonically. The following theorem of Cauchy is therefore of particular

interest. Thestriking feature of the theorem is that a rather *"thin' subsequence
of {a,) determines the convergence or divergence of Zaq,.

3.27 Theorem Suppose g, >a, >a; >.-* >0. Then the series ) 72, a, con-
verges if and only if the series

@) Y 2ap=a, t2a, tda, +8agt
k=0
converges.

Proof By Theorem 3.24, it suffices to consider boundedness of the
partial sums. Let
S, =a; ta, +- +a,,

tk=al+2az+"'+2kazk
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For n < 2%
s, 1 a, +(a, +as3)++(ap+ "+ reroy)
<a, +2a, + -+ 2%
=,
so that
®) Sy <ty

On the other hand, if n > 2%,
Spza +a, +(@+ay) 4+ +(@u-141 + 0 + ag)
>4a, ta, t2a, +... + 2 la,
=3,
so that
) 25, 2 t,.

By (8) and (9), the sequences {s,} and {t,} are either both bounded
or both unbounded. This completes the proof.

1 .
328 Theorem ) pr convergesif p > 1 and divergesifp < 1.

Proof If p<0, divergence follows from Theorem 3.23. If p>0,
Theorem 3.27 is applicable, and we are led to the series

o 1 ©
2k — 21 ~pk
k;O 2k» kgo

Now, 2! "7 <1 if and only if 1 — p <0, and the result follows by com-
parison with the geometric series (take X = 2* ~7 in Theorem 3.26).
As a further application of Theorem 3.27, we prove:
329 Theorem If p>1,
® 1
=2 n(log n)?

(10)

converges; if p < 1, the series diverges.

Remark "logn" denotes the logarithm of n to the base e (compare Exercise 7,

Chap. |); the number e will be defined in a moment (see Definition 3.30). We
let the series start withn =2, sincelog | =0.
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Proof The monotonicity of the logarithmic function (which will be
discussed in more detail in Chap. 8) implies that {log n) increases. Hence
{1/nlogn) decreases, and we can apply Theorem 3.27 to (10); this
leads us to the series

® 1 ® 1 1 ® 1

11 2k * = = —>
b =1 2*(log 2y k; (klog2)’ (log2)y ,‘; k?

and Theorem 3.29 follows from Theorem 3.28.

This procedure may evidently be continued. For instance,
® 1
(12) ,.ggnlognloglogn
diverges, whereas
® 1
n; n log n(log log n)?

(13)

converges.

We may now observe that the terms of the series (12) differ very little
from those of (13). Still, one diverges, the other converges. |f we continue the
process which led us from Theorem 3.28 to Theorem 3.29, and then to (12) and
(13), we get pairs of convergent and divergent series whose terms differ even
less than those of (12) and (13). One might thus be led to the conjecture that
there is a limiting situation of some sort, a ""boundary" with al convergent
series on one side, all divergent series on the other Sde—at least as far as series
with monotonic coefficients are concerned. This notion of ""boundary" is of
course quite vague. The point we wish to make isthis: No matter how we make
this notion precise, the conjecture is false. Exercises 11(5) and 12(&) may serve
as illustrations.

We do not wish to go any deeper into this aspect of convergence theory,
and refer the reader to Knopp's " Theory and Application of Infinite Series,"
Chap. I X, particularly Sec. 41.

THE NUMBER e

= 1
3.30 Definition e= -

,,=0n!

Heren!=1-2-3---nifn>1,and 0! =1.
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Since
=1+1+ L + = + 4 L
Sn = 127123 1-2-n
<1+1+1+1+---+ <3
2 22 2n—1 ’

the series converges, and the definition makes sense. In fact, the series converges
very rapidly and alows us to compute e with great accuracy.

It is of interest to note that e can also be defined by means of another
limit process; the proof provides a good illustration of operations with limits:

1 n
3.31 Theorem lirn (1 +;) = e.

n-— o

Proof Let

Tl
__‘N
Il
—
—_
+
X | =
S —
3

Sy =
k;O k

By the binomial theorem,

1 1 1 1 2
t,=1+1+—1—--=- —|1 == _z
" + +2!( n) +3!(1 n)(l n) +

Hencet, < s,, so that
(14) limsupt, <e,

n—>cC

by Theorem 3.19. Next, if n > m,

1 1 1 —
war et (- e L) (o),
2! n m! n n

Let n — oo, keeping m fixed. We get

. 1
liminft, 21 4+1 4+ -4+ —,
n=® 21 m
so that
S, < liminf t,

n-—w

Letting m — oo, wefinaly get

(15) e<liminft,.

n-oC

The theorem follows from (14) and (15).
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1
The rapidity with which the series )’ o converges can be estimated as

follows: If s, has the same meaning as above, we have

1 1 1
_ = + + PPN
TSR TarD T e mra T
<t {#1+ O
(n+ 1)! n+1 (n+1)7> " nln
so that
1
(16) O<e—s,<—-
nln

Thus s,4, for instance, approximates e with an error less than 1077, The
inequality (16)is of theoretical interest as well, since it enables us to prove the
irrationality of e very easily.

3.32 Theorem eisirrational.

Proof Suppose e is rational. Then e = p/q, where p and g are positive
integers. By (16),

(17) 0<q!(e—sq)<3.

By our assumption, ¢'e is an integer. Since

1 1
q!sq=q!(1 +1 +i+“'+5—!)
is an integer, we see that g!(e — s,) is an integer.
Since g > 1, (17) implies the existence of an integer between 0 and 1.
We have thus reached a contradiction.

Actually, e is not even an algebraic number. For a simple proof of this,
see page 25 of Niven's book, or page 176 of Herstein's, cited in the Bibliography.

THE ROOT AND RATIO TESTS

3.33 Theorem (Root Test) Given Za,, put a=limsup v/ |a,].
Then

(a) ifa<1, Za, converges;
(b) ifa>1, Za, diverges;
(c) ifo =1, the test gives no information.
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334

Proof If a<1, we can choose f so that a< f# <1, and an integer N
such that

VIPARY:
for n= N [by Theorem 3.17(b)]. Thatis, n= N implies
|la,| < B

Since 0 < B <1, 8" converges. Convergence of Za, follows now from
the comparison test.

If a> 1, then, again by Theorem 3.17, there is a sequence{n,) such

"\k/|ank| —a.
Hence l|a,| > 1 for infinitely many values of n, so that the condition

a, -0, necessary for convergence of Za,, does not hold (Theorem 3.23).
To prove (c), we consider the series

1 o1

For each of these seriesa = 1, but the first diverges, the second converges.

that

Theorem (Ratio Test) Theseries Za,

(a) convergesif limsup |2 | < 1,

n—= o

!

(b) divergesif

=1 for all n = ny, Where n, is some fixed integer.

Proof If condition (a) holds, we can find 8 < 1, and an integer N, such
that

Ant1q
a,

<p
for n= N. In particular,

|aN+l| <B|aN|:
lans+z| < Blay+y| < B*|anl,

IaN+p| < BP|ayl.
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That is,

@, < lax|B~" - B

for n = N, and (a) followsfrom the comparison test, since 8" converges.
If |a,+,| = |a,| forn = ne, it iseasily seen that the conditiona, =0
does not hold, and (b) follows.

Note: The knowledge that lima,.,/a, =1 implies nothing about the
convergenceof Za,. The seriesZl/n and Z1/n* demonstrate this.
335 Examples
(a) Consider the series
1+1+1+1+1+1+1+1+...
23 22 32723 33 % T3+
for which

liminf “ = lim (g) =0,

n— o an n—w 3
. . n . 2n T 1
liminf /a, = lim*/~ = —_,
n=x nvo \ 3" \/3
lim sup &/a, = lim " L1
n— o " n— o0 2’l \/2
. I 1 3)"
limsu = lim z|z) = +oo0.
n—-uop a, n—o 2(2

The root test indicates convergence; the ratio test does not apply.
(b) Thesameistrue for the series

I 1 11 1
i P e Sp e SELEN

2 8§ 4 32 16 128 64

where

jiminf %22 =1,

R— 0 an 8

. An+1

limsu =2,

n—'aop a,
but



3.36 Remarks The ratio test is frequently easier to apply than the root test,
since it is usualy easier to compute ratios than nth roots. However, the root
test has wider scope. More precisaly: Whenever the ratio test shows conver-
gence, the root test does too; whenever the root test is inconclusive, the ratio
test is too. This is a consequence of Theorem 3.37, and is illustrated by the
above examples.

Neither of the two testsis subtle with regard to divergence. Both deduce
divergencefrom the fact that @, does not tend to zero asn — <.

337 Theorem For any sequence{c,} d positive numbers,

n—=+w n->w

lim sup /¢, < lim sup

n—w n—o n

Proof We shall prove the second ineguality; the rroof of the firg is
quite similar. Put

= lim sup 2£2

n—+w Cy

If a= + o0, there is nothing to prove. If aisfinite, choose f > a. There
is an integer N such that

for n = N. In particular, for any p > 0,

Multiplying these inequalities, we obtain

Hence

S0 that

lir sup /¢, <

n=*ow



by Theorem 3.20(5). Since (18) istruefor every > a, we have

limsup /e, < o.

n—+co

POWER SERIES

3.38 Dsfinition Given a sequence {c,} of complex numbers, the series

iscaled a power series. The numbers ¢, are called the coefficients of the series;
z is a complex number.

In generd, the series will converge or diverge, depending on the choice
of z. More specificaly, with every power series there is associated a circle, the
circle of convergence, such that (19) convergesif z isin the interior of thecircle
and divergesif z is in the exterior (to cover al cases, we have to consider the
planeastheinterior of a circle of infinite radius, and a point asacircle of radius
zero). The behavior on the circle of convergenceis much more varied and can-
not be described so simply.

339 Theoxrem Given the power series Z¢, 2", put

(If«=0,R= +0;ifa = +00, R=0,) Then Z¢,2z" converges if |z| <R, and
divergest |z| > R.

Proof Put a, =c,z", and apply the root test:

Note: R iscalled the radius of convergence of Z¢, 2"

340 Examples
@ Thesenesan has R =0.

(b) Theserlesz has R = T, (In thiscase theratio test is easier to
apply than the root test.)
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(c) The series Z2" has R=1, If |z| =1, the series diverges, since {z"}
does not tend to 0 asn — co.

(d) Theserieszz’—t has R=1. It divergesif z= 1. It convergesfor all
other zwith |z| = 1. (Thelast assertion will be proved in Theorem 3.44.)
(e) The series Z:—z has R =1. It convergesfor al z with |z| =1, by

the comparison test, since | z°/n?| = 1/n2.

SUMMATION BY PARTS

341 Theoxrem Giventwo sequences{a,}, {b,}, put

ifn=0; put A_; =0. Then, if 0 < p < g, we have

Proof

and the last expression on the right is clearly equal to the right side of
(20).

Formula (20), the so-called " partial summation formula," is useful in the
investigation of series of the form Xa,b,, particularly when {b,} is monotonic.
We shall now give applications.

342 Theoran Suppose

(a) the partial sums 4, of Za, forma bounded sequence;
(b) bOZbl 2b22"‘ ;
(c) limb,=0.

n—w

Then Za, b, converges.



Proof Choose M suchthat |4,] < M for dl n. Givene >0, thereisan
integer N such that by < (¢/2M). For N < p <q, we have

Convergence now follows from the Cauchy criterion. We note that the
first inequality in the above chain depends of course on the fact that
bn - bn+1 =0.

343 Theorem Suppose

(a) |c1|2|02|2|c3|2...;
(b) czm_l 20’ sz SO (m = 19 2, 3’ -ll);
(C) lim"_,co Cy =0.

Then Z¢, converges.

Seriesfor which (b) holdsare caled " dternating series' ; the theorem was
known to Leibnitz.

Proof Apply Theorem 342, witha, = (=1)"*, b, = |¢,|.

344 Theorem Suppose the radius of convergence of Ze,z" is 1, and suppose
Co=c¢ =c >, limL, ¢, =0. Then Zc,Z" converges at every point on the
circle |z] =1, except possblyat z=1.

Proof Put a,= 2", b,=c,. The hypotheses of Theorem 342 are then
satisfied, snce

ABSOLUTE CONVERGENCE

The series Za, is said to converge absolutdly if the series X|a,| converges.

345 Theorem If Za, convergesabsolutely, then Za, converges.



Proof The assertion follows from the inequality

plus the Cauchy criterion.

346 Remarks For seriesof positive terms, absolute convergenceis the same
as convergence.

If Za, converges, but X|a,| diverges, we say that Za, converges non-
absolutely. For instance, the series

converges nonabsolutely (Theorem 3.43).

The comparison test, as wel as the root and ratio tests, is really a test for
absolute convergence, and therefore cannot give any information about non-
absolutely convergent series. Summation by parts can sometimes be used to

handle the latter. In particular, power series converge absolutely in the interior
of the circle of convergence.

We shall see that we may operate with absolutely convergent series very
much as with finite sums. We may multiply them term by term and we may
change the order in which the additions are carried out, without affecting the
sum of the series. But for nonabsolutely convergent series thisis no longer true,
and more care has to be taken when dealing with them.

ADDITION AND MULTIPLICATION OF SERIES

347 Theorem If Za,=A, and Zh,=B, then X(a,+h) =A+B, and
Cca, = cA,for any fixed c.

Proof Let

Then
A tB, =kzno(ak +5,).

Sincelim,, A, =A and lim,, B,=B, weseethat

lim (4,+B) = A +B,

n-w

The proof of the second assertion iseven simpler.
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Thus two convergent series may be added term by term, and the result-
ing series converges to the sum of the two series. The situation becomes more
complicated when we consider multiplication of two series. To begin with, we
have to define the product. This can be done in several ways; we shall consider
the so-called ““Cauchy product.”

3.48 Definition Given Xqg, and Xb,, we put

cn:Zakbn—k (n=0, 1,2,...)
k=0

and call X¢, the product of the two given series.

This definition may be motivated as follows. If we take two power
series Za,z" and b, z", multiply them term by term, and collect terms contain-
ing the same power of z, we get

a,z" Y b,2"=(ap+ az+a,z* + Wby + bz + by 2" + )
o n=0

ngE!

n

=agbo + (agby + a,bo)z + (agh, + aib; + ay bp)z* + -+
=co+Cz4cy 2400,

Setting z = 1, we arrive at the above definition.

3.49 Example If

n

A,,=Zak, Bn=zbk’ Cn:ZCk,
k=0 k=0

and A4, —» A4, B, - B, then it is not at all clear that {C,} will converge to 4B,
since we do not have C, = 4, B,. The dependence of {C,} on {4,} and {B,} is
quite a complicated one (see the proof of Theorem 3.50). We shall now show
that the product of two convergent series may actually diverge.

The series
2 (—=1) 1 1 1
jzl——7+_.__“+,,_
,,;)\/n+1 J2 3 U4

converges (Theorem 3.43). We form the product of this series with itself and
obtain

ool

1

N G Ao R

1 1 1 1
‘(%szwwﬁ)* |
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so that
n 1
=(-1) —_—
' =t )k=zo\/(n—k+1)(k+l)
Since ) , ) L, ’ ,
(n—k+1)(k+1)=(5+1) _(E_k) S(E_H) .
we have '

so that the condition ¢, — 0, which is necessary for the convergence of Zc,, is
not satisfied.

In view of the next theorem, due to Mertens, we note that we have here
considered the product of two nonabsolutely convergent series.

350 Theorem Suppose

(a) . a, converges absolutely,
n=0

®) Y a,=4,
n=0
(¢) ) b,=B,
n=0
(d) cx=> ayb,_, n=0,1,2,..).
Pere)
Then
> ¢, = AB.
n=0

That is, the product of two convergent series converges, and to the right
value, if at least one of the two series converges absolutely.

Proof Put
An:zak’ Bn:zbk’ Cn=zck5 ﬂn=Bn_B-
k=0 k=0 ) k=0
Then

Co=aoby + (aphy + aybo) + -+ + (ag b, + ayby—y + *** + a,by)
=ayB,+a;B,_1+ -+ a,B,
=ao(B + B,) + ay(B + Bu-1) +*** + a(B + Bo)
=A,B + apf, + aif-1 + " + a4



NUMERICAL SEQUENCESAND SERIES 75

Put
Y= aoﬂn o alﬁn—l + 4+ anﬁo'

We wish to show that C, — AB. Since A, B — AB, it auffices to
show that

@n limy,=0.

n=+o

Put

[Itisherethat weuse (@).] Let e >0 begiven. By (c), B, = 0. Hencewe
can choose N such that |g,| 1 ¢ for » = N, in which case

Keeping N fixed, and letting » — co, we get

limsup |7.] < ea,

n—o

sncea, =0 ask - o0, Sincee isarbitrary, (21) follows.

Another question which may be asked is whether the series Ze,, if con-
vergent, must have the sum AB. Abel showed that the answer-is in the affirma-
tive.

351 Theorem If the series Za,, Zb,, Zc, converge to A, B, C, and
¢, =aob,+ -+ +a,by, then C = AB.

Here no assumption is made concerning absol ute convergence. We shall
give a simple proof (which depends on the continuity of power series) after
Theorem 8.2.

REARRANGEMENTS

352 Ddfinition Let {k,},n=1,2,3,..., be a sequence in which every
positive integer appears once and only once (that is, {k,} is a 1-1 function from
Jonto J, in the notation of Definition 2.2). Putting

we say that Za;, is a rearrangement of Xa,.
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If {s,}, {s,} are the sequences of partial sums of Za,, Za,, it is easily seen
that, in general, these two sequences consist of entirely different numbers.
We are thus led to the problem of determining under what conditions all
rearrangements of a convergent series will converge and whether the sums are
necessarily the same.

3.53 Example Consider the convergent series

(22) I EE T R

and one of its rearrangements

23) I+3—f+4+d—d+d+dr-d+

in which two positive terms are always followed by one negative. If s is the
sum of (22), then

s<l—3+4i=23.

Since
! + ! ! >0
4k —3 4k —1 2k
for k > 1, we see that s < §g < s§5 <---, where s, {s nth partial sum of (23).
Hence

lim sup s, > 53 = 2,

n—ow

so that (23) certainly does not converge to s [we leave it to the reader to verify
that (23) does, however, converge].
This example illustrates the following theorem, due to Riemann.

3.54 Theorem Let Za, be a series of real numbers which converges, but not
absolutely. Suppose
—w<a<sf<oo.

Then there exists a rearrangement Xa, with partial sums s, such that

(24) lim inf s, = «, lim sup s, = B.
n—+ 0 n—+ oG
Proof Let
nl T ay nl = Yn
=L, q:|a|—a (n=1,2,3,..).

P ) n P



(25)

NUMERICAL SEQUENCES AND SERIES 77

Then p,-g,=a, p,tq =lal,p,=0,q, 20. The series Zp,, g,
must both diverge.
For if both were convergent, then

X(p, +4,) = Z|a,]
would converge, contrary to hypothesis. Since

N N N N
zan=2([)n—qn)=2pn_zqn7
n=1 n=1 n=1 n=1

divergence of Xp, and convergence of Zg, (or vice versa) implies diver-
gence of Za,, again contrary to hypothesis.

Now let P, P,, P53, ... denote the nonnegative terms of Xa,, in the
order in which they occur, and let Q,, Q,, Qs, ... be the absolute values
of the negative terms of Za,, also in their original order.

The series £P,, CQ, differ from Zp,, Cq, only by zero terms, and
are therefore divergent.

We shall construct sequences {m,), {k,), such that the series

Pit 4P =01~ = QP+
P, = Gkt = = Qi 0,

which clearly is a rearrangement of Xa,, satisfies (24).

Choose real-valued sequences {a,), {f,} such that a, -, §,—p8,
o, < fB,, p; > 0.

Let m,, k, be the smallest integers such that

P, +...T P, >5,

Pt tpP, -0 - -0, <ay;
let m,, k, be the smallest integers such that
P+ 4P, -0~ =@t Pust+ o+ P> B,
++P, -Q, -...-Q, TP, t.. . TP, - 01y

._...—Qk2<a2;

and continue in this way. This is possible since ZP, and X, diverge.
If x,, y, denote the partial sums of (25) whose last terms are P, ,
— @y, then

lxn_ﬁn| SPm,.’ lyn_an,—<—an'

Since P, -0 and Q, —0 ash— 0, wesee that x, = f8,y, —a.
Finally, it is clear that no number less than a or greater than § can
be a subsequential limit of the partial sums of (25).
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355 Theorem IfZa,isa seriesof complex numbers which converges absolutely,
then every rearrangement of Za, converges, and they all converge to the same sum.

Proof Let Za, be a rearrangement, with partial sums s;. Given & > 0,
there exists an integer N such that m > n > N implies

26) Y i <.

Now choose p such that the integers 1, 2, ..., N are all contained in the
set ki, k3, ..., k, (we use the notation of Definition 3.52). Then if n > p,
the numbers a,, ..., a, will cancel in the difference s, —s,, so that

|s, —s.| <& by (26). Hence {s;} converges to the same sum as {s,}.

EXERCISES

1. Prove that convergence of {s,} impliesconvergence of {|s.|}. s the converse true?
2. Calculate lim (V #? 4+ n —n).

n-®

3. If S1 = \/i, and
Sn+1:‘\/2-‘k\/si,l (n:152,3a...|,

provethat {s.} converges, and that s, <2forn=1,23, ....
4. Find the upper and lower limits of the sequence {s.} defined by

Sam-1,

2 ]

1
51:0; Sam = 52m+1=§ ~%SZM-

5. For any two real sequences{a), {b,), prove that
limsup (g, + b,) < limsupa, * limsups,,

n-w

provided the sum on the right is not of the form « — o,
6. Investigate the behavior (convergence or divergence) of Za, if

(@ n,=Vn+1-—Vn;

) a :\/n+l~x"yn_

1
© ar=%n—-1)

da = for complex vaues of z.

I
|+ 27
7. Prove that the convergence of Za, impliesthe convergence of
Van,

n

x

Ll



10.

11.

12.
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. If Ca,, converges, and if {b) is monotonic and bounded, prove that Za,b. con-

verges.
. Find the radius of convergence of each of the following power series:
2"
(@) 2 n*z", ®) X557
2n n?
(0 X352 @ 232"

Suppose that the coefficients of the power series > a, z* areintegers, infinitely many
of which aredistinct from zero. Prove that the radius of convergence is at most 1.
Suppose a. >0, s, =a, t--. + a,, and Za, diverges.

(a) Prove that 3, 1—% diverges.
(b) Prove that
an 41 an 1k _ S~

o T >

SN +1 SN +k Sn+k

and deduce that Y’ 2 diverges.
Sn

(c) Prove that

a’l
and deduce that 3_ = converges.
Sn

(dj What can be said about

a,

n
: ?
z 1 + na., and Zl:F na.

Suppose a. >> 0 and Za, converges. Put

Yn = Zam
(a) Prove that
am a, Fn
—F et =>1—-—
Fin ¥n Frm

if m<n, and deduce that Zg'diverges.
¥

n
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(b) Prove that

an — [
\/7" < 2(\/"" — \/rn +1)
Qan
and deduce that Y /- converges.
r'l

13. Prove that the Cauchy product of two absolutely convergent series converges
absolutely.
14. If {s,} is a complex sequence, define its arithmetic means o, by
_SoF st A s _
Cn = ! (n=0,1,2,..)).
(a) If lim s, = s, prove that lirn o, =3s.
(b) Construct a sequence {s} which does not converge, although lirn a. =0.
(¢) Canithappen that s, > 0forall nand that lirn sup s, = w0, although lirn ¢, = 0?
(d) Put & = s — s.-1, for 2> 1. Show that
1 n

n+1 xz=:1kak )

Sn— Op =

Assume that lim (na,) =0 and that {c.} converges. Prove that {s.} converges.
[This gives a converse of (a),but under the additional assumption that na,— 0.]
(e) Derive the last conclusion from a weaker hypothesis: Assume M < oo,
| na,| <M for al n,and lirn o, =0. Prove that lirn s, =a, by completing the
following outline:

If m <1 then

S,,—a.:m+1(a.—am)+ 1 i (sn—sl)-
n—m H— M =m+1
For thesei,
50— 51| g(n—t)M<(n—m—1)M'

i+1 = m+2

Fix ¢ >0 and associate with each »n the integer m that satisfies

<T78 mt
m_1+£ m ’

Then (m -+ 1)/{(n —m) | 1/e¢and |s. — s;] <MEe. Hence

lim sup|s, — o| < Me.

Since ¢ was arbitrary, lirn s, = a.
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Definition 3.21 can be extended to the case in which the a lie in some fixed R~
Absolute convergence is defined as convergence of X|a |. Show that Theorems
3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 are true in this more
general setting. (Only slight modifications are required in any of the proofs.)

Fix a positive number a. Choose x, > V«, and define x», X3, Xs, ..., by the

recursion formula
1 o
Xn+1 =< | Xn + ol I
2 Xn

(a) Prove that {x,) decreases monotonically and that lim x, = V.
(b) Put &, = x, — Vo, and show that
¢ &

Eno1 =5 <=
i 2Xn 2V«

so that, setting 8 =2V a,

&1

8h+1<[8(8) n=1,2,3,...).

(c) This is a good algorithm for computing square roots. since the recursion
formula is simple and the convergence is extremely rapid. For example, if a=3

and x, =2, show that &,/8 < 45 and that therefore

£s <4.10718, g6 < 4.10732,

Fix a>1. Take x;, > Va, and define

2
o« + Xn o — Xy,

T+x " T11x

Xnt1 =

(@) Provethat x, >x3;>xs3 ..

(b) Provethat x, <x. x5 < ....

(c) Provethat lim x, = Va.

(d) Compare the rapidity of convergence of this process with the one described
in Exercise 16.

Replace the recursion formula of Exercise 16 by

p—1

-Xn+1: -Xn{“g-xn_'J+l
p
where p is a fixed positive integer, and describe the behavior of the resulting
sequences {x.}.
Associate to each sequence a = {«,}, in which a,, is 0 or 2, the real number
o0 on

x@y=% T

n=1

Prove that the set of all x(a) is precisely the Cantor set described in Sec. 2.44.
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. Suppose {p.) is a Cauchy sequence in a metric gpace X, and some subsequence
{p~} cOnvergesto a point ps X. Prove that the full sequence {p.} convergesto p.
Prove the followinganalogue of Theorem 3.10(b): | f {E,} is a sequence of dosed
nonempty and bounded setsin a complete metric space X, if Ex @ E, 4y, and if

limdiamE, =0,

n—w

then ( ¥ E. consists of exactly one point.

Suppose X is a nonempty complete metric space, and {G.} is a sequence of
dense open subsets of X. Prove Baires theorem, namely, that NG, is not
empty. (In fact, it I dense in X.) Hint: Find a shrinking sequence of neighbor-
hoods E. such that E, = G., and apply Exercise 21.

Suppose{p.) and {q,) are Cauchy sequencesin a metric space X. Show that the
sequence {d(p., g.)} converges. Hint: For any m, n,

d(Pr, qn) < A(Pu, Pr) + d(Pm,qm) + d(Gn , 4n);
it followsthat
|d(Pns Gn) — d(Pm s )|
issall ifm and n are large.
Let X be a metric space.
(a) Call two Cauchy sequences{p.), {g.) in Xequivalentif

lim d(px, g») = 0.

n—w

Prove that thisis an equivalencerelation.
(b) Lt X* be the s of al equivalence classes 0 obtained. |f Pe X*, Q= X*,
{p.} € P, {g.} € Q, define

Ao

by Exercise 23, this limit exists. Show that the number A(P, Q)is unchanged if
{p=} and {qg)) are replaced by equivalent sequences, and hence that Ais a distance
functionin X*.

(c) Provethat the resulting metric space X* is complete.

(d) For each pe X, there is a Cauchy sequence dl of whose terms are p; let P,
be the element of X* which containsthis sequence. Prove that

A(PPyPll) —_-d(IJ,q)
fordl p,q= X. In other words, the mapping ¢ defined by ¢(p) = P, is an isometry
(i.e., a distance-preserving mapping) of X into X*.
(e) Provethat o(X)is densein X*,and that ¢(X) = X* if Xiscomplete. By (d),
we may identify X and ¢(X) and thus regard X as embedded in the complete
metric space X*. We call X* the completion of X.
Let X be the metric gpace whose points are the rational numbers, with the metric
d(x, y)=|x - y|. What is the completion of this space? (CompareExercise 24.)
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CONTINUITY

The function concept and some of the related terminology were introduced in
Definitions2.1and 2.2. Although weshall (in later chapters) be mainly interested
in real and complex functions (i.e., in functions whose values are real or complex
numbers) we shall also discuss vector-valued functions (i.e., functions with
valuesin R¥) and functions with valuesin an arbitrary metric space. The theo-
rems we shall discuss in this general setting would not become any easier if we
restricted ourselves to real functions, for instance, and it actually simplifiesand
clarifies the picture to discard unnecessary hypotheses and to state and prove
theorems in an appropriately general context.

The domains of definition of our functions will aso be metric spaces,
suitably specialized in various instances.

LIMITS OF FUNCTIONS

41 Definition Let X and Y be metric spaces; suppose E < X,f maps Einto
Y, and p is alimit point of E. We writef (x)—» ¢ asx - p, or

(1) limf (x) =¢

x-p
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if there is a point ge Y with the following property: For every ¢ > 0 there
existsa 6 > 0 such that

@ dy(f(x),9) < e

for al points x € E for which
3) 0 < dy(x, p) < 4.

The symbols dy and dy refer to the distancesin X and Y, respectively.

If X and/or Yare replaced by the real line, the complex plane, or by some
euclidean space R¥, the distances dy , d, are of course replaced by absolute values,
or by norms of differences (see Sec. 2.16).

It should be noted that pe X, but that p need not be a point of E
in the above definition. Moreover, even if pe E, we may very wel have
f(p) # lim, ., f (x).

We can recast this definition in terms of limits of sequences:

4.2 Theorem Let X, Y, E, f, and p be usin Definition 4.1. Then

) limf(x)=q
ifand only if
%) lim f (p,) =¢

n=w

for every sequence {p,} in E such that

(6) p#p,  limp,=p.
Proof Suppose (4) holds. Choose {p,} in E satisfying (6). Let ¢é>0
be given. Then there exists 6 >0 such that dy(f(x),q)<e if xeE
and 0 < dy(x, p) <6. Also, there exists N such that n >N implies
0 < dy(p.,p) <6. Thus, for n> N, we have dy(f(p,).q) <& Wwhich
shows that (5) holds.

Conversely, suppose (4) is false. Then there exigts some ¢ > 0 such
that for every 6 > 0 there exists a point x € E (depending on 8), for which
dy(f(x),q) = ¢ but 0 <dy(x, p)<6. Taking6, =1/a(n=1,2,3,...), we
thus find a sequence in E satisfying (6) for which (5) is false.

Corollary | ff hasa limit at p, this limit is unique.

This follows from Theorems 3.2(b) and 4.2.
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4.3 Definition Suppose we have two complex functions,f and g, both defined
on E. Byf + g we mean the function which assigns to each point x of E the
number f(x) + g(x). Similarly we define the differencef — g, the productfg,
and the quotient f/g of the two functions, with the understanding that the quo-
tient is defined only at those pointsx of E at which g(x) # 0. Iff assignstoeach
point x of E the same number c, thenf is said to be a constant function, or
simply a constant, and we writef =c. |ff and g are rea functions, and if
f(x) = g(x) for every x e E, we shall sometimes writef > g, for brevity.
Similarly, iff and g map Einto R, we definef + gand f, g by

f+8)(x) =1x)+ax)., (. 8K =1(x), gx);
and if A isareal number, (Af)(x) = AM(x).

44 Theorem Suppose E c X, a metric space, p isa limit point d E,f andg
are complexfunctions on E, and
limf (x) = A, lim g(x) = B.
xX—=p x—=p
Then (8) lim (f + g)(x)= A + B;
x->p
(b) lim (fg)(x) = AB;
x=p
A
(¢) lim (j:)(x) =—,if B#0.
x=p \g B
Proof In view of Theorem 4.2, these assertions follow immediately from
the analogous properties of sequences (Theorem 3.3).

Remark |1ff and g map Einto R, then (a) remains true, and (b) becomes
(©) lim (f-g)(x) =A"B.

x-p

(Compare Theorem 3.4.)

CONTINUOUS FUNCTIONS

45 Definition Suppose X and Y are metric spaces, E ¢ X, p € E, andf maps
Einto Y. Thenf is said to be continuous at p if for every ¢ > 0 there exists a
¢ > 0 such that

dy(f(x),f(p)) <&

for dl points x € E for which dx(x, p) <é.
Iff iscontinuous at every point of E, thenf issaid to be continuouson E.
It should be noted thatf has to be defined at the point p in order to be
continuous at p. (Compare this with the remark following Definition 4.1.)
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Ifpisanisolated point of E, then our definition impliesthat every function
f which has E as its domain of definition is continuous at p. For, no matter
which ¢ > 0 we choose, we can pick 6 > 0 so that the only point x € E for which
dy(x, p) < 6is x = p; then

dy(f(x), f(p)) =0 < &.

46 Theorem In the situation given in Definition 4.5, assume also that p is a
limit point of E. Then f is continuous at p if and only if lim,_,, f (X) =f(p).

Proof Thisis clear if we compare Definitions 4.1 and 4.5.

We now turn to compositions of functions. A brief statement of the
following theorem is that a continuous function of a continuous function is
continuous.

47 Theorem Suppose X, Y, Z are metric spaces, E = X, f maps Einto Y, g
maps the range off, f(E),into Z, and h is the mapping of E into Z defined by

W) —g(f()  (xeE).

I ffiscontinuous at a point pe E and ifg is continuous at the point (p), then his
continuous at p.

This function / is called the composition or the composite off and g. The
notation

h=g-of
is frequently used in this context.

Proof Let ¢>0 be given. Since g is continuous at f(p), there exists
» >0 such that

dz(9(»), g(f(p))) < eif dy(y, f(p)) <nand y e f(E).
Since f is continuous at p, there exists 6 > 0 such that
dy(f(x), f(p)) <n ifdy(x,p) < dand xe E.

It follows that

dz(h(x), W(p)) = d(9(f(x)), 9(f(P)) <&

if dy(x, p)<dJ and xe E. Thush is continuous at p.
48 Theorem A mapping f'of a metric space X into a metric space Y is con-
tinuous on X if and only iff~*(¥) isopenin X for every open set Vin Y.

(Inverseimages are defined in Definition 2.2.) Thisisa very useful charac-
terization of continuity.
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Proof Supposef iscontinuous on X and V isan open setin Y. We have
to show that every point off ~!(¥) is an interior point off ~1(V). So,
supposep € X and f(p) e V. Since V is open, there exists ¢ > 0 such that
ye V if dy(f(p), y) < ¢; and since f is continuous at p, there exists6 > 0
such that dy(f(x), f(p)) < e if dy(x, p)<6. Thus xef (V) as soon as
dy(x, p) < 6.

Conversely, suppose f “}(¥) isopen in X for every open set V in Y.
Fix pe Xand ¢ > 0, let V be theset of al ye Y such that dy{(y, f(p)) < ¢.
Then Vis open; hencef ~(¥) is open; hence there exists & > 0 such that
xef~Y(¥)as soon as dy(p, X) < 6. But if xe f ~"}(V), then f(x) eV, so

that dy(f(x), f(p)) < e.
This completes the proof.

Corollary A mapping f of a metric space X into a metric space Y is continuous if
and only i ff ~(C) isclosed in X for every closed set C in Y.

This follows from the theorem, since a set is closed if and only if its com-

plement is open, and sincef ~“'(E¢) = [ f"}(E)]° for every E < Y.

We now turn to complex-valued and vector-valued functions, and to

functions defined on subsets of R¥.

49 Theorem Let f and g be complex continuous functions on a metric space X.
Then f + g, fg, and f /g are continuous on X.

4.10

(7

In the last case, we must of course assume that g(x) # O, for dl x € X.
Proof At isolated pointsof X thereis nothing to prove. At limit points,
the statement follows from Theorems 4.4 and 4.6.

Theorem

(a) Letfi, ..., f, bereal functions on a metric space X, and let f be the
mapping of X into R* defined by

fx) =(fi(®), ..., ix)  (xe X);

thenf iscontinuousifandonly if each of thefunctionsf,, ..., f; iscontinuous.

() |ff and g are continuous mappings of X into R, thenf + gandf.g
are continuous on X.

The functions f;, ..., f; ae caled the components of f. Note that
f + gisa mapping into R*, whereasf . g is a real function on X.
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Proof Part (a) follows from the inequalities

k %
160 = 0] = 1) = 10| ={ X 1769 = )]

forj=1,..., k. Part (b) follows from (a) and Theorem 4.9.

411 Examples If x,, ..., x, are the coordinates of the point x € R, the
functions ¢, defined by
®) ¢x)=x; (xeRH
are continuous on R¥, since the inequality
| (%) — di(Y)| < [x—y]

shows that we may take § = ¢ in Definition 4.5. The functions ¢, are sometimes
called the coordinatefunctions.
Repeated application of Theorem 4.9 then shows that every monomial

&) DD NN 4

where #,, ..., n, are nonnegative integers, is continuous on R*. The same is
true of constant multiples of (9), since constants are evidently continuous. It
follows that every polynomia P, given by

(10) P(X) =Zc¢, .. X' ... Xk (x€RY,

iscontinuous on R*. Here the coefficientse, ..., arecomplex numbers, ny, ..., n,

are nonnegative integers, and the sum in (10) has finitely many terms.
Furthermore, every rational function in x,, ..., x,, that is, every quotient

of two polynomials of the form (10), is continuous on R* wherever the denomi-
nator is different from zero.
From the triangle inequality one sees easily that

(1n x| = lyl[<]| = (yeR). |

Hence the mapping x — | x| is a continuous rea function on R,

If now f is a continuous mapping from a metric space X into R¥, and if ¢
is defined on X by setting ¢(p) = |f(p)|, it follows, by Theorem 4.7, that ¢ isa
continuous real function on X.

412 Remark We defined the notion of continuity for functions defined on a
subset E of a metric space X. However, the complement of E in X plays no
role whatever in this definition (note that the situation was somewhat different
for limits of functions). Accordingly, we lose nothing of interest by discarding
the complement of the domain off. This means that we may just as well talk
only about continuous mappings of one metric space into another, rather than
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of mappings of subsets. This simplifiesstatements and proofs of some theorems.
We have already made use of this principle in Theorems 4.8 to 4.10, and will
continue to do so in the following section on compactness.

CONTINUITY AND COMPACTNESS

413 Definition A mapping f of a set E into R* is said to be bounded if there is
a real number M such that |f(x)| < M for all x e E.

414 Theorem Suppose f is a continuous mapping of a compact metric space
Xinto a metric space Y. Then f(X) is compact.

Proof Let {V,} be an open cover off (X). Since f iscontinuous, Theorem
4.8 shows that each of the sets f ~!(V,) is open. Since X is compact,

there are finitely many indices, say «,, ..., a,, such that
(12) Xcf-1(V,)u...uf (V).

Since f(f “!(E)) c E for every E c Y, (12)implies that
(13) f(X)ycV,,u...uVv, .

This completes the proof.

Note: We have used the relation f(f "{(E)) = E, vaid for Ec Y. If
E c X, then f ~'(f(E)) o E; equality need not hold in either case.
We shall now deduce some consequences of Theorem 4.14.

415 Theorem |ffisa continuous mapping of a compact metric space X into
R¥, then f(X) is closed and bounded. Thus, f is bounded.

This follows from Theorem 2.41. The result is particularly important
when f'is real:

416 Theorem Suppose f is a continuous real function on a compact metric
space X, and

(14) M= sup f(p), m= inf f(p).
pe peX
Then there exist points p, g € X such that f(p)= M and f(q)= m.

The notation in (14) means that M is the least upper bound of the set of
all numbersf(p),where p ranges over X, and that m is the greatest lower bound
of this set of numbers.
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The conclusion may also be stated as follows: There exist points p and q
in X such that f (q) < f(x) <f (p)for all xe X; that is, f attains its maximum
(at p) and its minimum (at q).

Proof By Theorem 4.15, f(X) is a closed and bounded set of real num-
bers; hencef (X) contains

M = supf (X) and m =inff (X)),
by Theorem 2.28.

417 Theorem Supposef is a continuous 1-1 mapping o a compact metric
space X onto a metric space Y. Then the inverse mappingf ~* dejinedon Y by

) =x  (xeX)

isa continuousmapping & Y onto X,

Proof Applying Theorem 4.8 to f~* in place off, we see that it suffices
to prove thatf (V) isan open set in Y for every open set Vin X. Fix such
aset V.

The complement V¢ of Vis closed in X, hence compact (Theorem
2.35); hencef(V°) is a compact subset of Y (Theorem 4.14) and so is
closed in Y (Theorem 2.34). Sincef is one-to-one and onto, f(¥V') is the
complement of f(V°). Hencef(V') is open.

4.18 Definition Letf bea mapping of a metric space X into a metric space Y.
We say thatf is uniformly continuouson X if for every ¢ > 0 there exists > 0
such that

(15) dy(f(p) f(@) <&

for al p and gin X for which dy(p, q) < 6.

Let us consider the differences between the concepts of continuity and of
uniform continuity. First, uniform continuity is a property of afunction on a
set, whereas continuity can be defined at a single point. To ask whether a given
function is uniformly continuous at a certain point is meaningless. Second, if
f is continuous on X, then it is possible to find, for each ¢ > 0 and for each
pointp of X, anumber 6 > 0 havingthe property specified in Definition 4.5. This
6 depends on ¢ and onp. Iff is, however, uniformly continuous on X, then it is
possible, for each ¢ > 0, to find one number 6 > 0 which will do for all points
p of X.

Evidently, every uniformly continuous function is continuous. That the
two concepts are equivalent on compact sets follows from the next theorem.
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419 Theorem Let f be a continuous mapping of a compact metric space X
into a metric space Y. Then f is uniformly continuous on X.

(16)

a7

(18)
(19)

(20)

Proof Let ¢ >0 be given. Since f is continuous, we can associate to
each point p e X a positive number ¢(p) such that

9 X, dy(p.q) < 9(p) implies dy(/(p), f@)) <5

Let J(p) be the set of al ge X for which

dy(p, q) < 3¢(p).

Since pe J(p), the collection of al sets J(p) is an open cover of X; and
since X is compact, there is a finite set of points p,, ..., p, in X, such that

XcJ(p)u " uJ(py).

5 = % min [d)(pl)» sy d)(pn)]

Then 6 > 0. (This is one point where the finiteness of the covering, in-
herent in the definition of compactness, is essential. The minimum of a
finite set of positive numbers is positive, whereas the inf of an infinite set
of positive numbers may very well be 0.)

Now let ¢ and p be points of X, such that d,(p, q) <6. By (18), there
isan integer m, 1 <m < n, such that peJ(p,,); hence

dy(p, prm) < 30(Py),

We put

and we also have
dX(q’ pm) S dX(p’ q) + dX(P’ pm) < 5 + %d)(pm) S d)(pm)
Finally, (16) shows that therefore

dy(f(0). /(@) < dy(f(2). S (£n)) + dy(f(@). [ (Pm)) < E.

This completes the proof.

An alternative proof is sketched in Exercise 10.
We now proceed to show that compactness is essential in the hypotheses

of Theorems 4.14, 4.15, 4.16, and 4.19.

420 Theorem Let E be a noncompact set in R!. Then

(a) there exists a continuous function on E which is not bounded;
(b) there exists a continuous and bounded ,function on E which has no
maxi mum.

I7, in addition, E is bounded, then
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(21

(22)

(23)

(¢) there exists a continuous function on E which is not uniformly
continuous.

Proof Suppose first that E is bounded, so that there exists a limit point
x, of E which is not a point of E. Consider

fx) =

X = % (x € E).
This is continuous on E (Theorem 4.9), but evidently unbounded. To see
that (21) is not uniformly continuous, let ¢ > 0 and 6 > 0 be arbitrary, and
choose a point x € E such that |x — x4| < 6. Taking t close enough to
X, we can then make the difference | f(t) —f (x)| greater than e, although
{t — x| < 6. Sincethisistruefor every 6 > 0, is not uniformly continu-
ous on E.

The function g given by
(xeE)

is continuous on E, and is bounded, since 0 < g(x) < 1. It is clear that

sup g(x) =1,
xeE
whereas g(x) < 1 for dl x € E. Thusg has no maximum on E.
Having proved the theorem for bounded sets E, let us now suppose
that E is unbounded. Then f(x) = x establishes (a), whereas

x2

h(x)=l+x2 (xe E)
establishes (b), since
sup Alx) =1
xeE

and A(x) < 1foral xe E.

Assertion (¢) would be false if boundedness were omitted from the
hypotheses. For, let E be the set of al integers. Then every function
defined on E is uniformly continuous on E. To see this, we need merely

take 6 < 1 in Definition 4.18.

We conclude this section by showing that compactness is also essential in

Theorem 4.17.
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4.21 Example Let X be the half-open interval [0, 2r) on the rea line, and
let f be the mapping of X onto thecircle Y consisting of al points whose distance
from the origin is 1, given by

4) f(1)=(cost,sint) (0 <t<2n).

The continuity of the trigonometric functions cosine and sine, as well as their
periodicity properties, will be established in Chap. 8. These results show that
f is a continuous 1-1 mapping of X onto Y.

However, the inverse mapping (which exists, since f is one-to-one and
onto) fails to be continuous at the point (1, 0) = f(0). Of course, Xis not com-
pact in this example. (It may be of interest to observe that f ! fails to be
continuous in spite of the fact that Y iscompact!)

CONTINUITY AND CONNECTEDNESS

422 Theorem If fisa continuous mapping d a metric space X into a metric
space Y, andf E isa connected subset d X, thenf (E) is connected.

Proof Assume, on the contrary, that f(E) =A v B, where A and B are
nonempty separated subsetsof Y. PutG =E nf “!(4),H =E nf ~'(B).

Then E= G u H, and neither G nor Hi s empty.

Since A c 4 (the closure of A), we have G cf ~!(4); thelatter setis
closed, sincef is continuous; hence G c f~'(4). It follows that £(G) c A.
Since f(H) =B and 4 ~n B is empty, we conclude that G ~ H is empty.

The same argument shows that G ~ H isempty. Thus G and H are
separated. Thisisimpossible if E is connected.

423 Theorem Letf be a continuous real function on the interval [a, b]. If
f (a) <f (b) and if ¢ is a number such that f (a) < c <f (b), then there exists a
point x € (a, b) such thatf (x) =c.

A similar result holds, of course, if f(a) > f(b). Roughly speaking, the
theorem says that a continuous real function assumes al intermediate values on
an interval.

Proof By Theorem 2.47, [a, b] is connected; hence Theorem 4.22 shows
that f([a, b]) is a connected subset of R', and the assertion follows if we
appea once more to Theorem 2.47.

4.24 Remark At first glance, it might seem that Theorem 4.23 has a converse.
That is, one might think that if for any two pointsx, < x, and for any number ¢
betweenf (x,) and f(x,) there is a point x in (x,, x,) such thatf (x) =c, thenf
must be continuous.

That this is not so may be concluded from Example 4.27(d).
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DISCONTINUITIES

If x isa point in the domain of definition of the functionf at whichf is not
continuous, we say thatf is discontinuous at x, or thatf has a discontinuity at x.
Iff is defined on an interval or on a segment, it is customary to divide discon-
tinuities into two types. Before giving this classification, we have to define the
right-hand and the left-hand limitsoff at x, which wedenote byf (x + ) andf (x—),
respectively.

4.25 Définition Letf be defined on (a, b). Consider any point x such that
a<x<b Wewrite

f(x+) =4

iff (t) - gasn— oo, for al sequences {z,} in (x, b) such that t, — x. To obtain
the definition of f(x—), for a < x < b, we restrict ourselves to sequences{t,) in
(a, x).

It is clear that any point x of (a, b), lim f(¢) exists if and only if

t—x

f(x+) =f(x=) = lim f(2).

1= x

4.26 Definition Letf be defined on (a, b). Iff is discontinuous at a point x,
and if f(x+) and f(x—) exist, then fis said to have a discontinuity of the first
kind, or a simple discontinuity, at x. Otherwise the discontinuity is said to be of
the second kind.

There are two ways in which a function can have a simple discontinuity:
either f(x+) # f(x—) [in which case the value f(x) isimmaterial], or f(x+) =
fx=)#/(x).

4.27 Examples
(@ Define

1 (x rational),
Jx) = {0 (x irrational).

Thent has a discontinuity of the second kind at every point x, since
neither f (x+) nor f(x—) exists.
(b) Define

_x (x rational),
f(")‘fo (x irrational ).
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Then fis continuous at x = 0 and has a discontinuity of the second
kind at every other point.

(¢) Define
x+2 (-3 <x< =2,
f)={(—-x-2 (-2<x<0),
x+2 O<x<]).

Then f has a simple discontinuity at x =0 and is continuous at
every other point of (=3, 1).
(d) Define

!
100 = sin . (x #0),
0 (x=0).

Since neither f(0+) nor f(0—) exists, f has a discontinuity of the
second kind at x =0. We have not yet shown that sin x is a continuous
function. If we assume this result for the moment, Theorem 4.7 implies
that f is continuous at every point x # 0.

MONOTONIC FUNCTIONS

We shall now study those functions which never decrease (or never increase) on
a given segment,

4.28 Definition Let f be real on (a, ). Then f is said to be monotonically
increasing on (a, b) if a < x < y < b implies f(x) < f(y). If the last inequality
is reversed, we obtain the definition of a monotonically decreasing function. The
class of monotonic functions consists of both the increasing and the decreasing
functions.

4.29 Theorem Let f be monotonically increasing on (a, b). Then f(x+) and
f(x—) exist at every point of x of (a, b). More precisely,

sup f(1) =f(x—) <f(x) <f(x+) = i(Itlibf(t)-

a<t<x

Furthermore, if a < x <y < b, then

fx+H) < f0-).

Analogous results evidently hold for monotonically decreasing functions.
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Proof By hypothesis, the set of numbersf(t) .wherea < t < x, is bounded
above by the number f(x), and therefore has a least upper bound which
we shall denote by A. Evidently A <f(x). We have to show that
A=f(x-).

Let ¢ > 0 be given. It follows from the definition of A as a least
upper bound that there exists 6 > 0 such that a< x — 6 < x and

27 A—e<f(x—-98) < A.
Since f is monotonic, we have
(28) fx—=¥8)<f(t)y< 4 (x—86<t<x).

Combining (27) and (28), we see that
f(1) -4l <e (x—d<t<x).

Hence f(x—) = A.
The second half of (25)is proved in precisely the same way.
Next, if a < x <y < b. we see from (25) that

(29) fx+)=inf £(t)= inf f(¢).
x<t<b x<t<y
The last equality is obtained by applying (25) to (a,y) in place of (a,b).
Similarly,
(30) f(y=) = sup f(t) = sup f(r).

a<t<y x<t<y

Comparison of (29)and (30) gives (26).
Corallary  Monotonic functions have no discontinuities of the second kind.

This corollary implies that every monotonic function is discontinuous at
a countable set of points at most. Instead of appealing to the general theorem
whose proof is sketched in Exercise 17, we give here a simple proof which is
applicable to monotonic functions.

430 Theorem Let f be monotonic on (a,b). Then the set of points of (a,b) at
which f is discontinuous is at most countable.

Proof Suppose, for the sake of definiteness, that f is increasing. and
let E be the set of pointsat which f is discontinuous.

With every point x of E we associate a rational humber r(x) such
that

flx=) <r(x) <flx+).
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Since x, <x, implies f(x;+) < f(x,—), we see that r(x,) # r(x,) if
X{ F X,

We have thus established a 1-1 correspondence between the set £ and
a subset of the set of rational numbers. The latter, as we know, is count-
able.

431 Remark It should be noted that the discontinuities of a monotonic
function need not be isolated. In fact, given any countable subset £ of (a, b).
which may even be dense, we can construct a function f, monotonic on (a, b),
discontinuous at every point of £, and at no other point of (a, b).

To show this: let the points of E bearranged in a sequence {x,},

n=1, 2, 3,.... Let {¢,} be a sequence of positive numbers such that Zc,
converges. Define
(3D S =3¢ (a<x<b).

x,<x

The summation is to be understood as follows: Sum over those indices n
for which x, < x. If there are no points x, to the left of x. the sum is empty;
following the usual convention, we define it to be zero. Since (31) converges
absolutely. the order in which the terms are arranged is immaterial .

We leave the verification of the following properties off to the reader:

(u) f is monotonically increasing on (a, b);
(b) f'is discontinuous at every point of E; in fact,

f(xn+) _f(xn_) =0y
(c) f iscontinuous at every other point of (a, b).

Moreover, it is not hard to see that f(x—) =f (x) at al points of (a, b). If
a function satisfies this condition, we say that f is continuousfrom the left. If
the summation in (31) were taken over al indices » for which x, < x, we would
have f(x+) = f(x) at every point of (a, b); that is, ¥ would be continuous from
the right.

Functions of this sort can also be defined by another method; for an
example we refer to Theorem 6.16.

INFINITE LIMITS AND LIMITS AT INFINITY

To enable us to operate in the extended real number system, we shall now
enlargethe scope of Definition 4.1, by reformulating it in terms of neighborhoods.

For any real number x, we have already defined a neighborhood of x to
be any segment (x — 6, X + 6).
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4.32 Definition For any real c, the set of real numbers x such that x > c is
called a neighborhood of + oo and iswritten (c, * ). Similarly, theset (- oo, )
is a neighborhood of — 0.

433 Definition Letf beareal function defined on E < R. We say that
f(t)y—-Aast—x,

where A and x are in the extended real number system, if for every neighborhood
U of A thereis a neighborhood V of x such that V n Eis not empty, and such
that f(r)e Uforal teV nE t#x.

A moment's consideration will show that this coincides with Definition
4.1 when A and x are real.

The analogue of Theorem 4.4 is till true, and the proof offers nothing
new. We state it, for the sake of completeness.

434 Theorem Letf andg be defined on E = R. Suppose

f(t)—> A4, g(t)—B ast— x.
Then

(@ f()y-4 implies 4" =A.
b (f+g)t)— A4+ B,
() (f9)t)— AB,
(d) (flg)t)— A/B,
provided the right membersd (b), (c), and (d) are dejined.
Note that o — 0, 0 - 00, oo/c0, 4/0 are not defined (see Definition 1.23).

EXERCISES
1 Supposef isa real function defined on R* which satisfies
tim [f(xF B) —F (x = B1=0

h=0

for every x € R!, Does thisimply thatf is continuous?
2. Iff isacontinuous mapping of a metric space X into a metric space Y, prove that

f(E) < f(E)

for every set E < X. (£ denotes the closure of E.) Show, by an example, that
f (E) can be a proper subset of fT_E)

3. Letf bea continuous real function on a metric space X. Let Z(f) (the zeroset off)
be the set of all p € X at which f(p) =0. Prove that Z(f) isclosed.

4. Letf and g be continuous mappings of a metric space X into a metric space Y,
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11

13.
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and let E be a dense subset of X. Prove that f(E) isdense in f(X). If g(p) =f(p)
for al p e E, prove that g(p) =f(p) for al p e X. (In other words, a continuous
mapping is determined by its values on a dense subset of its domain.)

. |ff isarea continuous function defined on a closed set E < R*, prove that there

exist continuous real functions g on R* such that g(x) =f(x) for al x € E. (Such
functions g are called continuous extensions off from E to R*'.) Show that the
result becomes false if the word "closed" is omitted. Extend the result to vector-
valued functions. Hint: Let the graph of g be a straight line on each of the seg-
ments which constitute the complement of E (compare Exercise 29, Chap. 2).
Theresult remains true if R* isreplaced by any metric space, but the proof is not
so simple.

. Iff'is defined on E, thegraph off istheset of points(x, f(x)), for x e E In partic-

ular, if Eisa set of real numbers, andf'is real-valued, the graph off is a subset of
the plane.

Suppose E is compact, and prove thar f is continuous on E if and only if
its graph is compact.

. If Ec X and iff isafunction defined on X, the restriction off to Eisthe function

g whose domain of definition is E, such that g(p) = f(p) for p € E. Definef and g
on R? by: f(0,0) =g(0,0) =0, f(x,y) =xp*/(x*F y*), g(x,y) = xp?/(x* T )
if (x,y) #(0,0). Prove that f is bounded on R?, that g is unbounded in every
neighborhood of (0, 0), and that f is nor continuous at (0, 0); nevertheless, the
restrictions of bothf and g to every straight line in R? are continuous!

. Letf'be areal uniformly continuous function on the bounded set Ein R!. Prove

thatf is bounded on E.
Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.

. Show that the requirement in the definition of uniform continuity can be rephrased

as follows, in terms of diameters of sets: T o every ¢ > 0 there exists a 6 > 0 such
that diam f(E) < ¢ for all E< X with diam E < é.

Complete the details of the following alternative proof of Theorem 4.19: Iff isnot
uniformly continuous, then for some ¢ > 0 there are sequences{p,), {g,) in X such
that dx(p.,q) — 0 but dv(f(p.), f(g.)) > . Use Theorem 2.37 to obtain a contra-
diction.

Supposef is a uniformly continuous mapping of a metric space X into a metric
space Y and prove that {f(x.)} is a Cauchy sequence in Y for every Cauchy se-

guence {x,.} in X. Usethisresult to give an alternative proof of the theorem stated
in Exercise 13.

. A uniformly continuousfunction of a uniformly continuous function is uniformly

continuous.

State this more precisely and proveit.
Let E be a dense subset of a metric space X, and letf'be a uniformly continuous
real function defined on E. Prove thatf has a continuous extension from £ to X
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14.

15.

16.

17.

18.

19.

(see Exercise 5 for terminology). (Uniqueness follows from Exercise 4.) Hint: For
each pe X and each positive integer n, let Vi(p) be the set of all g€ E with
d(p,q) < 1/n. Use Exercise 9 to show that the intersection of the closures of the
sets f(Vi(p)), f(V2(p)), ..., consists of a single point, say g(p), of R*. Prove that
the function g so defined on X is the desired extension of f.

Could the range space R! be replaced by R*? By any compact metric space?
By any complete metric space? By any metric space?
Let I =[0, 1] be the closed unit interval. Suppose fis a continuous mapping of
into I. Prove that f(x) = x for at least one x € I,
Call a mapping of X into Y open if f(V') is an open set in ¥ whenever V is an open
set in X.

Prove that every continuous open mapping of R* into R' is monotonic.
Let [x] denote the largest integer contained in x, that is, [x] is the integer such
that x — 1 < [x] < x; and let (x) = x — [x] denote the fractional part of x. What
discontinuities do the functions [x] and (x) have?
Let f be a real function defined on (a, b). Prove that the set of points at which f
has a simple discontinuity is at most countable. Hint: Let E be the set on which
f(x—) <f(x+). With each point x of E, associate a triple (p, g, r) of rational
numbers such that
(@) f(x—) <p <f(x+),
(b) a <q <t<ximplies f(t) <p,
(¢) x <t<r<bimplies f(t) > p.
The set of all such triples is countable. Show that each triple is associated with at
most one point of E. Deal similarly with the other possible types of simple dis-
continuities.
Every rational x can be written in the form x = m/n, where n > 0, and m and » are
integers without any common divisors. When x =0, we take n =1, Consider the
function f defined on R* by

(x irrational),

-9

Prove that fis continuous at every irrational point, and that fhas a simple discon-
tinuity at every rational point.
Suppose f is a real function with domain R' which has the intermediate value
property: If f(a) < c¢ < f(b), then f(x) = ¢ for some x between a and b.

Suppose also, for every rational r, that the set of all x with f(x) = r is closed.

Prove that fis continuous.

Hint: If x, — x0 but f(x,) >r > f(xo) for some r and all n, then f(t,) =r
for some t, between x, and x,; thus ¢, — xo. Find a contradiction. (N. J. Fine,
Amer. Math. Monthly, vol. 73, 1966, p. 782.)

0
fe=1{1
n
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If E is a nonempty subset of a metric space X, define the distance from x € X to E
by
pe(x) = inf d(x, z).
zeE

(a) Prove that pg(x) =0 if and only if x € E.
(b) Prove that pr is a uniformly continuous function on X, by showing that
lpe(x) — pe(y)| <d(x, )

forall xe X, ye X. ;

Hint: pe(x) <d(x, z) <d(x, y) + d(y, z), so that

pr(x) < d(x, ¥) + pe(y).

Suppose K and F are disjoint sets in a metric space X, K is compact, F is closed.
Prove that there exists 8 > 0 such that d(p,q) >8 if pe K, ge F. Hint: pris a
continuous positive function on K.

Show that the conclusion may fail for two disjoint closed sets if neither is

compact.
Let 4 and B be disjoint nonempty closed sets in a metric space X, and define

_ pa(p)
f(p) = AP+ p o) (pe X).

Show that fis a continuous function on X whose range lies in [0, 1], that f(p) =0
precisely on A and f(p) =1 precisely on B. This establishes a converse of Exercise
3: Every closed set A < X is Z(f) for some continuous real fon X. Setting

V=f104), W=/"31D,

show that ¥ and W are open and disjoint, and that A < V, B< W. (Thus pairs of
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets.
This property of metric spaces is called normality.)

A real-valued function f defined in (a, b) is said to be convex if

FQx+ 1= 0y) <AM(x) + A —=Nf)

whenever a < x <b, a <y <b, 0 <A<1. Prove that every convex function is
continuous. Prove that every increasing convex function of a convex function is
convex. (For example, if f'is convex, so is e”.)

If fis convex in (g, b) and if a < s <t <u < b, show that

SO —F6) _ )= f(5) _ [ =1 (1)

t—s = u—s  u—t

Assume that fis a continuous real function defined in (a, b) such that

f(x + y) PYICGR{6))

2 /7 2

for all x, y € (a, b). Prove that fis convex.
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25. If A = R* and B = R*, define A + B to be the set of all sums x +y with x € 4,

26.

y € B.
(a) If K is compact and C is closed in R*, prove that K+ C is closed.

Hint: Takez¢ K+ C, put F=z — C, the set of all z— y with ye C. Then
K and F are disjoint. Choose 6 as in Exercise 21. Show that the open ball with
center z and radius 8 does not intersect K + C.
(b) Let « be an irrational real number. Let C, be the set of all integers, let C, be
the set of all nax with n e C{. Show that C, and C, are closed subsets of R! whose
sum C, + C; is not closed, by showing that C; + C; is a countable dense subset
of R'.
Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y, let
g be a continuous one-to-one mapping of Y into Z, and put A(x)= g(f(x)) for
xe X

Prove that f is uniformly continuous if 4 is uniformly continuous.

Hint: g~! has compact domain g(Y), and f(x) = g~ *(h(x)).

Prove also that fis continuous if /4 is continuous.

Show (by modifying Example 4.21, or by finding a different example) that
the compactness of Y cannot be omitted from the hypotheses, even when X and
Z are compact.



S

DIFFERENTIATION

In this chapter we shall (except in the final section) confine our attention to real
functions defined on intervals or segments. This is not just a matter of con-
venience, since genuine differences appear when we pass from real functions to
vector-valued ones. Differentiation of functions defined on R* will be discussed
in Chap. 9.

THE DERIVATIVE OF A REAL FUNCTION

5.1 Definition Let f be defined (and real-valued) on [q, b]. For any x € [a, b]
form the quotient

1) ¢>(:)_f(’) =S ci<bizm,

—-x
and define
2) S'(x) = lim ¢(¢),

t—x
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provided this limit exists in accordance with Definition 4.1.

We thus associate with the function f a function f° whose domain
is the set of points x at which the limit (2) exists; /' is called the derivative
of f.

If /" is defined at a point x, we say that f is differentiable at x. If f' is
defined at every point of a set E < [a, b], we say that fis differentiable on E.

It is possible to consider right-hand and left-hand limits in (2); this leads
to the definition of right-hand and left-hand derivatives. In particular, at the
endpoints a and b, the derivative, if it exists, is a right-hand or left-hand deriva-
tive, respectively. We shall not, however, discuss one-sided derivatives in any
detail.

If f is defined on a segment (a, b) and if @ < x < b, then f'(x) is defined
by (1) and (2), as above. But f'(a) and f'(b) are not defined in this case.

5.2 Theorem Let fbe defined on [a, b]. If fis differentiable at a point x € [a, b],
then f is continuous at Xx.

Proof As ¢ - x, we have, by Theorem 4.4,

S(1) —f) =%-(t—x)af’(x)-0=o.

The converse of this theorem is not true. It is easy to construct continuous
functions which fail to be differentiable at isolated points. In Chap. 7 we shall
even become acquainted with a function which is continuous on the whole line
without being differentiable at any point!

5.3 Theorem Suppose f and g are defined on [a, b] and are differentiable at a
point x € [a, b]. Then f + g, fg, and f|g are differentiable at x, and

@ (f+9)®) =, +gx;
®) (f9)(x) =" (0g(x) + f(x)g'(x);

© (i ) ) = gx)f (x)z—g D))
g g°(x)

In (c), we assume of course that g(x) # 0.

Proof (a) is clear, by Theorem 4.4. Let 4 = fg. Then

h(t) = h(x) = f(OLg(t) — g(0)] + gLf () — f(9)).
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If we divide this by r — x and note that f(¢) — f(x) as t » x (Theorem 5.2),
(b) follows. Next, let & =f/g. Then

h@t) —h(x)_ 1 [g(x)f(t) -fx)
t—x g(t)g(x) t—x
Letting ¢t — x, and applying Theorems 4.4 and 5.2, we obtain (c).

fx)

g(t) — g(x)]
t—x |

5.4 Examples The derivative of any constant is clearly zero. If f is defined
by f(x) = x, then f'(x) = 1. Repeated application of (b) and (c) then shows that
x" is differentiable, and that its derivative is nx"~*, for any integer n (if n <0,
we have to restrict ourselves to x # 0). Thus every polynomial is differentiable,
and so is every rational function, except at the points where the denominator is
zero.

The following theorem is known as the “chain rule” for differentiation.
It deals with differentiation of composite functions and is probably the most
important theorem about derivatives. We shall meet more general versions of it
in Chap. 9.

5.5 Theorem Suppose f is continuous on [a, b), f'(x) exists at some point
x € [a, b, g is defined on an interval I which contains the range of f, and g is
differentiable at the point f(x). If

h(t) =g(f(1)) (a<t<b),

then h is differentiable at x, and

3 h(x) = g'(f(x)f'(x).

Proof Let y = f(x). By the definition of the derivative, we have
4 F() = f(x) = = 0)[f'(x) + u(®)].
) 9(s) — g(») = (s = lg'(y) + v(s)],

where te[a, b],sel,and u(t) >0ast— x,v(s) >0ass—>y. Lets=f(¢).
Using first (5) and then (4), we obtain

h(t) — h(x) = g(f (1)) — 9(f(x))
=[f(t) = /(0] [g'D) + v(s)]
=@ =x) ') +u@)] [gQ) + o]

or, if t # x,

[9') + v()] - I (%) + u(®)].

© h(t) - h(x)

t—x -
Letting ¢t —» x, we see that s — y, by the continuity of f, so that the right
side of (6) tends to g'(y)f’(x), which gives (3).
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5.6 Examples
(@) Let fbe defined by

1
™ £ = x sin o (x #0),

0 (x = 0).

Taking for granted that the derivative of sin x is cos x (we shall
discuss the trigonometric functions in Chap. 8), we can apply Theorems
5.3 and 5.5 whenever x # 0, and obtain

(®) f'(x) =sin L 1—cos ! (x #0).
x x x

At x =0, these theorems do not apply any longer, since 1/x is not defined
there, and we appeal directly to the definition: for ¢ # 0,

fO-fO_ 1
t

= sin
t—0

As t — 0, this does not tend to any limit, so that f'(0) does not exist.
(b) Let f be defined by

2ain )
©) Fo) = x* sin p (x#0),
0 (x =0),

As above, we obtain
! 1
(10) f'(x) = 2x sin — — cos — (x #0).
x x
At x = 0, we appeal to the definition, and obtain

’f(t) —fO)| _

tsin

1
; < | (t #£0);

letting ¢ — 0, we see that
(11) f0)=

Thus f is differentiable at all points x, but f* is not a continuous
function, since cos (1/x) in (10) does not tend to a limit as x = 0.
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MEAN VALUE THEOREMS

5.7 Definition Let f be a real function defined on a metric space X. We say
that f hasalocal maximum at a point pe X if there exists 6 > 0 such that f(q)l

f(p) for dl ge X with d(p, q) < 6.

Local minima are defined likewise.
Our next theorem is the basis of many applications of differentiation.

5.8 Theorem Let f be dgjined on [¢, b];iff has a local maximum at a point
x € (a,b),and i ff'(x)exists, then f’(x) = 0.

The analogous statement for local minima is of course also true.
Proof Choose 6 in accordance with Definition 5.7, so that

a<x—0<x<x+06<bh.
| fx— 6<t<x, then

SO -1 _

t—x

Letting 7 = x, we see that f'(x)=0.
If x<t<Xx+6,then

SO =10) _

t— x T 7

which shows that f'(x)1 0. Hencef'(x) =0.

59 Theorem |ff and g are continuous real functions on [a,b] which are
differentiable in (a,b), then there isa point x e (a,b) at which

[f(®) — f(@]g'x) = [9(b) — g(@)]f"(x).
Note that differentiability is not required at the endpoints.
Proof Put
h(t) = [f(B) — f@]g(t) - [9(b) — g@]f(t) (a<1<b).
Then h is continuous on [a,b] ,h is differentiable in (a,b), and
(12) h(a) = f(b)g(a) — f(a)g(b) = h(b).

To prove the theorem, we have to show that #’'(x) = 0 for some x e (a,b).
If h is constant, this holds for every x e (a,b). If A(t) > h(a) for
somet € (a,b),let x be a point on [a,b] at which h attains its maximum
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(Theorem 4.16). By (12), x € (a, b), and Theorem 5.8 showsthat 4'(x) = 0.
If h(t) < h(a) for some t € (a, b), the same argument applies if we choose
for x a point on [a, b] where h attains its minimum.

Thistheorem isoften called a generalized mean value theorenz; the following
special case is usualy referred to as ' the' mean value theorem:

5.10 Theorem Iffisa real continuous function on [a, b] which is differentiable
in (a, b), then there isapoint x € (a, b) at which

fb) —fla) = (b - a)f'(x).
Proof Take g(x) = x in Theorem 5.9.

5.11 Theorem Suppose f is differentiable in (a, b).

(@ I /'(x) 20 jorall xe(a b), then fis monotonically increasing.
(b) Iff'(x) =0 for al x e (a b), then fis constant.

(©) Iff'(x) =0 joral X e (a b), then fis monotonicaly decreasing.
Proof All conclusions can be read off from the equation

Jx2) =S(x) = (xz — %)/ (%),

which isvalid, for each pair of numbers x,, x, in (a, b), for some x between
x, and x,.

THE CONTINUITY OF DERIVATIVES

We have already seen [Example 5.6(b)] that a function f may have a derivative
/" which exists at every point, but is discontinuous at some point. However, not
every function is a derivative. In particular, derivatives which exist at every
point of an interval have one important property in common with functions
which are continuous on an interval: Intermediate values are assumed (compare
Theorem 4.23). The precise statement follows.

5.12 Theorem Suppose fisa real differentiable function on [a, b] and suppose
f'(@ <i<f'(b). Then there isapoint x € (a, b) such that f'(x) = 4.
A similar result holds of course if f'(a) > f'(b).
Proof Put g(¢) =f(t) — It. Then g'(a) < 0. so that g(,) < g(a) for some
tye(ah), and ¢g'(d) > 0, so that g(r,) < g(b) for some ¢, € (a, b). Hence

g attains its minimum on [a, b] (Theorem 4.16) at some point x such that
a<x < h. By Theorem 5.8, g'(x) = 0. Hencef'(x) =A.
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Corollary | ff is differentiable on [a,b],then f' cannot have any simple dis
continuities on [a,b] .

But /" may very well have discontinuities of the second kind.

L'HOSPITAL'S RULE

The following theorem isfrequently useful in the evaluation of limits.

5.13 Theorem Supposefandg arereal and differentiable in(a,b),and g'(x) # 0
for all x e (a,b), where —co <a<b< *+oo. Suppose

(13) m—»Aasx—»a.

If

(14) J(x)—=0 and g(x) >0 as x > a,

or if

(15) 9(x) - T oo asx—a,

then

(16) @AAasx—m.
g(x)

The analogous statement is of course also true if x — b, or if g(x) » — o0
in (15). Let us note that we now use the limit concept in the extended sense of
Definition 4.33.

Proof We first consider the case in which —o0 < A < +00. Choose a
real number g such that A < g, and then choose r such that A<r <q.
By (13) there isa point ¢ € (a,b) such that a < x < ¢ implies

7 & <r.
g'(x)
If a< X <y<e, then Theorem 59 shows that there is a point t € (X,Y)
such that
=/ _ @
18 ST L M ey
(%) a0 —90) g0
Suppose (14) holds. Letting x — a in (18), we see that

(19) ]:(—)}—)<r<q (a<y<o).

g
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Next, suppose (15) holds. Keeping y fixed in (18), we can choose
apoint ¢, € (a,y) such that g(x) > g(y) and g(x) > 0 if a < x < ¢,. Multi-
plying (18) by [g(x) _ g(»)])/g(x), we obtain

{x) g /)
20 { - < x <)
0 00 T e® g e
If we let x—a in (20). (15) shows that there is a point ¢, € {a, ¢,)
such that
2D f—(—x)<q (a <x <cy).
g(x)

Summing up, (19) and (21) show that for any g, subject only to the
condition A < g, thereis a point ¢, such that f(x)/g(x) < qif a< X <c,.

In the same manner, if —oo < A < *+co, and p is chosen so that
p < A, we can find a point ¢; such that

@
g(x)
and (16)follows from these two statements.

(22) (a <x <cy),

DERIVATIVES OF HIGHER ORDER

5.14 Definition [Iff hasaderivative f' onaninterval, and iff' isitself differen-
tiable, we denote the derivative off' by f” and call f” the second derivative off.
Continuing in this manner, we obtain functions

VA0 AP AR AN
each of which is the derivative of the preceding one. £ iscalled the nth deriva-
tive, or the derivative of order n, off.

Inorder for £ (x)to exist at a point x, /=" (1) must exist in a neighbor-
hood of x (or in a one-sided neighborhood, if x is an endpoint of the interval
on whichf is defined), and /"~ must be differentiable at x. Since /¢~ must
exist in a neighborhood of x, /"~ 2 must be differentiable in that neighborhood.

TAYLOR'S THEOREM

5.15 Theorem Suppose T is a real function on [a,b],n is a positive integer,
S is continuous on [a,b] f"(¢) exists for every | € (a,b). Let a, § be distinct
points of [a.b],and define

n— ‘f(k)(a)

(23) PO = 3

(t — o).
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Then there existsa point x between o and 8 such that

ARC))

n!

24) F(B)=PP) +

(B —a)

For n =1, thisis just the mean value theorem. In general, the theorem
shows that f can be approximated by a polynomial of degree » — 1, and that
(24)allows us to estimate the error, if we know bounds on |f™(x)|.

Proof Let M be the number defined by
(25) S(B) =P(P) + M(p — )
and put
(26) git)=f(t) - P(t) - M(t—a)" (a<t<b).

We have to show that n'M = f™(x) for some x between « and . By
(23)and (26),
@2n g"(e) =) —n'M (a<t<b).
Hence the proof will be complete if we can show that g'(x) = 0 for some
X between a and .
Since P¥(«) = f P(x) fork =0,....n — 1, we have
(28) go)=g@ =" =g""")=0

Our choice of M shows that ¢g(f) =0, so that g'(x;) =0 for some x,
between aand g, by the mean value theorem. Sinceg'(«) = 0, we conclude
similarly that g”(x,) = O for some x, between « and x,. After n steps we
arrive at the conclusion that ¢g*”(x,) = O for some x, between « and x,_;,
that is, between x and j.

DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

516 Remarks Definition 5.1 applies without any change to complex functions
f defined on [a,b],and Theorems 5.2 and 5.3, as well as their proofs, remain
valid. |ff,and f, arethe real and imaginary parts of £, that is, if

J(@) = £/1(t) + if2(1)

for a< t < b, wheref;(¢) and f,(¢) are real, then we clearly have
(29) S0 =fi(%) + if;(x);
also, f is differentiable at x if and only if both f; and f, are differentiable at x.
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Passing to vector-valued functions in general, i.e., to functions f which
map [a, b] into some R*, we may still apply Definition 5.1 to define f'(x). The
term ¢(¢) in (1) is now, for each t, a point in R, and the limit in (2) is taken with
respect to the norm of R¢. In other words, f'(x) is that point of R* (if thereis
one) for which

f(z) — £
(30) lim () fit) = fx) f@ﬁ:q
t—Xx — X
and f' is again a function with values in R
Iff,, ..., fy are the components of f, as defined in Theorem 4.10, then
(31 ' =1L £,
and f is differentiable at a point x if and only if each of the functionsf, ..., f

is differentiable at x.

Theorem 5.2 is true in this context as well, and so is Theorem 5.3(a) and
(b), iffg is replaced by the inner product f - g (see Definition 4.3).

When we turn to the mean value theorem, however, and to one of its
consequences, namely, L’Hospital’s rule, the situation changes. The next two
examples will show that each of these results fails to be true for complex-valued
functions.

5.17 Example Define, for rea x,
(32) f(x) =€e*=cosx tisinx.

(The last expression may be taken as the definition of the complex exponential
e™*; see Chap. 8 for a full discussion of these functions.) Then

(33) f@r) —f0)=1-1=0,
but
(34) S =

so that [f'(x)| =1 for al real x.
Thus Theorem 5.10 fails to hold in this case.

5.18 Example On the segment (0, 1), definef (x) = x and

(35) g(x) = x T x2e!**,
Since |e'*| =1 for all red t, we see that
(36) tim £

x=0 g(x)
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Next,
(37) g =1+ {zx - %} d 0<x<l),
so that

2[\ 2
(38) g z2x——|-1=2=-—1.

X X
Hence

S(x) 1 x
39 =
) gx| g 2-x
and so
(40) fim L&) _ g,
x=09 (x)

By (36) and (40), L’Hospital’s rule fails in this case. Note also that g'(x) #0
on (0, 1), by (38).

However, there is a consequence of the mean value theorem which, for
purposes of applications, is almost as useful as Theorem 5.10, and which re-
mains true for vector-valued functions: From Theorem 5.10 it follows that

(41) /) = f(@)] < (b-a) sup |f(x)]

a<x<

519 Theorem Suppose f is a continuous mapping of [a.b] into R* and f is
differentiable in (a, b). Then there exists x € (a,b) such that

() - fla)| < (b — a)|f'(x)|.
Proof' Put z = f(b) — f(a). and define
oty =1z 1(¢) (@a<r<b).

Then ¢ is a real-valued continuous function on [a,b]which isdifferentia-
blein (a,b). The mean value theorem shows therefore that

o(b) — @) = (b — a)p'(x) = (b — a)z - (%)
for some x € (a,b). On the other hand,
ob) — @)=z f(b) —z*fa) =z -2 = |z]|°.
The Schwarz inequality now gives
2] = (b — )|z £(x)| < (b — a)z| [F(0)]

Hence |z| < (b - a)|f'(x)], which is the desired conclusion

1V, P. Havin translated the second edition of this book into Russian and added this
proof to the original one.
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EXERCISES
1. Let f be defined for all real x, and suppose that

[f(x) =) <(x—y»)?
for al real x and y. Prove that f is constant.
2. Suppose f'(x) >0in(a,b). Provethat fisstrictly increasing in (a,b),and let g be
its inverse function. Prove that g is differentiable, and that

g(f(x) = (a< x <h).

) ( )

3. Supposeg is a real function on R*, with bounded derivative (say |g’| <M). Fix
£ >0, and define f(x) = x + eg(x). Provethat fisone-to-one if ¢ issmall enough.
(A set of admissible values of ¢ can be determined which depends only on M.)

4. If

C..-1+ C,
n n+1

c
Cot 3+t =0,

where Co, ..., C, arereal constants, prove that the equation
Co+Cix+ 4+ Coox" '+ Cox"=0

has at least one real root between 0 and 1.
5. Suppose f isdefined and differentiablefor every x >0, and f'(x) - 0 as x — + w0,
Put g(x) :f(x+ 1) — f(x). Provethat g(x) -0 asx — -+ oo.
6. Suppose
(a) fiscontinuousfor x >0,
(b) f"(x) existsfor x>0,

(c) f(0) =0,
(d)f' is monotonically increasing.
Put

BpACY
‘-X

9(x) (x>0)

and prove that g is monotonically increasing.
7. Suppose f'(x),g'(x) exist, g'(x) # 0, and f(x) = g(x) =0. Prove that

iSO _f®
2 g(t) g %)
(This holds also for complex functions.)

8. Suppose f' is continuous on [a,b] and ¢ > 0. Prove that there exists 8 > 0 such
that

SO —fx)

t—x

— fix)| <e



10.

12.

14.

15.
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whenever 0<|t— x| <6, a<x<b, a<r<b. (This could be expressed by
saying that fis uniformly differentiableon [a,b] if f/* iscontinuouson [a,b].) Does
this hold for vector-valued functions too?

. Let £ be a continuous real function on R!, of which it is known that f'(x) exists

for al x # 0 and that f’(x) - 3 as x — 0. Does it follow that f'(0) exists?
Supposefand g are complex differentiable functionson (0, 1), f(x) = 0, g(x) — 0,
S (X) = A, g'(x) -Basx — 0, where A and Barecomplex numbers, B # 0. Prove
that

@ _4

x»09g(x) B
Compare with Example 5.18. Hint:

SO [fx) ] x x
=4 —— 4 ——.
d® x 7 g7 g
Apply Theorem 5.13 to the real and imaginary parts of f(x)/x and g(x)/x.
Suppose f is defined in a neighborhood of x, and suppose f”(x) exists. Show that

lim £ k) + f(

X
20 h?

_h) = 2f(x) =f”(x).

Show by an example that the limit may exist even if f”(x) does not.

Hint: Use Theorem 5.13.
If f(x) =]x]| 3 compute f’(x), f"(x) for al real x, and show that f**(0) does not
exist.

. Suppose a and c are real numbers, ¢>0, and fis defined on [—1, 1] by

(xesin(|x|5  (if x#0),
T =i, (if x=0).

Prove the following statements:

(a) fiscontinuousif and only if a>0.

(b) £7(0) existsif and only if a> 1.

(c) f” isbounded if and only if a=>1-+c.

(d) f iscontinuous if and only if a>1+c.

(e)f7(0) exists if and only if a> 2+ c.

(f)/” is bounded if and only if a>2+ 2c.

(g)f" iscontinuousif and only if a> 2+ 2.

Let f be a differentiable real function defined in (a,b). Prove that f is convex if
and only iff" is monotonically increasing. Assume next that f“(x) exists for
every x € (a,b),and provethat fisconvex if and only if f"(x) >0 for al x € (a,b).
Suppose a € R, fisatwice-differentiable real function on(a, ), and M., M., M,
are the least upper bounds of |f(x)[, |/ (X)|, |/"(x)|, respectively, on (a, ).
Prove that

M? <4M.M.,.
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Hint: If h>0, Taylor's theorem shows that
1
f(x)= o Lf(x + 2h) — f()]— B " (©)
for some ¢ € (x, x+ 2h). Hence

M,
£ <A+ =2,

To show that M? =4M, M, can actually happen, take a = — 1, define
2x*—1 (=1 <x<0),

S =1{x2—1
x*+1

0 <x <),

and show that Mo =1, M, =4, M, =4.
Does M} < 4My M, hold for vector-valued functions too?
16. Suppose f is twice-differentiable on (0, &) f” is bounded on (0, =), and f(x) =0
as x - ¢, Provethat f'(x) -0 as x — .
Hint: Let a — o in Exercise 15.
17. Supposefis a real, three times differentiable function on [—1, 1], such that

f(=1)=0, fO=0, f)=1, [fO)=
Prove that f (x) > 3 for some x € (— 1, 1).
Note that equality holds for 4(x* + x?).

Hint: Use Theorem 5.15, with a=0 and 8 = -+ 1, to show that there exist
s€(0,1)and t (-1, 0) such that

fOs) T o) =6,

18. Suppose f is areal function on [a, b],# is a positive integer, and /=" exists for
every t € [a,b]. Let a, 8, and Pbe asin Taylor's theorem (5.15). Define

f(t) f)—fB)

o) = =B

for t € [a,b] ,# # B, differentiate
FO —fB) = _POw)
n— 1ltimesat ¢t = a, and derive the following version of Taylor's theorem:
1 —P®) + T g - ay.
19. Suppose / is defined in (—1,1) and f’(0) exists. Suppose —1 <a, < . <1,

a, —»0,and B8, -0 asn — . Define the difference quotients

SB) — flo)

D, =
IB"_aﬂ
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Prove the following statements:

(@) If a, <0< B,, thenlirn D, =f'(0).

(b) If 0 <a < B, and {8./(B. — &)} is bounded, then lirn D, =f "(0).
(c) Iff" iscontinuousin (=1, 1), then lirn D, = £7(0).

Give an example in which f'is differentiable in (=1, 1) (butf " is not contin-
uousat 0) and in which a,, 8. tend to 0 in suchaway that lim D, exists but isdiffer-
ent from f7(0).

Formulate and prove an inequality which follows from Taylor's theorem and
which remains valid for vector-valued functions.

Let E be a closed subset of R.  We saw in Exercise 22, Chap. 4, that there is a
real continuousfunctionf on R* whose zero set isE. Isit possible, for each closed
set E, to find such an f which is differentiable on R, or one which is » times
differentiable, or even one which has derivatives of al orderson R!?

Supposef is a rea function on (—cc, «¢). Call x a fixed point off if f(x) =x.

(a) Iff isdifferentiableand f'(¢) # 1 for every rea t, provethatf has at most one
fixed point.

(b) Show that the functionf defined by

SOy =t+(1+e)!

has no fixed point, although 0 < f(t) < 1 for all rea t.

(c) However, if thereisa constant A < 1 such that |f'(f)| < A for al real ¢, prove
that a fixed point x off exists, and that x = lirn x,, where x, is an arbitrary real
number and

Xnt1 :f(xn)

forn=1,2,3....
(d) Show that the process described in (c) can be visualized by the zig-zag path

(x1, x2) = (x2, x2) = (x2, X3) = (X3, X3) = (X3, Xa) =
The function f defined by

x34+1
3

Sx) =

has three fixed points, say a, 8, y, where
—2<o<—1, 0<pB<l, 1<y <2

For arbitrarily chosen x,, define {x,} by setting x.+, = f(x,).
(@) If x; < a, prove that x, > — asn — .

(b) If « <x, <4y, provethat x, > asn — .

(¢) If v <x,, provethat x, — + 5 asn — .

Thus 2 can belocated by this method, but a and v cannot.
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24,

25.

The process described in part (c) of Exercise 22 can of course also be applied to
functions that map (0, =) to (0, ).
Fix somea > 1, and put

o+ x
14 x°

fx)= ;(x + ;—:) g(x) =

Both f and g have vV« as their only fixed point in (0,20). Try to explain, on the
basis of properties of f and g, why the convergence in Exercise 16, Chap. 3, is so
much more rapid than it isin Exercise 17. (Comparef’ and g', draw the zig-zags
suggested in Exercise 22.)

Do the samewhen 0 < a < 1.
Suppose f is twice differentiable on [a,b],f(a) <0, f(b) >0, f'(x) >8>0, and
0<f"(X)<M for al xe[ab]. Let £ be the unique point in (a,b) at which
f(¢)=0.

Complete the details in the following outline of Newtorn’s method for com-
puting £.
(a) Choose x; € (5,b),and define {x.} by

_ S
f(xn)
Interpret this geometrically, in terms of a tangent to the graph off.
(b) Prove that x,,: < x, and that

Xn41 = Xp

limx, =¢£.

n—x

(c) Use Taylor's theorem to show that

Sty
2f"(xn)

xn+l_£: (-xn_é‘:)z
for some ¢, € (¢, X,).
(d) If A= M/25, deduce that

0<iXn4— §£% [A(x, — 617"

(Compare with Exercises 16 and 18, Chap. 3.)
(e) Show that Newton's method amounts to finding a fixed point of the function
g defined by
Sf(x)
X)=x——.
g(x) 700
How does g' (x)behavefor x near £?
(f)Put f(x) =x""?on (— o, ) and try Newton's method. What happens?
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Suppose f is differentiable on [a,b],f(a) =0, and there is a real number A such
that [f'(x)| < A|f(x) on [a,b]. Prove that f(x)=0 for all x € [a,p]. Hint: Fix
Xo € [a,b] ,let

Mo =sup| f(x)|, M, =sup|f'(x)
fora<<x<x,. Forany such x,

|f(0)] < Mi(xo — a)< A(xo — a)M,.
Hence Mo =0 if A(xo —a)<1. That is, f=0 on [a,xc]. Proceed.
Let ¢ beareal function defined on a rectangle R in the plane, given by a<< x < b,
a |l yl B. A solution of the initial-value problem

yV=éxy, ya=c (@lc<p
is, by definition, a differentiablefunction f on [a,b]such that f(a) =c,a | f(x) <8,
and
f(x) =d(x, f(x)) (@<x<bh).

Prove that such a problem has at most one solution if there is a constant A such

that
[$(x, y2) = d(x, y1)| < A|yz— yi]
whenever (x, ;) € Rand (x,y2) € R
Hint: Apply Exercise 26 to the difference of two solutions. Note that this
uniqueness theorem does not hold for the initial-value problem

y =y y0) =0,
which has two solutions: f(x) =0 and f(x) = x*/4. Find al other solutions.

Formulate and prove an analogous uniqueness theorem for systems of differential
equations of theform

y.’/:(ﬁj(x’yla"‘sykx yj(a):C.f (jzla""k)‘
Noie that thiscan be rewritten in the form
Y=4¢(y), ya=c

where y =(»1, ..., ¥x) ranges over a k-cell, ¢ is the mapping of a (k + 1)-cell
into the Euclidean k-space whose components are the functions ¢, ..., ¢éx, and ¢
is the vector (c,,..., ¢). Use Exercise 26, for vector-valued functions.
Specialize Exercise 28 by considering the system

yJI=y1+l (j=19-~-,k_1)7
k
Ye=f(x)— ,; [ 263:78
where f, g1, ..., g« @re continuous real functionson [a,b] ,and derive a uniqueness
theorem for solutions of the equation
YO £ gy 4 4 g0y + gy = f(X),
subject to initial conditions

ya)=ec, Yy =ca, S A )
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THE RIEMANN-STIELTJES INTEGRAL

The present chapter is based on a definition of the Riemann integral which
depends very explicitly on the order structure of the rea line. Accordingly,
we begin by discussing integration of real-valued functions on intervals. Ex-
tensions to complex- and vector-valued functions on intervals follow in later
sections. Integration over sets other than intervals is discussed in Chaps. 10
and 11.

DEFINITION AND EXISTENCE OF THE INTEGRAL

6.1 Definition Let [a,b] be a given interval. By a partition P of [a,b] we
mean a finite set of points x¢, x4, ..., X,, Where

a=Xxg<x, < <X, <x,=b.

We write
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Now suppose f is a bounded real function defined on [a,b]. Corresponding to
each partition P of [a,b] we put

M; = sup f(x) (i1 T x <Xy,
m; = inf f(x) (xi-y S x <),

U(P,f)'——ZM,-AX,-,
i=1

L(P.f) = imiAxn
i=1

and finally

1 [ rax = inf U(P, 1),
b

@) | fdx=sup L(P. ),

where the inf and the sup are taken over al partitions P of [a b]. The left
members of (1) and (2) are called the upper and lower Riemann integrals of f
over [a,b],respectively.

If the upper and lower integrals are equal, we say that f is Riemann-
integrable on [a,b], we write fe # (that is, # denotes the set of Riemann-
integrable functions), and we denote the common value of (1) and (2) by

6 [ rax,
or by

b
(4) j f(x) dx.

This is the Riemann integral of f over [a,b]. Sincef is bounded, there
exist two numbers, m and M, such that

m<fx)<M (a<x<b).
Hence, for every P,
m(b—a)< L(P.f) < UPf) < M(b- a),

so that the numbers Z(P,f ) and U(P, ) form a bounded set. This shows that
the upper and lower integrals are defined for every bounded function f. The
question of their equality, and hence the question of the integrability off, isa
more delicateone. Instead of investigating it separately for the Riemann integral,
we shall immediately consider a more general situation.
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6.2 Definition Let a be a monotonically increasing function on [a, b] (since
a(a) and a(b) arefinite, it followsthat « is bounded on [a, ]). Corresponding to
each partition P of [a, b], we write

Aa; = axy) — a(x;—q).

It is clear that Ax; > 0. For any real functionf which is bounded on [a, b]
we put

U, fia)= Y M, Ax,,
i=1

L(P.f,0) = ) m;Aa;,
i=1
where M;, n1; have the same meaning as in Definition 6.1, and we define

b
) [ fdu=inf UP, £, ),

b
©) [ fda = sup L(P, £, ),

the inf and sup again being taken over al partitions.

If the left members of (5) and (6) are equal, we denote their common
value by

% [[ rae

or sometimes by

b
® [ 760) dat.

This is the Riemann-Stieltjes integral (or simply the Stieltjes integral) of
T with respect to «, over [a, b].

If (7) exidts, i.e., if (5) and (6) are equal, we say thatf is integrable with
respect to a, in the Riemann sense, and writef e %#(«).

By taking «(x) = x, the Riemann integral is seen to be a special case of
the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the
general case « need not even be continuous.

A few words should be said about the notation. We prefer (7) to (8), since
the letter x which appears in (8) adds nothing to the content of (7). Tt isim-
material which letter we use to represent the so-called ** variable of integration."'
For instance, (8) is the same as

[ 10) da),
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The integral depends on f, a, a and b, but not on the variable of integration,
which may as well be omitted.

The role played by the variable of integration is quite analogous to that
of the index of summation: The two symbols

n n
Y e, Y
i=1 k=1

mean the same thing, sinceeach meansc¢, ¢, + ... t¢,.

Of course, no harm is done by inserting the variable of integration, and
in many cases it is actually convenient to do so.

We shall now investigate the existence of the integral (7). Without saying
so every time, f will be assumed real and bounded, and « monotonically increas-

ing on [a,b] ;and, when there can be no misunderstanding, we shall WriteJ. in

place of [ b.

6.3 Definition We say that the partition P* is a refinement of P if P* o P
(that is, if every point of P isa point of P *). Given two partitions, P, and P, ,
we say that P* is their common refinement if P* =P, u P,.

6.4 Theorem IfP* isarefinement of P, then

6] L(P, f, &) < L(P*, f, @)
and
(10) U(P*, f,a) < U(P, f, o).

Proof To prove (9), suppose first that P* contains just one point more
than P. Let this extra point be x*, and suppose x;.;< x* < x;, where
x;_; and x; are two consecutive points of P. Put

wy=inff(x) (- 1 x| x*),
wy=inff(x) (x* I x<x)).
Clearly w; > m; and w, = m;, where, as before,

m; = inf f(x) (x;o1 < x £ xp)
Hence

L(P*, f, a) — L(P, f, o)
= w[a(x*) — a(x;_1)] + wala(x;)) — a(x*)] — mfalx;) — alx;-1)]
= (wy = m[a(x*) — alx, )] + (w3 = m[a(x) — a(x¥)] > 0.

If P* contains k points more than P, we repeat this reasoning k
times, and arrive at (9). The proof of (10) is analogous.
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65 Theorem fjfdas'l’bfda.

Proof

Let P* be the common refinement of two partitions P, and P,.

By Theorem 6.4,

L(Py, f, @) < L(P*, f. a) < UP*, f, a) < U(P,, f, o).

Hence

(11)

L(Py, f, o) < U(Py, f, o).

If P, isfixed and the sup is taken over al P, (11)gives

(12)

dea < U(P,,f, o).

The theorem follows by taking the inf over al P, in (12).

6.6 Theorem fe %Z(x) on [a,b] if and only if for every € > 0 there exists a
partition P such that

(13)

Proof

UP,f,a) - L(P, f,0) < e.

For every P we have

L(P,f o) < ffda < ]‘fdoc < UP,f, %).

Thus (13)implies

OsIfda—J~fda<£.

Hence, if (13) can be satisfied for every e > 0, we have

I fdo = f fda,

that is, f € Z(x).

Conversely, suppose f e Z(x), and let ¢ > 0 be given. Then there

exist partitions P; and P, such that

(14)

(15)

&
~°

UPs. o) = [ o <5

[ fan - 1Py f0) <.
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We choose P to be the common refinement of P, and P,. Then Theorem
6.4, together with (14)and (15), shows that

UP.fia) < Uy /o) < [ fdu+ = <L(Pr.foa) + e < L(P.fio) + 2,
so that (13) holds for this partition P.

Theorem 6.6 furnishes a convenient criterion for integrability. Before we
apply it, we state some closely related facts.

6.7 Theorem

(a) If (13)holds for some P and some ¢, then (13) holds (with the same &)
for every refinement of P.

(b) If (13)holds for P = {x¢, ..., x,} and if s;, t; are arbitrary points in
[x,;l, xi], then
.Zl |f(s) = fUD| Aa; <.
(¢) Iffe A(x) and the hypotheses of (b) hold, then

<é&.

3 7)o - [ f do

Proof Theorem 6.4 implies (a). Under the assumptions made in (b),
both f(s;) and f(¢,) liein [m;, M;], so that | f(s;) — f(1))| < M; = m;. Thus

; f(s) = f(t)] Aa; < UP, f, &) — L(P, f, ),

which proves (b). The obvious inequalities

L(P,fie) < ) f(t) Ao, < U(P, fr0)
and
L(P,f,0) < [ fdu < U(P, , a)
prove (c).

6.8 Theorem | ffiscontinuous on [a,b] then f e #(x) on [a,b].
Proof Lete >0 begiven. Choosen > 0 so that

[2(b) — «(@)]n <e.

Since f is uniformly continuous on [a,b] (Theorem 4.19), there exists a
¢ > 0 such that

(16) /() =S@)] <n
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if xe[a, b), t€a,b], and |x — | <.
If Pisany partition of [a,b] such that Ax, <é for al i, then (16)
implies that
a7 M,—m;<n (i—1,...,n)
and therefore

UP, f,0) = L(P, f ) = ¥ (M, = m)) s,

<1y Ag; =nlad) — a(a)] <e.
i=1
By Theorem 6.6, f € Z(a).

6.9 Theorem |ff ismonotonic on [a,b],and if a is continuous on [a,b],then
fe A(«). (Westill assume, of course, that a is monotonic.)

Proof Lete >0 begiven. For any positive integer n, choose a partition
such that
b) —
Aa‘,:a()—a(a) (i=1,....n).
n
This is possible since a is continuous (Theorem 4.23).
We supposethat f ismonotonically increasing (the proof isanal ogous

in the other case). Then
M; =f(x), m; = f(x;_) (i=1,...,n),

so that
b _ n
UP.f2) - L, £ ) = 2O HD 3 1) — i)
b) —
=05 1ty - <

if nistaken large enough. By Theorem 6.6, f € %(«).

6.10 Theorem Suppose f is bounded on [a,b],f has only finitely many points
of discontinuity on [a,b],and a is continuous at every point at which f is discon-
tinuous. Then f € Z(«).

Proof Lete >0 begiven. Put M =sup | f(x)|, let E be the set of points
at which f is discontinuous. Since E is finite and a is continuous at every
point of E, we can cover £ by finitely many disjoint intervals [u;, v;] =
[a,b] such that the sum of the corresponding differences a(v;) — a(u)) is
lessthan e. Furthermore, we can place these intervalsin such a way that
every point of En (a,b) liesin theinterior of some [u;, v;].
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Remove the segments (4;, v;) from [a,b]. The remaining set K is
compact. Hence f is uniformly continuous on K, and there exists 6 > 0
such that |f(s) = f(¢)| <eifseK, teK, |s—1t]| <d.

Now form a partition P = {x, x;,..., %) of [a,b], as follows:
Each »; occursin P. Each v; occursin P. No point of any segment (u;, v))
occursin P. If x;_, is not one of the «;, then Ax; <6.

Note that M; — m; < 2M for every i, and that M; — m; < e unless
x;_1 isone of the ;. Hence, asin the proof of Theorem 6.8,

U(P, f, 2) — L(P, f, a) < [u(b) — a(a)]e + 2Me.

Since e is arbitrary, Theorem 6.6 shows that f € Z(x).
Note: If fand « have a common point of discontinuity, then f need not

be in %(x). Exercise 3 shows this.

6.11 Theorem Suppose fe€ Z(z) on [a,b], m<f< M, ¢ is continuous on
[m, M], and 1(x) = ¢(f(x))on [a,b]. Then /1 € (%) on [a,b].

(18)

(19)

Proof Choose e > 0. Since ¢ is uniformly continuous on [ m,M], there
exists 6 >0 such that 6 <t and |¢(s) — ¢(¢)| < if |s—¢] <é and
s, te[m, M].

Since /'€ #(x), thereis a partition P = {x, x{, ..., X,) of [a,b] such
that

U(P, f, o) — L(P, f, ) < &%

Let M,, m, have the same meaning as in Definition 6.1, and let M}, m}
be the analogous numbers for 4. Divide the numbers 1, ..., n into two
classes: ie Aif M; —m;<6,ieBif M;—m; 2 0.
For i € A, our choice of 6 shows that M}* — m <E.
For ie B, M} —m} < 2K, where K=sup|¢(t)|, m<t< M. By
(18), we have
3Y Ao, <Y (M, —m)) Ax; < &*

ieB ieB
so that ) ;.p Az; < 6. It follows that
UP. hya)— L(P,l,a) =Y (M} — m¥) Ao, T Y (MF = m¥) Aw,
iaA ieB
< e[oa(b) — a(a)] + 2Ké < e[a(b) — a(a) + 2K].

Since ¢ was arbitrary, Theorem 6.6 implies that h € Z(x).
Remark.: This theorem suggests the question: Just what functions are

Riemann-integrable? The answer is given by Theorem 11.33(5).
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PROPERTIES OF THE INTEGRAL

6.12 Theorem
() Iffi € Z(o) arid f, € Z(x) on [a,b] ,then

fi + /> € B(w),

cf € Z(a) for every constant ¢, and

b b b
[Gitsyde=[ fidust [ fran,

jbcfdazcjbfda.
(&) If /i(x) < f2(x) on [a, b], then
b b
] fldadfnfz da.

() If fe A(x) on [a,b] and if a< c < b, then fe Z(x) on [a,c] and on
[c, b], and

fcfda+fbfda=fffda.
(d) 1ffe &) on[ab]andif |f(x) < M on [a,b],then
fbfda

(e) |ffe 2(a;)and f € #(x,), then f € #(a; + «,) and

< Mla(b) — a(a)].

b b b
[ rde vy = [ fdu + [ s

i ff e #(x) and c is a positive constant, then f € #(ca) and
b b
| fdewy=c| tau

Proof |ff=f, +/, and P isany partition of [a,b],we have
(20) L(P5.f19 (1)+L(P,f2,(1) ﬁL(P’f; (1)
S U(PLf? a) S U(P’fU a) + U(P’f29 (1)-

Iff, e () and f, € Z(«), let ¢ >0 be given. There are partitions P;
(j=1, 2) such that

U, f;,0) = L(P;, f;,0) <&



@

6.13

THE RIEMANN-STIELTJES INTEGRAL 129

These inequalities persist if P, and P, are replaced by their common
refinement P. Then (20) implies

U(P, f, o) — L(P, f, ) < 2,
which proves that f € #(«).
With this same P we have
U(P,fj,a)<ffjda+£ (j=1,2);
hence (20) implies
[fdx < UP.f2) <[fidu+ [fpdu+ 2
Since ¢ was arbitrary, we conclude that

ffciagfflda+j'f2da.

If we replace f; and f; in (21) by —f; and —f,, the inequality is
reversed, and the equality is proved.

The proofs of the other assertions of Theorem 6.12 are so similar
that we omit the details. In part (c)the point isthat (by passing to refine-
ments) we may restrict ourselves to partitions which contain the point ¢,
in approximating § f da.

Theorem | ffe %(x) and ge #(x) on [a,b] ,then
(@) fgeR():

(b) |f| € A(x) and 'J'bfda < fb fl da.

Proof If wetake ¢(¢) = t2, Theorem 6.11 showsthat /% € #(x) if f € A().
The identity

dg=(+9" - (f—9)?
completes the proof of (a).
If we take ¢(z) = |t|, Theorem 6.11 shows similarly that |f| € Z(«).
Choose ¢ = + 1, so that
¢ | fdu>0.
Then
| [fda| =c[fda=[cfdu<]|f| da,

since ¢f < |f]

6.14 Definition The unit step function | is defined by

B IO (x <0),
169 = 1 x>0
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6.15 Theorem Ifa<s<b, f is bounded on [a,b],f is continuous at s, and
a(x) = I(x — s), then

[ rdx=re.

Proof Consider partitions P = {x,, x;, X2, X,), where x,=a, and
x,=85<Xx,<X,=b. Then

U(P,f,d)=M2, L(P’f:'a)ZmZ‘
Since f is continuous at s, we see that M, and m, converge to f(s) as

Xq =S,

6.16 Theorem Supposec, = 0for 1, 2,3,..., Z¢, converges, {s,} isa sequence
of distinct pointsin (a,b), and

(22) a(x) = Z e I(x —s,).
n=1

Let f be continuouson [a,b]. Then
b 0
(23) [[fdn=73 cfis).

Proof The comparison test shows that the series (22) converges for
every X. Its sum a(x) is evidently monotonic, and a(a) =0, a(b) = Zc¢,.
(Thisis the type of function that occurred in Remark 4.31.)

Let ¢ > 0 be given, and choose N so that

G
Y e <E.
N+1

Put

N 0
al(x) = Z Cnl(x - Sn)s aZ(x) = Z Cnl(x - Sn)'
n=1 N+1
By Theorems 6.12 and 6.15,
b N
24) [ o = Yieaf(s)
Since a,(b) — ay(a) < e,
(25)

fbfdaz < M,




(26)
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where M = sup|f(x)|. Since a=a, + a,, it follows from (24) and (25)

that
b N
){ fdi—Y e, f(s) <Me.
Ya i=1

If welet N — co, we obtain (23).

6.17 Theorem Assume a increases monotonically and «" € £ on [a,b]. Let f
be a bounded real function on [a,b].

27)

(28)

(29)

(30)

(31)

Then f € A(x) if and only if fa' € &. In that case

f: fdo = f; S (x) dx.

Proof Let ¢ >0 be given and apply Theorem 6.6 to ci': There is a par-
tition P ={Xx,, ..., x,,)of [a,b] such that

UP,a'y - L(P,a')<e,
The mean value theorem furnishes points ¢; € [x;_y, x;] such that
Aoy = o'(1;) Ax;
fori=1,...,n Ifs e[x;_;, x;], then
Y (s — (1) Ax; <e,
i=1

by (28)and Theorem 6.7(h). Put M = sup|f{(x)|. Since
Z S(s) A, = Zlf(si)a’(fi) Ax;
i=1 i=

it follows from (29) that

Z S(s;) Aoy — Z S(s)o'(s)) Ax;| < Me.
i=1 i=1
In particular,
Y f(s) Ax, < UP, fo') + M,
i1
for all choices of s; € [x;_;. x;], so that
U(P, f, 2y < U(P, fa') + Me.
The same argument |leads from (30) to

U(P, fx') < U(P, f, ) T ME.
Thus
|U(P, £, ciy — U(P, f)| < ME.
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Now note that (28) remains true if Pis replaced by any refinement.
Hence (31) also remains true. We conclude that

=b =b
[ fdo = [ flx)e'(x) dx | < Me.
But ¢ is arbitrary. Hence
=b b
(32) [ rde=[ 100 d,

for any bounded f. The equality of the lower integrals follows from (30)
in exactly the same way. The theorem follows.

6.18 Remark The two preceding theorems illustrate the generdity and
flexibility which are inherent in the Stieltjes process of integration. If «isa pure
step function [this is the name often given to functions of the form (22)], the
integral reduces to a finite or infinite series. If a has an integrable derivative.
the integral reduces to an ordinary Riemann integral. This makes it possible
in many casesto study seriesand integralssimultaneously, rather than separately.

To illustrate this point, consider a physica example. The moment of
inertia of a straight wire of unit length, about an axis through an endpoint, at
right angles to the wire, is

1
(33) [ x? dm
Jo

where m(x) is the mass contained in the interval [0,x]. If the wireis regarded
as having a continuous density p, that is, if m'(x) = p(x), then (33) turns into

(34) [.91 x? p(x) dx.

On the other hand, if the wire is composed of masses m; concentrated at
points x;, (33) becomes

(35 > x; my.

Thus (33) contains (34) and (35) as specia cases, but it contains much
more; for instance, the case in which m is continuous but not everywhere
differentiable.

6.19 Theorem (change of variable) Suppose ¢ isa strictly increasing continuous
function that maps an interval [A,B] onto [a,b]. Suppose a is monotonically
increasing on [a,b] and f € #(x) on [a,b]. Define p and g on [A,B] by

(36) B) = ale(»),  9(») =fle(®).
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Then g € #(B) and
+B ab
(37) | gdp=| fdu

Proof Toeach partition P ={x,, ..., x,} of [a,b] corresponds a partition
Q={o,...,va Of [A,B],s0 that x; = @(y;). All partitions of [A,B]
are obtained in this way. Since the values taken by f on [x;_,, x;] are
exactly the same as those taken by g on [y;_,, ¥;], we see that

(38) U(Q g, B) = U(P>f; d), L(Q’ g> B) =L(P’f, a)

Since f € Z(«), P can be chosen so that both U(P, f, «) and L(P, f, a)
are close to | f dx. Hence (38), combined with Theorem 6.6, shows that
g € Z(f) and that (37) holds. This completes the proof.

Let us note the following specia case:
Take a(x) = X. Then f =¢. Assume ¢’ € # on [ A,B]. If Theorem
6.17 is applied to the left side of (37), we obtain

(39)

100 dx = [ SN00) .

a”

INTEGRATION AND DIFFERENTIATION
We still confine ourselves to real functionsin this section. We shall show that
integration and differentiation are, in a certain sense, inverse operations.

6.20 Theorem Letfe Z on[ab]. Fora | x<b, put

().

d

F(x):I

Then F is continuous on [a, b]; furthermore, i ff is continuous at a point x, of
[a,b] ,then F is differentiable at x,, and

F'(xo) = f(x0).

Proof Since fe %, f is bounded. Suppose |f(t)] <M for a<tr<bh.
Ifa<x<y<b, then

|F(y) — F(x)| = < M(y - x),

[ 7w ar

by Theorem 6.12(c) and (d). Given ¢ > 0, we see that
|[F() ~ F(0) <,
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provided that |y — x| <e/M. This proves continuity (and, in fact,
uniform continuity) of F.

Now suppose f is continuous at x,. Given & > 0, choose 6 > 0 such
that

|f(1) = f(xo)| <&
if [t—x)<6,anda<t<b. Hence if
Xog—0<s<xo<t<xg+d and a<s<i<b,
we have, by Theorem 6.12(d),
F(t) = F(s)
—T=—5"

1 t
K J; [f(u) —f(xg)] du| <&

t—s

= f(x0)

It follows that F'(x,) = f(xo).

6.21 Thefundamental theorem of calculus | ff € % on [a,b] and if there is
a differentiable function F on [a,b] such that F' =, then

[ " fx) dx = F(b) — F(a).

Proof Let e >0 be given. Choose a partition P = {x,, ..., x,} of [a,b]
so that U(P,f)— L(P,f)<e. The mean vaue theorem furnishes points
t; € [x;_4, x;] such that

F(x;) — F(x;_q) = f(1)) Ax;
fori=1,...,n. Thus
3 ) Ax, = Fb) ~ F(@).
It now follows from Theorem 6.7(c) that

‘F(b) — F(a) — J’b f(x) dx| <e.

Since this holds for every ¢ > 0, the proof is complete.

6.22 Theorem (integration by parts) Suppose F and G are differentiable func-
tionson [ab],F =fe %,and G' =g e 92. Then

~CF (x)g(x) dx = F(b)G(b) — F(a)G(a) — J.abf(x)G(x) dx.

Proof Put H(x)= F(x)G(x) and apply Theorem 6.21 to H and its deriv-
ative. Note that H' € 92, by Theorem 6.13.
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INTEGRATION OF VECTOR-VALUED FUNCTIONS

6.23 Definition Letf|, ..., f, be real functions on [a, b], and letf = (f{, ..., f)
be the corresponding mapping of [a, ] into R*. If « increases monotonically
on [a, b], to say that f € Z(x) means that f; € #(a) forj=1, ..., k. If this is the

case, we define
b b b
ffda=(ff1da,...,ffkda).

va

In other words, {f du is the point in R* whose jth coordinate is |f; dot.

It is clear that parts (a), (c¢), and (¢) of Theorem 6.12 are valid for these
vector-valued integrals; we simply apply the earlier results to each coordinate.
The same is true of Theorems 6.17, 6.20, and 6.21. To illustrate, we state the
analogue of Theorem 6.21.

6.24 Theorem Iffand F map [a, b]into R, iff € R on [a, b], and if F' =1, then
b
f f(t) dt = F(b) — F(a).

The analogue of Theorem €.13(b) offers some new features, however, at
least in its proof.

6.25 Theorem If f maps [a, b] into R* and if f € R(a) for some monotonically
increasing function « on [a, b, then |f| € &(), and

(40) Ubf du| < fb |f| de.

Proof Iff,, ..., f, are the components of f, then

“h) £l = (34 + D

By Theorem 6.11, each of the functions f? belongs to %(«); hence so does
their sum. Since x? is a continuous function of x, Theorem 4.17 shows
that the square-root function is continuous on [0, M], for every real M.
If we apply Theorem 6.11 once more, (41) shows that |f| € Z(«).

To prove (40), puty = (), ..., ¥), where y; = [f; dx. Then we have
y = {f du, and

Y12 =Y yi =Sy, [fida=[(T 1,1 du.
By the Schwarz inequality,
(42) Ly <[] (a<t<b);
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hence Theorem 6.12(b) implies

(43) [¥1? < Iyl [ 18] de.

If y=0, (40)istrivial. If y# 0, division of (43) by |y| gives(40).

RECTIFIABLE CURVES

We conclude this chapter with a topic of geometric interest which provides an
application of some of the preceding theory. The case k = 2 (i.e., the case of
plane curves) is of considerable importance in the study of analytic functions
of a complex variable.

6.26 Definition A continuous mapping y of an interval [a,b] into R* is called
acurve in R*. To emphasize the parameter interval [a,b],we may also say that
y isacurve on [a,b].

If v is one-to-one, y iscaled an arc.
If y(a) = y(b), y is said to be a closed curve.

I't should be noted that we define a curve to be a mapping, not a point set.
Of course, with each curve y in R* there is associated a subset of R, namely
the range of y, but different curves may have the same rarge.

We associate to each partition P = {x,, ..., x,} of [a,b] and to each
curve y on [a,b] the number

A, =3 1300 = xi-)].

The ith term in this sum is the distance (in R¥) between the points y(x;_,) and
y(x;). Hence A(P, y) is the length of a polygona path with vertices at y(x,),
y(x1), ..., y(x,), in this order. As our partition becomes finer and finer, this
polygon approaches the range of y more and more closely. This makes it seem
reasonable to define the length of y as

A(y) = sup A(P, ),

where the supremum is taken over all partitions of [a,b].

1f A(y) < o0, wesay that y is rectifiable.

In certain cases, A(y) is given by a Riemann integral. We shall prove this
for continuously differentiable curves, i.e., for curves y whose derivative y' is
continuous.
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6.27 Theorem If y' is continuous on [a, b], then y is rectifiable, and

A0 =[1v o) d.

Proof Ifa < x,_; <x,<b,then

|Y(xi) - Y(X.'—x)I =

[ vwd <[ yo
Hence
b
APy < [ 170 dr

for every partition P of [a, b]. Consequently,

b
AG) < [y )] d.

To prove the opposite inequality, let ¢ >0 be given. Since 7y’ is
uniformly continuous on [a, b], there exists § > 0 such that
[7'(s) =) <e if |s—t]|<d.

Let P={x,, ..., x,} be a partition of [a, b], with Ax; < for all i, If
Xi-1 <t < Xy, it follows that

YOI [v (x| +e
Hence

[ 170 dr <70 Ax, + 2 Ax,
= U [+ 7' (x) — ¥ ()] d,‘ +eAx,

<

[* vwal+ ][ o -vor a)+ax
<)) = y(xi-)| + 26 Ax;.
If we add these inequalities, we obtain
b
[ 17 @ de < AP, ) + 266 — a)

< A(y) + 2¢(b — a).
Since & was arbitrary,

[[ 1yl dr <A

This completes the proof.
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EXERCISES

1

2

3.

Suppose a increases on [a, b], a <xo < b, a is continuous at xo, f(xo) = 1, and
f(X)=0if X # xo. Provethatf ¢ #(«) and that { fda= 0.

Suppose f >0, £ is continuous on [a, b], and Lbf(X)dx =0. Provethat f(x)=0
for al x €[a, b]. (Compare this with Exercise 1.)

Define three functions 8;, 8., Bs as follows: 8,(x) =0 if x <0, f;(x) =1if x >0
forj=1, 2, 3; and 8,(0) =0, 5.(0) =1, 8:(0) = %. Let f bea bounded function on
(1,11

(a) Prove that fe Z#(B,) if and only if f(0+) = f(0) and that then

[ras.=ro.

(b) State and prove a similar result for 8,.
(c) Prove that f < Z(B3) if and only if f is continuous at 0.
(d) If fis continuous at 0 prove that

ffdﬁl :ffdﬁlszdﬁa = £(0).

If f(x) = Ofor al irrational x, f(x)=1for al rational x, prove that f ¢ Z on[a, b]
for any a<b.

. Suppose f is a bounded real function on [a, b], and f 2 € % on [a, b]. Does it

follow that f€ 27 Does the answer change if we assume that /2 € #?

. Let P be the Cantor set constructed in Sec, 2.44. Let f bea bounded real function

on [0, 1] which is continuous at every point outside P. Prove that f € Z on [0, 1].
Hinr: P can be covered by finitely many segments whose total length can be made
as small as desired. Proceed as in Theorem 6.10.

. Suppose f is a real function on (0, 1] and f < & on [c, 1] for every ¢ > 0. Define

fol f@) dx = lim f: £ dx

if thislimit exists (and is finite).
(a) If fe & on [0, 1], show that this definition of the integral agrees with the old
one.

(b) Construct a functionf such that the above limit exists, although it fails to exist
with | f] in place off.

. Suppose f € Z on [a, b] for every b>a wherea isfixed. Define

faw f(x) dx = lim f: £00) dx

if this limit exists (and isfinite). In that case, we say that the integral on the left

converges. If it also converges after f has been replaced by | f|, it is said to con-
verge absolutely.
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Assume that f(x) >0 and that f decreases monotonically on [1, ). Prove
that

[ reax
converges if and only if
PO

converges. (This is the so-called “integral test’ for convergence of series.)

. Show that integration by parts can sometimes be applied to the ‘‘improper”

integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a
theorem, and prove it.) For instance show that

°°cosx _f sin x
0 1+x (1+x)2

Show that one of these integrals converges absolutely, but that the other does not.

Let p and g be positive real numbers such that
1
L
p 4
Prove the following statements,
(@) If u >0 and v >0, then
P T
uy < il 4+ v .
p q

Equality holds if and only if u? = v9.
(b) If fe RA(x), g € R(), f=0,9 =0, and

f: frda=1= f:gv da,

then
b
f fgda<1.

(¢) If fand g are complex functions in %(«), then

s{fLﬂvaWUﬂm«mym

This is Hélder's inequality. When p=g¢g =2 it is usually called the Schwarz
inequality. (Note that Theorem 1.35 is a very special case of this.)

(d) Show that Holder’s inequality is also true for the “improper’ integrals de-
scribed in Exercises 7 and 8.

J.: fg do
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11. Let a be afixed increasing function on [a,b]. For u e %(«), define

b 1/2
Hqu=U |u|2doz} :

Suppose f, g, h € Z(«), and prove the triangle inequality
If —kla< =gl llg — Al

as a conseguence of the Schwarz inequality, as in the proof of Theorem 1.37.
12. With the notations of Exercise 11, suppose fe #(o) and ¢>0. Prove that
there exists a continuous function g on [a,b] such that ||f — gll. <e.
Hitrt: Let P={x0, ..., x»} be a suitable partition of [a, b], define

t— X
AX[

g6 = S flxin) + fix)

ifX;-; <t <x;.
13. Define

ax+1

fx) = J sin (¢2) dt.

(a) Prove that |f(x) <1/xif x>0.
Hint: Put t2 = » and integrate by parts, to show that f(x) isequal to

cos (xz)_COS[(x"'l)z] .S:f“’ZCOSudu
2x 2Ax+1) — 2 432 7

Replace cosu by —1.
(b) Prove that

2xf(x) = cos(x%) — cos [ (x+ 1)?] + r(x)

where |r(x)| <c/x and c is a constant.
(c) Find the upper and lower limits of xf(x), as x — .

(d) Does f:sin (t2)dt converge?
14. Dea similarly with

ax+1

f(x)= J sin (e') dt.
Show that
e*| f(x)] <2
and that
e f(x) = cos (e*) — e~ cos(e*+') + r(x),

where |#(x)| < Ce~*, for some constant C.
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Suppose f is a real, continuously differentiable function on [a, b], f(a) = f(b) =0,
and

b
[ dx=1.
Prove that

[wwrewac=—1
and that
[ U [ x> 1.

For 1 <s < oo, define

{s)=

||[\/]8

1
11’

(This is Riemann’s zeta function, of great importance in the study of the distri-
bution of prime numbers.) Prove that

(@) {)=s f )Ex+]1 dx

and that

b to=——s[ =Hay

Y1

where [x] denotes the greatest integer < x.

Prove that the integral in () converges for all s > 0.

Hint: To prove (a), compute the difference between the integral over [1, N]
and the Nth partial sum of the series that defines {(s).

Suppose « increases monotonically on [a, b], g is continuous, and g{(x) = G'(x)
for a < x < b. Prove that

[ 009 () dx = GbYa(b) — Gla)a(a) — [ G da.

Hint: Take g real, without loss of generality. Given P={xo, x1, ..., Xa},
choose ¢, € (x;-y, Xx;) so that g(#;) Ax; = G(x;) — G(x;-1). Show that

3 axg(t) Axi = G(Ba(b) — G@a(a) — ¥ Glxi-) A,

Let vy, v2, ¥s be curves in the complex plane, defined on [0, 2n] by
')’10) — elr, ‘}’z(t) — ezn’ ‘)’3(t) = e2nit sin (1/t)-

Show that these three curves have the same range, that ¢, and v, are rectifiable,
that the length of y, is 2=, that the length of v, is 4=, and that y; is not rectifiable.
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19. Let y, be a curve in R* defined on [a, b]; let ¢ be a continuous 1-1 mapping of
[c, d] onto [a, b], such that ¢(c) = a; and define y.(s) = y,(¢(s)). Prove that y, is
an arc, a closed curve, or a rectifiable curve if and only if the same is true of v,.
Prove that v, and y, have the same length.



7

SEQUENCES AND SERIES OF FUNCTIONS

In the present chapter we confine our attention to complex-valued functions
(including the real-valued ones, of course), although many of the theorems and
proofs which follow extend without difficulty to vector-valued functions, and
even to mappings into general metric spaces. We choose to stay within this
simple framework in order to focus attention on the most important aspects of
the problems that arise when limit processes are interchanged.

DISCUSSION OF MAIN PROBLEM

7.1 Definition Suppose {f,}, n=1,2,3,..., is a sequence of functions
defined on a set E, and suppose that the sequence of numbers { f,{x)} converges
for every x € E. We can then define a function f by

¢)) f(x) =lim £,(x) (x € E).

n— o
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Under these circumstances we say that { f,} converges on E and that f is
the limit, or the limit function, of { f,}. Sometimes we shall use a more descriptive
terminology and shall say that “{f,} converges to f pointwise on E” if (1) holds.
Similarly, if Zf,(x) converges for every x € E, and if we define

) F(x) = Zlfnoc) (x € E),

the function f'is called the sum of the series Zf, .

The main problem which arises is to determine whether important
properties of functions are preserved under the limit operations (1) and (2).
For instance, if the functions f, are continuous, or differentiable, or integrable,
is the same true of the limit function? What are the relations between f,; and 1,
say, or between the integrals of f, and that of f?

To say that fis continuous at a limit point x means

lim f(#) = f(x).

t—x
Hence, to ask whether the limit of a sequence of continuous functions is con-
tinuous is the same as to ask whether

3) lim lim f,(¢) = lim lim f,(¢),

t7x nr® n—+o0 t—+x
i.e., whether the order in which limit processes are carried out is immaterial.
On the left side of (3), we first let n — co, then ¢ — x; on the right side, t > x
first, then n — o0.

We shall now show by means of several examples that limit processes
cannot in general be interchanged without affecting the result. Afterward, we
shall prove that under certain conditions the order in which limit operations
are carried out is immaterial.

Our first example, and the simplest one, concerns a ‘‘double sequence.”

7.2 Example Form=1,23,...,n=1,2,3,...,let

m
Smn = '
’ m-+n
Then, for every fixed n,
lims,,=1,
so that
“ lim lims,,=1.

n=3o m-owo
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On the other hand, for every fixed m,

lims,, , =0,
so that
(5) lim lim s, , = 0.

m—= o N>

7.3 Example Let

2

x
f;l(X)=m (xreal,nzO,I,Z,...),
and consider
e w0 X2
(6) f(x) =n;)fn(x) ="ZO T+

Since £,(0) = 0, we have f(0) = 0. For x # 0, the last series in (6) is a convergent
geometric series with sum 1 + x* (Theorem 3.26). Hence

_{0 (x = 0),
) FO=l14x  (x2o0),

so that a convergent series of continuous functions may have a discontinuous
sum.

7.4 Example Form =1,2,3,..., put

f(x) = lim (cos m!nx)>".

n— o

When m!x is an integer, f,,(x) = 1. For all other values of x, f,,(x) = 0. Now let

f(x) =lim f,(x).
For irrational x, f,(x) =0 for every m; hence f(x) =0. For rational x, say
x = p/q, where p and ¢ are integers, we see that m!x is an integer if m > g, so
that f(x) = 1. Hence
L 0 (x irrational)
1 2n = ’
®) ,:l_,n:o ,,hjg (cos minx) 1 (x rational).
We have thus obtained an everywhere discontinuous limit function, which
is not Riemann-integrable (Exercise 4, Chap. 6).
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7.5 Example Let

©) £ =22 realn=1,2,3,..),

n
f(x) = lim f,{x) = 0.

n= o

and

Then f'(x) = 0, and
falx) = \/;z CoSs nx,
so that {f,} does not converge to f'. For instance,
10 =/n— +o0

as n — oo, whereas f'(0) = 0.

7.6 Example Let
(10) f,(0) = n?x(1 — x?)" 0O<x<l,n=1273,..).

For0 < x <1, we have

lim f,(x) = 0,
by Theorem 3.20(d). Since f,(0) = 0, we see that
(1) lim f,(x) =0 O<x<l).

R—* a0

A simple calculation shows that

1 1
fo x(1 — x*dx = s
Thus, in spite of (11),
1 n2
fof"(x)dxzznu” T

as n— o0.
If, in (10), we replace n? by n, (11) still holds, but we now have

1
lim f £.(x) dx = lim
0

1
"o 0 n— o 2n+2~§’

whereas

f: [ lim f,,(x)] dx = 0.

n—+ o0
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Thus the limit of the integral need not be equal to the integral of the limit,
even if both are finite,

After these examples, which show what can go wrong if limit processes
are interchanged carelessly, we now define a new mode of convergence, stronger
than pointwise convergence as defined in Definition 7.1, which will enable us to
arrive at positive results.

UNIFORM CONVERGENCE

7.7 Definition We say that a sequence of functions {f},n=1,2,3,...,
converges uniformly on E to a function f if for every ¢ > O there is an integer N
such that n > N implies

(12) |fux) = f(x)| <e

for all x e E.

It is clear that every uniformly convergent sequence is pointwise con-
vergent. Quite explicitly, the difference between the two concepts is this: If {£,}
converges pointwise on E, then there exists a function f such that, for every
e > 0, and for every x € E, there is an integer N, depending on ¢ and on x, such
that (12) holds if n = N; if {f,} converges uniformly on E, it is possible, for each
¢ > 0, to find one integer N which will do for all/ x € E.

We say that the series Xf,(x) converges uniformly on F if the sequence
{s,} of partial sums defined by

3. £ = ()

converges uniformly on E.
The Cauchy criterion for uniform convergence is as follows.

7.8 Theorem The sequence of functions {f,}, defined on E, converges uniformly
on E if and only if for every ¢ > 0 there exists an integer N such that m > N,
n > N, x € E implies

(13) [fux) = [0 | < e

Proof Suppose {f,} converges uniformly on E, and let / be the limit
function. Then there is an integer NV such that n > N, x € E implies

>

o) = f(0)] <

N m

so that

fu®) =S | < 1) =S | + [fG) —fux) | <

ifn>N,m>N, xekE.



148 PRINCIPLES OF MATHEMATICAL ANALYSIS

Conversely, suppose the Cauchy condition holds. By Theorem 3.11,
the sequence {f,(x)} converges, for every x, to a limit which we may call
f(x). Thus the sequence {f,} converges on E, to f. We have to prove that
the convergence is uniform.

Let ¢ > 0 be given, and choose N such that (13) holds. Fix n, and
let m — oo in (13). Since f,,(x) = f(x) as m — oo, this gives

(14) 1) —f(x) | <e

for every n > N and every x € E, which completes the proof.
The following criterion is sometimes useful.

7.9 Theorem Suppose
limf(x)=f(x) (xekE).

n— o

Put
M, = sup | fulx) = f(X) 1.

Then f, — f uniformly on E if and only if M, = 0 as n — 0.

Since this is an immediate consequence of Definition 7.7, we omit the
details of the proof.

For series, there is a very convenient test for uniform convergence, due to
Weierstrass.

7.10 Theorem Suppose{f,} is a sequence of functions defined on E, and suppose
) <M, (xeEn=1,23,..).

Then Xf, converges uniformly on E if ZM, converges.
Note that the converse is not asserted (and is, in fact, not true).

Proof If LM, converges, then, for arbitrary ¢ > 0,

37

<Y M;<e (xeE),

provided m and n are large enough. Uniform convergence now follows
from Theorem 7.8.
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UNIFORM CONVERGENCE AND CONTINUITY

7.11 Theorem Suppose f, — f uniformly on a set E in a metric space. Let x be
a limit point of E, and suppose that
(15) lim f,(t) = 4, n=1273..).
t—=x
Then {A,} converges, and
(16) lim () = lim 4, .
t=x n—oc
In other words, the conclusion is that
(17 lim lim £,(¢) = lim lim f£,(2).
X N> n—oo f—x
Proof Let ¢ >0 be given. By the uniform convergence of {f,}, there
exists N such that n > N, m = N, t € E imply

(18 | 1) = fuD) | < €.
Letting ¢ — x in (18), we obtain
'An - Am , <é¢

for n>=N,m >N, so that {4,} is a Cauchy sequence and therefore
converges, say to 4.
Next,

(19 fO—Al < IfO-LO1+ L0 — 4,1+ |4, ~ 4].

We first choose » such that
(20) FO =1 <3

for all ¢ € F (this is possible by the uniform convergence), and such that
@0 14, — A sg-

Then, for this n, we choose a neighborhood ¥ of x such that

(22) At = An] <3

ifreVnE, t#x.
Substituting the inequalities (20) to (22) into (19), we see that

[f()— 4] <¢,
provided t € ¥V n E, t#x. This is equivalent to (16).
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7.12 Theorem [f{f.} is a sequence of continuous functions on E, and if [, - f
uniformly on E, then f is continuous on E.

This very important result is an immediate corollary of Theorem 7.11.

The converse is not true; that is, a sequence of continuous functions may
converge to a continuous function, although the convergence is not uniform.
Example 7.6 is of this kind (to see this, apply Theorem 7.9). But there is a case
in which we can assert the converse.

7.13 Theorem Suppose K is compact, and

(a) {f.} is a sequence of continuous functions on K,
(b) {f,} converges pointwise to a continuous function f on K,
(¢) fux)=fos1(x)forallxeK, n=1,2,3,....

Then f, — f uniformly on K.

Proof Put g,=f,—f Then g, is continuous, g, =0 pointwise, and
dn=>9,+1- We have to prove that g, - 0 uniformly on K.

Let ¢ > 0 be given. Let K, be the set of all xe K with g,(x) > e.
Since g, is continuous, K, is closed (Theorem 4.8), hence compact (Theorem
2.35). Since g, > ¢g,+1, we have K, o K, .,. Fix xe K. Since g,(x) -0,
we see that x ¢ K|, if n is sufficiently large. Thus x ¢ ﬂ K, . In other words,
ﬂ K, is empty. Hence Ky is empty for some N (Theorem 2.36). It follows
that 0 < g,(x) < eforall xe Kand for alln > N. This proves the theorem.

Let us note that compactness is really needed here. For instance, if

Ju®) =nx +1

then £,(x) = 0 monotonically in (0, 1), but the convergence is not uniform.

O<x<l1l;n=1,2,3..)

7.14 Definition If X is a metric space, ¥(X) will denote the set of all complex-
valued, continuous, bounded functions with domain X.

[Note that boundedness is redundant if X is compact (Theorem 4.15).
Thus %(X) consists of all complex continuous functions on X if X is compact.]
We associate with each f € €(X) its supremum norm

Ifli = sup [fx)].
Since f is assumed to be bounded, [|f|| < co. It is obvious that || f|| = O only if
f(x) =0 for every x € X, thatis, only if f=0. If h =f+ g, then
A | < 1f) ]+ 19| < IfI+ gl

for all x € X; hence
If+ gl <Ifl + lgll.
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If we define the distance between fe ¥(X) and g € ¥(X) to be | f—gl,

it follows that Axioms 2.15 for a metric are satisfied.

We have thus made €(X) into a metric space.
Theorem 7.9 can be rephrased as follows:

A sequence {f,} converges to [ with respect to the metric of €(X) if and
only if f, = f uniformly on X.

Accordingly, closed subsets of %(X) are sometimes called uniformly

closed, the closure of a set of < ¥(X) is called its uniform closure, and so on.

7.15

Theorem The above metric makes €(X) into a complete metric space.

Proof Let{f,} be a Cauchy sequence in ¥(X). This means that to each
e > 0 corresponds an N such that ||f, —f,| <& if n> N and m > N.
It follows (by Theorem 7.8) that there is a function f with domain X to
which {f,} converges uniformly. By Theorem 7.12, f is continuous.
Moreover, f is bounded, since there is an #n such that |f(x) — f,(x)| <1
for all x € X, and f, is bounded.
Thus fe%(X), and since f,—f uniformly on X, we have

[f =/l =0 asn—co.

UNIFORM CONVERGENCE AND INTEGRATION

7.16

Theorem Let o be monotonically increasing on [a, b]. Suppose f, € #(a)

onla, b], forn=1,2,3,...,and suppose f,, - f uniformly on [a, b]. Then f € R(«)
on [a, b], and

23)

lim f bf,, da.

n—=+wo%a

fbfda=

(The existence of the limit is part of the conclusion.)

(24

(25)

Proof It suffices to prove this for real f,. Put

&, = sup |f,,(x) _f(x) |,

the supremum being taken over a < x < b. Then

f;l—ensfsf;:+6n’
so that the upper and lower integrals of f (see Definition 6.2) satisfy

_l.b(ﬁ. —&,) do S_[fdot s].fdas_'.b(f,. + &) da.

Hence

0< '_[fda - J.fda < 2g,[a(b) — w(a)].
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Since &, — 0 as # — o (Theorem 7.9), the upper and lower integrals of f
are equal.
Thus f € Z(«). Another application of (25) now yields
b b
[ fau=| toda

(26) < g,[a(b) — a(a)].

This implies (23).
Corollary If £, € Z(a) on [a, b] and if

£(x) = ilfnm (@a<x<b),

the series converging uniformly on [a, b, then

fbfda=§fbf,,da.

In other words, the series may be integrated term by term.

UNIFORM CONVYERGENCE AND DIFFERENTIATION

We have already seen, in Example 7.5, that uniform convergence of { f,} implies
nothing about the sequence {f,}. Thus stronger hypotheses are required for the
assertion that £,/ - f'if f, = f.

7.17 Theorem Suppose {f,} is a sequence of functions, differentiable on [a, b]
and such that {f,(x,)} converges for some point x, on [a, bl. If {f,} converges
uniformly on [a, b], then {{f,} converges uniformly on [a, b], to a function f, and

@7 S'(x) =lim f,/(x) (a<x<bh).

n=>w

Proof Lete >0 be given. Choose N such that n > N, m > N, implies

(28) fi(%0) = Fulo) | <5

and

£ (a <t <b).

@9 O -0l < 35— @sis



(30)

3D

(32)

(33)
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If we apply the mean value theorem 5.19 to the function f, — f,,, (29)
shows that
|x —tle
<
2(b — a)

o) = SlX) = o) + D) | <

for any x and ¢ on [a, b], if n> N, m > N. The inequality

[£i(3) = S | < 1fu3) = fon(3) = fu(x0) + S(X0) | + [fulx0) — fu(x0) |
implies, by (28) and (30), that
[fu(x) = fru(®) | < ¢ (a<x<bnz=N,m=N),
so that {f,} converges uniformly on [a, b]. Let

f) =limf(x)  (a<x<b).

n—w

Let us now fix a point x on [a, b] and define

¢(t)_f() J) ¢(t)_f(t) — /)

- X - X

fora <t <b,t+# x. Then
lim ¢,(t) = f,)(x) n=1,2,3..).

The first inequality in (30) shows that

[6a(1) — du(D) | < (n= N, m=N),

2(b a) = =

so that {¢,} converges uniformly, for ¢ % x. Since {f,} converges to f, we
conclude from (31) that

lim ¢,(1) = ¢(1)

n— o0

uniformly fora <t <b, t # x.
If we now apply Theorem 7.11 to {¢,}, (32) and (33) show that

lim ¢(f) = lim £ (x);

t—=x n—+ o
and this is (27), by the definition of ¢(¢).

Remark: If the continuity of the functions f; is assumed in addition to

the above hypotheses, then a much shorter proof of (27) can be based on
Theorem 7.16 and the fundamental theorem of calculus.
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7.18 Theorem There exists a real continuous function on the real line which is
nowhere differentiable.

Proof Define
34 ox) = |x| (-1<x<1)
and extend the definition of ¢(x) to all real x by requiring that

(35 o(x +2) = ¢(x).
Then, for all s and ¢,

(36) lp(s) — (D] < |s —1].
In particular, ¢ is continuous on R!. Define

0

(37 fx) = ZO(%)"¢(4"X)~

Since 0 < ¢ <1, Theorem 7.10 shows that the series (37) converges
uniformly on R!. By Theorem 7.12, fis continuous on R'.
Now fix a real number x and a positive integer m. Put

(38) Sp= 447"

where the sign is so chosen that no integer lies between 4™x and 4™(x + 9,,).
This can be done, since 4™ |6,,| = 1. Define

_o@(x+6,) —e(@x)
yn - 5 *
When n > m, then 47, is an even integer, so thaty, = 0. When0 <n <m,

(36) implies that |y, | < 4"
Since |y,,| = 4™, we conclude that
m /3\ "
nZO (4) Tn
m—1
2 3m _ Z 3n
n=0

S+ 6, = /()
=13" +1).

d
As m— o0, d,, — 0. It follows that fis not differentiable at x.

(39)

m

m

EQUICONTINUOUS FAMILIES OF FUNCTIONS

In Theorem 3.6 we saw that every bounded sequence of complex numbers
contains a convergent subsequence, and the question arises whether something
similar is true for sequences of functions. To make the question more precise,
we shall define two kinds of boundedness.
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7.19 Definition Let{f,} be a sequence of functions defined on a set E.

We say that{/,} is pointwise bounded on E if the sequence{f,(x)} is bounded
for every x € E, that is, if there exists a finite-valued function ¢ defined on E
such that

[£,00] < ¢(x) (xeE,n=1,23..).

We say that {f,} is uniformly bounded on E if there exists a number M
such that

)| <M (xeE,n=1,2,3,...).

Now if {f,} is pointwise bounded on E and E, is a countable subset of E,
it is always possible to find a subsequence { £, } such that {f, (x)} converges for
every x € E;. This can be done by the diagonal process which is used in the
proof of Theorem 7.23.

However, even if {f,} is a uniformly bounded sequence of continuous
functions on a compact set E, there need not exist a subsegiaence which con-
verges pointwise on E. In the following example, this would be quite trouble-
some to prove with the equipment which we have at hand so far, but the proof
is quite simple if we appeal to a theorem from Chap. 11.

7.20 Example Let
Jfu(x) = sin nx 0<x<2n,n=1,2,3,...).

Suppose there exists a sequence {r,} such that {sin n,x} converges, for every
x € [0, 2n]. In that case we must have

lim (sin mx — sin n, ; x) =0 (0 < x <2n);

k=
hence
(40) lim (sin nex — sin# .1 x)* =0 (0 < x < 2m).
k=

By Lebesgue’s theorem concerning integration of boundedly convergent
sequences (Theorem 11.32), (40) implies

2n

41) lim f (sin nx — sin ng 4 (%)% dx = 0.
k-0 Y0

But a simple calculation shows that

2n
f (sin nyx — sin n, 4 (x)? dx = 2m,
0

which contradicts (41).
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Another question is whether every convergent sequence contains a
uniformly convergent subsequence. Our next example will show that this
need not be so, even if the sequence is uniformly bounded on a compact set.
(Example 7.6 shows that a sequence of bounded functions may converge
without being uniformly bounded; but it is trivial to see that uniform conver-
gence of a sequence of bounded functions implies uniform boundedness.)

7.21 Example Let

x2

PO = =

O<x<l,n=1,23,..).

Then |f(x)| <1, so that{f,} is uniformly bounded on [0, 1]. Also
lim f,(x) =0 O<x<l,

n-+wo

but

A1 =2

so that no subsequence can converge uniformly on [0, 1].

The concept which is needed in this connection is that of equicontinuity;
it is given in the following definition.

7.22 Definition A family & of complex functions f defined on a set E in a
metric space X is said to be equicontinuous on E if for every € > 0 there exists a
6 > 0 such that

fx) -S| <e

whenever d(x, y) <0, x € E, y € E, and fe #. Here d denotes the metric of X.

It is clear that every member of an equicontinuous family is uniformly
continuous.

The sequence of Example 7.21 is not equicontinuous.

Theorems 7.24 and 7.25 will show that there is a very close relation
between equicontinuity, on the one hand, and uniform convergence of sequences
of continuous functions, on the other. But first we describe a selection process
which has nothing to do with continuity.

7.23 Theorem If{f,} is a pointwise bounded sequence of complex functions on
a countable set E, then{f,} has a subsequence {f, } such that { f, (x)} converges for
every x € E.
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Proof Let{x;},i=1,2,3,...,bethe points of E, arranged in a sequence.
Since {f,(x,)} is bounded, there exists a subsequence, which we shall
denote by {f] i}, such that {; ,(x,)} converges as k — co.

Let us now consider sequences S,, S,, S;, ..., which we represent
by the array

St fin Sz fis fia
S,: f2,1 f2,2 f2,3 f2,4
S3: faa f3,2 f3,3 Sfia

and which have the following properties:

(a) S, is a subsequence of S,_;,forn=2,3,4,....

b)) {fuu(x)} converges, as k— oo (the boundedness of {f,(x,)}
makes it possible to choose S, in this way);

(¢) The order in which the functions appear is the same in each se-
quence; i.e., if one function precedes another in S|, they are in the same
relation in every S,, until one or the other is deleted. Hence, when
going from one row in the above array to the next below, functions
may move to the left but never to the right.

We now go down the diagonal of the array; i.e., we consider the
sequence
St fin Sfar Sis Saao-
By (¢), the sequence S (except possibly its first n — 1 terms) is a sub-
sequence of S,, for n=1,2,3,.... Hence (b) implies that {f, .(x)}
converges, as  — oo, for every x; € E.

7.24 Theorem If K is a compact metric space, if f, e ¢(K) for n=1,2,3,...,
and if {f,} converges uniformly on K, then{f,} is equicontinuous on K.

(42)

(43)

Proof Iet ¢ >0 be given. Since {f,} converges uniformly, there is an
integer N such that

Ifa=fxll <& (> N).

(See Definition 7.14.) Since continuous functions are uniformly con-
tinuous on compact sets, there is a § > 0 such that

|/ix) = fi») | <e

ifl<i<N and d(x,y)<$.
If n > N and d(x, y) < 9, it follows that

[2x) =L < A0 = x|+ ¥ —AO)  + II80) = £0) ] < 3e.

In conjunction with (43), this proves the theorem.
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7.25 Theorem If K is compact, if f, € €(K) for n=1,2,3,..., and if {,} is
pointwise bounded and equicontinuous on K, then

(44)

(45)

(46)

(a) {f.} is uniformly bounded on K,
(b) {f,} contains a uniformly convergent subsequence.

Proof

(a) Let ¢ >0 be given and choose § > 0, in accordance with Definition
7.22, so that

1) =] <e

for all n, provided that d(x, y) < é.

Since K is compact, there are finitely many points p, ..., p, in K
such that to every x € K corresponds at least one p; with d(x, p;) < é.
Since{f,} is pointwise bounded, there exist M, < oo such that |f,(p,)| < M;
for all n. If M =max(M,...,M,), then |f,(x)| <M + ¢ for every
x € K. This proves (a).
(b) Let E be a countable dense subset of K. (For the existence of such a
set E, see Exercise 25, Chap. 2.) Theorem 7.23 shows that {f,} has a
subsequence { f,,} such that {f, (x)} converges for every x € E.

Put £, =g;, to simplify the notation. We shall prove that {g;}
converges uniformly on K.

Let ¢ >0, and pick é >0 as in the beginning of this proof. Let
V(x, &) be the set of all y € K with d(x, y) < . Since E is dense in K, and
K is compact, there are finitely many points x,, ..., x,, in E such that

KcVix,0)u v ¥x,,d).

Since {g,(x)} converges for every x € E, there is an integer N such
that

lgi(xs) —g,(x) | <e

whenever i> N,j>= N, <s<m.
If x € K, (45) shows that x € V(x,, &) for some s, so that

19:(x) —gix)| <e
for every i. If i > N and j > N, it follows from (46) that

lgi(x) — g4{(x) | < lgdx) — gilx) | +|gidx,) — gj(xs) | + |gj(xs) - gj(x) |
< 3e.

This completes the proof.
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THE STONE-WEIERSTRASS THEOREM

7.26 Theorem If f is a continuous complex function on [a, b], there exists a
sequence of polynomials P, such that

lim Py(x) = f(x)

n—+ o

uniformly on [a, b]. If fis real, the P, may be taken real.

This is the form in which the theorem was originally discovered by

Weierstrass.

(47)

(48)

(49)

Proof We may assume, without loss of generality, that [a, ] = [0, 1].
We may also assume that f(0) = f(1) = 0. For if the theorem is proved
for this case, consider

gx) =f(x) =fO) —x[f(H) -f0] O=<x<]I).

Here g(0) = g(1) =0, and if g can be obtained as the limit of a uniformly
convergent sequence of polynomials, it is clear that the same is true for f,
since f— g is a polynomial.
Furthermore, we define f(x) to be zero for x outside [0, 1]. Then f
is uniformly continuous on the whole line.
We put
0.x)=c(1-x>" (m=1,23..),

where ¢, is chosen so that

fl 0, dx=1 (n=1,23..)
-1

We need some information about the order of magnitude of ¢,. Since

J

1

1 vn
(= xyrde=2] (L —xyrdez2]["" (1 - xyrdx
1 4] 4]

Jn
zzf” (1 = nx?) dx
4]

4

3/n
1

> —,
/
VI

it follows from (48) that

6 < /n.



160 PRINCIPLES OF MATHEMATICAL ANALYSIS

The inequality (I — x*)" > 1 — nx?® which we used above is easily
shown to be true by considering the function

(1 —x?" =1+ nx?

which is zero at x = 0 and whose derivative is positive in (0, 1).
For any 6 > 0, (49) implies

(50) Q) </n(1=38% @ <Ix|<D,
so that @, — 0 uniformly in § < |x| < 1.
Now set
51 P(x) = fl fx+ 00,0 dt (O<x<]1)

Our assumptions about f show, by a simple change of variable, that

1—-x 1
P@=[_fa+nomd=] 1000 -,
and the last integral is clearly a polynomial in x. Thus {P,} is a sequence

of polynomials, which are real if f'is real.
Given ¢ > 0, we choose 6 > 0 such that |y — x| < J implies

f0) =S| <3

Let M =sup |f(x)|. Using (48), (50), and the fact that Q,(x) =0, we
seethat for0 < x <1,

|Pu(x) —f ()| =

[ U+ 0 =71 dz\
<[ G+ 0 = @) 10,0 di
-8 P 1
<2M | Qi+ Ef_a 0.(1)dt +2M L 0.(1) dt

_ &
<4M/n(1-8") +3
< &

for all large enough n, which proves the theorem.

It is instructive to sketch the graphs of Q, for a few values of #n; also,
note that we needed uniform continuity of f to deduce uniform convergence
of {P,}.
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In the proof of Theorem 7.32 we shall not need the full strength of
Theorem 7.26, but only the following special case, which we state as a corollary.

7.27 Corollary For every interval [— a, a] there is a sequence of real poly-
nomials P, such that P,(0) = 0 and such that
lim P(x) = |x|

uniformly on [ — a, al.

Proof By Theorem 7.26, there exists a sequence { P} of real polynomials
which converges to |x| uniformly on [— a, a]. In particular, P)(0)—> 0
as n —» o0. The polynomials

P(x)=Pix)=P;0) (n=1,2,3,..)
have desired properties.

We shall now isolate those properties of the polynomials which make
the Weierstrass theorem possible.

7.28 Definition A family o/ of complex functions defined on a set F is said
to beanalgebraif () f+g e o, () fg € o, and (i) ¢f e o forall fe of,g €
and for all complex constants ¢, that is, if o/ is closed under addition, multi-
plication, and scalar multiplication. We shall also have to consider algebras of
real functions; in this case, (iii) is of course only required to hold for all real c.

If o has the property that fe o/ whenever f,eof (n=1,2,3,...) and
f = f uniformly on E, then of is said to be uniformly closed.

Let # be the set of all functions which are limits of uniformly convergent
sequences of members of o/, Then & is called the uniform closure of <. (See
Definition 7.14.)

For example, the set of all polynomials is an algebra, and the Weierstrass
theorem may be stated by saying that the set of continuous functions on [a, 5]
is the uniform closure of the set of polynomials on [a, &].

7.29 Theorem Let B be the uniform closure of an algebra sf of bounded
Sfunctions. Then & is a uniformly closed algebra.

Proof If fe % and g € 4, there exist uniformly convergent sequences

{f.}:{g,} such that f, - f,¢9, > g and f, € &/, g, € of. Since we are dealing
with bounded functions, it is easy to show that

ot g2 Sf+g, fug.—fo, of,—-cf,

where ¢ is any constant, the convergence being uniform in each case.
Hence f+g € &, fg € &, and ¢f € @, so that & is an algebra.
By Theorem 2.27, # is (uniformly) closed.
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7.30 Definition Let o/ be a family of functions on a set E. Then & is said
to separate points on E if to every pair of distinct points x,, x, € E there corre-
sponds a function f e o such that f(x,) # f(x,).

If to each x € E there corresponds a function g € o such that g(x) # 0,
we say that o/ vanishes at no point of E.

The algebra of all polynomials in one variable clearly has these properties
on R'. An example of an algebra which does not separate points is the set of
all even polynomials, say on [—1, 1], since f(—x) = f(x) for every even function f.

The following theorem will illustrate these concepts further.

7.31 Theorem Suppose s/ is an algebra of functions on a set E, f separates
points on E, and ¢ vanishes at no point of E. Suppose x,, x, are distinct points
of E, and ¢, ¢, are constants (real if s/ is a real algebra). Then sf contains a
Sfunction f such that

S =cy, S(x)=¢;.
Proof The assumptions show that &/ contains functions g, 4, and &
such that
glxy) #9(x;),  hlx)#0,  k(x;) #0.
Put
u=gk —g(xpk, v=gh—g(x;)h
Then u e o, v € o, u(x,) = v(x,) =0, u(x,) # 0, and v(x,) # 0. Therefore

cyv Cc U
+
v(xy)  u(xz)

f=

has the desired properties.

We now have all the material needed for Stone’s generalization of the
Weierstrass theorem.

7.32 Theorem Let o/ be an algebra of real continuous functions on a compact
set K. If of separates points on K and if of vanishes at no point of K, then the
uniform closure # of s consists of all real continuous functions on K.

We shall divide the proof into four steps.

STEP | Iffe B, then |f| € B.
Proof Let
(52) a=sup |[f(x)| (xeK)
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and let ¢ >0 be given. By Corollary 7.27 there exist real numbers
Cy» -« -5 Cp SUch that
(53)

Yey'—lyl|<e (-a<gy<a).
i=1

Since 4 is an algebra, the function
g= .Zlcifi
is a member of £. By (52) and (53), we have
lgC) = 1f@) ]| <e  (xekK).

Since 4 is uniformly closed, this shows that |f| € #.

STEP 2 Iffe# and g € B, then max (f, g) € # and min(f, g) € B.

By max (f, g) we mean the function 4 defined by
he <[00 70 2900,

Tl iff(x) <g(x),
and min (f, g) is defined likewise.

Proof Step 2 follows from step 1 and the identities

max(f,g)=%+ |f;g|,
min (f,g) =L +0 - V01,

By iteration, the result can of course be extended to any finite set
of functions: If f}, ..., f, € 8, then max (f},...,f,) € %, and

min (fy, ..., f,) € #.

STEP 3 Given a real function f, continuous on K, a point x € K, and ¢ > 0, there
exists a function g, € B such that g (x) = f(x) and

(54) g:()>f)—e  (teK).

Proof Since of = # and & satisfies the hypotheses of Theorem 7.31 so
does #. Hence, for every y € K, we can find a function 4, € # such that

(39) h(x)=f(x), ) =10)
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(56)

&Y

By the continuity of 4, there exists an open set J,, containing y,
such that

hy(@®) > f(t) — ¢ (tel).
Since K is compact, there is a finite set of points y,, ..., y, such that
KcJ,u--vlJ, .
Put

gx=max(h, ..., h, ).

Bystep 2,g € %, and the relations (55) to (57) show that g, has the other
required properties.

STEP 4  Given a real function f, continuous on K, and ¢ > 0, there exists a function
h € & such that

(58)

|h(x) = f(x)| <& (xe€K).

Since & is uniformly closed, this statement is equivalent to the conclusion

of the theorem.

(59)

(60)

(61)

(62)

Proof Let us consider the functions g,, for each x € K, constructed in
step 3. By the continuity of g,, there exist open sets ¥, containing x,
such that

9.0 <fO+e (teV)).
Since K is compact, there exists a finite set of points x, ..., x,,
such that
KcV, vu-uVb, .

Put
h=min(g,,,...,4,,)
By step 2, h € 8, and (54) implies
) >f—e (teKk),
whereas (59) and (60) imply
)< f(t)+¢ (t e K).
Finally, (58) follows from (61) and (62).
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Theorem 7.32 does not hold for complex algebras. A counterexample is

given in Exercise 21. However, the conclusion of the theorem does hold, even
for complex algebras, if an extra condition is imposed on &/, namely, that &/
be self-adjoint. This means that for every f e &/ its complex conjugate f must

also belong to &/ ; f is defined by f(x) =f(_x).

7.33 Theorem Suppose o/ is a self-adjoint algebra of complex continuous
functions on a compact set K, sf separates points on K, and s/ vanishes at no
point of K. Then the uniform closure # of s/ consists of all complex continuous
Sfunctions on K. In other words, </ is dense (K).

Proof Let o/ be the set of all real functions on K which belong to «.

If fe o/ and f = u + iv, with u, v real, then 2u = f + f, and since o/
is self-adjoint, we see that u e of;. If x, # x,, there exists f € o/ such
that f(x,) = 1, f(x;) = 0; hence 0 = u(x,) # u(x,) = 1, which shows that
o/ r separates points on K. If x € K, then g(x) # 0 for some g € ./, and
there is a complex number A such that ig(x) > 0; if f=Ag,f=u + iv, it
follows that u(x) > 0; hence &/ vanishes at no point of K.

Thus &/ satisfies the hypotheses of Theorem 7.32. It follows that
every real continuous function on K lies in the uniform closure of &/,
hence lies in 4. If fis a complex continuous function on K, /= u +iv,
then u e B, v € 4, hence f € . This completes the proof.

EXERCISES

1.

Prove that every uniformly convergent sequence of bounded functions is uni-
formly bounded.

. If {f.} and {g.} converge uniformly on a set E, prove that {f, + g.} converges

uniformly on E. If, in addition, {f.} and {g.} are sequences of bounded functions,
prove that { f.g.} converges uniformly on E.

. Construct sequences {f.}, {g.} which converge uniformly on some set E, but such

that {f.g.} does not converge uniformly on E (of course, {f.g.} must converge on
E).

. Consider

@K
x) = —_—.
f( ) n=Zl 1+ n%x
For what values of x does the series converge absolutely ? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly? Is f
continuous wherever the series converges? Is f bounded?
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5. Let

( 1
0 (x<n+1)’
= in2Z 1 < <l
S(x) sin p (n+1 _x_n ,
0 (1<x)-
n

Show that {f,} converges to a continuous function, but not uniformly. Use the
series = £, to show that absolute convergence, even for all x, does not imply uni-
form convergence.

. Prove that the series

x2+n
nZ

T -1y

converges uniformly in every bounded interval, but does not converge absolutely
for any value of x.

. Forn=1,2,3,..., xreal, put

S =17

Show that {f,} converges uniformly to a function £, and that the equation
S = }liglf.i(X)

is correct if x # 0, but false if x =0,

If

0 (x < 0)’

=1 (>o),

if {x.} is a sequence of distinct points of (a, b), and if |c.| converges, prove that
the series

f)=Fedx—x) (a<x<b)

converges uniformly, and that fis continuous for every x #* x,.

. Let {fx} be a sequence of continuous functions which converges uniformly to a

function fon a set E. Prove that

}i:g Sfalxn) = f(x)

for every sequence of points x, € E such that x, - x, and x € E. Is the converse of
this true?



SEQUENCES AND SERIES OF FUNCTIONS 167

10. Letting (x) denote the fractional part of the real number x (see Exercise 16, Chap. 4,

11.

12

13

for the definition), consider the function
x (n
flx)= ..;1 (n—):) (x real).

Find all discontinuities of f, and show that they form a countable dense set.
Show that fis nevertheless Riemann-integrable on every bounded interval.
Suppose {/3}, {gn} are defined on E, and
(a) Z f, has uniformly bounded partial sums;
(b) g»— 0 uniformly on E;
(c) g1(x) = g2(x) = gs(x) = for every x € E.

Prove that £ f,g. converges uniformly on E. Hint: Compare with Theorem
3.42,
Suppose g and f,(n=1, 2, 3, ...) are defined on (0, «), are Riemann-integrable on
[¢, T] whenever 0 <t <T < w0, | fa| <g, f» —f uniformly on every compact sub-
set of (0, «), and

J.mg(x) dx < o0,

Prove that

lim [ f(x) dx= f £(x) dx.
o Yo 0
(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.)

This is a rather weak form of Lebesgue’s dominated convergence theorem
(Theorem 11.32). Even in the context of the Riemann integral, uniform conver-
gence can be replaced by pointwise convergence if it is assumed that fe Z. (See
the articles by F. Cunningham in Math. Mag., vol. 40, 1967, pp. 179-186, and
by H. Kestelman in Amer. Math. Monthly, vol. 77, 1970, pp. 182-187.)

Assume that {f,} is a sequence of monotonically increasing functions on R! with
0 <f,(x) <1 for all x and all n.
(a) Prove that there is a function f and a sequence {n} such that

fx)= }m Sfudx)

for every x € R'. (The existence of such a pointwise convergent subsequence is
usually called Helly’s selection theorem.)
(b) If, moreover, f is continuous, prove that f,, —funiformly on compact sets.
Hint: (i) Some subsequence {f,,} converges at all rational points r, say, to
f(r). (ii) Define f(x), for any x € R', to be sup f(r), the sup being taken over all
r < x. (iii) Show that f,,(x) = f(x) at every x at which f is continuous. (This is
where monotonicity is strongly used.) (iv) A subsequence of {f;} converges at
every point of discontinuity of f since there are at most countably many such
points. This proves (@). To prove (b), modify your proof of (iii) appropriately.
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14.

15.

16.

17.

18.

19.

Let f be a continuous real function on R' with the following properties:
0< f(1) <1, f(t + 2) = f(¢) for every ¢, and

0 0o<t<d

f(t)zil G<r<1).

Put ®(¢) = (x(¢), y(¢)), where

XO=F 277G, W) =3 27F G,

Prove that @ is continuous and that ® maps I = [0, 1] onto the unit square /> = R
If fact, show that ® maps the Cantor set onto I2.
Hint: Each (xo, yo) € I? has the form

kel a0
Xo= Y 27 "dn-1, Yo=1 27"z
n=1 n=1

where each a; is O or 1. If

to=3 371"1(2a))
=1

show that f(3*¢0) = ax, and hence that x(¢,) = xo, y(¢o) = yo.

(This simple example of a so-called ““space-filling curve” is due to 1. J.
Schoenberg, Bull. A.M.S., vol. 44, 1938, pp. 519.)
Suppose f'is a real continuous function on R, £,(¢) = f(nt) for n=1,2,3, ..., and
{fa}; is equicontinuous on [0, 1]. What conclusion can you draw about f?
Suppose { f.} is an equicontinuous sequence of functions on a compact set K, and
{f.} converges pointwise on K. Prove that { f.} converges uniformly on K.
Define the notions of uniform convergence and equicontinuity for mappings into
any metric space. Show that Theorems 7.9 and 7.12 are valid for mappings into
any metric space, that Theorems 7.8 and 7.11 are valid for mappings into any
complete metric space, and that Theorems 7.10, 7.16, 7.17, 7.24, and 7.25 hold for
vector-valued functions, that is, for mappings into any R*.
Let {f.} be a uniformly bounded sequence of functions which are Riemann-inte-
grable on [a, b], and put

Fo(x) =f fydt  (@<x<b).

Prove that there exists a subsequence {F,,} which converges uniformly on [a, 5].
Let K be a compact metric space, let S be a subset of €(K). Prove that .S is compact
(with respect to the metric defined in Section 7.14) if and only if .S is uniformly
closed, pointwise bounded, and equicontinuous. (If S is not equicontinuous,
then S contains a sequence which has no equicontinuous subsequence, hence has
no subsequence that converges uniformly on K.)
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20. If £ is continuous on [0, 1] and if

21.

22,

23.

f foxrdx=0 (n=0,1,2,..)),

prove that f(x) =0 on [0, 1]. Hint: The integral of the product of f with any
1
polynomial is zero. Use the Weierstrass theorem to show that J.O fix)dx=0.

Let K be the unit circle in the complex plane (i.e., the set of all z with |z| = 1), and
let &/ be the algebra of all functions of the form

fle) = i cqe'™® (6 real).

Then &/ separates points on X and &/ vanishes at no point of K, but nevertheless
there are continuous functions on K which are not in the uniform closure of /.
Hint: For every f€ o/

27
[ remerds=o,
o

and this is also true for every f in the closure of /.
Assume f € Z(«) on [a, b], and prove that there are polynomials P, such that

b
lim f |f = Pu|?de=0.
(Compare with Exercise 12, Chap. 6.)
Put P, =0, and define, for n=0,1, 2, ...,

x? — PX(x
Pos(0 = P + T,
Prove that
lim Pu(x) = |x|,

uniformly on [—1, 1].

(This makes it possible to prove the Stone-Weierstrass theorem without first
proving Theorem 7.26.)

Hint: Use the identity

2
to prove that 0 << P,(x) < P,.((x) < |x| if |x] <1, and that

x| = Puss(0) =Tl x| fp"(x)][l _ I_M]

EN
—Px) < - = —
el == 11 1= 1) <2

if [x] <1,
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24. Let X be a metric space, with metric d. Fix a point a € X, Assigntoeachpe X

25.

the function f, defined by
Hx)=dx,p)—dx,a) (xeX).

Prove that | f,(x)| < d(a, p) for all x € X, and that therefore f, € €(X).
Prove that

ILfe — fall= d(p, q)

forall p,qg € X.

If ©(p) = £, it follows that @ is an isometry (a distance-preserving mapping)
of X onto ®(X) < €(X).

Let Y be the closure of ®(X)in €(X). Show that Y is complete,

Conclusion: X is isometric to a dense subset of a complete metric space Y.
(Exercise 24, Chap. 3 contains a different proof of this.)
Suppose ¢ is a continuous bounded real function in the strip defined by
0<x<1, —w0 <y< co. Prove that the initial-value problem

yV=9¢(x,», y0)=c
has a solution. (Note that the hypotheses of this existence theorem are less stringent
than those of the corresponding uniqueness theorem; see Exercise 27, Chap. 5.)
Hint: Fixn. Fori=0,...,n, put x,=i/n. Let f, be a continuous function
on [0, 1] such that £,(0) = ¢,

flt) = dlxe, fulx)) i xi <t <xi41,
and put
A"(t) :f';(t) - 95(’, f;:(t)),

except at the points x;, where A,(t) = 0. Then
£ = e+ [ 186400 + o] dr.
1

Choose M < «© so that |¢| << M. Verify the following assertions.

(@) |fa]l <M, |A| €2M, A € R, and | ;| < |c| + M= M,, say, on [0, 1], for
all n.

(b) {fa} is equicontinuous on [0, 1], since | /x| <M.

(¢) Some {f,,} converges to some f, uniformly on [0, 1].

(d) Since ¢ is uniformly continuous on the rectangle 0 <x <1, |y| < M,,

Blt, furlt) = (21, £(2))

uniformly on [0, 1].
(e) An(2) — 0 uniformly on [0, 1], since

At) = $(xi, fulx)) — (8, fu(1))

in (xi, X,'+1).
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(f) Hence
f@=c+ [ 4 £y ar.
[+
This fis a solution of the given problem.
Prove an analogous existence theorem for the initial-value problem

Y =%(,y), y0)=c

where now ¢ € R*, y € R¥, and & is a continuous bounded mapping of the part of
R**1 defined by 0 <x <1,y € R*into R*. (Compare Exercise 28, Chap. 5.) Hint:
Use the vector-valued version of Theorem 7.25.
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SOME SPECIAL FUNCTIONS

POWER SERIES

In this section we shall derive some properties of functions which are represented
by power series, i.e., functions of the form

M) ) =5 e
or, more generally,
2 fx) = ;OC,.(X —a)".

These are called analytic functions.

We shall restrict ourselves to real values of x, Instead of circles of con-
vergence (see Theorem 3.39) we shall therefore encounter intervals of conver-
gence.

If (1) converges for all x in (- R, R), for some R> 0 (R may be + o),
we say that fis expanded in a power series about the point x = 0. Similarly, if
(2) converges for |x — a| < R, fis said to be expanded in a power series about
the point x = @. As a matter of convenience, we shall often take a = 0 without
any loss of generality.
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8.1 Theorem Suppose the series

3 S 6"

converges for | x| < R, and define

@ fe=Fex  (xl<R.

173

Then (3) converges uniformly on [— R + ¢, R — ¢, no matter which ¢ > 0

is chosen. The function f is continuous and differentiable in (— R, R), and
(5) S = Yone, (x| <R),
Proof Lete> 0 be given. For |x| < R — ¢, we have
lewx"| < le(R—2)"[;

and since

Ze (R —¢)"

converges absolutely (every power series converges absolutely in the
interior of its interval of convergence, by the root test), Theorem 7.10

shows the uniform convergence of (3) on [— R+ ¢, R — ¢].
Since \"/n—>1 as n = o0, we have
lim sup &/n|¢c,| = lim sup \"/|c,,|,
n—=> 0 n—ow

so that the series (4) and (5) have the same interval of convergence.

Since (5) is a power series, it converges uniformly in [—R + ¢,
R —¢], for every ¢ > 0, and we can apply Theorem 7.17 (for series in-

stead of sequences). It follows that (5) holds if | x| < R —e.

But, given any x such that | x| < R, we can find an ¢ > 0 such that

|x| < R —¢. This shows that (5) holds for |x| < R.
Continuity of f follows from the existence of /' (Theorem 5.2).

Corollary Under the hypotheses of Theorem 8.1, f has derivatives of all

orders in (— R, R), which are given by

(6) SO =Y nn—=1) " (n—k+ De,x" 7~
=k

In particular,
@) SE0) = Klc, (k=0,1,2,..).

(Here £ means £, and /% is the kth derivative of f, for k =1, 2, 3, ...).
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Proof Equation (6) follows if we apply Theorem 8.1 successively to f,
S f”, .... Putting x = 0 in (6), we obtain (7).

Formula (7) is very interesting. It shows, on the one hand, that the
coeflicients of the power series development of f are determined by the values
of fand of its derivatives at a single point. On the other hand, if the coefficients
are given, the values of the derivatives of f at the center of the interval of con-
vergence can be read off immediately from the power series.

Note, however, that although a function f may have derivatives of all
orders, the series Z¢, x”, where ¢, is computed by (7), need not converge to f(x)
for any x # 0. In this case, f cannot be expanded in a power series about x = 0.
For if we had f(x) = Xa, x", we should have

nla, =fV0);

hence a, = ¢,. An example of this situation is given in Exercise 1.

If the series (3) converges at an endpoint, say at x = R, then fis continuous
not only in (— R, R), but also at x = R. This follows from Abel’s theorem (for
simplicity of notation, we take R=1):

8.2 Theorem Suppose Xc, converges. Put

F(x) = i ax" (=l<x<l).

Then

@) lim f(x) = ZOC"'

x—1

Proof Lets,=cy+ '+ +c¢,,s_; =0. Then

gkl

m m—1
X" =Y (Sp— Spe)x" = (1 = %) Y 8,x" + 5, x™.
n=0 =0

n

n=0

For |x| < 1, we let m — oo and obtain

©) )= =0T 5,5

Suppose s = lim s,. Let ¢ >0 be given. Choose N so that n > N

n— o0

implies

£
|S—S,,| <§'
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Then, since

(l—x)ix"zl (x| < 1),

we obtain from (9)

700 = sl ={0 =0 % (5, = 9| <A =0T [s, = sl xl7 42 <

if x > 1 — ¢, for some suitably chosen é > 0. This implies (8).
As an application, let us prove Theorem 3.51, which asserts: If Za,, Zb,,
Zc,, converge to A, B, C, and if ¢, =ayb, + -+ + a, by, then C = AB. We let
f@=Yaxt  g)=Y b h9 =) 6x,

for 0 < x < 1. For x <1, these series converge absolutely and hence may be
multiplied according to Definition 3.48; when the multiplication is carried out,
we see that

(10) Sx) - g(x)y = h(x) 0<x<l1).
By Theorem 8.2,
(11) fx)-4, gx)->B,  hx)->C

as x —» 1. Equations (10) and (11) imply 4B = C.
We now require a theorem concerning an inversion in the order of sum-
mation. (See Exercises 2 and 3.)

8.3 Theorem Given a double sequence {a;;}, i=1,2,3,...,j=1,2,3,...
suppose that

(12) > lail = b (i=1,2,3,..)
=1

and b, converges. Then

13) S Say=3 Yay

Proof We could establish (13) by a direct procedure similar to (although
more involved than) the one used in Theorem 3.55. However, the following
method seems more interesting.
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Let E be a countable set, consisting of the points x,, x;, x,, ..., and
suppose x, = X, as n - co. Define

(14) fixo) = Z a;; (i=123..),

(15) fix) = Zaij G,n=1,2,3,..),
j=1

(16) 90 =3 S (e

Now, (14) and (15), together with (12), show that each f; is con-
tinuous at x,. Since |f{x)| < b, for x € E, (16) converges uniformly, so
that g is continuous at x, (Theorem 7.11). It follows that

18
™8

al_’ Z f(x0) (xo) = lim g(xn)

i=1j=1 n— oo
n
—llme(x,l)—llm Z Za,J
n—+owoi=1 n—+ow i= 1_,_
. D D
=11m2 Zau=2 2 4y
n—w j=1i=1 j=1i=1

8.4 Theorem Suppose
flx) = Zocn x",

the series converging in |x| < R. If —R < a < R, then f can be expanded in a
power series about the point x = a which converges in |x — a| < R — |a|, and

)
a7 f()—zf @

(x—-a (Ix—a|<R-|al]).

This is an extension of Theorem 5.15 and is also known as Taylor’s
theorem.

Proof We have

o

fx) = Z cl(x —a) + al"
- n n—m m
Oc,l mzo (m) a" " "(x —a)

(L)oo

=
II

I
||[\/]8

I
s
L
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This is the desired expansion about the point x = a. To prove its validity,
we have to justify the change which was made in the order of summation.
Theorem 8.3 shows that this is permissible if

& 5 5 (1) enomar

n=0m=0
converges. But (18) is the same as

(19) >l (Ix —al +al.
and (19) converges if |x —al| + |a| < R.
Finally, the form of the coefficients in (17) follows from (7).

It should be noted that (17) may actually converge in a larger interval than
the one given by |x —a| < R — |a|.

If two power series converge to the same function in (— R, R), (7) shows
that the two series must be identical, i.e., they must have the same coefficients.
It is interesting that the same conclusion can be deduced from much weaker
hypotheses:

8.5 Theorem Suppose the series %La,x" and Xb,x" converge in the segment
S=(—R, R). Let E be the set of all x € S at which

(20) Y a,x"=) b,x"

n=0 n=0
If E has a limit point in S, then a, = b, for n =0, 1, 2, .... Hence (20) holds for
all xe S.

Proof Putc,=a,— b, and
1) f =Y ex"  (xeS).
n=0

Then f(x) =0 on E.

Let A be the set of all limit points of £ in S, and let B consist of all
other points of S. It is clear from the definition of “limit point” that B
is open. Suppose we can prove that 4 is open. Then 4 and B are disjoint
open sets. Hence they are separated (Definition 2.45). Since S=A4 U B,
and S is connected, one of 4 and B must be empty. By hypothesis, 4 is
not empty. Hence B is empty, and 4 = S. Since f is continuous in S,
Ac E. Thus E =S, and (7) shows that ¢, =0forn =0, 1, 2, ..., which
is the desired conclusion.
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Thus we have to prove that 4 is open. If x, € 4, Theorem 8.4 shows
that

@) )= F dix—xof (1%~ Xo| <R~ |xo])

We claim that d, = O for all n. Otherwise, let & be the smallest non-
negative integer such that d, # 0. Then

(23) fG) = = x)9(x)  (|x = Xo| < R~ [xo]),

where
(24) g(x) = Zodk+m(x — xo)™
Since g is continuous at x, and

g(xo) = dk # 09

there exists a & > 0 such that g(x) #0 if |x — x| < d. It follows from
(23) that f(x) #0 if 0 < |x — x| < &. But this contradicts the fact that
X, 1s a limit point of E.

Thus d, = 0 for all n, so that f(x) = 0 for all x for which (22) holds,
i.e., in a neighborhood of x,. This shows that 4 is open, and completes
the proof.

THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS
We define

n

(25) E(z) = 20’%

The ratio test shows that this series converges for every complex z. Applying
Theorem 3.50 on multiplication of absolutely convergent series, we obtain
wm o n kan-—k

E@EW) = 2 2 priaP ) Kln — k!

w=o Nl m=om! =0 ¥=0

which gives us the important addition formula
(26) E(z + w) = E(2)E(w) (z, w complex).
One consequence is that

7 EGE(-2)=E(@z—2)=EO0) =1 (zcomplex).
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This shows that E(z) # 0 for all z. By (25), E(x) > 0 if x > 0; hence (27) shows
that E(x) > O for all real x. By (25), E(x) — + o0 as x — + c0; hence (27) shows
that E(x) - 0 as x - — oo along the real axis. By (25), 0 < x < y implies that
E(x) < E(y); by (27), it follows that E(—y) < E(—x); hence E is strictly in-
creasing on the whole real axis.

The addition formula also shows that

E(z +h) — E(z) E(h)

(28) lim = E(z) lim T_l = EQ2);
h=0

h=0 h

the last equality follows directly from (25).
Iteration of (26) gives

29) E(z,+ -+ z,) = E(z,) - E(z,).

Let us take z; = -+ =z, = 1. Since E(1) = e, where e is the number defined
in Definition 3.30, we obtain

(30) En)y=¢" n=123...).

If p = n/m, where n, m are positive integers, then

(31 [E(p)]" = E(mp) = E(n) = ¢,

so that

(32) E(py=2¢* (p > 0, p rational).

It follows from (27) that E(—p) = e P if p is positive and rational. Thus (32)
holds for all rational p.
In Exercise 6, Chap. 1, we suggested the definition

(33) x¥ = sup x?,

where the sup is taken over all rational p such that p < y, for any real y, and
x > 1. If we thus define, for any real x,

(34) e* =sup ef (p < x, p rational),
the continuity and monotonicity properties of E, together with (32), show that
(3%5) E(x)=e¢"

for all real x. Equation (35) explains why E is called the exponential function.
The notation exp (x) is often used in place of e*, expecially when x is a
complicated expression.
Actually one may very well use (35) instead of (34) as the definition of e*;
(35) is a much more convenient starting point for the investigation of the
properties of ¢*. We shall see presently that (33) may also be replaced by a
more convenient definition [see (43)].



180 PRINCIPLES OF MATHEMATICAL ANALYSIS

We now revert to the customary notation, e, in place of E(x), and sum-
marize what we have proved so far.

8.6 Theorem Let e* be defined on R* by (35) and (25). Then
(a) e is continuous and differentiable for all x;
(b) (&) =e*;
(¢) € is a strictly increasing function of x, and e* > 0;
(d) &7V =¢"e;
() > 4+wasx—>+w,e¥>0asx—> —w0;
(f) lim,, . x"e”* =0, for every n.
Proof We have already proved (a) to (e); (25) shows that
xn+1
X > -
RGP
for x > 0, so that
(n+ 1!
x

x"e™* <

b

and (f) follows. Part (f) shows that e” tends to + oo “faster’” than any
power of x, as x > + 0.

Since E is strictly increasing and differentiable on R, it has an inverse
function L which is also strictly increasing and differentiable and whose domain
is E(R'), that is, the set of all positive numbers. L is defined by

(36) ELy) =y (>0,

or, equivalently, by

37 L(E(x))=x (x real).

Differentiating (37), we get (compare Theorem 5.5)
L'(E(x)) - E(x) = 1.

Writing y = E(x), this gives us

(38) L'(y) = (»y>0).

1
Y
Taking x = 0 in (37), we see that L(1) = 0. Hence (38) implies
Y dx

1 X

(39) L(y) =
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Quite frequently, (39) is taken as the starting point of the theory of the logarithm
and the exponential function. Writing u = E(x), v = E(y), (26) gives

L(uv) = L(E(x) * E(y)) = L(E(x + y)) = x + y,
so that
(40) L(uv) = L(u) + L(v) u>0,v>0).

This shows that L has the familiar property which makes logarithms useful
tools for computation. The customary notation for L(x) is of course log x.
As to the behavior of log x as x - + o0 and as x -0, Theorem 8.6(¢)
shows that
logx -+ as x —» + o,

log x » ~ as x - 0.
It is easily seen that
41 x" = E(nL(x))

if x > 0and nis an integer. Similarly, if m is a positive integer, we have
1

(42) xm=E (— L(x)),
m

since each term of (42), when raised to the mth power, yields the corresponding
term of (36). Combining (41) and (42), we obtain

(43) X* = E(aL(x)) = e*1°8~

for any rational «.

We now define x°% for any real « and any x > 0, by (43). The continuity
and monotonicity of E and L show that this definition leads to the same result
as the previously suggested one. The facts stated in Exercise 6 of Chap. 1, are
trivial consequences of (43).

If we differentiate (43), we obtain, by Theorem 5.5,

(44) (%) = E(aL(x)) - % — axe 1,

Note that we have previously used (44) only for integral values of «, in which
case (44) follows easily from Theorem 5.3(b). To prove (44) directly from the
definition of the derivative, if x* is defined by (33) and « is irrational, is quite
troublesome.

The well-known integration formula for x* follows from (44) if « # —1,

and from (38) if « = — . We wish to demonstrate one more property of log x,
namely,
(45) lim x *logx =0

x=+ o0
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for every « > 0. That is, log x = + o0 “‘slower” than any positive power of x,
as x — + o0o.
Forif 0 < ¢ < «, and x > 1, then

X X
x"’logx=x_°’f t—ldt<x‘°‘J‘ et dt
1 1

E—a
—a

xt—1 x
. <

=X s

& &

and (45) follows. We could also have used Theorem 8.6(f) to derive (45).

THE TRIGONOMETRIC FUNCTIONS

Let us define
(46) C(x) = % [E(ix) + E(—ix)], S(x) = 51; [E(ix) — E(—ix)].

We shall show that C(x) and S(x) coincide with the functions cos x and sin x,
whose definition is usually based on geometric considerations. By (25), E(Z) =

E—(z—). Hence (46) shows that C(x) and S(x) are real for real x. Also,
@7 E(ix) = C(x) + iS(x).

Thus C(x) and S(x) are the real and imaginary parts, respectively, of E(ix), if
x is real. By (27),

| E(ix)| > = E(ix)E(ix) = EGX)E(—ix) = 1,

so that
(48) |E(ix)| =1 (x real).

From (46) we can read off that C(0) =1, S(0) =0, and (28) shows that
(49) C'(x) = —S(x), S'(x) = C(x).

We assert that there exist positive numbers x such that C(x) =0. For
suppose this is not so. Since C(0) =1, it then follows that C(x) > 0 for all
x > 0, hence S'(x) > 0, by (49), hence S is strictly increasing; and since S(0) = 0,
we have S(x) > 0 if x > 0. Hence if 0 < x < y, we have

(50) S0 - x) < [ "S(1) dt = Cx) — CY) < 2.

The last inequality follows from (48) and (47). Since S(x) > 0, (50) cannot be
true for large y, and we have a contradiction.
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Let x, be the smallest positive number such that C(x,) = 0. This exists,
since the set of zeros of a continuous function is closed, and C(0) #0. We
define the number 7 by

(5D T =2xg.

Then C(n/2) =0, and (48) shows that S(n/2) = +1. Since C(x) >0 in
(0, ©/2), S is increasing in (0, 7/2); hence S(n/2) = 1. Thus

-

and the addition formula gives

(52) E(mi)=—1, EQri)y=1;
hence
(53) E(z + 2ni) = E(2) (z complex).

8.7 Theorem

(a) The function E is periodic, with period 2mi.

(b) The functions C and S are periodic, with period 2.

(¢) If0<t<2nm, then E(it) # 1.

(d) If z is a complex number with |z| =1, there is a unique t in [0, 27)
such that E(it) = z.

Proof By (53), (@) holds; and (b) follows from (@) and (46).
Suppose 0 < ¢ < n/2 and E(it) = x + iy, with x, y real. Our preceding
work shows that 0 < x < 1, 0 < y < 1. Note that

E@4in) = (x + iy)* = x* — 6x%)% + p* + dixy(x* — y?).
If E(4ir) is real, it follows that x* — p? = 0; since x* + y? = 1, by (48),

we have x? = y? = 1, hence E(4ir) = —1. This proves (c).
If0<t <t, <2n, then

E(it)[EGit)] ™" = E(it, ~ ity) #1,

by (¢). This establishes the uniqueness assertion in (d).

To prove the existence assertion in (d), fix z so that |z| = 1. Write
z = x + iy, with x and y real. Suppose first that x >0 and y > 0. On
[0, n/2], C decreases from 1 to 0. Hence C(¢) = x for some ¢ € [0, 7/2].
Since C2 + S? =1 and S >0 on [0, /2], it follows that z = E(it).

If x <0 and y > 0, the preceding conditions are satisfied by —iz.
Hence —iz = E(it) for some ¢ € [0, =/2], and since i = E(7i/2), we obtain
z = E(i(t + =/2)). Finally, if y <0, the preceding two cases show that
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—z = E(ir) for some 7€ (0, n). Hence z = — E(it) = E@{(r + n)).
This proves (d), and hence the theorem.

It follows from (d) and (48) that the curve y defined by
(54) )= E@lt) (0<t<2n)

is a simple closed curve whose range is the unit circle in the plane. Since
y'(¢t) =iE(it), the length of y is

2n
jo ()] dr = 2n,

by Theorem 6.27. This is of course the expected result for the circumference of
a circle of radius 1. It shows that n, defined by (51), has the usual geometric
significance.

In the same way we see that the point y(¢) describes a circular arc of length
t, as f increases from O to 5. Consideration of the triangle whose vertices are

7 =0, zy = Y(to), 73 = C(to)
shows that C(¢) and S(¢) are indeed identical with cos ¢ and sin ¢, if the latter
are defined in the usual way as ratios of the sides of a right triangle.

It should be stressed that we derived the basic properties of the trigono-
metric functions from (46) and (25), without any appeal to the geometric notion
of angle. There are other nongeometric approaches to these functions. The
papers by W. F. Eberlein (Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225)
and by G. B. Robison (Math. Mag., vol. 41, 1968, pp. 66-70) deal with these
topics.

THE ALGEBRAIC COMPLETENESS OF THE COMPLEX FIELD

We are now in a position to give a simple proof of the fact that the complex
field is algebraically complete, that is to say, that every nonconstant polynomial
with complex coefficients has a complex root.

8.8 Theorem Suppose ay, ..., a, are complex numbers, n> 1, a, # 0,
P(2) =Y az"
0

Then P(z) = 0 for some complex number z.

Proof Without loss of generality, assume a, = 1. Put
(55) u = inf | P(2)] (z complex)

If |z| = R, then
(56) |P@)| 2 R[1 = @, |[R™ = -+ = |ag| R
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The right side of (56) tends to o0 as R — co. Hence there exists R, such
that |P(z)| > p if |z| > R,. Since |P| is continuous on the closed disc
with center at 0 and radius R,, Theorem 4.16 shows that | P(z,)| = u for
some z;.

We claim that u = 0.

If not, put Q(z) = P(z + z,)/P(z5). Then Q is a nonconstant poly-
nomial, Q(0) =1, and |Q(z)| = 1 for all z. There is a smallest integer k,
1 < k <n, such that

(57) @) =1+b2"+ - +b,2", b, #0.
By Theorem 8.7(d) there is a real 8 such that
(58) e®by = —|by.

If > 0 and r*|b,| < 1, (58) implies
|14 b rke™| =1 —r¥|b,],
so that
Qe < 1= P = byl =+ =

For sufficiently small r, the expression in braces is positive; hence
| Q(re®)| < 1, a contradiction.
Thus u = 0, that is, P(z) = 0.

Exercise 27 contains a more general result.

FOURIER SERIES

8.9 Definition A trigonometric polynomial is a finite sum of the form
N

(59) S(x)=ay+ ) (a,cosnx +b,sinnx)  (xreal),
n=1

where a,, ..., ay, by, ..., by are complex numbers. On account of the identities
(46), (59) can also be written in the form

(60) fx) = fcnef"x (x real),
-N

which is more convenient for most purposes. It is clear that every trigonometric
polynomial is periodic, with period 27.

If n is a nonzero integer, e is the derivative of ¢”*/in, which also has
period 2n. Hence

L e (I (ifn=0),
1) i dx‘{o Gfn=+1, +2,..).
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Let us multiply (60) by e~ ™™, where m is an integer; if we integrate the
product, (61) shows that

(62) ¢, = % [ _ F(x)e™ ™ dx

for [m| < N. If |m| > N, the integral in (62) is 0.

The following observation can be read off from (60) and (62): The
trigonometric polynomial £, given by (60), is real if and only if c_, = ¢, for
n=0,...,N.

In agreement with (60), we define a trigonometric series to be a series of
the form

(63) Y ¢, €™ (xreal);

the Nth partial sum of (63) is defined to be the right side of (60).

If /' is an integrable function on [— =, x], the numbers c,, defined by (62)
for all integers m are called the Fourier coefficients of f, and the series (63) formed
with these coefficients is called the Fourier series of f.

The natural question which now arises is whether the Fourier series of f
converges to f, or, more generally, whether fis determined by its Fourier series.
That is to say, if we know the Fourier coefficients of a function, can we find
the function, and if so, how?

The study of such series, and, in particular, the problem of representing a
given function by a trigonometric series, originated in physical problems such
as the theory of oscillations and the theory of heat conduction (Fourier’s
“Théorie analytique de la chaleur” was published in 1822). The many difficult
and delicate problems which arose during this study caused a thorough revision
and reformulation of the whole theory of functions of a real variable. Among
many prominent names, those of Riemann, Cantor, and Lebesgue are intimately
connected with this field, which nowadays, with all its generalizations and rami-
fications, may well be said to occupy a central position in the whole of analysis.

We shall be content to derive some basic theorems which are easily
accessible by the methods developed in the preceding chapters. For more
thorough investigations, the Lebesgue integral is a natural and indispensable
tool.

We shall first study more general systems of functions which share a
property analogous to (61).

8.10 Definition Let {¢,} (n=1,2,3,...) be a sequence of complex functions
on [a, b], such that

(64) [696,dx =0 (n#m).
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Then {¢,} is said to be an orthogonal system of functions on [a, b]. If, in addition,

b
(65) [ 18u00)17 dx =1

for all n, {¢,} is said to be orthonormal.
For example, the functions (27) %e™ form an orthonormal system on
[—=, n]. So do the real functions

1 cos x sin x cos2x sin2x
NTENCRNC NN

If {¢,} is orthonormal on [a, b] and if

(66) c,,:fbf(t)¢>_,,(7)dr (n=1,2,3..),

we call ¢, the nth Fourier coefficient of f relative to {¢,}. We write

o0

(67) S(x) ~ ; C PulX)
and call this series the Fourier series of f (relative to {¢,}).

Note that the symbol ~ used in (67) implies nothing about the conver-
gence of the series; it merely says that the coefficients are given by (66).

The following theorems show that the partial sums of the Fourier series
of f have a certain minimum property. We shall assume here and in the rest of
this chapter that fe€ #, although this hypothesis can be weakened.

8.11 Theorem Let {¢,} be orthonormal on [a, b]. Let

(68) 5209 = Y. € bn()
be the nth partial sum of the Fourier series of f, and suppose
(69) 1,(x) = Z_lvm Pm(X).
Then
b b
(70) [1r=sl?dax< [ 1f =12 dx,

and equality holds if and only if
(71) Vm = Cm (m=1,...,n).

That is to say, among all functions ¢,, s, gives the best possible mean
square approximation to f.
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Proof Let _[ denote the integral over [a, b], £ the sum from 1 to n. Then
[11.= [SE 0= ¥ CnTm
by the definition of {c,,},
[1 = [t = [ 3mn L 7= T |7ml?
since {¢,,} is orthonormal, and so
[1r=ul2 =12 =1 = [0+ 102
= [ 112 = T cuFn— L entn+ L v
=112 =T leal>+ 2 17~ cal?,

which is evidently minimized if and only if y,, = ¢,,.
Putting y,, = ¢, in this calculation, we obtain

(12) [ 130012 dx = 3 feal? < [ 17012 a,
since [|f—1,/2 = 0.

8.12 Theorem If {¢,} is orthonormal on [a, b], and if

o0

S~ T a0,
then
(3) Y lal? < [ 17e)1? d.
In particular,
(74) lim ¢, = 0.

Proof Letting n—>co in (72), we obtain (73), the so-called ‘‘Bessel
inequality.”

8.13 Trigonometric series From now on we shall deal only with the trigono-
metric system. We shall consider functions f that have period 2z and that are
Riemann-integrable on [—m, n} (and hence on every bounded interval). The
Fourier series of fis then the series (63) whose coefficients ¢, are given by the
integrals (62), and

N
(75) sn(x) = sy(f; x) = _ZN cpe™
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is the Nth partial sum of the Fourier series of f. The inequality (72) now takes
the form

1 .4 N 1 n
(76) | s ax =Y jal* <5 | 1f)* dx.
In order to obtain an expression for sy that is more manageable than (75)
we introduce the Dirichlet kernel
LA sin (N + 4)x
7 Dy(x) = e T2,
(amn n(x) ,.=Z-Ne sin (72)

The first of these equalities is the definition of Dy(x). The second follows if
both sides of the identity

(eix _ l)DN(x) — ei(N+l)x _ e—iNx

are multiplied by e~ /2,

By (62) and (75), we have
. _ ul 1 " —intd inx
(i)=Y 5[ fe ™ die

1 b4 N ( 0
=_— t METO gy
] SO e
so that
1 /= 1 o=
(18)  ssfix)=5=| FODx—0)di=o=[ flx—n)Dy(t)dr.
2n ) 2n .,
The periodicity of all functions involved shows that it is immaterial over which
interval we integrate, as long as its length is 2z. This shows that the two integrals
in (78) are equal.
We shall prove just one theorem about the pointwise convergence of

Fourier series.

8.14 Theorem [If, for some x, there are constants 6 >0 and M < o such that

(79) [+ 1) —fo)] < Mt
for all te (=6, 6), then
(80) ;&m sy(f'5 x) = f(x).

Proof Define

Q) DY)
=G0 2
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for 0 < |7]| < =, and put g(0) = 0. By the definition (77),

1 T
5 J._RDN(x) dx =1,
Hence (78) shows that

sy(f3x)—flx) = 21_7; f;g(t) sin (N + %)z dt

1 ® t 1 n t
=5 _(._" {g(t) cos 5] sin Nt dt + 7 _(._n [g(t) sin 5] cos Nt dt.

By (79) and (81), g() cos (¢/2) and g(¢) sin (2/2) are bounded. The last
two integrals thus tend to 0 as N — o0, by (74). This proves (80).

Corollary If f(x) =0 for all x in some segment J, then lim sy(f; x) =0 for
every x € J.

Here is another formulation of this corollary:
If f(t) = g(¢) for all t in some neighborhood of x, then
sn(f5 %) — sp(g; x) = sy(f~g; x) >0as N - oo.

This is usually called the localization theorem. It shows that the behavior
of the sequence {sy(f; x)}, as far as convergence is concerned, depends only on
the values of f in some (arbitrarily small) neighborhood of x. Two Fourier
series may thus have the same behavior in one interval, but may behave in
entirely different ways in some other interval. We have here a very striking
contrast between Fourier series and power series (Theorem 8.5).

We conclude with two other approximation theorems.

8.15 Theorem If f is continyous (with period 2n) and if ¢ > 0, then there is a
trigonometric polynomial P such that

|[P(x) —f(x)[ < &

Sfor all real x.

Proof If we identify x and x + 2n, we may regard the 2z-periodic func-
tions on R! as functions on the unit circle 7, by means of the mapping
x — e, The trigonometric polynomials, i.e., the functions of the form
(60), form a self-adjoint algebra &/, which separates points on 7, and
which vanishes at no point of 7. Since T is compact, Theorem 7.33 tells
us that &7 is dense in €(7"). This is exactly what the theorem asserts.

A more precise form of this theorem appears in Exercise 15.
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8.16 Parseval’s theorem Suppose | and g are Riemann-integrable functions
with period 27, and

(82) FO)~ Y e, g0~ 3 e
Then
®3) lim = [ 1) = su(f5 )| dx =0,
N—-ow 27'5 -
1 n _ ©
(84) 5m | Ja@ dx =3 67,
1 L4 oc
(89) 5] @Pde=1 e,

Proof Let us use the notation
1 T 5 1/2
hl, = {— h d .
56) s =15 [ 1ol as

Let ¢ > 0 be given. Since fe # and f(n) = f(—n), the construction
described in Exercise 12 of Chap. 6 yields a continuous 2z-periodic func-
tion 4 with

(87 ILf—hlz <e

By Theorem 8.15, there is a trigonometric polynomial P such that
|A(x) — P(x)| <€ for all x. Hence |h— P||, <e. If P has degree N,
Theorem 8.11 shows that

(88) I —sn(h)ll. < |h— Pl <e
for all N> N,. By (72), with # — fin place of f,
(89) Isn(h) = syl = sl = N2 < N = fl2 <e.

Now the triangle inequality (Exercise 11, Chap. 6), combined with
(87), (88), and (89), shows that

(90) If = saNllz <3 (N2 No).
This proves (83). Next,

1 n B N 1 T e T N _
1) m | svgde=Y e 5 [ g0y de=Y e\,
and the Schwarz inequality shows that

92) <[1/=sNlgl < Ulf—lezflglz}l/z

-

[13 - [ssna
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which tends to 0, as N — oo, by (83). Comparison of (91) and (92) gives
(84). Finally, (85) is the special case g = f of (84).

A more general version of Theorem 8.16 appears in Chap. 11.

THE GAMMA FUNCTION

This function is closely related to factorials and crops up in many unexpected
places in analysis. Its origin, history, and development are very well described
in an interesting article by P. J. Davis (Amer. Math. Monthly, vol. 66, 1959,
pp. 849-869). Artin’s book (cited in the Bibliography) is another good elemen-
tary introduction.

Our presentation will be very condensed, with only a few comments after
each theorem. This section may thus be regarded as a large exercise, and as an
opportunity to apply some of the material that has been presented so far.

8.17 Definition For 0 < x < o0,
(93) I(x) = f 1ot gy,
0

The integral converges for these x. (When x < 1, both 0 and oo have to
be looked at.)

8.18 Theorem
(@) The functional equation

I'(x+1)=xI'(x)

holds if 0 < x < 0.
b)) Thn+D=nlforn=1,2,3,....
(c) log I is convex on (0, o).

Proof An integration by parts proves (a). Since I'(1) =1, (a) implies
(b), by induction. If 1 <p < oo and (I1/p) + (1/g) =1, apply Holder’s
inequality (Exercise 10, Chap. 6) to (93), and obtain
r(’ﬁ + Z) < T(x)/?I(y)ife,
P 9q

This is equivalent to (c).

It is a rather surprising fact, discovered by Bohr and Mollerup, that
these three properties characterize I' completely.
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8.19 Theorem If fis a positive function on (0, o) such that
(@ fx+1)=xf(x),
b f)=1,
(c) logfis convex,

then f(x) = I'(x).

Proof Since I satisfies (a), (b), and (¢), it is enough to prove that f(x) is
uniquely determined by (a), (b), (¢), for all x > 0. By (a), it is enough to
do this for x e (0, 1).

Put ¢ =logf. Then

(94) ox + 1) = o(x) + log x (0 < x < ),

¢(1) =0, and ¢ is convex. Suppose 0 < x < 1, and # is a positive integer.
By (94), ¢(n + 1) = log(n!). Consider the difference quotients of ¢ on the
intervals [n,n+ 1], [n+ 1,n+ 1+ x], [n+ 1, n + 2]. Since ¢ is convex

ohr+1+x)—on+1)
n<
x

log < log(n+1).

Repeated application of (94) gives
o+ 14 x)=ex)+log [x(x+ 1) (x + n)].
Thus

0 < p(x) — log [x(x+ 1;1?’-1)-5(x+n)] < xlog (1 +%)

The last expression tends to 0 as n - co. Hence ¢(x) is determined, and
the proof is complete.

As a by-product we obtain the relation

nln*

) F =lm e @+ n)

at least when 0 < x < 1; from this one can deduce that (95) holds for all x > 0,

since I'(x + 1) = xI'(x).

8.20 Theorem Ifx>O0andy>0, then

rero)

(96) jo PN — )y dt = St

This integral is the so-called beta function B(x, y).
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Proof Note that B(1, y) = 1/y, that log B(x, y) is a convex function of
x, for each fixed y, by Holder’s inequality, as in Theorem 8.18, and that

x
x+y
To prove (97), perform an integration by parts on

; * . x+y—1
(1 _t) (1-0 dt.

B(x + l,y):_ll1

0

These three properties of B(x, y) show, for each y, that Theorem 8.19
applies to the function f defined by

709 = T iy,

)
Hence f(x) = T'(x).

8.21 Some consequences The substitution ¢ = sin? § turns (96) into

iy - - rx)rey)

98 2 N2 (cos )>Y 1 df = ———7.
98) | in 0" cos ) o)
The special case x = y = £ gives
(99) r@) =

The substitution ¢ = s? turns (93) into
(100) I'(x) =2j s 1ems ds (0 < x < o).

(4]

The special case x = } gives
(101) f e ds = /n.

By (99), the identity

21 + 1
(102) x)=—— r(’f)r(x—)
S U A W)

follows directly from Theorem 8.19.

8.22 Stirling’s formula This provides a simple approximate expression for
I'(x + 1) when x is large (hence for n! when # is large). The formula is
I'x+1
(103) lim D
x+o (x/€)* \/an
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Here is a proof. Put = x(1 + ) in (93). This gives
(104) Tx+1)=x**1e™ j (1 + w)e I du.
-1
Determine h(u) so that A(0) =1 and
u?
(105) (1 +uwe ™™ =exp [—7h(u)]
if =l <wu< oo, u##0. Then

(106) h(u) = % [u—Tlog (1 + u)].

It follows that /i is continuous, and that A(u) decreases monotonically from oo
to 0 as u increases from —1 to co.
The substitution u = s \/2/x turns (104) into

(107) T(x+1)=xe*/2x fo W (s) ds
where
 fexpl=s*h(s \/2/x)]  (—/x/2<s< o),
b= 16 o

Note the following facts about . (s):

(@) Foreverys, Y (s) »e %" as x - o0,
(b) The convergence in (a) is uniform on [— 4, A], for every 4 < o0.
(¢) When s <0, then 0 </ (s) <e™*.

(d) When s >0 and x > 1, then 0 < y/(s) < y(5).
(e) & ¥i(s)ds < oo0.

The convergence theorem stated in Exercise 12 of Chap. 7 can therefore
be applied to the integral (107), and shows that this integral converges to \/E
as x — oo, by (101). This proves (103).

A more detailed version of this proof may be found in R. C. Buck’s
“Advanced Calculus,” pp. 216-218. For two other, entirely different, proofs,
see W. Feller’s article in Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225
{with a correction in vol. 75, 1968, p. 518) and pp. 20-24 of Artin’s book.

Exercise 20 gives a simpler proof of a less precise result.
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EXERCISES
1. Define

e~ 11%2 (x #0),

1= {o (x =0).

Prove that f has derivatives of all orders at x=0, and that f™()=0 for
n=1,2,3,....

2, Let a;; be the number in the ith row and jth column of the array

—1 0 0 0
3 —1 0 0
t ¥ -1 0
3 t 3 —1
so that
0 i<,
a;; = _1 (l :J))
2/t =
Prove that

3. Prove that

if a;; >0 for all i and j (the case + o0 = + o0 may occur).
4. Prove the following limit relations:

(a) lim br=1 =log b b>0).
x>0 P

®) lim 2849 _
x=0 X

() im (1 + x)"*=e.
x-0

(d) lim (1 + ’—;) = e,

n-



5.

10.
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Find the following limits

(@ lim £ F 0"
x=0 X :
n
I 1],
(b) lim oz [n 11
(© lim tan x — x

x=0 x(1 —cos x)°

. — sin
(d) lim X—unx,
x-o0tan x — x

. Suppose f(x) f(¥) = f(x + ») for all real x and y.

(a) Assuming that f is differentiable and not zero, prove that
Fx) = e

where ¢ is a constant,
(b) Prove the same thing, assuming only that f is continuous.

CIf0<x <72—T, prove that

2 sinx
< < 1.

. Forn=20,1,2, ..., and x real, prove that

[sin nx| < nlsin x|.

197

Note that this inequality may be false for other values of n. For instance,

[sin §m| > §[sin 7{.

. (@) Putsy=1+ @) + -+ (1/N). Prove that

lim (sy — log N)
N=aw

exists, (The limit, often denoted by v, is called Euler’s constant. Its numerical

value is 0.5772.... It is not known whether y is rational or not.)
(b) Roughly how large must m be so that N = 10™ satisfies sy > 100?
Prove that 3. 1/p diverges; the sum extends over all primes,

(This shows that the primes form a fairly substantial subset of the positive

integers.)
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Hint: Given N, let pi, ..., px be those primes that divide at least one in-
teger <<N. Then

The last inequality holds because
(1 — x)—l S elx

if0<x<4.
(There are many proofs of this result. See, for instance, the article by
1. Niven in Amer. Math. Monthly, vol. 78, 1971, pp. 272-273, and the one by
R. Bellman in Amer. Math. Monthly, vol. 50, 1943, pp. 318-319.)
11. Suppose f€ Z on [0, A] for all A < =, and f(x) —1 as x - + 0. Prove that

w

lime [ e=fmdx=1 (>0,
t=0 0
12. Suppose 0 <8 <=, f(x)=1if |x| <6, f(x)=01if 8§ < | x| <, and f(x + 2m) =
f(x) for all x.
(a) Compute the Fourier coefficients of f.
() Conclude that

i sm(n8) 11';8 © <8 <m.

(¢) Deduce from Parseval’s theorem that

©  sin? (n8) T—0
ngl - 2 :

(d) Let 8 -0 and prove that

® (sin x\? @
J. 0 ( X ) b= 2
(e) Put 8 = #/2 in (¢). What do you get?
13. Put f(x) = x if 0 < x < 2w, and apply Parseval’s theorem to conclude that

77.2

LI |
PI i
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14. If f(x) = (m — | x|)? on [—m, 7], prove that

w2 © 4
f)= Y "Zjl —5 Cos nx
and deduce that
0 1 7T2 0 1 77,4
EZnT6 w0

(A recent article by E. L. Stark contains many references to series of the form
> n~*, where s is a positive integet. See Math. Mag., vol. 47, 1974, pp. 197-202.)
15, With D, as defined in (77), put

Kn(x) = 7 + syl Z Dy(x).
Prove that
1 .l—cos(N—t— Dx
KN(x)_N+1 1 —cos x
and that
(@) Kn=> 0,

1 n
(b) P J._nKn(x) dx =1,

(c) Kn(x) <— 2

1
— i &< <.
SNTT T coss HO0<dslx[<n

If sy = sx(f; x) is the Nth partial sum of the Fourier series of f, consider
the arithmetic means

_Sot St SN
N+1

Prove that

o(f; X) = - f Flx— DK dt,

and hence prove Fejér’s theorem:
If f is continuous, with period 2w, then ox(f; x) = f(x) uniformly on [—m, 7).
Hint: Use properties (a), (b), (c) to proceed as in Theorem 7.26.
16. Prove a pointwise version of Fejér’s theorem:
If fe R and f(x+), fx —) exist for some x, then

Nﬁjg onx(f5 20 = Hf(x +) + flx—)]
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17.

18.

19.

20.

Assume f is bounded and monotonic on [—, w), with Fourier coefficients ¢,, as
given by (62).

(a) Use Exercise 17 of Chap. 6 to prove that {rc,} is a bounded sequence.

() Combine (a) with Exercise 16 and with Exercise 14(e) of Chap. 3, to conclude
that

Ll_r}:o sn(fs x) = 3[f(x+) + f(x—)]

for every x.
(¢) Assume only that f€ & on [—m, 7] and that f is monotonic in some segment
(a, )<= [—m, w]. Prove that the conclusion of (b) holds for every x € («, B).
(This is an application of the localization theorem.)
Define

f(x) = x*—sin? x tan x

g(x) =2x* — sin* x — x tan x.
Find out, for each of these two functions, whether it is positive or negative for all
x € (0, m/2), or whether it changes sign. Prove your answer.

Suppose f is a continuous function on R, f(x + 27) = f(x), and «/ is irrational.
Prove that
N

lim

1 1 r"
N"=1f(x+noc)=gf_"f(t)dt

for every x. Hint: Do it first for f(x) = e'**.
The following simple computation yields a good approximation to Stirling’s
formula.

For m=1,2,3,..., define

fG)=m+1—x)logm+(x—m)log(m+1)
if m<x <m+ 1, and define

g(x)=£—1+logm
m

if m— +<x <m+ }. Draw the graphs of fand g. Note that f(x) <log x < g(x)
if x =1 and that

fl F)dx—log (1) — blogn> —k + j 9(x) dx.

Integrate log x over [1, n]. Conclude that
F<log()—(n+Hlogn+n<1
forn=2,3,4,.... (Note: log V2m ~ 0918....) Thus

6718

n!
S @ervy = ©



21.

22,

23.

24.
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Let
L,.=Lf |D() dt (n=1,2,3,...).
2w J _n

Prove that there exists a constant C > 0 such that
L.>Clogn (n=1,2,3,...),

or, more precisely, that the sequence

{Ln — iz log n}
T

is bounded.
If « is real and —1 < x < 1, prove Newton’s binomial theorem

(1+x=1 +:§=:1°‘(°‘_1) ,,(.a_nH)

Hint: Denote the right side by f(x). Prove that the series converges. Prove that

I+ x)f(x) =af(x)

and solve this differential equation.
Show also that
_ > I'(n+ oz)
=07 = 2 T
if —-1<x<1anda>0.
Let y be a continuously differentiable closed curve in the complex plane, with

parameter interval [a, b], and assume that y(¢) # 0 for every ¢ € [g, b]. Define the
index of vy to be

1 "y®
Ind (y) = =— prel Moy dt

Prove that Ind (y) is always an integer.

Hint: There exists ¢ on [a, b] with ¢’ = v'/y, p(a) = 0. Hence y exp(—¢)
is constant. Since y(a) = y(b) it follows that exp ¢(b) = exp ¢p(a) = 1. Note that
@(b) = 27i Ind (y).

Compute Ind (y) when y(¢) = e, a =0, b = 27.

Explain why Ind (y) is often called the winding number of v around 0.

Let y be as in Exercise 23, and assume in addition that the range of y does not
intersect the negative real axis. Prove that Ind (y) =0. Hint: For 0 <c< o,

Ind (y +¢) is a continuous integer-valued function of ¢. Also, Ind (y +¢)—0
as ¢ > o,
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25. Suppose vy, and y. are curves as in Exercise 23, and

26.

27.

28.

lyi(t) — v < |yu(0)] (a<t<b).
Prove that Ind (y,) = Ind (y2).
Hint: Put y =y,/y,. Then |1 —vy| <1, hence Ind (y) =0, by Exercise 24.

Also,
Y_v_ v
Y Y2 ¥
Let y be a closed curve in the complex plane (not necessarily differentiable) with

parameter interval [0, 2], such that y(¢) # O for every ¢ € [0, 27].

Choose 8 > 0 so that |y(¢)| >3 for all £ €[0, 2=]. If P, and P, are trigo-
nometric polynomials such that |Pj(#) — y(¢)] < 8/4 for all ¢ € [0, 27] (their exis-
tence is assured by Theorem 8.15), prove that

Ind (P,) = Ind (P,)
by applying Exercise 25.

Define this common value to be Ind (y).

Prove that the statements of Exercises 24 and 25 hold without any differenti-
ability assumption.

Let f be a continuous complex function defined in the complex plane. Suppose
there is a positive integer » and a complex number ¢ 7 0 such that

lim z="f(z) = c.

Iz]| =+

Prove that f(z) = 0 for at least one complex number z.

Note that this is a generalization of Theorem 8.8.

Hint: Assume f(z) # 0 for all z, define

yi(t) = f(re')

for 0 <r < 0,0 <t <<2m, and prove the following statements about the curves
Vo
(a) Ind (yo) = 0.
(b) Ind (y,) = n for all sufficiently large r.
(¢) Ind (y,) is a continuous function of r, on [0, o).
[In (b) and (c), use the last part of Exercise 26.]

Show that (a), (b), and (c) are contradictory, since » >0,
Let D be the closed unit disc in the complex plane. (Thus z € D if and only if
|z} <1) Let g be a continuous mapping of D into the unit circle 7. (Thus,
lg(z)| = 1 for every z € D.)

Prove that g(z) = —z for at least one z € T.

Hint: For 0 <r<{1,0 <t <2m, put

yi(t) = glre'),
and put (#) = e~ "y, (r). If g(z) # —z for every z € T, then () # —1 for every
t € [0, 27]. Hence Ind (i) = 0, by Exercises 24 and 26. It follows that Ind (y,) =1.
But Ind (yo) = 0. Derive a contradiction, as in Exercise 27.
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29. Prove that every continuous mapping f of D into D has a fixed point in D.

30.

31.

(This is the 2-dimensional case of Brouwer’s fixed-point theorem.)
Hint: Assume f(z) # z for every z € D. Associate to each z € D the point
g(z) e T which lies on the ray that starts at f(z) and passes through z. Then g
maps D into T, g(z) = z if z € T, and ¢ is continuous, because
g2y =z —s(2)f(z) — 2],
where s(z) is the unique nonnegative root of a certain quadratic equation whose

coefficients are continuous functions of fand z. Apply Exercise 28.
Use Stirling’s formula to prove that

lim Tx+o_

x—® XCP(X) =1

for every real constant c.

In the proof of Theorem 7.26 it was shown that

1

f_ (1 —x2ydx >

4
3vn
forn=1, 2, 3, ... . Use Theorem 8.20 and Exercise 30 to show the more precise

result

flim x/;?f (1 — 2 dx = V.

n-w
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FUNCTIONS OF SEVERAL VARIABLES

LINEAR TRANSFORMATIONS

We begin this chapter with a discussion of sets of vectors in euclidean n-space R".
The algebraic facts presented here extend without change to finite-dimensional
vector spaces over any field of scalars. However, for our purposes it is quite
sufficient to stay within the familiar framework provided by the euclidean spaces.

9.1 Definitions

(@) A nonempty set X = R" is a vector space if x +ye X and exe X
forall x e X, ye X, and for all scalars c.

by If x,,...,x,€R"and ¢, ..., ¢ are scalars, the vector
CXy 4+ Xy

is called a linear combination of x, ..., x,. If S< R" and if F is the set
of all linear combinations of elements of .S, we say that S spans E, or that
E is the span of S.

Observe that every span is a vector space.
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(c) A set consisting of vectors xy, ..., x, (we shal use the notation
{x{, ..., for such a set) is said to be independent if the relation
eix, Tt ex, =0impliesthat ¢; =... = ¢, =0. Otherwise {x,, ..., x,}

is said to be dependent.

Observe that no independent set contains the null vector.
(d) If a vector space X contains an independent set of r vectors but con-
tains no independent set of r + 1 vectors, we say that X has dimension
and write: dim X =r.

The set consisting of 0 alone is a vector space; its dimension is 0.
(e) An independent subset of a vector space X which spans X is called
a basis of X.

Observe that if B =(x,,...,x,} isa basis of X, then every xe X
has a unique representation of the form x = XZc;x;. Such a representation
exists since B spans X, and it is unique since B is independent. The

numbers ¢;, ..., ¢, are caled the coordinates of x with respect to the
basis B.
The most familiar example of a basis is the set {e,, ..., e,}, where

e, isthe vector in R* whosejth coordinateis 1 and whose other coordinates
aredl 0. If xe R", x=(x;,..., X,), then x =Xx,;. We shal call

{el Y ey en}
the standard basis of R".

9.2 Theorem Let r be a positive integer. If a vector space X is spanned by a
set of r vectors, then dim X <.

Proof If thisis false, there is a vector space X which contains an inde-
pendent set Q ={yy, ..., ¥,+1} and which is spanned by a set S, consisting
of r vectors.

Suppose 0 < i < r, and suppose a set S; has been constructed which
spans X and which consists of al y; with 1 < j < i plusacertain collection
of r — i members of S,.say Xx,, ..., x,~;. (In other words, S, is obtained
from S, by replacing i of its elements by members of Q, without altering
the span.) Since S; spans X, y;., isin the span of S;; hence there are

scalars a,, ..., a;+4, b,, ..., b,_;, with a;,, = 1, such that
i+1 r—i
Zajyj+ byx, =0.
i=1 k=1

If al b,’s were O, the independence of Q would force al a;’s to be 0, a
contradiction. It follows that some x, € S; is a linear combination of the
other members of 7; = S; U {y;.,}. Remove thisx, from 7; and cal the
remaining set S;+,. Then S,,, spans the same set as T;, namely X, so
that S;,, has the properties postulated for S; with i + 1 in place of i.
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Starting with S,, we thus construct sets S;,...,S,. The last of
these consists of y;,...,¥,, and our construction shows that it spans X.
But Q is independent; hence y,,; is not in the span of S,. This contra-
diction establishes the theorem.

Corollary dim R" =n.

9.3

Proof Since {e,, ..., e,} spans R", the theorem shows that dim R" < n.
Since {e;, ..., e,} is independent, dim R" > n.

Theorem Suppose X is a vector space, and dim X = n.

(&) A set E of nvectorsin X spans X if and only if E is independent.

(b) X has a basis, and every basis consists of n vectors.

(¢) If1<r<nand{y,,...,y,} is an independent set in X, then X has a
basis containing {y,, ..., ¥,}.

Proof Suppose E ={x;, ..., X,}. Since dim X = n, the set{x,, ..., X,, ¥}
is dependent, for every y € X. If E is independent, it follows that y is in
the span of E; hence £ spans X. Conversely, if E is dependent, one of its
members can be removed without changing the span of E. Hence E
cannot span X, by Theorem 9.2. This proves (a).

Since dim X =n, X contains an independent set of » vectors, and
(a) shows that every such set is a basis of X; (b) now follows from 9.1(d)
and 9.2,

To prove (c), let {x,...., x,} be a basis of X, The set

S:{YD--.,Y,,XI,...,XH}

spans X and is dependent, since it contains more than » vectors. The
argument used in the proof of Theorem 9.2 shows that one of the x;’s is
a linear combination of the other members of S. If we remove this x; from
S, the remaining set still spans X. This process can be repeated r times
and leads to a basis of X which contains {y, ..., y,}, by (a).

9.4 Definitions A mapping 4 of a vector space X into a vector space Y is said
to be a linear transformation if

A(Xy + X,) = AX; + AX,, A(cx) = cAx

for all x, x;, x, € X and all scalars ¢. Note that one often writes Ax instead
of A(x) if A4 is linear.

Observe that 40 = 0 if A4 is linear. Observe also that a linear transforma-

tion 4 of X into Y is completely determined by its action on any basis: If
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{xy, ..., X,} isa basis of X, then every x ¢ X has a unique representation of the
form
n
X = z Ci X5
i=1
and the linearity of A alows usto compute Ax from the vectors Ax,, ..., AX,
and the coordinates ¢, ..., ¢, by the formula
Ax =Y ¢, Ax;.
i=1

Linear transformations of X into X are often called linear operatorson X.
If Ais a linear operator on X which (i) is one-to-one and (ii) maps X onto
X, we say that A is invertible. In this case we can define an operator 4! on X
by requiring that A-'(Ax)= x for all xe X. Itistrivia to verify that we then
also have 4(4 ™ 'x) = x, for al xe X, and that A" is linear.

An important fact about linear operators on finite-dimensional vector
spaces is that each of the above conditions (i) and (ii) implies the other:

95 Theorem A linear operator A on a jinite-dimensional vector space X is
one-to-one if'and only if the range of A isall of X.

Proof Let {x;...., x,} be a basis of X. The linearity of A shows that
its range #(A) is the span of the set Q ={Ax,, ..., Ax}. We therefore
infer from Theorem 9.3(g) that #(A4) = X if and only if Q is independent.
We have to prove that this happens if and only if A is one-to-one.
Suppose A isone-to-one and X¢; Ax, =0. Then A(X¢;x;) =0, hence

Yex; =0, hence ¢, =... =¢, =0, and we conclude that Q isindependent.
Conversely, suppose Q is independent and A(Xc;x;) =O. Then
¥e; AX,=0, hence ¢, =... =¢,=0, and we conclude: Ax =0 only if

x =0. |f now Ax = Ay, then 4(x — y) = Ax — Ay =0, so that x — y =0,
and this says that A is one-to-one.

9.6 Definitions

(a) LetL(X, Y)bethesetof al linear transformations of the vector space
X into the vector space Y. Instead of L(X, X),we shall simply write L{ X).
If A,, A, EL(X,Y)and if c,, c, are scalars, define ¢, A, + ¢, A, by

(ciA, T, A)x=c, A xt ¢, Ax (xe X).
It is then clear that c;4, T ¢, A, e L(X, Y).
(b) If X, Y, Z are vector spaces, and if AEL(X.Y)and BE L(Y, Z),we
define their product BA to be the composition of A and B:

(BA)x = B(Ax) (xe X).

Then BAe L(X, Z).
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9.7

Note that B4 need not be the same as 4B, evenif X =Y =Z.
(¢) For AeL(R", R™), define the norm ||A|| of 4 to be the sup of all
numbers | 4x|, where x ranges over all vectors in R” with |x|< 1.
Observe that the inequality

| Ax| < 4] x|
holds for all x e R". Also, if 2 is such that | Ax| < A|x| for all x e R,
then 4| < A.
Theorem

(@) If Ae L(R", R™), then |A| < o and A is a uniformly continuous
mapping of R" into R™.
(6) If A, Be L(R", R™) and c is a scalar, then

4+ Bl <14l + 1Bl,  lcdll = || [4].

With the distance between A and B defined as ||A — B||, L(R", R™) is a
metric space.
(¢) If Ae L(R", R™) and Be L(R™, RY), then

1BA| < |B] l4].
Proof
(a) Let{e,...,e,} be the standard basis in R" and suppose X = Zce;,
x| <1,sothat |¢;]<1fori=1,...,n Then
|Ax| =|Y c;de;| <3 [e;] |de;] <3 [ e
so that

4] <Y | de;| < co.
i=1

Since | Ax — Ay| < ||4]| |x —y]| if x, y € R", we see that 4 is uniformly
continuous.
(b) The inequality in () follows from

(4 + B)x| = |Ax + Bx| < | 4x| + | Bx| < (1 4] + |B]) |x].
The second part of (b) is proved in the same manner. If
A, B, Ce L(R", R™),
we have the triangle inequality

|l4-C|=[(4-B)+(B-0)|=<|4-B|+[8-C],
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and it is easily verified that |4 — B| has the other properties of a metric
(Definition 2.15).
(c) Finaly, (c)follows from
|(BA)| = | B(Ax)| < [ Bl [4x| < | Bl [4] |x].
Since we now have metrics in the spaces L(R", R™), the concepts of open

set, continuity, etc., make sense for these spaces. Our next theorem utilizes
these concepts.

9.8 Theorem Let Q be the set of all invertible linear operators on R”.
(a) If AeQ, Be L(R"), and
IB—Af- 47" <1,

then Be Q.
(b) Risan open subset of L(R"), and the mapping A — A~! is continuous
on R
(This mapping is also obviously a 1 — 1 mapping of R onto Q,
which isits own inverse.)

Pr oof

(a) Put A" =1/a. put B — A =f. Then f <« For every xe R",

ax|=ul A7 Ax| <a|A7H| - | Ax]
= |Ax| < [(4 = B)x| + | Bx| < fi|x| + | Bx|,
so that
(1) (2~ P)|x| < | Bx| (xe R".

Since « — >0, (1) shows that Bx # 0 if x# 0. Hence Bis1 — 1.
By Theorem 9.5, BER. This holds for al B with ( B- 4| <. Thus
we have (a)and the fact that R is open.
(b) Next, replace x by B~ 'yin (1). The resulting inequality

) @—-P|B 'y|<|BB 'yl =]y|] (yeR)
shows that ||[B™!|| < (r — )~'. The identity
B '—A'=BY4-B)A™ ",
combined with Theorem 9.7(c), implies therefore that

Bt -4 < IB7'| |4 - B| |4 P

< :
ale — B)

This establishes the continuity assertion made in (b),since f -0 as B— A.
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9.9 Matrices Suppose{xy,..., X,} and{y,, ..., ¥, are bases of vector spaces
X and Y, respectively. Then every A e L(X, Y) determines a set of numbers
a;; such that

3 Ax; :'Zi a;j¥; (1<j<n).

It is convenient to visualize these numbers in a rectangular array of m rows
and n columns, called an m by n matrix:

dyy Q1a " Qg

a a a
[ = | 20 "

aml A2 o amn

Observe that the coordinates a,; of the vector 4x; (with respect to the basis
{¥1, ..., ¥n}) appear in the jth column of [A]. The vectors 4x; are therefore
sometimes called the column vectors of [A]. With this terminology, the range
of A isspanned by the column vectors of [A].

If x =%¢;x;, the linearity of A, combined with (3), shows that

J7r

4) Ax =Y (Zaijcj) y;.

i=1 \j=1
Thus the coordinates of Ax are X;a;;c;. Note that in (3) the summation
ranges over thefirst subscript of a;;, but that we sum over the second subscript
when computing coordinates.

Suppose next that an m by » matrix is given, with real entries a;;. If Ais
then defined by (4), it isclear that A € L(X, Y) and that [A]is the given matrix.
Thus there is a natural 1-1 correspondence between L(X, Y) and the set of al
real m by » matrices. We emphasize, though, that [ A]ldepends not only on A
but also on the choice of basesin X and Y. The same A may give rise to many
different matrices if we change bases, and vice versa. We shall not pursue this
observation any further, since we shall usualy work with fixed bases. (Some
remarks on this may be found in Sec. 9.37.)

If Z is a third vector space, with basis {z,, ..., z,}, if A isgiven by (3),
and if

By, = Zk: byizy, (BA)x; = ; Ces 2>
then A€ L(X, Y), Be L(Y,Z), BA€ L(X, Z), and since
B(Ax;) = BY a;;y; =) ay; By,

= Z a;; Z bz, = Z (Z bkiaij) Z,
% k \%
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the independence of {z,, ..., z,} implies that

©) ckj=2bk,-aij (l<k=<p 1<j<n)

This shows how to compute the p by n matrix [BA] from [B] and [4]. If we
define the product [B][A4] to be [BA], then (5) describes the usual rule of matrix
multiplication.

Finally, suppose {xy, ..., X,} and {y;, ..., ¥,.} are standard bases of R" and
R™ and A is given by (4). The Schwarz inequality shows that

| dx|* = Z (E aijc.i)z = Z (Z aj Z CJZ) =Za,-2j|x|2.
t J 4 J J b
Thus
© 4l < (T aj)'
5

If we apply (6) to B — A4 in place of 4, where 4, Be L(R", R™), we see
that if the matrix elements g;; are continuous functions of a parameter, then the
same is true of 4. More precisely:

If S is a metric space, if ayq, ..., a,, are real continuous functions on S,
and if, for each p € S, 4, is the linear transformation of R" into R™ whose matrix
has entries a;(p), then the mapping p— A, is a continuous mapping of S into
L(R", R™).

DIFFERENTIATION

9.10 Preliminaries In order to arrive at a definition of the derivative of a
function whose domain is R" (or an open subset of R"), let us take another look
at the familiar case n = 1, and let us see how to interpret the derivative in that
case in a way which will naturally extend to n > 1.

If fis a real function with domain (a, b) = R' and if x € (a, b), then f'(x)
is usually defined to be the real number
- i L&D~ ()

h=0 h

provided, of course, that this limit exists. Thus

®) fx+h) — f(x) =f"(x)h + r(h)
where the “remainder” r(4) is small, in the sense that

h
©) tim % _o,

nso h
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Note that (8) expresses the difference f(x + #) — f(x) as the sum of the
linear function that takes A to f'(x)h, plus a small remainder.

We can therefore regard the derivative of f at x, not as a real number,
but as the linear operator on R’ that takes 4 to f'(x)h.

[Observe that every real number « gives rise to a linear operator on R';
the operator in question is simply multiplication by a. Conversely, every linear
function that carries R' to R! is multiplication by some real number. It is this
natural 1-1 correspondence between R! and L(R!) which motivates the pre-
ceding statements. |

Let us next consider a function f that maps (@, b)) = R! into R™. In that
case, f'(x) was defined to be that vector y € R™ (if there is one) for which

(10) lim f()c%-h)—f(x)_y

=0.
0 h

We can again rewrite this in the form
(11) f(x + h) —1(x) = hy + r(h),

where r(h)/h — 0 as h - 0. The main term on the right side of (11) is again a
linear function of A. Every y € R™ induces a linear transformation of R' into
R™ by associating to each # € R' the vector hy € R™. This identification of R™
with L(R!, R™) allows us to regard f’(x) as a member of L(R!, R™).

Thus, if f is a differentiable mapping of (a, ) = R' into R™, and if x € (a, b),
then f'(x) is the linear transformation of R! into R™ that satisfies

lim f(x +h) —f(x) —1'(x)h _

12 0,
(12) lim p
or, equivalently,
f h) —f(x) -1’
03 o G B =100 — Tl _
B0 d

We are now ready for the case n > 1.

9.11 Definition Suppose E is an open set in R", f maps E into R™, and x € E.
If there exists a linear transformation A4 of R" into R™ such that
. |[f(x +h) — f(x) — Ah| _

14 lim =0,
(14) lim Th|

then we say that f is differentiable at x, and we write
(15) f'(x) = A.

If f is differentiable at every x € E, we say that f is differentiable in E.
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It is of course understood in (14) that h e R". If |h| is small enough, then
X + h e E, since E is open. Thus f(x + h) is defined, f(x + h) € R™, and since
Ae L(R", R™), Ah e R™. Thus
f(x +h) - f(x) — 4he R™
The norm in the numerator of (14) is that of R™. In the denominator we have
the R"-norm of h.

There is an obvious uniqueness problem which has to be settled before
we go any further.

9.12 Theorem Suppose E and f are as in Definition 9.11, x € E, and (14) holds
with A = A, and with A = A,. Then A, = A,.
Proof If B= A, — 4,, the inequality
|Bh| < |[f(x +h) —~ f(x) — Ah| + |[f(x + h) —f(x) — A, h|
shows that | Bh|/|h| - 0 as h— 0. For fixed h # 0, it follows that
| B(th)
|h]

The linearity of B shows that the left side of (16) is independent of ¢.
Thus Bh =0 for every he R". Hence B = 0.

(16)

-0 as t-0.

9.13 Remarks
(a) The relation (14) can be rewritten in the form
(17 f(x +h)—f(x) =1'(x)h + r(h)
where the remainder r(h) satisfies

(18) lim m =0.

n—o |h]
We may interpret (17), as in Sec. 9.10, by saying that for fixed x and small
h, the left side of (17) is approximately equal to f'(x)h, that is, to the value
of a linear transformation applied to h.
(b) Suppose f and E are as in Definition 9.11, and f is differentiable in E.
For every x € E, f'(x) is then a function, namely, a linear transformation
of R” into R™. But f’ is also a function: f" maps E into L(R", R™).
(¢) A glance at (17) shows that f is continuous at any point at which f is
differentiable.
(d) The derivative defined by (14) or (17) is often called the differential
of f at x, or the fotal derivative of f at X, to distinguish it from the partial
derivatives that will occur later.
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9.14 Example We have defined derivatives of functions carrying R" to R™ to
be linear transformationsof R into R™. What is the derivative of such a linear
transformation? The answer is very simple.

IfAeL(R,RMandi xe R then
(19) A'(x) = A.
Note that x appears on the left side of (19), but not on the right. Both

sides of (19)are members of L(R", R™), whereas Ax € R™.
The proof of (19)is a triviality, since

(20) A(x T h)— Ax=Ah,
by the linearity of A. With f(x)= Ax, the numerator in (14)is thus 0 for every
he R". In(17), r(h) =0.

We now extend the chain rule (Theorem 5.5) to the present situation.

9.15 Theorem Suppose EisanopensetinR", { mapsEinto R™,fisdzferentiable
at x, € E, g maps an open set containing f(E)into RY, and g is differentiable at
f(x,). Then the mapping F of E into R dgjined by

F(x) = g (x))
is dzfferentiableat x,, and
@1 F'(xo) = g'(f (o)) '(Xo)-

On the right side of (21), we have the product of two linear transforma-
tions, as defined in Sec. 9.6.

Proof Puty, =f(xo), A =1"(xq), B=g'(¥o), and define
u(h) = f(x, T h) - f(x,) — Ah,
v(k) = g(yo + k) — 8(Yo) — Bk,

for al he R"and k € R™ for which f(x, * h) and g(y, + k) are defined.
Then

(22) lu)| =em)|h],  [v(K)| =n(k) k],
where e(h) - 0 ash— 0 and n(k)—» 0 ask - 0.
Given h, put k = f(xo * h) = f(x,). Then

(23) |k| = | Ah +uh)| < [| 4] + )] |h],
and
F(x, T h) - F(x,) — BAh =g(y, + k) — g(yo) — B4h

= B(k — Ah) T v(k)
= Bu(h) * v(k).
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Hence (22) and (23) imply, for h # 0, that
|F(x, + h) — F(x,) — BAh|
|h|

Let h—0. Then &h)—»90. Also, k-0, by (23), so that (k) — 0.
It followsthat F'(x,) = BA, which is what (21) asserts.

< ||Blleth) + [l ]l + &(h)]In(k).

9.16 Partial derivatives We again consider a function f that maps an open
set Ec R"into R". Let {e,..., ¢} and{u,, ..., u,} be the standard bases of
R" and R". The componentsoff are the real functions fi, ..., f,, defined by

(24) (00 = Y. foon,  (xe )

or, equivaently, by £,(x) =f(x)"u;, 1<il m.
Forxe E, 1<i<m,]1<j<n, we define
@s) (D,/)) = lim TE ) =S,
t=0 t
provided the limit exists. Writing fi(x;, ..., X,) in place of f,(x), we see that
D;f;is thg derivative of f; with respect to x;, keeping the other variables fixed.
The notation

of;

(26) ox;
is therefore often used in place of D;f;, and D,f; is caled a partial derivative.

In many cases where the existence of a derivativeis sufficient when dealing
with functions of one variable, continuity or at least boundedness of the partial
derivatives is needed for functions of several variables. For example, the
functionsf and g described in Exercise 7, Chap. 4, are not continuous, although
their partial derivativesexist at every point of R?. Even for continuous functions.
the existenceof all partial derivativesdoes not imply differentiability in the sense
of Definition 9.11; see Exercises 6 and 14, and Theorem 9.21.

However. if f is known to be differentiable at a point x, then its partial
derivatives exist at x, and they determine the linear transformation f'(x)
completely:

9.17 Theorem Supposef mapsan openset E = R"into R™, andf isdzfferentiable
at apoint X € E. Then the partial derivatives (D, f;)(x) exist, and

27 f'(x)e; = i(Djf,-)(x)ui (1<j<n).

i
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Here, asin Sec. 9.16, {e, ..., ¢,} and {u,, ..., u,} are the standard bases
of R"and R™,

Proof Fixj. Sincef isdifferentiable at x,
f(x T te;) — F(x) =F'(x)(te;) T x(te;)

where |r(te;)|/t -0 as t - 0. The linearity of f'(x) shows therefore that

+te) -
(28) lim w =f ’(x)ej .
-0 t
If we now represent f in terms of its components, as in (24), then (28)
becomes
m N te)— 1,
29) jim 3, ST ) 2SO0 e

-0 i=1 t
It follows that each quotient in this sum has a limit, ast — 0 (see Theorem
4.10), so that each (D, f;)(x) exists, and then (27) follows from (29).

Here are some consequences of Theorem 9.17:
Let [f'(x)] bethe matrix that representsf '(x) with respect to our standard
bases, asin Sec. 9.9.

Then f'(x)e; is thejth column vector of [f'(x)], and (27) shows therefore
that the number (D;f;)(x) occupies the spot in the ith row and jth column of
[f'(x)]. Thus

(D)) (Dpfi)X)
If h =Zh;e; isany vector in R", then (27) implies that

[(lel)(x) (D,.fx)(X)}

(0) roon =3 { 3 D u

918 Example Lety be a differentiable mapping of the segment (a, b) = R*
into an open set E < R", in other words, y is a differentiable curve in E. Let f
be a real-valued differentiable function with domain E. Thusf isa differentiable
mapping of Einto R'. Define

(31 9y =f((1) (a<t<b)

The chain rule asserts then that

(32) gO =Wy (@a<t<b).
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Since y'(t)e L(R', R") and f'(y(t)) e L(R", R"), (32) defines g¢'(¢) as a linear
operator on R'. This agrees with the fact that g maps (g, b) into R'. However,
g'(t) can also be regarded as a real number. (This was discussed in Sec. 9.10.)
This number can be computed in terms of the partial derivatives of f and the
derivatives of the components of y, as we shall now see.

With respect to the standard basis {e,, ..., e,} of R", [y'(¢)] is the n by |
matrix (a ‘“‘column matrix’’) which has y; (¢) in the ith row, where y,, ..., y, are
the components of y. Forevery x € E, [f'(x)]is the 1 by » matrix (a “row matrix’")
which has (D;f)(x) in the jth column. Hence [¢'(¢)] is the 1 by I matrix whose
only entry is the real number

(33 g0 = 3 (DGO 1)

This is a frequently encountered special case of the chain rule. It can be
rephrased in the following manner.

Associate with each x € E a vector, the so-called “gradient” of f at x,
defined by

(9 (V)0 = . (Df Y.
Since

(9) Y0 = ¥ 1 We.

(33) can be written in the form

(36) g =N - y'O),

the scalar product of the vectors (V)(y(¢)) and y'(¢).
Let us now fix an x € E, let u € R” be a unit vector (that is, |u| = 1), and
specialize y so that

(37N y(¢) =x + tu (— oo <t <o)
Then y'(t) = u for every ¢t. Hence (36) shows that
(38) g0 =(VNHxX)
On the other hand, (37) shows that
g(t) — g(0) =f(x + tu) — f(x).
Hence (38) gives

(39) i J &+ W —S(%)

t—0 t

=VNHX) - u
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The limit in (39)is usually called the directional derivative off at X, in the
direction of the unit vector u, and may be denoted by (D, f)(x).

Iff and x arefixed, but u varies, then (39) shows that (D, f)(x) attainsits
maximum when u is a positive scalar multiple of (Vf)(x). [The case (Vf)(x) =0
should be excluded here.]

If u=2Zu,e;, then (39) shows that (D, f)x) can be expressed in terms of
the partial derivatives off at x by the formula

(40) (D)) = 3 (Df Y.
Some of these ideas will play a role in the following theorem.
919 Theorem Suppose f maps a convex open set E < R"into R™, f is differen-
tiable in E, and there is a real number M such that
IfGol < M
for every x € E. Then
|f(b) — f(a)| < M[b — a|
for all ac E,be E.
Proof Fix ae E,beE. Define
() =(1 —t)a+tb
for all te R such that y(t)e E. Since E is convex, y(t/)e Eif 0 1 t 1 1.

Put
g(1) = 1 (¥(1)).
Then
g =GO =1’ GO)D — a),
so that

lg'®O] < If'GE)I|b —al < M|b—a|
for al te [0,1]. By Theorem 5.19,
lg(1) — 80)| < M|b _a|.
But g(0) = f(a) and g(1) = f(b). This completes the proof.

Corollary If, in addition, f'(x) = 0 for all x € E, then f is constant.

Proof To prove this, note that the hypotheses of the theorem hold now
with M =0.
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9.20 Definition A differentiable mapping f of an open set Ec R" into R™ is
said to be continuously differentiable in E if f' is a continuous mapping of E
into L(R", R™).

More explicitly, it is required that to every x € E and to every ¢ >0
corresponds a 6 > O such that

') — ')l <e

ifye Eand |x —y|<é.
If thisis so, we also say that f is a %'-mapping, or that f e €'(E).

9.21 Theorem Suppose f maps an open set E< R" into R™. Then f e €'(E)
andonly if the partial derivatives D; f; exist andare continuous on Efor 1 <i<m,
I<j<n

Proof Assumefirst that f € €'(E). By (27),
(D;f)(x) =({'(X)e) " u;
for al i, j, and for all x e E. Hence

(D f)(y) — (Dif)x) ={[f'(y) = T'(X)]e;} . u,

and since |u;| = |e;| =1, it follows that
(D)) — (D)X < [I'(y) — 1'(x)]e;|
< If'(y) = ')l

Hence D; f; is continuous.

For the converse, it suffices to consider the case m=1. (Why?)
Fix xe Eand ¢ > 0. Since Eis open, there is an open ball S cE, with
center at X and radius r, and the continuity of the functions D, f shows
that » can be chosen so that

(a1 (D) = (D N0| <= (esS 1<j<nm.

Suppose h =Zhe;, |h| <r, putv, =0,andv, =hje; + - + he,,
forl<k <n. Then

(42) S8 =00 = 3 [Fx+v) = f(x+ v, )]

Since |v,| < rfor 1 <k < nandsince S is convex, the segments with end
points x +v,_, and x tv; liein S. Since v;=v;_; + h;e;, the mean
value theorem (5.10) shows that thejth summand in (42) is equal to
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for some 0; € (0, 1), and this differs from h(D;f)(x) by less than |A;|¢/n,
using (41). By (42), it follows that

n 1 =
SO+ =) = LAY <~ 3 |hyle <|hle

for al h such that |h| <.

This says that f is differentiable at x and that f'(x) is the linear
function which assigns the number Z4(D;f)(x) to the vector h = Zh;e;.
The matrix [ f (x)]consists of the row (D, f)(x), ..., (D,f)(x); and since
D,f, ..., D,f are continuous functions on E, the concluding remarks of
Sec. 9.9 show that f € €'(E).

THE CONTRACTION PRINCIPLE

We now interrupt our discussion of differentiation to insert a fixed point
theorem that is valid in arbitrary complete metric spaces. It will be used in the
proof of the inverse function theorem.

9.22 Definition Let X be a metric space, with metric d. If ¢ maps X into X
and if there is a number ¢ < 1 such that

(43) d(e(x), o(»)) < cd(x, y)
for al x, ye X, then ¢ is said to be a contractionof X into X.

9.23 Theorem If X isa complete metric space, and if ¢ is a contraction of X
into X, then there exists one and only one x € X such that ¢(x) = x.

In other words, ¢ has a unique fixed point. The uniquenessis a triviality,
for if ¢(x) = x and ¢(y) =y, then (43) gives d(x, y) < cd(x, y), which can only
happen when d(x, y) =0.

The existence of a fixed point of ¢ is the essentia part of the theorem.
The proof actually furnishes a constructive method for locating the fixed point.

Proof Pick x, e X arbitrarily, and define {x,) recursively, by setting
(44) X, 11 = @(x,) n=0,1,2,..).
Choose ¢ < 1 so that (43) holds. For n > 1 we then have
d(xy 415 X,) = d(@(x,), (x,-1)) < cd(x,, X,_1).
Hence induction gives
45) A(Xp 41> Xp) < " d(xq, X0) n=0,1,2,...).
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If n < m,it follows that

‘Kxnsxﬂ)sl 2: ‘Kxi’xi—o

i=n+1
<+ 4+ MY d(xy, Xg)
< [(1 =)~ " d(xy, x0)Ic".
Thus{x,) isa Cauchy sequence. Since Xis complete, lim x, = X for some
xe X.

Since ¢ is a contraction, ¢ is continuous (in fact, uniformly con-
tinuous) on X. Hence

o) =limo(x,) =limx,,; =X.

n—w n—=w

THE INVERSE FUNCTION THEOREM

The inverse function theorem states, roughly speaking, that a continuously
differentiable mapping f isinvertible in a neighborhood of any point x at which
the linear transformation f'(x) isinvertible:

9.24 Theorem Suppose fis a €’-mapping of an open set E = R" into R", f'(a)
isinvertible for someae E.and b = f(a). Then

(a) there exist open sets U and V in R' such that ae U, be V, f is one-to-
oneon U. and f(U)=V;
(b) if gis the inverse of f [whichexists, by (a)] defined in V by

gf(x)=x (xel),
then g e €'(V).

Writing the equation y = f(x) in component form, we arrive at the follow-
ing interpretation of the conclusion of the theorem: The system of » equations

yi=filxox,)  (1<i<n)

can be solved for x,, ..., x, intermsof y,.,..., y,, if werestrict x and y to small
enough neighborhoods of a and b; the solutions are unique and continuously
differentiable.

Pr oof
(a) Putf’(a)=A, and choose 2 so that
(46) 247 = L.
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(47)

(48)

(49)

(50)

(1)

Since f' is continuous at a, there is an open ball U c E, with center at a,
such that
f'(x) — 4| < 4 xeU).
We associate to each ye R” a function ¢, defined by
P(x) =x+ A4 Yy - f(x)) (xcE).

Note that f(x) = y if and only if x is ajixedpoint of ¢.

Since ¢'(x) =1 — A7’ (x) = A-'(A = 1'(X)), (46) and (47) imply
that

le) <3  (xe ).
Hence
lo(x1) = (x3)| < 3[x; - x4 (x5, X, € U),

by Theorem 9.19. It follows that ¢ has at most one fixed point in U, so

that f(x)= yfor at most one x € U.
Thusfisl —1in U.

Next, put V =f(U), and pick yo e ¥. Then y, =f(x,) for some
xo € U. Let B be an open ball with center at x, and radius r > 0, so small
that itsclosure B liesin U. Wewill show that ye Vwhenever |y — yo| < .
This proves, of course, that Vis open.

Fix y. |y—yo| <Ar. With ¢ asin (48),
_ . a1 s r
| @(x0) = Xo| = |47'(v = ¥o)| < 47" [l4r =3.

If xe B, it therefore follows from (50) that
|o(x) — Xo| < [@(x) — @(xo)| + |@(Xo) — Xo|
1 r
<5 [x — x| +§Sr;
hence ¢(x) € B. Note that (50) holds if x; € B. x, = B.
Thus ¢ is a contraction of B into B. Being a closed subset of R".
B is complete. Theorem 9.23 implies therefore that ¢ has a fixed point
x € B. For thisx, f(x)=y. Thusyef(B) < f(U)= V.
This proves part (a) of the theorem.

(b) Pick yeV, ytkeV. Then there exist xe U, x t he U, so that
y = f(x),y+ k =f(x+h). With ¢ asin (48),

o(x +h)—o(x)=h+ A7'[f(x) —f(x + h)] =h— 47 'k,
By (50), |h — 47'k| < |h|. Hence |4~ 'k| = 1|h]|, and
[h| <2471 k| =27 [K].
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By (46), (47), and Theorem 9.8, f'(x) has an inverse, say T. Since
gyt k) —g0) - Tk=h=Tk = ~T[f(x T h) — f(x) — (x)h],
(52) implies

gy + k) —g(v) — Tk| _ 7] [fx +h) —f(x) - £'(Oh|
K| -4 [h|

Ask — 0, (51) shows that h— 0. The right side of the last inequality
thus tends to 0. Hence the sameis true of the left. We have thus proved
that g'(y) = T. But T waschosen to be theinverse off '(x) =f'(g(y)). Thus

(52) gy = Gen.

Finally, note that g is a continuous mapping of V onto U (since g
is differentiable), that f' is a continuous mapping of U into the set Q of
all invertible elements of L(R"), and that inversion is a continuous mapping
of Q onto Q, by Theorem 9.8. If we combine these facts with (52), we see
that ge €'(V).

This completes the proof.

Remark. The full force of the assumption that f € ¥'(E) was only used
in the last paragraph of the preceding proof. Everything else, down to Eqg. (52),
was derived from the existence of f'(x) for x € E, the invertibility of f'(a), and
the continuity of f' at just the point a. In this connection, we refer to the article
by A. Nijenhuis in Amer. Math. Monthly, vol. 81, 1974, pp. 969-980.

The following is an immediate consequence of part (a) of the inverse
function theorem.

9.25 Theorem Iff isa % -mapping & an open set E ¢ R" into R" and if f'(x)
is invertiblefor every x € E, then f (W) is an open subset d R"for every open set
W cE

In other words, f is an open mapping of E into R".

The hypotheses made in this theorem ensure that each point x € E has a
neighborhood in which f is 1-1. This may be expressed by saying that f is
localy one-to-one in E. But f need not be 1-1 in E under these circumstances.
For an example, see Exercise 17.

THE IMPLICIT FUNCTION THEOREM

Iff isa continuously differentiable real function in the plane, then the equation
f(x,y) =0 can be solved for y in terms of x in a neighborhood of any point
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(a,b)at which f(a,b) =0 and df/dy # 0. Likewise, one can solvefor x in terms
of y near (a, b) if df/ox # 0 at (a, b). For a simple example which illustrates
the need for assuming df/éy # 0, consider f(x, y) = x* + y* — 1.

The preceding very informal statement is the simplest case (the case
m =n=1 of Theorem 9.28) of the so-caled "implicit function theorem." Its
proof makesstronguse of thefact that continuously differentiable transformations
behave localy very much like their derivatives. Accordingly, we first prove
Theorem 9.27, the linear version of Theorem 9.28.

9.26 Notation If x =(x,,...,x,)e R and y=(y,,..., y.) € R™, let uswrite
(x,y)for the point (or vector)

(X1s e vvs Xps Viseves V) € RTHT™,

In what follows, the first entry in (x,y) or in a similar symbol will always be a
vector in R", the second will be a vector in R™

Every Ae L(R"*™, R") can be split into two linear transformations A, and
A,, defined by

(33) Ah=A4M,0), Ak=4(0Kk)
for any he R*, ke R™. Then A, eL(R"),A, eL(R™ R"),and
(54) A(h, k) = A, h + 4,k

The linear version of the implicit function theorem is now almost obvious.

9.27 Theorem |If A L(R**™ R") and if 4, isinvertible, then there corresponds
to every k € R™ a unique h e R" such that A(h, k) =0.
This h can be computed from Kk by the formula
(55) h = —(4,)7'4,k.
Proof By (54), A(h, k) =0 if and only if
A.h+ 4,k =0,

which is the same as (55) when A, is invertible.

The conclusion of Theorem 927 is, in other words, that the equation
A(h, k) =0 can be solved (uniquely) for h if k is given, and that the solution h
isalinear function of k. Those who have some acquaintance with linear algebra
will recognize this as a very familiar statement about systems of linear equations.

9.28 Theorem Let | be a ¥'-mapping of an open st E= R**™ into R", such
that f(a, b) = 0 for some point (a,b) = E.
Put A =f’(a, b) and assume that A, isinvertible.
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Then there exist open sets U =« R"*™ and W c R™, with (a, b)e U and
be W, having the following property:
To every y € W corresponds a unique x such that

(56) (x,y)e U and f(x,y)=0.
I f this x is defined to be g(y), then g is a %"-mapping of W into R", g(b) = a,
(57) flg), =0 (e,
and
(58) gb) = —(4)7'4,.

The function g is "implicitly"" defined by (57). Hence the name of the
theorem.

The equation f(x,y) =0 can be written as a system of n equations in
n + m variables:

(59) .............................
j;,(xl, PR xn, Yi1» ...._ym) :O

The assumption that A, is invertible means that the n by n matrix

evaluated at (a, b) defines an invertible linear operator in R"; in other words,
its column vectors should be independent, or, equivaently, its determinant
should be 0. (See Theorem 9.36.) If, furthermore, (59) holds when X = a and
y = b, then the conclusion of the theorem isthat (59) can be solved for x4, ..., x,
in terms of y,, ..., y.,. for every y near b, and that these solutions are continu-
ously differentiable functions of y.

Proof Define F by
(60) Fx,y) =(xv.y) (x,y)€E).

Then F is a ¢’-mapping of E into R"*™. We claim that F'(a, b) is an
invertible element of L(R"*™):
Since f (a, b) =0, we have

fath, bt k) =AM, k) T @, k),
where r is the remainder that occurs in the definition of f'(a, b). Since

F(a+h bt k) —F(, b)=(f(a +h, bt k), k)
— (A(h, k), k) + (r(h, k), 0)
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(61)

(62)

(63)

(64)

(65)

it follows that F’(a, b) is the linear operator on R"*™ that maps (h, k) to
(A(h, k), k). If this image vector is 0, then A(h, k) =0 and k =0, hence
A(h, 0) =0, and Theorem 9.27 implies that h = 0. It follows that F'(a, b)
is 1-1; hence it is invertible (Theorem 9.5).

Theinverse function theorem can therefore be applied to F. It shows
that there exist open sets U and Vin R"*™ with (a, b) € U, (0, b) € ¥, such
that F isa 1-1 mapping of U onto V.

We let W be the set of al ye R™ such that (0,y) e V. Note that
be W

It is clear that W is open since V is open.

Ifye W, then(0,y) = F(x, y) for some (X, y) € U. By (60),f(x,y) =0
for this x.

Suppose, with the same y, that (X', y)e U and f(x’,y) =0. Then

F(xlv Y) = (f(x,, Y)a Y) = (f(xv Y)7 Y) = F(X, Y)

Since Fis1-1in U, it follows that x' = x.
This proves the first part of the theorem.

For the second part, define g(y), for y e W, so that (g(y), y) € U and
(57) holds. Then

Fegy).y)=0,y) (yeW).

If Gisthe mapping of V onto U that invertsF, then G € ¢”, by the inverse
function theorem, and (61) gives

€¥).y) =G0,y) (yeW).

Since Ge €', (62) shows that g € %".
Finally, to compute g'(b), put (g(y), y) = ®(y). Then

Yk = @Yk k) (€W keR).
By (§7), f(@(y)) =0in W. The chain rule shows therefore that
f(@(yN@'(y) =0.
When y = b, then ®(y) = (a, b), and f(®(y)) = A. Thus
AD'(b) = 0.
It now follows from (64), (63), and (54), that
A g bk + 4,k = A(g'(b)k, k) = AD'(b)k =0
for every k e R™. Thus

Ag'(b)+ 4, =0.
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This is equivalent to (58), and completes the proof.

Note. In terms of the components of f and g, (65) becomes

3. (D)@, BXDug ) = ~(Dyufias )

£ E)E)--6)

wherel <i<n 1l <k <m
For each k, this is a system of » linear equations in which the derivatives
09,/¢y; (1 <j < n) are the unknowns,

or

9.29 Example Take n =2, m =3, and consider the mapping f = (£}, f;) of
R® into R? given by
Sixy, %2, ¥4, Y2, ¥3) =2€" + x, 9y — 4y, +3
fa(x1s X2, Y1, ¥z, ¥3) = x5 €08 Xy~ 6x; +2y; — 3.
Ifa=(0,1)and b = (3, 2, 7), then f(a, b) =0.
With respect to the standard bases, the matrix of the transformation
A=1'(a,b)is

203 1 -4 0
Ml:[—s 1 2 0—1]'

w2 ] wf

We see that the column vectors of [A4,] are independent. Hence A, is invertible

and the implicit function theorem asserts the existence of a ¢’-mapping g, defined

in a neighborhood of (3, 2, 7), such that g(3,2,7) =(0, 1) and f(g(y),y) =0.
We can use (58) to compute g'(3, 2, 7): Since

Hence

()= =55 6 73]

(58) gives

e I A B

nor k=
!

gk

| S

[
f=]
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In terms of partial derivatives, the conclusion isthat

Dyg, =% D,g, =1
Dyg, = —% Dyg, =% D3g, =+
at the point (3, 2, 7).

THE RANK THEOREM

Although this theorem is not as important as the inverse function theorem or
the implicit function theorem, we include it as another interesting illustration
of the general principle that the local behavior of a continuously differentiable
mapping F near a point x is similar to that of the linear transformation F'(x).

Before stating it, we need a few more facts about linear transformations.

9.30 Definitions Suppose X and Y are vector spaces, and A € L(X, Y), asin
Definition 9.6. The null space of A, A#(4), istheset of all x e X atwhich Ax =0.
It isclear that A(4) is a vector space in X.

Likewise, the range of A, #(A), is a vector spacein Y.

The rank of A isdefined to be the dimension of %(A4).

For example, the invertible elements of L(R") are precisely those whose
rank isn. This follows from Theorem 9.5.

If Ae L(X, Y)and A hasrank 0, then Ax = 0for all Xe A,hence #/(4) = X.
I n this connection, see Exercise 25.

9.31 Projections Let X beavector space. An operator P e L(X)issaid to be
a projection in X if P2 = P.

More explicitly, the requirement is that P(Px) = Px for every xe X. In
other words, P fixes every vector in its range #(P).

Here are some elementary properties of projections:

(a) If Pisa projection in X, then every x € X has a unique representation
of the form

X=X1+X2

where X, € #(P), X, € &/ (P).

To obtain the representation, put x; = Px, x, =X —x;. Then
Px, = Px — Px; = Px — P’x = 0. Asregards the uniqueness, apply P to
the equation x = x, * x,. Since x, € #(P), Px, =x,; since Px, = 0, it
follows that x, = Px.
(b) If X isafinitedimensional vector space and if X, is a vector space in
X, then there is a projection P in X with Z(P) = X.
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If X, contains only 0, thisistrivial: put Px =90 for all x e X.
Assume dim X, =k >0. By Theorem 9.3, X has then a basis
{u;,...,u,} such that {u,, ..., u} isabasis of X,. Define

Plcjuy + - 4+ ¢c,u) =cuy + - +

for arbitrary scalars ¢y, ..., C,.

Then Px = x for every xe Xy, and X = Z(P).

Notethat {u,,,, ..., u,} isabasisof #(P). Note also that there are
infinitely many projections in X, with range X, if 0 < dim X, < dim X.

9.32 Theorem Suppose m, n, r are nonnegatioe integers, m>r, n>r, Fisa
¢'-mapping of an open set E c R” into R™, and F'(x) hasrank r for every x € E.
Fixae E, put A =F'(a), let Y, be therange of A, and let P be a projection
in R™ whoserangeis Y,. Let Y, be the null space of P.
Then there are open sets U and V in R®, withae U, U < E, and thereis a
1-1 €’-mapping H of V onto U (whose inverse is also of class €’) such that

(66) F(H(x)) = Ax + ¢(Ax) (xeV)
where ¢ isa%'-mapping of the open set 4(V) < Y, into Y,.

After the proof we shall give a more geometric description of the informa-
tion that (66) contains.

Proof If r =0, Theorem 9.19 shows that F(x) is constant in a neighbor-
hood U of a, and (66) holds trivially, with V = U, H(x) = X, ¢(0) = F(a).

From now on we assume r > 0. Since dim Y, =r, Y, has a basis
{y1» ..+, ¥,}. Choosez; e R"sothat 4z; =y, (1 <i <r),and definealinear
mapping .S of Y, into R" by setting

(67) S(Clyl + o+ Cryr) =012y +o &7,

for all scalarsc,, ..., c¢,.
Then ASy, = Az, =y, for 1 <i<r. Thus

(68) ASy=y (yel)
Define a mapping G of Einto R" by setting
(69) G(x) = x + SP[F(x) — Ax] (xe E).

Since F'(a) = A, differentiation of (69) shows that G’(a) = I, the identity
operator on R". By the inverse function theorem, there are open sets U
and V in R", with a e U. such that G isa 1-1 mapping of U onto V whose
inverseHisalso of class%”’. Moreover, by shrinking U and V;, if necessary,
we can arrange it so that V isconvex and H'(x) isinvertiblefor every x e V.
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(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77

(78)

Note that ASPA4 = A, since PA= A and (68) holds. Therefore (69)
gives
AG(x) = PF(x) (xe E).
In particular, (70) holds for xe U. If we replace x by H(x), we obtain
PFH(x)) = Ax  (x£V).
Define
Y(x) = F(H(x)) — Ax (xeV).
Since PA = A, (71) implies that Py(x) =0 for all xe V. Thus ¢ is a
% -mapping of Vinto Y,.
Since V is open, it is clear that A(V) is an open subset of its range
A(A) =Y.
To complete the proof, i.e., to go from (72)to (66), we have to show
that there is a ¥’-mapping ¢ of A(V) into Y, which satisfies
o(4x) =y(x)  (xeV).
As a step toward (73), we will first prove that

Y(xy) = Y(x,)
if X,eV, x,eV, Ax, = Ax,.

Put ®(x) = F(H(x)), for xe V. Since H'(x) has rank » for every
x € ¥, and F'(x) has rank r for every x e U, it follows that

rank @’(x) = rank F(Hx)H'(x) =r  (xe V).
Fixxe V. Let M bethe range of ®'(x). Then M = R™. dimM =r.
By (71),
PO'(x) = A.

Thus P maps M onto #£(4) =Y;. Since M and Y; have the same di-
mension, it follows that P (restricted to M)is 1-1.

Suppose now that Ah=0. Then P®'(x)h =0, by (76). But
d’'(x)he M, and P is1-1 on M. Hence ®'(x)h =0. A look at (72) shows
now that we have proved the following:

If x =V and Ah =0, then ¢’ (x)h =0.

We can now prove (74). Suppose x, € V, x, £ V. Ax, = Ax,. Put
h =x, — x, and define

g =y(x;+th) (0<r<l).
The convexity of V showsthat x; T the V for these t. Hence

g =¢y'(x; +hh=0 (0<r<),
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so that g(1) = g(0). But g(1) =¥(x,) and g(0) = y(x,). This proves (74).
By (74), y(x) depends only on Ax, for x € V. Hence (73) defines ¢
unambiguously in A4(V). It only remains to be proved that ¢ € €.
Fix yo € A(V), fix xg € V so that Ax, =y,. Since V is open, ¥, has
a neighborhood Win Y; such that the vector

(79 X =X + S(¥ - ¥o)
liesin Vfor dl ye W. By (68),
AX=AXy +y—Yo =Y.
Thus (73) and (79) give
(80) o(y) =y(xo — Syo +8y)  (ye W)

Thisformula shows that ¢ € €' in W, hence in A(V), since y, was chosen
arbitrarily in A(V).
The proof is now complete.

Here is what the theorem tells us about the geometry of the mapping F.
If ye F(U) then y = F(H(x)) for some x € V, and (66) showsthat Py = Ax.
Therefore

@1 y=Py+oPy) (yeFU).

This shows that yis determined by its projection Py, and that P, restricted
to F(U), is a 1-1 mapping of F(U) onto A(V). Thus F(U) is an "'r-dimensional
surface™ with precisely one point "over' each point of A(V). We may also
regard F(U) as the graph of ¢.

If ®&(x) = F(H(x)), as in the proof, then (66) shows that the level sets of ®
(these are the sets on which @ attainsa given value) are precisely the level sets of
Ain V. These are "'flat" since they are intersections with V of translates of the
vector space A47(4). Note that dim A°(4) =n — r (Exercise 25).

The level sets of F in U are the images under H of the flat level sets of @
in V. They are thus" (n - r)-dimensional surfaces™ in U.

DETERMINANTS

Determinants are numbers associated to square matrices, and hence to the
operators represented by such matrices. They are 0 if and only if the corre-
sponding operator fails to be invertible. They can therefore be used to decide
whether the hypotheses of some of the preceding theorems are satisfied. They
will play an even more important role in Chap. 10.
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9.33 Définition If (j,...,Jj,) is an ordered n-tuple of integers, define

(82) S(jl’ s 7jn) = 1—[ sgn (]q —jp)7

p<q
where sgn X =1 if x>0, sgn x=-1 if X<O, sgnx =0 if x=0. Then
s(jis--y)) =1, =1, 0r 0, and it changes sign if any two of thej's are inter-
changed.

Let [ A]be the matrix of alinear operator A on R", relative to the standard
basis {e,, ..., ¢,}, with entries a(?, j) in the ith row and jth column. The deter-
minant of [A]is defined to be the number
(83) det [A] = z S(jl’ o ajn)a(l’jl)a(znjl) tr a("»jn)'

The sum in (83) extends over al ordered n-tuples of integers (j,,...,/,) with
l1<j<n

The column vectors x; of [A]are
(84) X; = Z,la(i, e (1<j<n).
It will be convenient to think of det [A] as a function of the column vectors
of [A]. If we write

det (x4, ..., X,) =det [A],

det is now a real function on the set of all ordered n-tuples of vectors in R".

9.34 Theorem

(a) If I istheidentity operator on R", then
det [I]=det(ey,...,€,) =1

(b) detisalinear function of each of the column vectors x;, if the others are
held fixed.

(¢) If [4], is obtained from [A] by interchanging two columns, then
det [A],= —det [A].

(d) If [A]hastwo equal columns, then det [A]= 0.

Proof If A =1,thena(i,i)=1anda(i,j)=0fori#j. Hence
det [1]=s(1,2,...,n)=1,

which proves (a). By (82), s(jy, ..., J,) =0 if any two of the j’s are equal.
Each of the remaining n! products in (83) contains exactly one factor
from each column. This proves (b). Part (c)is an immediate consequence
of the fact that s(jy,...,J,) changes sign if any two of thej's are inter-
changed, and (d)is a corollary of (c).
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(85)

(86)

(87)

(88)

(89)

9.36

(90)
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Theorem If [ A]land [ B]are » by n matrices, then
det ([B][4]) = det [ B]det [A].

Proof If x,, ..., X, are the columns of [ A] define
Ap(Xy, ..., X,) = Ap[d] =det ([B]{4]).
The columns of [B][A] are the vectors Bx,, ..., Bx,. Thus

Ap(%y, ..., X,) =det (Bxy, ..., Bx,).

By (86) and Theorem 9.34, A, also has properties 9.34 (b) to (d). By (b)
and (84),

AlA] = Ag (Z a(i, De;, x,_,_,,,x,,) = a(i, 1) Agle;, x5, ..., X,).

i

i

Repeating this process with x;, ..., X,, we obtain
Agld] = ) a(iy, Da(iy,2) -~ ali,, n) Agley,, ..., e,),
the sum being extended over al ordered »-tuples (i,, ..., #,) with
1 </ <n By(c)and (d),
Agle;,. ..., e, ) =1t ..., i,) Agley, ..., e),

wheret = 1.0, or — 1, and since [B][/] = [ B] (85) shows that
Agle, ....e,) =det [B].
Substituting (89)and (88) into (87). we obtain
det ([BIAD) ={} a(y, 1)...a(,, n)t(y, ..., i)} det [B],
for al » by » matrices [ Aland [B].Taking B=1. we see that the above
sum in braces is det [ A] . This proves the theorem.
Theorem Alinear operator Aon R isinvertiblef and on/y if det [ A]# 0.
Proof |f A isinvertible. Theorem 9.35 shows that
det [A]det [47 '] =det [44™ '] =det [1]=1,

so that det [ A]# O.

If Ais not invertible, the columns X,, ..., x, of [ A]are dependent
(Theorem 9.5); hence there is one, say, x,, such that

X, + Y ¢;X; =0
J#k

for certain scalars ¢;. By 9.34 (b)and (d),x, can be replaced by x, + ¢;x;
without altering the determinant, if j # k. Repeating, we see that x, can
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be replaced by the left side of (90), i.e., by 0, without altering the deter-
minant. But a matrix which has 0 for one column has determinant 0.
Hence det [ A]=0.

9.37 Remark Suppose {e,,...,e,} and {u;,...,u,} are bases in R".
Every linear operator A on R” determines matrices [ A]Jand [A],, with entries
a;; and «;;, given by

Aej=Za,-jei, Allj=Zaijui.
If u; = Be; =ZXb;;e;, then Au; isequal to
g O‘ijek = Zk; akabikei = Z (; bikakj) €,

and also to

ABe; = A ;bkjek = Z (; aikbkj) €;.

ThUS Zbik akj = Zaik bkjl OI’
o1 [B][A4]y = [4][B].
Since B is invertible, det [ B]#0. Hence (91), combined with Theorem 9.35,

shows that
92) det [4]y, =det [A].

The determinant of the matrix of a linear operator does therefore not
depend on the basis which is used to construct the matrix. It isthus meaningful
to speak of the determinant of a linear operator, without having any basis in mind.

9.38 Jacobians Iff mapsan open set E = R*into R*, and iff isdifferen-
tiable at a point x e E, the determinant of the linear operator f'(x) is called
the Jacobianoffat x. In symbals,

93) Ji(x) =det f'(x).
We shall also use the notation

a(yl, v yn)
a(xla ey xn)

for J(x), if (ys .-y ) = (X, ey X

In terms of Jacobians, the crucial hypothesis in the inverse function
theorem is that J¢(a) # 0 (compare Theorem 9.36). If the implicit function
theorem is stated in terms of the functions (59), the assumption made there on
A amounts to

©4)

o(f1s > f)

— " £0.
TS
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DERIVATIVES OF HIGHER ORDER

9.39 Definition Suppose f is a red function defined in an open set E c R",
with partial derivatives D, f, ..., D,f. If the functions D;f are themselves
differentiable, then the second-order partial derivatives off are defined by

Dyf=D,D,f (,j=1,...,n).
If all these functions D;;f are continuousin E, we say that f isof class %" in E,
or that f e €"(E).

A mapping f of E into R"is said to be of class " if each component of f
is of class%".

It can happen that D;;f # D;;f at some point, although both derivatives
exist (see Exercise 27). However, we shall see below that D;;f = D;;f whenever
these derivatives are continuous.

For simplicity (and without loss of generality) we state our next two
theorems for real functions of two variables. The first one is a mean value
theorem.

9.40 Theorem Supposef is defined in an open st E c R?, and D, f and D,, f
exist at every point of E. Suppose Q c E is a closed rectangle with sides parallel
to the coordinate axes, having (a,b) and (a+h, bt k) as opposite vertices
(h#£0, k #0). Put

Af,Q) =fla+hb+k)—fla+hb)—flab+k) +f(ab)

Then thereis a point (x, y) in the interior of Q such that

95) A(f, Q) = hk(D, f)(x, »).
Note the analogy between (95) and Theorem 5.10; the area of Q is hk.

Proof Putu(f) =f(t,b+ k) - f(t,b). Two applicationsof Theorem 5.10
show that there is an x between aand a T h, and that there isa y between
band bt k, such that
A(f, Q) =u(a + h) — u(a)
= hu'(x)
= h[(D1f)(x, b + k) — (D, f)(x, b)]
= hk(D3, f)(x, ¥).
9.41 Theorem Suppose f is dgjined in an open set E c R?, suppose that D, f,

D,.f, and D,f exist at every point of E, and D, f is continuous at some point
(a,b) e E.
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Then Dy, f exists at (a,b) and
(96) (D12/)a, b) = (D3, f)a, b).

Corollary p,, f=D,,fiffe€"(E).

Proof Put A =(D,f)(a,b). Choose ¢ > 0. If Q is a rectangle as in
Theorem 9.40, and if h and k are sufficiently small, we have

|4 — (D, f)x, )] <e
for all (x,y) e Q. Thus

A(f, Q)
‘ T Al <e,
by (95). Fix h, and let k - 0. Since D,f exists in E, the last inequality
implies that
o7 (Dyf)a+h, b}z — (Dyf)a. b) 4l<e

Since ¢ was arbitrary, and since (97) holds for al sufficiently small
h # 0, it follows that (D, f)(a, b) = A. This gives (96).

DIFFERENTIATION OF INTEGRALS

Suppose ¢ is a function of two variables which can be integrated with respect
to one and which can be differentiated with respect to the other. Under what
conditions will the result be the same if these two limit processes are carried out
in the opposite order? To state the question more precisely: Under what
conditions on ¢ can one prove that the equation

(98) % quo(x, 1) dx = ’., f’;—‘f (x, 1) dx

istrue? (A counter example is furnished by Exercise 28.)
It will be convenient to use the notation

(99) ¢'(x) = o(x, ).

Thus ¢* is. for each t, a function of one variable.

9.42 Theorem Suppose

(a) o(x,t)isdefinedforal x 1 b,c<t<d;
(b) «isanincreasing function on [a,b];
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(c) '€ A () for every te [c,d];
(d) c<s<d,andtoeverye >0 corresponds @ 6 > 0 such that

(D3 0)(x, 1) — (Dy 0)(x. 5)| <&
Jor all xe [a,b]andfor all te(s—6,5+6).
Degjine
b

(100) f(2) :J. o(x, t)du(x)  (c<t<d).

Then (D, @) € (), f'(s)exists, and

b
(101) £6) = [ (D 9)(x,5) da(x).

Note that (c) simply asserts the existence of the integrals (100) for all
t€[c,d]. Notealsothat (d)certainly holds whenever D, ¢ iscontinuous on the
rectangle on which ¢ is defined.

Proof Consider the difference quotients

(D(X, t) - (D(X, S)
t—3s

Ylx, 1) =

for 0< |t —s| <6. By Theorem 5.10 there corresponds to each (x,t) a
number » between s and t such that

Y(x, 1) = (D @)(x, u).
Hence (d)implies that

(102) Yt = (Dyo)x. )| <& (@<x<b, 0<|r—s|<6).
Note that
(103) f(t%—fés) = J.;I,D(x, t) da(x).

By (102), ¥ - (D, ¢)°, uniformly on [a,b],as t—s. Since each
Y' € A(x), the desired conclusion follows from (103) and Theorem 7.16.

9.43 Example One can of course prove analogues of Theorem 9.42 with
(=0, 00) in place of [a,b]. Instead of doing this, let us simply look at an
example. Define

(104) f(t) = jw == cos (xt) dx

-
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and

m

(105) g0y = — [ xe™* sin (xt) dx,

for —w < t< . Both integrals exist (they converge absolutely) since the
absolute values of the integrands are at most exp (—x?) and |x| exp (= x?),
respectively.

Notethat g is obtained fromf by differentiating the integrand with respect
tot. Weclaim thatf isdifferentiable and that

(106) f()=g(t) (—o0<t< o).

To prove this, let us first examine the difference quotients of the cosine:
if $>0, then
+ _ 2+ 8
cos (T f) - cosx + sin o =l l. (sin x — sin¢) dt.
P B
Since |sin 2 — sint| < |# — «|, the right side of (107) isat most /2 in absolute
value; the case f§ < 0 is handled similarly. Thus

(107)

cos (2 + B) — cos o
i

for al g (if the left side is interpreted to be O when 8 = 0).
Now fix t, and fix /# # 0. Apply (108) with « = xt, f = xh; it follows from
(104) and (105) that

\f(t ) =f@0)
h

(108) < |B|

+sina

g(t)

0
< |h| f x%e™* dx.
-

When h — 0, we thus obtain (106).

Let us go a step further: An integration by parts. applied to (104), shows
that
B xe Sm—(Xt) dx.
Yow t
Thus tf(t) = — 2g(¢), and (106) implies now that T satisfies the differential
equation
(110) Z'(t) T (1) =0.
If we solve this differential equation and use the fact that f/(0) = V/E (see Sec.
8.21), wefind that

_ 2
(111) [ty =/mexp (' tz)

(109) f(y=2

The integral (104) is thus explicitly determined.
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EXERCISES

1.

10.

11.

If S isa nonempty subset of a vector space X, prove (as asserted in Sec. 9.1) that
the span of § is a vector space.

. Prove (asasserted in Sec. 9.6) that BA islinear if A and Barelinear transformations.

Prove also that A-"' islinear and invertible.

. Assume A € L(X, Y)and Ax = 0 only when x = 0. Prove that A is then 1-1.
. Prove (as asserted in Sec. 9.30) that null spaces and ranges of linear transforma-

tions are vector spaces.

. Provethat to every A € L(R", R*') corresponds a uniquey € R” such that Ax = x . y.

Prove also that A |=|y]|.
Hint: Under certain conditions, equality holdsin the Schwarz inequality.

. If £(0,0)=0 and

Xy

P if (x, y) # (0, 0),

flx, )=

prove that (D, f)(x,y) and (D.f)(x, y) exist at every point of R? although f is
not continuous at (0, 0).

. Suppose that /' is a real-valued function defined in an open set E< R", and that

the partial derivatives D,f, ..., D,f are bounded in E. Prove thatfis continuous
in E.
Hint: Proceed as in the proof of Theorem 9.21.

. Suppose that f is a differentiable real function in an open set E < R”, and that f

has a local maximum at a point x € E. Prove that f'(x) =0.

. If f is a differentiable mapping of a connected open set E< R" into R™, and if

f'(x) == 0 for every x € E, prove that f is constant in E.

Iff isa rea function defined in a convex open set E < R", such that (D, f)(x)=0
for every x € E, prove that f(x) depends only on x., ..., X,,.

Show that the convexity of E can be replaced by a weaker condition, but
that some condition is required. For example, if =2 and E is shaped like a
horseshoe, the statement may be false.

Iff and g are differentiable real functions in R”, prove that
Yfg)y=fYg+g'f
and that T(l If) = — f~*Vf wherever f 0.

. Fix two real numbers a and b, 0 <a < b. Definea mapping f = (/1, /2, f3) of R*

into R® by
fi(s, t) = (b + acoss)cost
f:(s,1) = (bT+ acoss)sin s
f3(s,t) =asins.
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13.

14.

15.

Describe the range K of f. (It is acertain compact subset of R3.)
(@) Show that there are exactly 4 points p € K such that

(VAXE=(p)) =0.

Find these points.
(b) Determine the set of all q € K such that

(V) @) =0.

(c) Show that one of the points p found in part (a) corresponds to a local maxi-
mum off,, one corresponds to a local minimum, and that the other two are
neither (they are so-called " saddle points™).

Which of the points q found in part (h) correspond to maxima or minima?
(d) Let h be an irrational real number, and defineg(t) = f(z, At). Prove that g isa
1-1 mapping of R' onto a dense subset of K. Prove that

lg'(1)|*=a*+ h*(b+ acos?).

Supposef isa differentiable mapping of R into R® such that |f(1)| = 1 for every t.
Prove that f'(r) -f(¢) = 0.
Interpret this result geometrically.

Definef (0, 0) = 0 and

3

SN =m0 ) #0,0)

(@) Provethat D,jand D.fare bounded functions in R?. (Hencef is continuous.)
(b) Let u beany unit vector in R2. Show that the directional derivative (D, f)(0, 0)
exists, and that its absolute value is at most 1.
(c) Let ¢ be a differentiable mapping of R' 1nto R? (in other words, v is a differ-
entiable curve in R?), with y(0) =(0, 0) and »'(0)|> 0. Put g(r) = f(y(¢)) and
prove that g is differentiable for every t € R*,

If ye ¥, provethatg e €.
(d) In spite of this, prove thatf is not differentiable at (0, 0).

Hint: Formula (40) fails.

Definef (0, 0) = 0, and put

4x6y2

— x2 2 942y
SO, y) =x2+y*—2x% T

if (x, ») # (0, 0).
(a) Prove, for all (x,y) € R?, that
4x4y2 < (x4 € yz)z'

Conclude that f is continuous.



16.

17.

18.

19.

20.

21.
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(b) For 0 <0 <27, —o0 <t < o, define
ge(t) = f(t cos 8, t sin 0).

Show that g4(0) =0, ge(0) =0, g;(0) = 2. Each g, has therefore a strict local
minimum at ¢ = 0.

In other words, the restriction of f to each line through (0, 0) has a strict
local minimum at (0, 0).
(¢) Show that (0, 0) is nevertheless not a local minimum for f, since f(x, x2) = —x*.
Show that the continuity of £’ at the point a is needed in the inverse function
theorem, even in the case n=1: If

f(t) =1+ 2¢2sin (%)

for ¢t # 0, and f(0) =0, then f(0)=1, f’ is bounded in (—1, 1), but f is not
one-to-one in any neighborhood of 0.
Let f==(f}, f>) be the mapping of R? into R? given by

filx, y) =e€*cos y, fa(x, y) = e*sin y.
(a) What is the range of f?
(b) Show that the Jacobian of fis not zero at any point of R2. Thus every point
of R? has a neighborhood in which fis one-to-one. Nevertheless, fis not one-to-
one on R2,
(¢) Put a=(0, 7/3), b= f(a), let g be the continuous inverse of f, defined in a
neighborhood of b, such that g(b) = a. Find an explicit formula for g, compute
f'(a) and g’(b), and verify the formula (52).
(d) What are the images under f of lines parallel to the coordinate axes?
Answer analogous questions for the mapping defined by

u=x%—y? v=2xy.

Show that the system of equations

Ix+y—z+ur=0

Xx—y+4+2z4+u=0

2x + 2y —3z4+2u=0
can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z,  in terms
of x; but not for x, y, z in terms of u.
Take n=m =1 in the implicit function theorem, and interpret the theorem (as
well as its proof) graphically.
Define fin R? by
fx, y)=2x>—=3x* 4+ 23 + 32,

(a) Find the four points in R? at which the gradient of f'is zero. Show that f has
exactly one local maximum and one local minimum in R2,
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22.

23.

24,

26.

27.

28.
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(b) Let S be the set of dl (x, y) € R? at which f(x,y) =0. Find those points of
Sthat have no neighborhoods in which the equation f(x, y) = 0 can be solved for
y in terms of x (or for X in terms of y). Describe Sas precisely as you can.
Give a similar discussion for

f(x,y)=2x? + 6xy* — 3x? + 3y2.
Definef in R® by
SO yLy)=xy + e+ y,.

Show that (0, 1, —1) =0, (D, /) (0, 1, —1) #0, and that there exists therefore a
differentiable function g in some neighborhood of (1, —1) in R? such that
g(1, —1) =0 and

SG»1, ¥2), 1, ¥2) = 0.
Find (D.g)(1, —1) and (D2g)(1, —1).
For (x, ») # (0, 0), define f = (f1,f2) by
x2 — yz

Xy
x2 +y2

.fl(x9y)= ] fZ(xyy)z

Compute the rank of f'(x, y), and find the range off.

. Suppose A € L(R", R™), let r be the rank of A.

(a) Define Sasin the proof of Theorem 9.32. Show that SA is a projectionin R"
whose null space is A7(A4) and whose range is Z(S). Hint: By (68), SASA = SA.
(b) Use (a) to show that

dim A7(A4) + dim Z(A) = n.

Show that the existence (and even the continuity) of D,.f does not imply the
existence of D, f. For example, let f(x, y) = g(x), whereg is nowhere differentiable.
Putf (0,0) =0, and
_xy(xt—yY)

fC,y)= iy
if (x,y)# (0,0). Prove that
(@ f, D.f, D,f are continuous in R?;
{b) D,.f and D,,f exist at every point of R?, and are continuous except at (0, 0);
(C) (Dlzf)(o, 0) =1, and (Duf)(O, 0) =-1

For r =0, put
x . 0<x<Vn
@(x, t)= —x+2v: (\/1§X£2\/;)
0 (otherwise),

and put ¢(x, 1) = —e(x, |¢]) if £ <O,
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Show that ¢ iscontinuous on R?, and
(D29)(x,0)=0

for all x. Define

al

f(t):J_1 @(x, ) dx.
Show that f(r) =t if |¢] < }. Hence
S(0) #f_ll(thp)(x, 0) dx.

Let E bean open set in R". The classes ¥’(E) and ¥”(E) are defined in the text.
By induction, ¥**(E) can be defined as follows, for all positive integers k: T o say
that f € '©(E) meansthat the partial derivatives D, f, ..., D.f belong to €~ (E).

Assume f € ¥*(E). and show (by repeated application of Theorem 9.41)
that the kth-order derivative

Dtuz ’kf: DuDiz Dn‘xf

is unchanged if the subscriptsiy, ..., ik are permuted.
For instance, if # > 3, then

Diy13f= Dsyiaf
for everyf € €.

Letf € ¥(E), where E is an open subset of R". Fix a€ E, and suppose X € R"
is so close to 0 that the points

p(r)=a+1x
liein E whenever 0 <t < 1. Define
h(£) = f(p(1))

for all t € R! for which p(¢) € E.
(a) For 1 <k <m, show (by repeated application of the chain rule) that

B =2 ADiy .k NP X1y iy -

The sum extends over all ordered k-tuples (i, ..., &) in which each i, is one of the
integers I, ...,n.
(b)y By Taylor's theorem (5.15),

h(l) _ mil h(k)(o) h(m)(t)

k=0 k! m!

for some r €(0, 1). Use this to prove Taylor's theorem in n variables by showing
that the formula
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31.

fa+n="% 5 S Doy D@y - 1+ 1)

represents f(a +x) as the sum of its so-called " Taylor polynomial of degree
m — 1, plus a remainder that satisfies

lim Lx) =0
x-0 | X ‘ m-1
Each of the inner sums extends over all ordered k-tuples (i1, ..., i), asin

part (a);as usual, the zero-order derivative off issimply f, so that the constant
term of the Taylor polynomial off at a isf(a).
(c) Exercise 29 shows that repetition occursin the Taylor polynomial aswritten in
part (b). For instance, D;,; occurs three times, as Dy;3, Dy3;1, D311. The sum of
the corresponding three terms can be written in the form

3(DIDsf)@)xixs.

Prove (by calculating how often each derivative occurs) that the Taylor polynomial
in (b) can be written in the form

(DY ... Dy f)a)
S, ... 8!

2 S TR
Here the summation extends over all ordered n-tuples (si, ..., $.) such that each
5 is a nonnegative integer, and s, +...Fts<m-1.
Suppose f € ¥® in some neighborhood of a point a € R?, the gradient off is 0
at a, but not all second-order derivatives off are 0 at a. Show how one can then
determine from the Taylor polynomial off at a (of degree 2) whether f has a local
maximum, or a local minimum, or neither, at the point a.

Extend thisto R" in place of R2.
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INTEGRATION OF DIFFERENTIAL FORMS

Integration can be studied on many levels. In Chap. 6, the theory was developed
for reasonably well-behaved functions on subintervals of the real line. In
Chap. 11 we shall encounter a very highly developed theory of integration that
can be applied to much larger classes of functions, whose domains are more
or less arbitrary sets, not necessarily subsets of R". The present chapter is
devoted to those aspects of integration theory that are closely related to the
geometry of euclidean spaces, such as the change of variables formula, line
integrals, and the machinery of differential forms that is used in the statement
and proof of the #n-dimensional analogue of the fundamental theorem of calculus,
namely Stokes’ theorem.

INTEGRATION

10.1 Definition Suppose I*is a k-cell in R*, consisting of all

X=(X{,..., X
such that
(1) aiﬁxif_bi (izl,...,k),
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I’ is the j-cell in R’ defined by the first j inequalities (1), and f is a real con-
tinuous function on I*,
Put f = f,, and define f,_, on I*"! by

bic
Jio1(xpy oo Xky) = J Silxgs ooy Xk—1s Xi) A
A

The uniform continuity of f, on I* shows that f,_; is continuous on I¥7!,
Hence we can repeat this process and obtain functions f;, continuous on I, such
that f;_, is the integral of f;, with respect to x;, over [a;, b;]. After k steps we
arrive at a number f,,, which we call the integral of f over I*; we write it in the
form

) f,k f®)ydx  or flkf-

A priori, this definition of the integral depends on the order in which the
k integrations are carried out. However, this dependence is only apparent. To
prove this, let us introduce the temporary notation L(f) for the integral (2)
and L'(f) for the result obtained by carrying out the k integrations in some
other order.

10.2 Theorem For every fe €(I¥), L(f) = L'(f).
Proof If h(x) = hy(x,) * - Ii(x,), where h; € 4([a;, b;]), then

k b;
L(h) = r[j hi(x;) dx; = L'(h).
i=1%Ya;

If o/ is the set of all finite sums of such functions #, it follows that L(g) =
L'(g) for all g e /. Also, & is an algebra of functions on I* to which the
Stone-Weierstrass theorem applies.

k
Put V=[] (b; — a;). If fe€(I*) and ¢ > 0, there exists g € & such
1

that | f— gl < ¢/V, where [|f| is defined as max |f(x)| (x € I*). Then
|L(f—g)| <& |L'(f—g)| < e, and since

L) -L'N=Lf=9+L(g -1,

we conclude that |L(f) — L'(f)| < 2e.
In this connection, Exercise 2 is relevant.

10.3 Definition The support of a (real or complex) function f on R* is the
closure of the set of all points x € R¥ at which f(x) # 0. If fis a continuous
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function with compact support, let I* be any k-cell which contains the support
of £, and define

(3) ka r=[.r

The integral so defined is evidently independent of the choice of I*, provided
only that I* contains the support of £,

It is now tempting to extend the definition of the integral over R* to
functions which are limits (in some sense) of continuous functions with compact
support. We do not want to discuss the conditions under which this can be
done; the proper setting for this question is the Lebesgue integral. We shall
merely describe one very simple example which will be used in the proof of
Stokes’ theorem.

10.4 Example Let Q* be the k-simplex which consists of all points x =
(x;, ..., x) in R* for which x, + - + x, <1 and x; >0 fov i=1, ..., k. If
k = 3, for example, Q% is a tetrahedron, with vertices at 0, e, e, , e; . If fe (0",
extend f'to a function on I* by setting f(x) = 0 off Q% and define

4 = .
© [ =17
Here I* is the ‘‘unit cube” defined by

0<x;<1  (<i<k).

Since /' may be discontinuous on I*, the existence of the integral on the
right of (4) needs proof. We also wish to show that this integral is independent
of the order in which the k single integrations are carried out.

To do this, suppose 0 < é < 1, put

1 ts1-9)
(%) qo(t)=-'(1—gt—) (1-d6<t<])
10 (I<p,
and define
6) F(x)=o@(x, + -+ + x)f(x) (xel".

Then F e €(I%).

Put y = (x, ..., xx—1), X =(y, x,). For each ye I*"!, the set of all x,
such that F(y, x,) # f(y; x;) is either empty or is a segment whose length does
not exceed 6. Since 0 < ¢ < 1, it follows that

7N |Foi() = fiei )| <6l (yel*™h),



248 PRINCIPLES OF MATHEMATICAL ANALYSIS

where [|f| has the same meaning as in the proof of Theorem 10.2, and F,_,,
Jx-1 are as in Definition 10.1.
As 6 — 0, (7) exhibits f, _, as a uniform limit of a sequence of continuous
functions. Thus f,_; € €(I*~1), and the further integrations present no problem.
This proves the existence of the integral (4). Moreover, (7) shows that

® IRCESINCEL !

Note that (8) is true, regardless of the order in which the k single integrations
are carried out. Since F e %(I*), [F is unaffected by any change in this order.
Hence (8) shows that the same is true of [f.

This completes the proof.

Our next goal is the change of variables formula stated in Theorem 10.9.
To facilitate its proof, we first discuss so-called primitive mappings, and parti-
tions of unity. Primitive mappings will enable us to get a clearer picture of the
local action of a #'-mapping with invertible derivative, and partitions of unity
are a very useful device that makes it possible to use local information in a
global setting.

PRIMITIVE MAPPINGS

10.5 Definition [f G maps an open set £ < R” into R", and if there is an
integer m and a real function g with domain F such that

) G(x) =) x;¢; +g(X)e,  (xek),

i£m

then we call G primitive. A primitive mapping is thus one that changes at most
one coordinate. Note that (9) can also be written in the form

(10) G(x) = x + [g(x) — x,.]e,.

If g is differentiable at some point a € E, so is G. The matrix [o;;] of the
operator G'(a) has

(11) (Dlg)(a): v (Dm g)(a)s RS (Dn g)(a)

as its mth row. For j # m, we have o;; =1 and «;; =0 if 7 # j. The Jacobian
of G at a is thus given by

(12) Jo(a) = det[G'(a)] = (D,, 9)(a),
and we see (by Theorem 9.36) that G'(a) is invertible if and only if (D,, g)(a) # 0.
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10.6 Definition A linear operator B on R" that interchanges some pair of
members of the standard basis and leaves the others fixed will be called a flip.
For example, the flip B on R* that interchanges e, and e, has the form

(13) B(xje; + x,e; + x3e3 +x,€) =Xx1€ + X,€, + X33 + X485
or, equivalently,
(14) B(x;e; + x,e; + x3e5+x,e,) =x,€; + x €, + X383+ X,€,.

Hence B can also be thought of as interchanging two of the coordinates, rather
than two basis vectors.

In the proof that follows, we shall use the projections P, ..., P, in R",
defined by Pyx = 0 and

(15) P, x=xe, 4+ -+ x,e,

for 1 <m <n. Thus P, is the projection whose range and null space are
spanned by {e, ..., e,} and {e, ..., €,}, respectively.

10.7 Theorem SupposeF is a €'-mapping of an open set E < R" into R", 0 € E,
F(0) = 0, and F'(0) is invertible.
Then there is a neighborhood of 0 in R" in which a representation

(16) F(x) =B, B,_1G, o o Gy(x)
is valid.

In (16), each G; is a primitive €'-mapping in some neighborhood of 0;
G,(0) = 0, GY(0) is invertible, and each B, is either a flip or the identity operator.

Briefly, (16) represents F locally as a composition of primitive mappings
and flips.

Proof Put F=F,. Assume 1 <m<n—1, and make the following
induction hypothesis (which evidently holds for m = 1):
V.. is a neighborhood of 0, F,, € €'(V,) ,F,(0) = 0, F,(0) is invertible,

and
(17 Po_F (X) =P X (X€V,).
By (17), we have
(18) F,(x) = P, X+ ) a(x)e;,
where «,,, ..., «, are real ¥’-functions in V,,. Hence

(19) Fo0)e, = 3 (D)0,
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Since F,,(0) is invertible, the left side of (19) is not 0, and therefore there
is a k such that m < k < »n and (D, o, )(0) # 0.

Let B,, be the flip that interchanges m and this k (if k = m, B,, is the
identity) and define

20) Gn(x) =X + [o(X) — Xnlen  (X€ V).

Then G, € ¥'(V,), G, is primitive, and G, (0) is invertible, since
(D), 0,)(0) # 0.
The inverse function theorem shows therefore that there is an open
set U,,, with 0 e U, = V,,, such that G,, is a 1-1 mapping of U,, onto a
neighborhood V,,,; of 0, in which G, ! is continuously differentiable.
Define F,,,; by
(21) Fpe1(y) =B, F,oG'(y) (Y€ Vi)
Then F, ., €4 (Vps1), Frue1(0) =0, and F, . ,(0) is invertible (by
the chain rule). Also, for xe U,,,
(22) Pm Fm+1(Gm(x)) = Pm Bm Fm(x)
= Pm[Pm—lx + ak(x)em + - ]
=P,_1X + oy(X)e,
=P, G,(x)
so that

(23) P,F,..(y)=P,y (Y€ Vi)

Our induction hypothesis holds therefore with m + 1 in place of m.

[In (22), we first used (21), then (18) and the definition of B,,, then
the definition of P,,, and finally (20).]

Since B,, B,, =1, (21), with y = G, (x), is equivalent to

(24) Fm(x) = Bm Fm+1(Gm(x)) (X € Um)
If we apply this with m =1, ..., n — 1, we successively obtain
F=F, = B,F, c G,
=B B, F30G,0Gy ="
=B B, F,oG, 000Gy

in some neighborhood of 0. By (17), F, is primitive. This completes the
proof.
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PARTITIONS OF UNITY
10.8 Theorem Suppose K is a compact subset of R", and {V,} is an open cover
of K. Then there exist functions \yq, ..., Y, € €(R") such that

(@) 0<y,;<1forl1 <i<s;

(b) each \; has its support in some V,, and

© v (xX)+ - +y(x)=1 for every xe K.

Because of (c), {¥,;} is called a partition of unity, and (b) is sometimes
expressed by saying that {y/;} is subordinate to the cover {V,}.

Corollary If fe €(R") and the support of f lies in K, then

(25) f= Y
Each . f has its support in some V.

The point of (25) is that it furnishes a representation of f as a sum of
continuous functions V; f with “‘small’’ supports.

Proof Associate with each x € K an index o(x) so that x € V,,,. Then
there are open balls B(x) and W(x), centered at x, with

(26) B(x) = W(x) © W(X) & Ve -
Since K is compact, there are points Xy, ..., X, in K such that

v2))] K< B(x;) v - U B(xy).
By (26), there are functions ¢y, ..., ¢, € %(R"), such that ¢,(x)=1 on
B(x;), ¢;(x) = 0 outside W(x;), and 0 < ¢;(x) <1 on R". Define ¥, = ¢,
and

(28) Yirr =10 —0) (1 -9)@i+;
fori=1,...,5s—1.

Properties (@) and (b) are clear. The relation
(29) Yo+ HYi=1-1—9) 1 —9)

is trivial for / = 1. If (29) holds for some / < s, addition of (28) and (29)
yields (29) with i + 1 in place of i. It follows that

s

(30) YU =1-[[1 -0 (xeR).

i=1

If x € K, then x € B(x;) for some i, hence ¢ix) =1, and the product in
(30) is 0. This proves (c).
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CHANGE OF VARIABLES

We can now describe the effect of a change of variables on a multiple integral.
For simplicity, we confine ourselves here to continuous functions with compact
support, although this is too restrictive for many applications. This is illustrated
by Exercises 9 to 13.

10.9 Theorem Suppose T is a 1-1 €'-mapping of an open set E = R* into R¥
such that J(x) # 0 for allx € E. If f is a continuous function on R* whose support
is compact and lies in T(E), then

(D) [ Sdy=] FTeIH00)] dx.

We recall that J; is the Jacobian of 7. The assumption J;(x) # 0 implies,
by the inverse function theorem, that 7! is continuous on T(E), and this
ensures that the integrand on the right of (31) has compact support in E
(Theorem 4.14).

The appearance of the absolute value of J;(x) in (31) may call for a com-
ment. Take the case & = 1, and suppose T is a 1-1 ¥’-mapping of R' onto R
Then Jr(x) = T'(x); and if T is increasing, we have

(32) [ S0 dy =] STET)

by Theorems 6.19 and 6.17, for all continuous f with compact support. But if
T decreases, then T'(x) <0; and if fis positive in the interior of its support,
the left side of (32) is positive and the right side is negative. A correct equation
is obtained if T’ is replaced by |T’| in (32).

The point is that the integrals we are now considering are integrals of
functions over subsets of R¥, and we associate no direction or orientation with
these subsets. We shall adopt a different point of view when we come to inte-
gration of differential forms over surfaces.

Proof It follows from the remarks just made that (31) is true if T is a
primitive #’-mapping (see Definition 10.5), and Theorem 10.2 shows
that (31) is true if T is a linear mapping which merely interchanges two
coordinates.

1f the theorem is true for transformations P, @, and if S(x) = P(Q(x)),
then

[f@ dz = [ FPO)II)| dy

| PO ITH(Q))| | o) dx

i

= [ £ Jsx)]
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since
Jp(Q(x)Jo(x) = det P'(Q(x)) det Q'(x)
= det P'(Q(x))Q'(x) = det S'(x) = J5(x),

by the multiplication theorem for determinants and the chain rule. Thus
the theorem is also true for S.
Each point a € E has a neighborhood U < E in which

(33) T(x)=T(a) + B; " Bi_1 Gy o Gy o7 2 Gy(x—a),

where G; and B; are as in Theorem 10.7. Setting V' = T(U), it follows
that (31) holds if the support of flies in V. Thus:

Each point y € T(E) lies in an open set V, = T(E) such that (31) holds
Sor all continuous functions whose support lies in V.

Now let /' be a continuous function with compact support K = T(E).
Since {V,} covers K, the Corollary to Theorem 10.8 shews that /= Ty, f,
where each y; is continuous, and each ¥; has its support in some V,.
Thus (31) holds for each y, f, and hence also for their sum f.

DIFFERENTIAL FORMS

We shall now develop some of the machinery that is needed for the n-dimen-
sional version of the fundamental theorem of calculus which is usually called
Stokes’ theorem. The original form of Stokes’ theorem arose in applications of
vector analysis to electromagnetism and was stated in terms of the curl of a
vector field. Green’s theorem and the divergence theorem are other special
cases. These topics are briefly discussed at the end of the chapter.

1t is a curious feature of Stokes’ theorem that the only thing that is difficult
about it is the elaborate structure of definitions that are needed for its statement.
These definitions concern differential forms, their derivatives, boundaries, and
orientation. Once these concepts are understood, the statement of the theorem
is very brief and succinct, and its proof presents little difficulty.

Up to now we have considered derivatives of functions of several variables
only for functions defined in open sets. This was done to avoid difficulties that
can occur at boundary points. It will now be convenient, however, to discuss
differentiable functions on compact sets. We therefore adopt the following
convention:

To say that f is a %’-mapping (or a ¢"-mapping) of a compact set
D < R* into R" means that there is a #’-mapping (or a %’-mapping) g of
an open set W< R¥ into R" such that D = W and such that g(x) = f(x) for
all xe D.
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10.10 Definition Suppose E is an open set in R". A k-surface in E is a ¢'-
mapping ® from a compact set D = R* into E.

D is called the parameter domain of ®. Points of D will be denoted by
u=(uy, ..., ).

We shall confine ourselves to the simple situation in which D is either a
k-cell or the k-simplex Q* described in Example 10.4. The reason for this is
that we shall have to integrate over D, and we have not yet discussed integration
over more complicated subsets of R¥. It will be seen that this restriction on D
(which will be tacitly made from now on) entails no significant loss of generality
in the resulting theory of differential forms.

We stress that k-surfaces in E are defined to be mappings into E, not
subsets of E. This agrees with our earlier definition of curves (Definition 6.26).
In fact, 1-surfaces are precisely the same as continuously differentiable curves.

10.11 Definition Suppose E is an open set in R". A differential form of order
k =1 in E (briefly, a k-form in E) is a function w, symbolically represented by
the sum

(34) o= a, ..., (X)dx; A Adx,
(the indices iy, ..., i range independently from 1 to »n), which assigns to each
k-surface @ in E a number w(®) = [, w, according to the rule
oxiy v, X;

35 — e (D e T Tkl g ,
(33) L)w fDZa,l w(PW) Ouy, ..., uy) !
where D is the parameter domain of ®.

The functions a;, ..., are assumed to be real and continuous in E. 1f
¢4, ..., ¢, are the components of @, the Jacobian in (35) is the one determined

by the mapping

(ul, ety uk) - (¢i|(u)’ ey ¢ik(u))~
Note that the right side of (35) is an integral over D, as defined in Defini-
tion 10.1 (or Example 10.4) and that (35) is the definition of the symbol [q w.
A k-form o is said to be of class €’ or €” if the functions a;, ... ; in (34)
are all of class €' or .
A O-form in FE is defined to be a continuous function in E.

10.12 Examples
(a) Let y be a l-surface (a curve of class ¢’) in R*, with parameter
domain [0, 1].
Write (x, y, z) in place of (x;, x,, x3), and put

w=xdy+ydx.



(36)
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Then

1
f W= fo [71(2)y2(t) +7v2()71(O)] dt = 31 (1Dy2(1) = 3:(0)72(0).

Note that in this example _[v  depends only on the initial point y(0)
and on the end point p(1) of y. In particular, _[v @ =0 for every closed
curve 7. (As we shall see later, this is true for every 1-form @ which is
exact.)

Integrals of 1-forms are often called /ine integrals.

() Fixa>0,b >0, and define

()= (acost bsint) 0 <1< 2n),

so that y is a closed curve in R%. (Its range is an ellipse.) Then

-[ xdy= fznab cos? t dt = nab,
0

Y

whereas
2n
fydx: —_l. ab sin® t dt = —nab.
y 0

Note that [, x dy is the area of the region bounded by y. This is a
special case of Green’s theorem.
(¢) Let D be the 3-cell defined by

O0<r<l, 0<f<m, 0< o <2nm.
Define ®(r, 0, ¢) = (x, y, z), where

x =rsin 0 cos ¢
y=rsinfsin ¢

z=rcosf.
Then
olx, y, z) .
Jolr, 0, ) = TR =r?sinf.
Hence
4n
J.de Ady ndz= fDJq, =3

Note that ® maps D onto the closed unit ball of R?, that the mapping
is 1-1 in the interior of D (but certain boundary points are identified by
®), and that the integral (36) is equal to the volume of ®(D).
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10.13 Elementary properties Let v, »,, w, be k-formsin E. We write 0, = o,
if and only if w;(®) = w,(D) for every k-surface ® in E. In particular, =0
means that @(®) =0 for every k-surface ® in E. If ¢ is a real number, then
cw is the k-form defined by

37 f cw=c f ,
Lo Lo
and w = w; + w, means that
(38) J.Qw = J:le + J.¢w2

for every k-surface ® in E. As a special case of (37), note that — w is defined so
that

39 —-0)=—| do.

(39) (o=~ do
Consider a k-form

(40) w=ax)dx;, A Adx;,

and let @ be the k-form obtained by interchanging some pair of subscripts in
(40). If (35) and (39) are combined with the fact that a determinant changes
sign if two of its rows are interchanged, we see that

(41) b= —o.
As a special case of this, note that the anticommutative relation
(42) dx; A dx; = —dx; A dx;
holds for all i and j. In particular,
(43) dx; Adx; =0 (i=1,...,n).

More generally, let us return to (40), and assume that /, =i, for some
r #s. If these two subscripts are interchanged, then @ = w, hence w =0, by
(41).

In other words, if w is given by (40), then @ =0 unless the subscripts
i, ..., Iy are all distinct.

If w is as in (34), the summands with repeated subscripts can therefore
be omitted without changing w.

It follows that O is the only k-form in any open subset of R", if & > n.

The anticommutativity expressed by (42) is the reason for the inordinate
amount of attention that has to be paid to minus signs when studying differential
forms.
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10.14 Basic k-forms If i, ..., i, are integers such that 1 </ <i, < -
< i, £ n, and if I is the ordered k-tuple {i,, ..., iy}, then we call I an increasing
k-index, and we use the brief notation

(44) dxp=dx; A Adx; .

These forms dx; are the so-called basic k-forms in R".

It is not hard to verify that there are precisely #!/k!(n — k)! basic k-forms
in R"; we shall make no use of this, however.

Much more important is the fact that every k-form can be represented in
terms of basic k-forms. To see this, note that every k-tuple {j, ..., j,} of distinct
integers can be converted to an increasing k-index J by a finite number of inter-
changes of pairs; each of these amounts to a multiplication by —1, as we saw
in Sec. 10.13; hence

(45 dx; A Adxg = e(fy, .. i) dxy

where &(j;, ..., /i) is | or —1, depending on the number of interchanges that
are needed. In fact, it is easy to see that

(46) 6(jl’ "'7jk)=s(j1’ "'»jk)

where s is as in Definition 9.33.
For example,

dx; Adxs Adxy Adx; = —dxy Adx, Adxy A dxs
and
dxy Adxy, Adxy=dx, Adxy Adxy.

If every k-tuple in (34) is converted to an increasing k-index, then we
obtain the so-called standard presentation of w:

47 w =Y by(x)dxs.

I
The summation in (47) extends over all increasing k-indices I. [Of course, every
increasing k-index arises from many (from k!, to be precise) k-tuples. Each

b; in (47) may thus be a sum of several of the coefficients that occur in (34).]
For example,

x,dx, Adxy — xydxy Adx, + xydx, Adxs +dx; Adx,
is a 2-form in R*® whose standard presentation is
(1 —x))dxy Adxy + (X + x3) dxy Adxy.

The following uniqueness theorem is one of the main reasons for the
introduction of the standard presentation of a k-form.
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10.15 Theorem Suppose
(48) =Y byx)dx,
H

is the standard presentation of a k-form w in an open set Ec R". If o =0 in E,
then b (x) = 0 for every increasing k-index I and for every x € E.

Note that the analogous statement would be false for sums such as (34),
since, for example,

dxy ndx, +dx, Andx; =0,

Proof Assume, to reach a contradiction, that b,(v) > 0 for some ve E
and for some increasing k-index J ={j,, ..., ji}. Since b, is continuous,
there exists # > 0 such that b,(x) >0 for all x e R" whose coordinates
satisfy |x; —v;| < h. Let D be the k-cell in R* such that ue D if and
only if |u,| < hforr=1, ..., k. Define

49 D) =v + fz ue; (ue D).

Then @ is a k-surface in E, with parameter domain D, and b,(®(u)) > 0
for every ue D.
We claim that

(50) Lw = be,(m(u)) du.

Since the right side of (50) is positive, it follows that w(®) # 0. Hence
(50) gives our contradiction.

To prove (50), apply (35) to the presentation (48). More specifically,
compute the Jacobians that occur in (35). By (49),

O(Xj,s e Xj,) _1
O(uy, ..., uy)

For any other increasing k-index I # J, the Jacobian is 0, since it is the
determinant of a matrix with at least one row of zeros.

10.16 Products of basic k-forms Suppose
51D I={i,....i,}, J={j1, ...}

where 1 <7y < - <i,<mand 1 <j; < -+ <j,<n. The product of the cor-
responding basic forms dx; and dx; in R" is a (p + g)-form in R", denoted by
the symbol dx; A dx;, and defined by

(52) dxpndx;=dx; N Ndxg Ndxg A Ndxg
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If I and J have an element in common, then the discussion in Sec. 10.13
shows that dx; A dx,; =0.

If I and J have no element in common, let us write [/, J] for the increasing
(p + gq)-index which is obtained by arranging the members of I U J in increasing
order. Then dx;; j is a basic (p + g)-form. We claim that

(53) dxy A dx; =(=1)"dxy, n

where « is the number of differences j, — i; that are negative. (The number of
positive differences is thus pg — a.)
To prove (53), perform the following operations on the numbers

(54) ila'”yip;jl:--'ajq'

Move i, to the right, step by step, until its right neighbor is larger than i,.
The number of steps is the number of subscripts  such that i, < j,. (Note that
0 steps are a distinct possibility.) Then do the same fori,_,, ..., ;. The total
number of steps taken is «. The final arrangement reached is [/, J]. Each step,
when applied to the right side of (52), multiplies dx; A dx; by —1. Hence (53)
holds.

Note that the right side of (53) is the standard presentation of dx; A dx;.

Next, let K = (ky, ..., k,) be an increasing r-index in {1, ..., n}. We shall
use (53) to prove that

(55) (dx; A dxy) A dxyg =dx; A (dxy A dxg).

If any two of the sets 7, J, K have an element in common, then each side
of (55) is 0, hence they are equal.

So let us assume that 7, J, K are pairwise disjoint. Let [/, J, K] denote
the increasing (p + g + r)-index obtained from their union. Associate § with
the ordered pair (J, K) and y with the ordered pair (Z, K) in the way that « was
associated with (7, J) in (53). The left side of (55) is then

(=D dxpy gy Adxg = (=D =1 axy, 5, k1
by two applications of (53), and the right side of (55) is
(- 1) dxy A dxpy gy = (— D=1y dx[l, J,K]*

Hence (55) is correct.

10.17 Multiplication Suppose w and A are p- and g-forms, respectively, in
some open set E = R", with standard presentations

(56) w=YbX)dx, A=) c,(x)dx,

where I and J range over all increasing p-indices and over all increasing g-indices
taken from the set {1, ..., n}.
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Their product, denoted by the symbol @ A 4, is defined to be
(57 o A A=Y b(X)c,x)dx; A dx;.
I,J
In this sum, 7 and J range independently over their possible values, and dx; A dx;
is as in Sec. 10.16. Thus w A A is a (p + ¢)-form in E.

It is quite easy to see (we leave the details as an exercise) that the distribu-
tive laws

(0, +w)Adl=(w, AA)+ (@, AA)
and
oA+ i) =(@Ai)+ (@A L)

hold, with respect to the addition defined in Sec. 10.13. If these distributive
laws are combined with (55), we obtain the associative law

(58) (Aa)Ac=0 A A0

for arbitrary forms w, 4, ¢ in E.
In this discussion it was tacitly assumed that p > 1 and g > 1. The product
of a O-form f with the p-form w given by (56) is simply defined to be the p-form

Jo=of = ;f (x)by(x) dx;.

It is customary to write fo, rather than f A @, when fis a 0-form.

10.18 Differentiation We shall now define a differentiation operator d which
associates a (k + 1)-form dw to each k-form w of class ¢’ in some open set
EcR"

A 0-form of class €’ in E is just a real function fe €'(E), and we define

(59) df = ¥ (Difx) d.

If w = Zb,(x) dx; is the standard presentation of a k-form w, and b; € €'(E)
for each increasing k-index I, then we define

(60) do =Y (dby) A dx;.

I

10.19 Example Suppose E is open in R, fe €'(E), and y is a continuously
differentiable curve in E, with domain [0, 1]. By (59) and (395),

(61) [ar=] 3 @ a.
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By the chain rule, the last integrand is (f° y)’(z). Hence

(62) [ dr=r6) - o0,

and we see that jy df is the same for all y with the same initial point and the same
end point, as in (@) of Example 10.12,

Comparison with Example 10.12(b) shows therefore that the 1-form x dy
is not the derivative of any 0-form f. This could also be deduced from part ()
of the following theorem, since

dixdy)=dx ndy #0.

10.20 Theorem
(a) If w and X are k- and m-forms, respectively, of class €' in E, then
(63) dw A A)=(dw) AL+ (-1)Fw A di
(B If wis of class €" in E, then d*w = 0.
Here d*w means, of course, d(dw).

Proof Because of (57) and (60), (a) follows if (63) is proved for the
special case

(64) w = fdx,, A=gdx,

where f, g € ¥'(E), dx; is a basic k-form, and dx; is a basic m-form. [If
k or m or both are 0, simply omit dx; or dx;, in (64); the proof that follows
is unaffected by this.] Then

w A A=fgdxpAdx;.

Let us assume that / and J have no element in common. [In the other
case each of the three terms in (63) is 0.] Then, using (53),

d(w A ) =d(fg dx; A dxy) =(=1)*d(fg dxy;, ;).
By (59), d(fg) = fdg + g df. Hence (60) gives

dw A 1) =(=1)*(fdg +gdf) n dxy, 1
= (gdf+fdg) Andx, Adx,.

Since dg is a 1-form and dx; is a k-form, we have

dg A dx;=(~1)"dx; A dg,
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by (42). Hence
dw A1) =(df Adxp A(gdxy) + (= D*fdx;) A (dg A dx))
= (dw) A A+(—D*w A di,
which proves (a).

Note that the associative law (58) was used freely.
Let us prove (b) first for a 0-form fe €”:

d*f = d( Z (D;f)x) dxj)

j=1

1=

J

d(D,f) A dx;

= 3 (Dy)X) dx; A dx;.

Since D;;f= D;;f (Theorem 9.41) and dx; A dx; = —dx, A dx;, we see
that d%f = 0.

If w = fdx;, as in (64), then dw = (df) A dx,;. By (60), d(dx;) = 0.
Hence (63) shows that

d*w = (d*f) A dx,; = 0.
10.21 Change of variables Suppose E is an open set in R”, T is a ¢’-mapping
of E into an open set ¥ < R™, and w is a k-form in ¥, whose standard presenta-
tion is
(65) w = IZ b(y)dy,.

(We use y for points of ¥, x for points of E.)
Let ¢, ..., t, be the components of T: If

y= (yla ""ym)= T(X)
then y; = #,(x). As in (59),
(66) d;=3 (D;t)x)dx;  (1<i<m)
j=1
Thus each d¢; is a 1-form in E.
The mapping 7 transforms o into a k-form wy in £, whose definition is

67 wr=Y b (TX)dt;, A+ Adt,.

]
In each summand of (67), I ={i,, ..., i} is an increasing k-index.

Our next theorem shows that addition, multiplication, and differentiation
of forms are defined in such a way that they commute with changes of variables.
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10.22 Theorem With E and T as in Sec. 10.21, let w and A be k- and m-forms
in V, respectively. Then

(a) ((»0+/1)T=(DT+11TI‘fk=m,
D) (WADr=owrAir;
(¢) d(wr)=(dw)r if wisof class €' and T is of class €".

Proof Part (@) follows immediately from the definitions. Part (b) is
almost as obvious, once we realize that

(68) (dy, A Ady)r= dt; A Adl

regardless of whether {i, ..., i,} is increasing or not; (68) holds because
the same number of minus signs are needed on each side of (68) to produce
increasing rearrangements.

We turn to the proof of (¢). If fis a O-form of class ¢’ in V, then

fix) =fTx), df= Zi(Dif)(y) dy;.
By the chain rule, it follows that
(69) d(fr) = ,Z (D;fr)(X) dx;
= ,Z Z (D YT (X))(D; 1,)(x) dx;
= iZ(D,-f NT(x)) dt;

= df)r.
Ifdyy=dy, A Ady,, then (dyp)y=dt; A+ Adt,, and Theorem
10.20 shows that
(70) d((dy )r) = 0.

(This is where the assumption T e €” is used.)
Assume now that w = fdy;. Then

or = f1(xX) (dypDr

and the preceding calculations lead to

dlwr) =d(fr) A [@y)r=df)r A (dy)r
= ((df) A dypr = (dw)r.
The first equality holds by (63) and (70), the second by (69), the third by
part (b), and the last by the definition of dw.

The general case of (¢) follows from the special case just proved, if
we apply (@). This completes the proof.
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Our next objective is Theorem 10.25. This will follow directly from two
other important transformation properties of differential forms, which we state
first.

10.23 Theorem Suppose T is a €'-mapping of an open set E — R" into an open
set V.« R™, S is a €-mapping of V into an open set W = R®, and w is a k-form
in W, so that wg is a k-form in V and both (ws)r and wgy are k-forms in E, where
ST is defined by (ST)(x) = S(T(x)). Then
1) (ws)r = wsr.

Proof If w and A are forms in W, Theorem 10.22 shows that

(0 A Do)y = (w5 A Ag)r = (s)r A (Ag)r
and
(0 A Nsr = g7 A Ast.

Thus if (71) holds for @ and for 1, it follows that (71) also holds for w A A.
Since every form can be built up from O-forms and 1-forms by addition
and multiplication, and since (71) is trivial for O-forms, it is enough to
prove (71) in the case w =dz,, g =1, ..., p. (We denote the points of
E, V, Wby x,y, z, respectively.)

Let ¢y, ..., t,, be the components of 7, let s, ..., s, be the compo-
nents of S, and let r, ..., r, be the components of ST. If w = dz,, then

ws = ds; = XJ: (D;s)(y) dy;,
so that the chain rule implies
(ws)r = XJ: (D;sMT(x)) dt;
=Y (D;sXT (%)) ) (D;1,)(x) dx;
= i (D;r)(x) dx; _ dr, = wgr.

10.24 Theorem Suppose w is a k-form in an open set E < R", ® is a k-surface
in E, with parameter domain D < R, and A is the k-surface in R¥, with parameter
domain D, defined by A(u) = u(ue D). Then

[REIRS

Proof We need only consider the case

w=aXx)dx; A Adx,.



(72)
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If ¢, ..., ¢, are the components of ®, then
we = a(@)) db;, A - A dby, .
The theorem will follow if we can show that

dp; ~ - Ado,=JW)du; A A duy,

where
(X, X))
Iy = Buy, .., 1)
since (72) implies
J‘ w= J a(®(u))J (u) du
o D

= J‘ a(®)J(W) du;, A -+ A duy = J‘ .

A

Let [A] be the k& by k matrix with entries
9‘(Pa‘7)=(Dq§bi,,)(“) (paq: 1,'-"/()'

Then
de; = qZ 2(p, q) du,
so that
Ao, A Adp =Y all,qy) ok, q) dug, Ao A duy, .
In this last sum, ¢, ..., ¢, range independently over 1, ..., k. The anti-
commutative relation (42) implies that
dug, A Adug, =5(qy, .., q)dug A A duy,

where s is as in Definition 9.33; applying this definition, we see that
d;, A o Adp, =det[A]duy A - A duy;
and since J(u) = det [A4], (72) is proved.

The final result of this section combines the two preceding theorems.

10.25 Theorem Suppose T is a €'-mapping of an open set E = R" into an open
set V< R™ @ is a k-surface in E, and w is a k-form in V.

Then

J (J)=J O)T.
T® ¢
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Proof lLet D be the parameter domain of ® (hence also of T®) and
define A as in Theorem 10.24.
Then

J.Tow = fA Wre = J.A (wr)e = J.o Wr.

The first of these equalities is Theorem 10.24, applied to T® in place of .
The second follows from Theorem 10.23. The third is Theorem 10.24,
with wy in place of w.

SIMPLEXES AND CHAINS

10.26 Affine simplexes A mapping f that carries a vector space X into a
vector space Y is said to be affine if f — £(0) is linear. In other words, the require-
ment is that

73 f(x) = f(0) + Ax

for some 4 € L(X, Y).

An affine mapping of R* into R" is thus determined if we know f(0) and
f(e;) for 1 < i< k; as usual, {e,, ..., e} is the standard basis of R*

We define the standard simplex QF to be the set of all ue R¥ of the form

K
(74) u= Y e,
i=1
such that o, > O fori=1, ..., k and Xg; < 1.
Assume now that p,, p,, ..., px are points of R". The oriented affine
k-simplex
(75) c=[p0’p17'--5pk]

is defined to be the k-surface in R” with parameter domain Q* which is given
by the affine mapping

k
(76) o(ae; + " 0 + oge) =Ppo + Zlai(pi — Po)-
Note that ¢ is characterized by
a7 0(0)=po, o(e)=p; (forl<i<k),
and that
(78) o(n) = p, + Au (ue QY

where 4 € L(R*, R") and Ae; =p; — p, for 1 <i < k.
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We call ¢ oriented to emphasize that the ordering of the vertices py, ..., P«
is taken into account. If
(79) &=[pio’piw “':pik]’
where {iy, iy, ..., i} is a permutation of the ordered set {0, 1, ..., &}, we adopt
the notation
(80) G =s(ig, iy, ..., )0,

where s is the function defined in Definition 9.33. Thus ¢ = +¢, depending on
whether s =1 or s = — 1. Strictly speaking, having adopted (75) and (76) as
the definition of ¢, we should not write 6 = ¢ unless i, =0, ..., i, =k, even
ifs(iy, ..., i) = 1; what we have here is an equivalence relation, not an equality.
However, for our purposes the notation is justified by Theorem 10.27.

If & = e0 (using the above convention) and if ¢ = 1, we say that ¢ and ¢
have the same orientation; if e = —1, ¢ and ¢ are said to have opposite orienta-
tions. Note that we have not defined what we mean by the “orientation of a
simplex.”” What we have defined is a relation between pairs of simplexes having
the same set of vertices, the relation being that of “having the same orientation.”

There is, however, one situation where the orientation of a simplex can
be defined in a natural way. This happens when n» = k£ and when the vectors
P: — Po (1 <7< k) are independent. In that case, the linear transformation A
that appears in (78) is invertible, and its determinant (which is the same as the
Jacobian of ¢) is not 0. Then ¢ is said to be positively (or negatively) oriented if
det A is positive (or negative). In particular, the simplex [0, e,, ..., e;] in R,
given by the identity mapping, has positive orientation.

So far we have assumed that £ > 1. An oriented O-simplex is defined to
be a point with a sign attached. We write 6 = +p, or 6 = — py. If 0 = ¢p,
(e = £ 1)and if fis a O-form (i.e., a real function), we define

[ 1= <o)

10.27 Theorem If ¢ is an oriented rectilinear k-simplex in an open set E < R"
and if & = eo then

(81) [o=¢]w
Sfor every k-form w in E.

Proof For k=0, (81) follows from the preceding definition. So we
assume k > 1 and assume that ¢ is given by (75).
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Suppose 1 <j< k, and suppose ¢ is obtained from o by inter-
changing p, and p;. Then e = -1, and

Gu)=p;+Bu  (ue Q"

where B is the linear mapping of R* into R* defined by Be; = p, — p;,
Be,=p,—p;if i # /. If we write de; =x; (1 <i< k), where 4 is given
by (78), the column vectors of B (that is, the vectors Be;) are

X; — X Xo g — X, =X, X — X, e, X — X

If we subtract the jth column from each of the others, none of the deter-
minants in (35) are affected, and we obtain columns x,, ..., x;,_;, —X,,
X;+1, .-+, X;. These differ from those of 4 only in the sign of the jth
column. Hence (81) holds for this case.

Suppose next that 0 < i < j< k and that & is obtained from ¢ by
interchanging p; and p;. Then &(u) = p, + Cu, where C has the same
columns as 4, except that the ith and jth columns have been inter-
changed. This again implies that (81) holds, since ¢ = —1.

The general case follows, since every permutation of {0, 1, ..., k} is
a composition of the special cases we have just dealt with.

10.28 Affine chains An affine k-chain T in an open set E = R" is a collection
of finitely many oriented affine k-simplexes ¢, ..., g, in E. These need not be
distinct; a simplex may thus occur in I" with a certain multiplicity.

If T is as above, and if w is a k-form in FE, we define

(82) [o=3]o

i=1%g;
We may view a k-surface ® in £ as a function whose domain is the collec-
tion of all k-forms in E and which assigns the number fq w to w. Since real-

valued functions can be added (as in Definition 4.3), this suggests the use of the
notation

(83) T=o, 4+ +0,

or, more compactly,
(84) =3 o
i=1

to state the fact that (82) holds for every k-form w in E.

To avoid misunderstanding, we point out explicitly that the notations
introduced by (83) and (80) have to be handled with care. The point is that
every oriented affine k-simplex o in R" is a function in two ways, with different
domains and different ranges, and that therefore two entirely different operations
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of addition are possible. Originally, ¢ was defined as an R"-valued function
with domain Q*; accordingly, o, + o, could be interpreted to be the function
o that assigns the vector ¢,(u) + o,(u) to every u € Q¥; note that ¢ is then again
an oriented affine k-simplex in R"! This is not what is meant by (83).

For example, if ¢, = —0, as in (80) (that is to say, if ¢, and ¢, have the
same set of vertices but are oppositely oriented) and if T = 0o, + g5, then
[r @ =0 for all w, and we may express this by writing T’ =0 or ¢, + 6, =0.
This does not mean that ¢,(u) + o,(u) is the null vector of R".

10.29 Boundaries For k > |, the boundary of the oriented affine k-simplex

o =[Po: Pr> - il
is defined to be the affine (kK — 1)-chain

k
(85) Z _1) Po:--~,Pj—1,Pj+1,---7Pk]-

=0

For example, if ¢ = [py, p,, p2], then
éo = [py, P2} — [Po> P2] + [Po> P1] = [Po, P11 + [Py, P21 + P2, Pols

which coincides with the usual notion of the oriented boundary of a triangle.

For | < j < k, observe that the simplex o; = [po, ..., P;—1, Pjv1> -5 Pi]
which occurs in (85) has Q* ! as its parameter domain and that it is defined by
(86) guy=po +Bu  (ue Q7Y

where B is the linear mapping from R*"! to R" determined by
Be, =p;, —p, (f 1<i<j-—1),
Be,=p;yy—po (f j<i<k-1).
The simplex
0o =[Py, P2y ---» Puls
which also occurs in (85), is given by the mapping
oo(u) = py + Bu,

where Be; =p;y, —p; for 1 <i<k— 1.

10.30 Differentiable simplexes and chains Let 7 be a ¥”-mapping of an open
set E < R"into an open set V' < R™; T need not be one-to-one. If ¢ is an oriented
affine k-simplex in E, then the composite mapping ® = 7o ¢ (which we shall
sometimes write in the simpler form 7o) is a k-surface in V, with parameter
domain Q% We call @ an oriented k-simplex of class €.
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A finite collection ¥ of oriented k-simplexes @, ..., ®, of class €” in V
is called a k-chain of class €" in V. If w is a k-form in V, we define

®7) fww:i; fwiw

and use the corresponding notation ¥ = Z®;.
If T’ = Xo, is an affine chain and if @, = T o o;, we also write ¥ =TT,
or

(88) T(z o) = zTai.

The boundary ¢® of the oriented k-simplex ® = T - ¢ is defined to be the
(k — 1) chain

(89) é® = T (o).

In justification of (89), observe that if T is affine, then ® =T o ¢ is an
oriented affine k-simplex, in which case (89) is not a matter of definition, but is
seen to be a consequence of (85). Thus (89) generalizes this special case.

It is immediate that é® is of class " if this is true of @.

Finally, we define the boundary ¥ of the k-chain W = X®, to be the
(k — 1) chain

(90) oV =Y 60,

10.31 Positively oriented boundaries So far we have associated boundaries to
chains, not to subsets of R". This notion of boundary is exactly the one that is
most suitable for the statement and proof of Stokes’ theorem. However, in
applications, especially in R? or R®, it is customary and convenient to talk
about “‘oriented boundaries” of certain sets as well. We shall now describe
this briefly.

Let Q" be the standard simplex in R", let o, be the identity mapping with
domain Q". As we saw in Sec. 10.26, g, may be regarded as a positively oriented
n-simplex in R". Its boundary do, is an affine (# — 1)-chain. This chain is
called the positively oriented boundary of the set Q".

For example, the positively oriented boundary of Q2 is

[e19 €, e3] - [05 €, e3] + [Oa €, e3] - [05 €y, ez]-

Now let T be a 1-1 mapping of Q" into R", of class ¢€”, whose Jacobian is
positive (at least in the interior of Q"). Let £ = T(Q"). By the inverse function
theorem, E is the closure of an open subset of R". We define the positively
oriented boundary of the set £ to be the (n — 1)-chain

¢T =T (dsy),
and we may denote this (n — 1)-chain by ¢E.
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An obvious question occurs here: If E=1T1,(Q") = T,(Q"), and if both
T, and T, have positive Jacobians, is it true that 67, = 7,7 That is to say,

does the equality
= ®
J.ETl J.t'iTz

hold for every (n — 1)-form w? The answer is yes, but we shall omit the proof.
(To see an example, compare the end of this section with Exercise 17.)
One can go further. Let

Q=E, U UE,,

where E; = T,(Q"), each T has the properties that 7 had above, and the interiors
of the sets E; are pairwise disjoint. Then the (# — 1)-chain

OT, + - + 0T, = 0Q

is called the positively oriented boundary of Q.
For example, the unit square I? in R? is the union of ¢,(Q?) and ¢,(Q?),
where

o,(u) = u, g,(n)=e, +¢€,—u
Both ¢, and ¢, have Jacobian 1 > 0. Since
6, =1[0,e,,e,], g, =1le, +e,,e,,e]
we have
doy = ley, ;] — [0, e;] + [0, ¢,],
o, =le;,e;] —[e; +e,,e,]+ [e +e,,e];
The sum of these two boundaries is
I*=10,e,]+ [e,, e, +e,]+ [e; +e,,e,] + [e;, 0],
the positively oriented boundary of /2. Note that [e,, e,] canceled [e,, e, ].
If @ is a 2-surface in R™, with parameter domain I2, then ® (regarded as
a function on 2-forms) is the same as the 2-chain
Dog, +Poog,.
Thus
D =0Do0)+(Doa,)
= ®(da,) + O(da,) = B@I?).
In other words, if the parameter domain of @ is the square 72, we need

not refer back to the simplex Q2, but can obtain é® directly from 8I2.
Other examples may be found in Exercises 17 to 19,
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10.32 Example For0<u <, 0<v < 2n, define
2(u, v) = (sin u cos v, sin u sin v, cOS u).

Then X is a 2-surface in R*, whose parameter domain is a rectangle D < R?,
and whose range is the unit sphere in R®. Its boundary is

0L =Z(0D) =7+ 72+ 3+ s

where
y.(&) = Z(u, 0) = (sin u, 0, cos u),
‘))2(1)) = Z(T[) U) = (09 09 - 1)5
y3(U) = Z(n — u, 27) = (sin u, 0, —cos u),
‘))4(1)) = 2(05 2n — U) = (05 09 1)5

with [0, 7] and [0, 27] as parameter intervals for ¥ and v, respectively.

Since y, and y, are constant, their derivatives are 0, hence the integral of

any 1-form over vy, or y, is 0. [See Example 1.12(a).]
Since y;(u) = y,(n — u), direct application of (35) shows that

Jjo=-]o
73 71

for every 1-form w. Thus {,;; w = 0, and we conclude that 6T = 0.

(In geographic terminology, 0% starts at the north pole N, runs to the
south pole S along a meridian, pauses at .S, returns to N along the same meridian,
and finally pauses at N. The two passages along the meridian are in opposite
directions. The corresponding two line integrals therefore cancel each other.
In Exercise 32 there is also one curve which occurs twice in the boundary, but
without cancellation.)

STOKES’ THEOREM

10.33 Theorem IfY¥ is a k-chain of class €" in an open set V = R™ and if w
is a (k — 1)-form of class €' in V, then

©n de = fww.

The case k = m = 1 is nothing but the fundamental theorem of calculus
(with an additional differentiability assumption). The case kK = m = 2 is Green’s
theorem, and k = m = 3 gives the so-called ‘‘divergence theorem’ of Gauss.
The case k =2, m =3 is the one originally discovered by Stokes. (Spivak’s
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book describes some of the historical background.) These special cases will be
discussed further at the end of the present chapter.

©2)

93)

94)

(95)

96)

Proof It is enough to prove that

J'(Dda) = J‘ww

for every oriented k-simplex @ of class ¥” in V. For if (92) is proved and
if ¥ = X0,, then (87) and (89) imply (91).
Fix such a ® and put
c=10,e,,...,¢]

Thus o is the oriented affine k-simplex with parameter domain Q" which
is defined by the identity mapping. Since ® is also defined on Q* (see
Definition 10.30) and ® € ", there is an open set E = R* which contains
Q" and there is a ¥”"-mapping 7 of E into V such that ® = T- . By
Theorems 10.25 and 10.22(c), the left side of (92) is equal to

J'Taa’co = J'U(a’co)T = fad(wT).

Another application of Theorem 10.25 shows, by (89), that the right side

of (92) is
J.’(Ta')w N fT(E‘a')w N J;awT-

C

Since wy is a (kK — 1)-form in E, we see that in order to prove (92)
we merely have to show that

=

Jfor the special simplex (93) and for every (k — 1)-form A of class €’ in E.

If k =1, the definition of an oriented O-simplex shows that (94)
merely asserts that

| £ du=ra) - 10)

for every continuously differentiable function f on [0, 1], which is true
by the fundamental theorem of calculus.
From now on we assume that k > 1, fix an integer » (1 < r < k),
and choose fe €’(E). It is then enough to prove (94) for the case
A=fx)dx; A AdX o Adx,p g A A dxy

since every (k — 1)-form is a sum of these special ones, for r =1, ..., k.
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By (85), the boundary of the simplex (93) is

k
do=1ley,...,e)+ Y (=i,
i=1
where

T,=[0,e....e 1,410, €]

fori=1, ..., k. Put

To = [er’ €1, 0 €1, €hys - h ey ek]'

Note that 7, is obtained from [ey, ..., €] by r — 1 successive interchanges
of e, and its left neighbors. Thus
k

(97) 90 = (=115 + 3 (= 1)iz,.
i=1
Each 7; has Q* ! as parameter domain.
If x = to(u) and ue Q* 71, then

u; (1<j<r),
(98) xp=l—=(u + " +u_y) (=r)
Uj_y (r<j<k).
ifl<i<k ue@ ', and x = 1,(u), then
u; (I<j<i),
99) x;= {0 (=1
u;_y (i<j<k).
For 0 < i <k, let J; be the Jacobian of the mapping
(100) Uy oo U ) = (X g oo Xpm s Xp1s e e Xi)
induced by 7;. When / = 0 and when i = r, (98) and (99) show that (100)
is the identity mapping. Thus J, =1, J, = 1. For other i, the fact that
x; =0 in (99) shows that J; has a row of zeros, hence J; = 0. Thus
(101) [a=0 G#0i#n,
by (35) and (96). Consequently, (97) gives
(102) A== A+ (=D A
féa J;O J;r

= (=7 o) — flzw)] du.



INTEGRATION OF DIFFERENTIAL FORMS 275

On the other hand,
dh=(DNX)dx, Adx; A Adx,g Adx g A Adxy
= (=)D NHX) dx; A -0 A dx,

so that
(103) fdl=(—1)"‘f (D,f)(x) dx.
I QK

We evaluate (103) by first integrating with respect to x,, over the interval
0,1 =g+ + X X4+ X))

PUt (Xq, oevy Xpogs Xpggs v -vs Xx) = (Uy, ..., Ug_y), and see with the aid of
(98) that the integral over Q* in (103) is equal to the integral over Q%!
in (102). Thus (94) holds, and the proof is complete.

CLOSED FORMS AND EXACT FORMS

10.34 Definition Let w be a k-form in an openset £ = R”. Ifthereisa (k — 1)-
form A in E such that w = dA, then w is said to be exact in E.

If w is of class €" and dw = 0, then w is said to be closed.

Theorem 10.20(h) shows that every exact form of class ¢’ is closed.

In certain sets E, for example in convex ones, the converse is true; this
is the content of Theorem 10.39 (usually known as Poincaré’s lemma) and
Theorem 10.40. However, Examples 10.36 and 10.37 will exhibit closed forms
that are not exact.

10.35 Remarks

(@) Whether a given k-form w is or is not closed can be verified by
simply differentiating the coefficients in the standard presentation of w.
For example, a 1-form

(104) w =) fix)dx;,
i=1
with f; € ¢'(E) for some open set £ < R", is closed if and only if the
equations
(105) (D, f)(x) = (D, f)(x)

hold for all 4, jin {1, ..., n} and for all x € E.
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Note that (105) is a “‘pointwise’” condition; it does not involve any
global properties that depend on the shape of E.

On the other hand, to show that w is exact in E, one has to prove
the existence of a form A, defined in E, such that di = w. This amounts
to solving a system of partial differential equations, not just locally, but
in all of E. For example, to show that (104) is exact in a set £, one has
to find a function (or 0-form) g € €'(E) such that

(106) (D, 9)(x) = fi(x) xeE 1<i<n).
Of course, (105) is a necessary condition for the solvability of (106).

() Let w be an exact k-form in E. Then there is a (k — 1)-form 4 in E
with d4 = w, and Stokes’ theorem asserts that

(107) Lw = Ldz = J.W/l

for every k-chain ¥ of class €” in F.
If ¥, and ¥, are such chains, and if they have the same boundaries,

it follows that
w= .
'l.'i‘l 'l.'i‘z

In particular, the integral of an exact k-form in E is O over every
k-chain in E whose boundary is 0.

As an important special case of this, note that integrals of exact
1-forms in E are O over closed (differentiable) curves in E.

(¢) Let w be a closed k-form in E. Then dw = 0, and Stokes’ theorem
asserts that

(108) J.Ww = de =0

for every (k + 1)-chain ¥ of class ¢” in E.
In other words, integrals of closed k-forms in E are O over k-chains
that are boundaries of (k + 1)-chains in E.

(d) Let ¥ be a (k + 1)-chain in E and let A be a (k — 1)-form in E, both
of class ”. Since d*4 = 0, two applications of Stokes’ theorem show that

(109) fmz = J.Wd,l = Ldu = 0.

We conclude that 8% = 0. In other words, the boundary of a
boundary is 0.
See Exercise 16 for a more direct proof of this.
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10.36 Example Let E = R? — {0}, the plane with the origin removed. The

I-form

xdy —ydx

11 = 7
(110) o

is closed in R* — {0}. This is easily verified by differentiation. Fix » > 0, and
define
(111) (t)=(rcost, rsint) 0<t<2n).

Then 7 is a curve (an ‘“‘oriented 1-simplex”) in R* — {0}. Since y(0) = y(2n),
we have

(112) dy=0.
Direct computation shows that
(113) fn=2n9é0.
v
The discussion in Remarks 10.35(h) and (c) shows that we can draw two

conclusions from (113):

First, n is not exact in R* — {0}, for otherwise (112) would force the integral

(113) to be 0.
Secondly, y is not the boundary of any 2-chain in R* — {0} (of class €"),
for otherwise the fact that # is closed would force the integral (113) to be O.

10.37 Example Let E = R> — {0}, 3-space with the origin removed. Define

_xdyndz+ydzndxtzdxndy
- (x2 _+_y2 +22)3/2

(114) 4

where we have written (x, y, ) in place of (x,, x,, x3). Differentiation shows
that d¢ = 0, so that { is a closed 2-form in R? — {0}.

Let T be the 2-chain in R® — {0} that was constructed in Example 10.32;
recall that T is a parametrization of the unit sphere in R*. Using the rectangle
D of Example 10.32 as parameter domain, it is easy to compute that

(115) sz=stinududv=4n;é0.

As in the preceding example, we can now conclude that { is not exact in
R3 — {0} (since 0T = 0, as was shown in Example 10.32) and that the sphere
is not the boundary of any 3-chain in R® — {0} (of class €”), although 4% = 0.
The following result will be used in the proof of Theorem 10.39.
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10.38 Theorem Suppose E is a convex open set in R", f€ ¢'(E), p is an integer,
1 <p<n,and

(116) D f)Yx)=0 (p<j=<nxek).

Then there exists an F € €'(E) such that

(117) (D, F)x) = f(x), (D;F)x)=0 (p<j<nxekE).
Proof Write x = (x/, x,, xX"), where

X = (X e Xpm )y X' = (Xpugy oy Xp)
(When p =1, x’ is absent; when p=n, x” is absent.) Let V be the
set of all (x, x,) € R such that (x', x,, X"} ¢ E for some x". Being a
projection of E, V is a convex open set in R?. Since E is convex and (116)
holds, f(x) does not depend on x". Hence there is a function ¢, with
domain ¥, such that
f(x) =o', x,)

for all x e E.

If p=1, V is a segment in R' (possibly unbounded). Pick ce V
and define

F(x) = f o(tydt (xeE).

If p>1, let U be the set of all x' € R”~" such that (x', x,) € V' for
some x,. Then U is a convex open set in RP™ ! and there is a function
o€ €'(U) such that (x', a(x’)) e V for every x' € U; in other words, the
graph of « lies in V (Exercise 29). Define

Fo=["

a(x’

o(x', t) dt (x € FE).
)
In either case, F satisfies (117).
(Note: Recall the usual convention that {5 means — [§if b < a.)

10.39 Theorem If E = R" is convex and open, if k > 1, if w is a k-form of
class €' in E, and if dw = 0, then there is a (k — 1)-form A in E such that v = dA.

Briefly, closed forms are exact in convex sets.

Proof For p=1,...,n, let Y, denote the set of all k-forms w, of class
%' in E, whose standard presentation

(118) wzgf[(x)dx,
does not involve dx,.,, ..., dx,. Inotherwords, I = {1, ..., p}if f(x) # 0

for some x € F.
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We shall proceed by induction on p.

Assume first that we ¥Y;. Then w=f(x)dx;. Since dw =0,
(D;f)x) =0forl <j<n,xeE ByTheorem 10.38 there is an F € €’'(E)
such that D, F=fand D; F=0for 1 <j<n. Thus

dF = (D, F)(x) dx, = f(x) dx, = 0.

Now we take p > 1 and make the following induction hypothesis:
Every closed k-form that belongs to Y,_, is exact in E.
Choose w € Y, so that dw = 0. By (118),

(119) 5 Z (Df)®) dx; A dx; = deo =0,

Consider a fixed j, with p <j<n. Each I that occurs in (118) lies in
{1, ..., p}. If I, I, are two of these k-indices, and if I, # I,, then the
(k + 1)-indices (1}, j), (I,,j) are distinct. Thus there is no cancellation,
and we conclude from (119) that every coefficient in (1i8) satisfies

(120) (D;f)x)=0 (xeE,p<j<n).
We now gather those terms in (118) that contain dx, and rewrite @
in the form
(121) w=o+ Y fUX)dx;, Adx,,
Io
where w € Y,_,, each I, is an increasing (k — 1)-indexin {1, ..., p — 1},
and I =(J,, p). By (120), Theorem 10.38 furnishes functions F, € €'(E)
such that
(122) D,Fy=fi, DiF;=0 (p<j<n).
Put
(123) B = IZFI(X) dxp,
0

and define y = w — (= 1)¥"! dB. Since fis a (k — 1)-form, it follows that

4

Y= — Z 1(DJ.F,)(x) dxp, A dx;

Io j=

p—1
=o— Y Y (D;FPXx)dxy, Adx;,
To j=1
which is clearly in Y,_,. Since dw =0 and d*f =0, we have dy = 0.
Our induction hypothesis shows therefore that y=du for some
(k — 1)-form pin E. If 1 = p + (—=1)*"1B, we conclude that w = d.
By induction, this completes the proof.
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10.40 Theorem Fix k, 1 <k <n. Let E < R" be an open set in which every
closed k-form is exact. Let T be a 1-1 €"-mapping of E onto an open set U — R"
whose inverse S is also of class €".

Then every closed k-form in U is exact in U.

Note that every convex open set E satisfies the present hypothesis, by
Theorem 10.39. The relation between E and U may be expressed by saying
that they are €"-equivalent.

Thus every closed form is exact in any set which is €"-equivalent to a convex
open set.

Proof Let @ be a k-form in U, with dw = 0. By Theorem 10.22(c),
wy is a k-form in E for which d(wy) =0. Hence w; = dA for some
(k — I)-form 2 in E. By Theorem 10.23, and another application of
Theorem 10.22(¢),

o = (07)s = (dA)s = d(4s).

Since Ay is a (k — 1)-form in U, w is exact in U.

10.41 Remark In applications, cells (see D=finition 2.17) are often more con-
venient parameter domains than simplexes. If our whole development had
been based on cells rather than simplexes, the computation that occurs in the
proof of Stokes’ theorem would be even simpler. (It is done that way in Spivak’s
book.) The reason for preferring simplexes is that the definition of the boundary
of an oriented simplex seems easier and more natural than is the case for a cell.
(See Exercise 19.) Also, the partitioning of sets into simplexes (called ‘“‘triangu-
lation’’) plays an important role in topology, and there are strong connections
between certain aspects of topology, on the one hand, and differential forms,
on the other. These are hinted at in Sec. 10.35. The book by Singer and Thorpe
contains a good introduction to this topic.

Since every cell can be triangulated, we may regard it as a chain. For
dimension 2, this was done in Example 10.32; for dimension 3, see Exercise 18.

Poincaré’s lemma (Theorem 10.39) can be proved in several ways. See,
for example, page 94 in Spivak’s book, or page 280 in Fleming’s. Two simple
proofs for certain special cases are indicated in Exercises 24 and 27.

VECTOR ANALYSIS

We conclude this chapter with a few applications of the preceding material to
theorems concerning vector analysis in R®, These are special cases of theorems
about differential forms, but are usually stated in different terminology. We
are thus faced with the job of translating from one language to another.
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10.42 Vector fields Let F = F e, + F,e, + Fye; be a continuous mapping of
an open set E < R® into R®. Since F associates a vector to each point of E, F
is sometimes called a vector field, especially in physics. With every such F is
associated a 1-form

(124) Ap=F dx+ Fydy+ Fy dz
and a 2-form
(125) wg=F dy ndz+ F,dz ndx + Fydx A dy.

Here, and in the rest of this chapter, we use the customary notation (x, y, z)
in place of (x, x,, x3).

It is clear, conversely, that every 1-form 4 in E is Ay for some vector field
F in E, and that every 2-form w is wg for some F. In R®, the study of 1-forms
and 2-forms is thus coextensive with the study of vector fields.

If u e ¥'(E) is a real function, then its gradient

Vu = (Dyu)e, + (Dyu)e; + (D3 u)es
is an example of a vector field in E.
Suppose now that F is a vector field in E, of class €’. Its curl V x F is the
vector field defined in £ by
VxF=(D,Fs— D3 F,)e, + (D3 Fy — DiF3)e; + (D F, — Dy F)ey
and its divergence is the real function V - F defined in E by
V'F=D1F1+D2F2+D3F3.

These quantities have various physical interpretations. We refer to the
book by O. D. Kellogg for more details.
Here are some relations between gradients, curls, and divergences.

10.43 Theorem Suppose E is an open set in R*, ue %"(E), and G is a vector
field in E, of class C".

(@) IfF=Vu, then V x F=0.

by IfF=VXxG,thenV -F=0.

Furthermore, if E is €"-equivalent to a convex set, then (a) and (b) have
converses, in which we assume that ¥ is a vector field in E, of class €'

(@) IfVxF=0,then F =Vu for some ue €"(E).

b)Y IfV-F=0,then ¥ =V x G for some vector field G in E, of class €"

Proof If we compare the definitions of Vu, V x F, and V - F with the

differential forms Az and wg given by (124) and (125), we obtain the
following four statements:
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F=Vu if and only if Ay = du.
VxF=0 if and only if dip =0.
F=VxG if and only if wg =dig.
V:F=0 if and only if dwg=0.

Now if F = Vu, then 1p = du, hence dig = d*u = 0 (Theorem 10.20),
which means that V x F = 0. Thus (a) is proved.

As regards (a’), the hypothesis amounts to saying that diz = 0 in E.
By Theorem 10.40, Ay = du for some 0-form u. Hence F = Vu.

The proofs of () and (b') follow exactly the same pattern.

10.44 Volume elements The k-form
dx; A0 Adx,

is called the volume element in R¥. It is often denoted by dV (or by dV, if it
seems desirable to indicate the dimension explicitly), and the notation

(126) jf(x) dx, A - A dxk=f fdv

is used when @ is a positively oriented k-surface in R* and f is a continuous
function on the range of ®.

The reason for using this terminology is very simple: If D is a parameter
domain in R¥, and if ® is a 1-1 ¥’-mapping of D into R*, with positive Jacobian
Jo, then the left side of (126) is

[ f@@Vo@du=[  f0x)ax,

by (35) and Theorem 10.9.

In particular, when f'= 1, (126) defines the volume of ®. We already saw
a special case of this in (36).
The usual notation for dV, is dA.

10.45 Green’s theorem Suppose E is an open set in R*, a € €'(E), p € €'(E),
and Q is a closed subset of E, with positively oriented boundary 0Q, as described
in Sec. 10.31. Then

op Oa

127) fm(a dx+ﬁdy)=fn (5;—5) dA.
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Proof Put A =oadx + fdy. Then
di=(D,0)dy Andx+ (Dif)ydx A dy
= (D1 — D,a) dA4,
and (127) is the same as
A= | di,
'[69 '[Q

which is true by Theorem 10.33.
With a(x, y) = —y and B(x, y) = x, (127) becomes
(128) 3| (xdy—ydo=a@),
o

the area of Q.
With « = 0, f = x, a similar formula is obtained. Example 10.12(b) con-
tains a special case of this.

10.46 Area elements in R> Let @ be a 2-surface in R, of class %, with pa-
rameter domain D = R?. Associate with each point (u, v) € D the vector

ay, z) a(z, x) a(x, y)
30 T w0 w0

The Jacobians in (129) correspond to the equation

(130) (x, y, z) = O(u, v).

(129) N(u, v) =

If £is a continuous function on ®(D), the area integral of f over ® is
defined to be

(131) j fdA = j F(@u, v))| N, v)| du db.
4] D
In particular, when = 1 we obtain the area of ®, namely,
(132) A®) = f IN(u, v)| du db.
D

The following discussion will show that (131) and its special case (132)
are reasonable definitions. It will also describe the geometric features of the
vector N.

Write ® = ¢,e; + @€, + @3e;, fix a point py, = (4y, vo)€ D, put
N :N(pO)’ put

(133) ;= (D19)@o),  Bi=(D0)o) (I=1,2,3)
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and let T € L(R?, R®) be the linear transformation given by

(134) T(u, v) = i(aiu + fiv)e;.

Note that 7' = ®'(p,), in accordance with Definition 9.11.
Let us now assume that the rank of Tis 2. (Ifitis 1 or 0, then N = 0, and

the tangent plane mentioned below degenerates to a line or to a point.) The
range of the affine mapping

(ua U) - (D(Po) + T(u5 U)

is then a plane I, called the tangent plane to ® at p,. [One would like to call
I1 the tangent plane at ®(p,y), rather than at p, ; if ® is not one-to-one, this runs
into difficulties.]

If we use (133) in (129), we obtain

(135) N = (0,8 — a3 fr)e; + (a3, — o, 83)e; + (2,8, — a; B))es,
and (134) shows that

3 3
(136) Tel = Z diei, Tez = Z ,Bie,- .
i=1 i=1

A straightforward computation now leads to
(137) N:(Te;) =0=N"(Te,).

Hence N is perpendicular to I1. It is therefore called the normal to ® at p,.
A second property of N, also verified by a direct computation based on

(135) and (136), is that the determinant of the linear transformation of R* that

takes {e,, e, e;} to {Te,, Te,, N} is |N|? > 0 (Exercise 30). The 3-simplex

(138) [0’ Tel) TeZa N]

is thus positively oriented.

The third property of N that we shall use is a consequence of the first two:
The above-mentioned determinant, whose value is |N|?, is the volume of the
parallelepiped with edges [0, Te,], [0, Te,], [0, N]. By (137), [0, N] is perpen-
dicular to the other two edges. The area of the parallelogram with vertices

(139) 0,Te,, Te,, T(e; + ¢,)

is therefore |N|.

This parallelogram is the image under T of the unit square in R2. If E
is any rectangle in R?, it follows (by the linearity of T) that the area of the
parallelogram T(E) is

(140) A(T(E)) = |N| A(E) = fE|N(u0, vo)| du db.
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We conclude that (132)is correct when @ is affine. To justify the definition
(132) in the general case, divide D into small rectangles, pick a point (uq, vy)
in each, and replace ® in each rectangle by the corresponding tangent plane.
The sum of the areas of the resulting parallelograms, obtained via (140), is then
an approximation to A(®). Finally, one can justify (131) from (132) by approxi-
mating f by step functions.

10.47 Example Let O <a < b be fixed. Let K be the 3-cell determined by

0<t<a, 0<u<2nm, 0<v<2m
The equations
X=1cosu
(141) y=(b+ tsinu)cosv

z=(b+ tsinu)sinv

describe a mapping ¥ of R? into R® which is 1-1 in the interior of X, such that
W(K) is a solid torus. Its Jacobian is

_olx, y, 2)

= =t(b+ tsi
= 3w o) (b + tsinu)

which is positive on K, except on the face r = 0. If we integrate Jy over K, we
obtain

vol (W(K)) = 2n?a*b

as the volume of our solid torus.

Now consider the 2-chain ® = 0¥. (See Exercise 19.) W maps the faces
u = 0 and v = 2n of K onto the same cylindrical strip, but with opposite orienta-
tions. ‘¥ maps the faces v = 0 and v = 2n onto the same circular disc, but with
opposite orientations. ¥ maps the face 7 = 0 onto a circle, which contributes 0
to the 2-chain é¥. (The relevant Jacobians are 0.) Thus @ is simply the 2-surface
obtained by setting r = a in (141), with parameter domain D the square defined
byO<u<2n,0<v<2n.

According to (129) and (141), the normal to ® at (v, v) € D is thus the
vector

N(u, v) = a(b + a sin u)n(u, v)
where

n(u, v) = (cos u)e, + (sin u cos v)e, + (sin u sin v)e, .
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Since |n(u, v)| = 1, we have |N(u, v)| = a(b + a sin u), and if we integrate this
over D, (131) gives

A(®) = 4n’ab

as the surface area of our torus.

If we think of N = N(u, v) as a directed line segment, pointing from
®(u, v) to O(u, v) + N(u, v), then N points outward, that is to say, away from
Y(K). This is so because Jy > 0 when ¢t = a.

For example, take ¥ = v = n/2, t = a. This gives the largest value of z on
Y(K), and N = a(b + a)e; points “‘upward” for this choice of (, v).

10.48 Integrals of 1-forms in R*> Let y be a %’-curve in an open set E < R®,
with parameter interval [0, 1], let F be a vector field in E, as in Sec. 10.42, and
define Ay by (124). The integral of 1y over y can be rewritten in a certain way
which we now describe.

For any u €0, 1],

V() = yi(we, + va(w)e; + ys(u)es

is called the tangent vector to y at u. We define t = t(u) to be the unit vector in
the direction of y'(4). Thus

') = 1y'@)]|tw.

[If y'(u) = O for some u, put t(u) = e,; any other choice would do just as well.]
By (3%),

al

J‘ A ;3:1 JO F(y@))yi(u) du

Y

(142)

[ ) ) d

0]
a1
= | FO@) - 6]y @] du
Theorem 6.27 makes it reasonable to call |y'(«)| du the element of arc

length along y. A customary notation for it is ds, and (142) is rewritten in the
form

(143) [2e=[®-tas.

Since t is a unit tangent vector to y, F « t is called the tangential component
of F along 7.
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The right side of (143) should be regarded as just an abbreviation for the
last integral in (142). The point is that F is defined on the range of y, but t is
defined on [0, 1]; thus F - t has to be properly interpreted. Of course, when y
is one-to-one, then t(«) can be replaced by t{y(x)), and this difficulty disappears.

10.49 Integrals of 2-forms in R® Let ® be a 2-surface in an open set E < R3,
of class %', with parameter domain D < R*. Let F be a vector field in E, and
define wg by (125). As in the preceding section, we shall obtain a different
representation of the integral of wg over @,

By (35) and (129),

[a)F=f(Fldy/\dz+F2d2/\dx+F3dx/\dy)
Yo Yo
oy, z oz, x o(x, )

R R e R e P Y

a, v) 3, v) O e

= [ F@(u, v)) - N(w, v) du dv.
*D
Now let n = n(u, v) be the unit vector in the direction of N(u, v). [If

N(u, v) = 0 for some (u, v) € D, take n(u, v) = e¢;.] Then N = |N|n, and there-
fore the last integral becomes

[ F(@, v)) - n(u, )| N(w, v)|du db.

*D
By (131), we can finally write this in the form
(144) [oe=] Femyda

L] v

With regard to the meaning of F - n, the remark made at the end of Sec. 10.48

applies here as well.
We can now state the original form of Stokes’ theorem.

10.50 Stokes’ formula If F is a vector field of class €' in an open set E = R,
and if ® is a 2-surface of class €" in E, then

(145) fm(v x F)ndd = fw(F - t) ds.

Proof Put H=V x F. Then, as in the proof of Theorem 10.43, we have

(146) o = diy.
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Hence

fo(v xF)-ndA=f¢(H-n)dA=f .
(]

=f®d,lF= fszsz(F-t) ds.

Here we used the definition of H, then (144) with H in place of F,
then (146), then—the main step—Theorem 10.33, and finally (143),
extended in the obvious way from curves to 1-chains.

10.51 The divergence theorem If F is a vector field of class €' in an open set
Ec R? and if Q is a closed subset of E with positively oriented boundary 0Q
(as described in Sec. 10.31) then

(147) [@-F dV=j (F - n) dA.
Q N

Proof By (125),
dog=V-F)dx ndy ndz=(V-F)dV.
Hence

fn (V-F)dV = fndwF - fmwF - LQ(F-n) dA,

by Theorem 10.33, applied to the 2-form wyg, and (144).

EXERCISES

1. Let H be a compact convex set in R¥, with nonempty interior. Let f€ ¥(H), put
f(x) =0 in the complement of H, and define [, f as in Definition 10.3.
Prove that [ f is independent of the order in which the & integrations are
carried out.
Hint: Approximate f by functions that are continuous on R* and whose
supports are in H, as was done in Example 10.4.
2. Fori=1,2,3,...,let ¢, € ¥(R") have support in (27}, 2' 7%, such that [¢; = 1.
Put

fx, ) :igl [pi(x) — ¢ +1()]ei(»)
Then f has compact support in R?, fis continuous except at (0, 0), and
fdyff(x,y)dx:O but fdxff(x,y)dy=1.

Observe that fis unbounded in every neighborhood of (0, 0).
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3. (a) If Fis as in Theorem 10.7, put A = F'(0), F;(x) = A-'F(x). Then Fi(0)=I.
Show that

Fi(x)=GnoGn_r0' 0 Gy(x)

in some neighborhood of 0, for certain primitive mappings Gy, ..., G,. This
gives another version of Theorem 10.7:

F(X) - F’(O)Gn ° Gn—l or*r**o Gl(x)-

(b) Prove that the mapping (x, ¥) — (¥, x) of R? onto R? is not the composition
of any two primitive mappings, in any neighborhood of the origin. (This shows
that the flips B; cannot be omitted from the statement of Theorem 10.7.)

4, For (x, y) € R?, define

F(x, y)=(e*cosy — 1, e* sin y).
Prove that F = G, o G,, where
Gi(x,y)=(e*cosy—1,y)
G(u,v) = (u, (1 + u) tan v)

are primitive in some neighborhood of (0, 0).
Compute the Jacobians of G;, G:, F at (0, 0). Define

Ha(x, y) = (x, e*sin y)
and find
H,(u, v) = (h(u, v), v)

so that F = H, » H, is some neighborhood of (0, 0).

5. Formulate and prove an analogue of Theorem 10.8, in which KX is a compact
subset of an arbitrary metric space. (Replace the functions ¢; that occur in the
proof of Theorem 10.8 by functions of the type constructed in Exercise 22 of
Chap. 4.)

6. Strengthen the conclusion of Theorem 10.8 by showing that the functions ; can
be made differentiable, and even infinitely differentiable. (Use Exercise 1 of
Chap. 8 in the construction of the auxiliary functions ¢;.)

7. (a) Show that the simplex Q¥ is the smallest convex subset of R* that contains
0,e;,...,€.

(b) Show that affine mappings take convex sets to convex sets.

8. Let H be the parallelogram in R? whose vertices are (1, 1), (3, 2), (4, 5), (2, 4).
Find the affine map T which sends (0, 0) to (1, 1), (1, 0) to (3, 2), (0, 1) to (2, 4).
Show that Jr = 5. Use T to convert the integral

a:f e* Vdxdy
H

to an integral over I? and thus compute «.
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9.

10.

11

12.

Define (x, y) = T(r, ) on the rectangle
0<r<aq, 0<bO<2m
by the equations
X =rcos 0, y=rsin#.
Show that 7 maps this rectangle onto the closed disc D with center at (0, 0) and

radius a, that T is one-to-one in the interior of the rectangle, and that J-(¢, §) = r.
If f e € (D), prove the formula for integration in polar coordinates:

L £, ) de dy = fo" f:” ST, O)r dr db.

Hint: Let D, be the interior of D, minus the interval from (0, 0) to (0, a).
As it stands, Theorem 10.9 applies to continuous functions f whose support lies in
Dy. To remove this restriction, proceed as in Example 10.4.
Let a — <o in Exercise 9 and prove that

f Sy dedy = f: f:" ST, O)yr dr df,

for continuous functions f that decrease sufficiently rapidly as|x| + |y| — .
(Find a more precise formulation.) Apply this to

fx, y)=exp(—x*—y?)
to derive formula (101) of Chap. 8.
Define (u, v) = T(s, t) on the strip
0<s<oo, O<t<l
by setting u = s — 51, v = st. Show that T is a 1-1 mapping of the strip onto the
positive quadrant Q in R?. Show that J:(s, 1) = s.
For x > 0, y > 0, integrate
ux—le—uvy—le—v
over Q, use Theorem 10.9 to convert the integral to one over the strip, and derive
formula (96) of Chap. 8 in this way.
(For this application, Theorem 10.9 has to be extended so as to cover certain
improper integrals. Provide this extension.)
Let I* be the set of all u= (u4, ..., uy) € R* with 0 <u; <1 for all i; let Q* be the
set of all x = (x4, ..., x) € R* with x; >0, Zx; < 1. (I* is the unit cube; Q* is
the standard simplex in R*) Define x = T(u) by
X1 = U
X2 = (1 — ul)uz

xk:(l —ul)“'(l —uk_l)uk.



13.

14.
15.

16.

17.

18.
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Show that
k k
S xi=1—T]1 —u).
=1 i=1
Show that T maps I* onto Q% that T is 1-1 in the interior of I*, and that its
inverse S is defined in the interior of Q* by u; = x, and

Xy

U=
l—xi— "~ X1

fori=2,..., k. Show that
Jrw) =1 —u)* A —u))=2 - (1 —ux-v),

and
Jsx)=[(1 —x)(1 —x1 —x) (1 —x1— " — xe-1)] %
Let ry, ..., r, be nonnegative integers, and prove that
f... !
J = e

Hint: Use Exercise 12, Theorems 10.9 and 8.20.

Note that the special case r; = -+ = r, = 0 shows that the volume of Q*
is 1/k!.

Prove formula (46).
If w and A are k- and m-forms, respectively, prove that

w AA=(—1)"A A w.

If K >2and o = [po, P1, ..., P«] is an oriented affine k-simplex, prove that ¢?c = 0,
directly from the definition of the boundary operator ¢. Deduce from this that
¢*¥ = 0 for every chain Y.

Hint: For orientation, do it first for k = 2, k = 3. In general, if i <j, let oy,
be the (k — 2)-simplex obtained by deleting p, and p, from o. Show that each oy,
occurs twice in é20, with opposite sign.

Put J?= 1, 4 7,, where

Ti=[0,e,e +e], T,=—[0e,,e;+ el

Explain why it is reasonable to call J? the positively oriented unit square in R2,
Show that &J2 is the sum of 4 oriented affine 1-simplexes. Find these. What is
8(7'1 - 7'2) ?

Consider the oriented affine 3-simplex

or=[0,e,e +e;,e + e, + e;]

in R3. Show that o, (regarded as a linear transformation) has determinant 1.
Thus o, is positively oriented.
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19.

20.

21.

Let o0,,..., 06 be five other oriented 3-simplexes, obtained as follows:
There are five permutations (iy, i-, i3) of (1, 2, 3), distinct from (1, 2, 3). Associate
with each (7, i,, i3) the simplex

(s, i2, 13)[0, €11, €1y + ey, €15 + €, + €45]

where s is the sign that occurs in the definition of the determinant. (This is how 7,
was obtained from 7, in Exercise 17.)

Show that o, ..., o are positively oriented.

Put J3= o, + -+ 0s. Then J3 may be called the positively oriented unit
cube in R3,

Show that aJ2 is the sum of 12 oriented affine 2-simplexes. (These 12 tri-
angles cover the surface of the unit cube 73.)

Show that x = (x;, X2, x3) is in the range of o, if and only if 0 < x3 < x,
<<l

Show that the ranges of oy, ..., 0 have disjoint interiors, and that their
union covers I3, (Compare with Exercise 13; note that 3! = 6.)
Let J2 and J? be as in Exercise 17 and 18, Define

BOL(”; U) = (05 u, U), Bl l(us U) = (15 u, U)>
Box(u,v) = (4,0,v), By (u,0)=(u,1,0),
Bos(u, v) = (4, v, 0), Bys(u, v) = (u, v, 1).

These are affine, and map R? into R3.
Put B,,= B.(J?), for r=0,1,i=1,2,3. Each B, is an affine-oriented
2-chain. (See Sec. 10.30.) Verify that

8J3 :ii(—l)i(lgm — Bu),

in agreement with Exercise 18.
State conditions under which the formula

[ fdo=] fo—| @ e

is valid, and show that it generalizes the formula for integration by parts.
Hint: d(fw)=(df) A w + fdw.
As in Example 10.36, consider the 1-form
xdy—ydx
- xz + yz
in R* — {0}.
(a) Carry out the computation that leads to formula (113), and prove that dn = 0.

(b) Let y(r) = (r cos ¢, r sin ), for some r > 0, and let I be a €"-curve in R? — {0},
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with parameter interval [0, 2], with T(0) = I'(2m), such that the intervals [v(r),
T'(+)] do not contain 0 for any ¢ € [0, 27]. Prove that

J.“'r] =2m.

Hint: For 0 <<t <2m, 0 <u <1, define
O(t, u) = (1 — w) ') + wy ().

Then @ is a 2-surface in R? — {0} whose parameter domain is the indicated rect-
angle. Because of cancellations (as in Example 10.32),

eb =1 —y,
Use Stokes’ theorem to deduce that
[or=I
because dn = 0.
(¢) Take T(t) = (acost, bsint) where a>0,b>0 are fixed. Use part (b) to

show that

2n ab
———— 5 —5.dl = 2m.
J; a?cos?r+ b2sin*t 4

(d) Show that
Y
=d|arc tan=
" ( rc tan x)
in any convex open set in which x # 0, and that
x
=d| — arc tan—
7= - arcand)

in any convex open set in which y #0.
Explain why this justifies the notation 5 = df, in spite of the fact that » is

not exact in R? — {0},
(¢) Show that (b) can be derived from (d).
(f) If T' is any closed €’-curve in R? — {0}, prove that

1
L[ = a@).
277£-17 Tnd(I")

(See Exercise 23 of Chap. 8 for the definition of the index of a curve.)
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22. As in Example 10.37, define { in R®* — {0} by

_xdy Ndz+ydz Ndx+zdx Ndy
= =

4

where r = (x? + y* + 22)'/2, et D be the rectangle given by 0 <u <=, 0 <v < 2,
and let T be the 2-surface in R3, with parameter domain D, given by

X = sin u cos v, y=sinusinv, Z=CoSs U.

(a) Prove that d{ =0 in R3® — {0}.

(b) Let S denote the restriction of T to a parameter domain E < D. Prove that
J- §=J- sin u du dv = A(S),
S E
where A denotes area, as in Sec., 10.43. Note that this contains (115) as a special

case.,

(¢) Suppose g, hy, h,, hs, are ¥’-functions on [0, 1], g > 0. Let (x,, z) = O(s, t)
define a 2-surface @, with parameter domain /2, by

x=gOh(s), y=ghs), z=g(t)hs).
Prove that

directly from (35).
Note the shape of the range of ®@: For fixed s, (s, t) runs over an interval
on a line through 0. The range of @ thus lies in a “‘cone” with vertex at the origin.

(d) Let E be a closed rectangle in D, with edges parallel to those of D. Suppose
fe€"(D),f>0. Let Q be the 2-surface with parameter domain E, defined by

Q(u, v) = fu, v) Z (4, v).
Define S as in (b) and prove that

jﬂc:jsc:A(s»

(Since S is the “radial projection” of Q into the unit sphere, this result makes it
reasonable to call {o{ the “solid angle” subtended by the range of Q at the origin.)
Hint: Consider the 3-surface ¥ given by

W, u,v)=[1— 1+ tf(u, )] Z (u, v),

where (u, v) € E,0 <r<<1. For fixed v, the mapping (1, u) =Vt u, v) is a 2-sur-
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face @ to which (¢) can be applied to show that {o{ = 0. The same thing holds
when u is fixed. By (a) and Stokes’ theorem,

[ ¢=[ at=o.
Yoy v
(¢) Put A= — (z/r)n, where
_xdy—ydx
- x2+y2 ’

as in Exercise 21. Then A is a 1-form in the open set ¥ < R? in which x? + y2 > 0.
Show that ( is exact in V by showing that

{=d\

(f) Derive (d) from (e), without using (c).
Hint: To begin with, assume 0 < 4 < 7 on E. By (e),

{=] A and (=1 A
L=, L=,
Show that the two integrals of A are equal, by using part (d) of Exercise 21, and by

noting that z/r is the same at Z(u, v) as at Qu, v).

(9) Is L exact in the complement of every line through the origin?
Fix n. Define r, = (x?+ -+ x})¥? for 1 <k < n, let E, be the set of all x € R"
at which r, > 0, and let w, be the (k — 1)-form defined in E; by

k
"Jk:("k)_k,z1 (=D txpdxy Ao Adxiog Adxeg A Adx

Note that w, =7, w; = {, in the terminology of Exercises 21 and 22, Note
also that

EcE,c--cE,=R"—{0}.

(a) Prove that dw, =0 in E,.
(b) For k=2,...,n, prove that w, is exact in E, _;, by showing that

Wy = d(ﬁcwk-l) = (dfk) A Wi-1,
where fi(x) = (— )* gu{x/re) and

o= [ a—se-vrgs (—1<i<,
1

Hint: f, satisfies the differential equations

x - (V)x)=0

(= Dt
(ro)*

and

(Def)(x) =
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24.

25,

26.

27.

(c) Is w, exact in E,?
(d) Note that (b) is a generalization of part (e) of Exercise 22. Try to extend some
of the other assertions of Exercises 21 and 22 to w,, for arbitrary n.

Let w =Xai(x) dx; be a 1-form of class ¥” in a convex open set E < R". Assume
dw = 0 and prove that w is exact in E, by completing the following outline:
Fix p € E. Define

f(X)=f w (xe€E).
[p:X]

Apply Stokes’ theorem to affine-oriented 2-simplexes [p, x, y] in E. Deduce that
n 1
) = f0) = 30— x) [ @il = Dx -+ 1y) di

for x € E, y € E, Hence (D;f)(x) = adx).

Assume that w is a 1-form in an open set E < R" such that

fw=0
Y

for every closed curve y in E, of class 4”. Prove that w is exact in £, by imitating
part of the argument sketched in Exercise 24.

Assume w is a 1-form in R*® — {0}, of class ¥’ and dw =0. Prove that w is exact in
R?*—{0}.

Hint: Every closed continuously differentiable curve in R* — {0} is the
boundary of a 2-surface in R® — {0}. Apply Stokes’ theorem and Exercise 25.

Let E be an open 3-cell in R3, with edges parallel to the coordinate axes. Suppose
(a,b,c)€E, fie¥'(E)fori=1,2,3,

w=fidy Ndz+ fodz \dx+ fsdx Ady,
and assume that dw =0 in E. Define

/\:gldx+gzdy

where
z ¥y
03,0 = [ faley 9 ds— [ fix, 0 de
c b
g:x,y,2) = —f filx, y, s) ds,
for (x, y,z) € E. Prove that dA = w in E.

Evaluate these integrals when w = { and thus find the form A that occurs in
part (e) of Exercise 22.
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29.

30.

31.
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Fix b > a > 0, define
O(r, ) = (r cos 8, r sin 6)

fora<r<b,0<8<2nr. (The range of ® is an annulus in R2) Putw = x3dy,
and compute both

fo dw and Lo w

to verify that they are equal.

Prove the existence of a function « with the properties needed in the proof of
Theorem 10.38, and prove that the resulting function F is of class ¥’. (Both
assertions become trivial if £ is an open cell or an open ball, since « can then be
taken to be a constant. Refer to Theorem 9.42.)

If N is the vector given by (135), prove that

Xy /31 0(2,33-“013/32
det |x: B, a3fi — afs

o3 /33 011/32 - 012/31

= INJ%

Also, verify Eq. (137).
Let £ < R® be open, suppose g € €"(E), h ¢ €”(E), and consider the vector field
F=¢gVh.
(a) Prove that
V-F=gV*h—+(Ng) - (Vh)
where V2h =Y - (Vh) = Zé*/ext is the so-called “Laplacian® of 4.

(b) It Q is a closed subset of E with positively oriented boundary ¢Q (as in
Theorem 10.51), prove that

ch
[ loven+ 5o mav= [ g7d4

where (as is customary) we have written ¢4/én in place of (VA) *n. (Thus éh/én
is the directional derivative of 4 in the direction of the outward normal to ¢Q, the
so-called normal derivative of h.) Interchange g and A, subtract the resulting
formula from the first one, to obtain

f(gWh—hvzg)dV f(gr——h )

These two formulas are usually called Green’s identities.
(¢) Assume that 4 is harmonic in E; this means that V24 = 0. Take g = 1 and con-
clude that

J'a eh g4 —o.

o oN
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32.

Take g = h, and conclude that # =0 in Q if £ = 0 on &X.
(d) Show that Green’s identities are also valid in R2.

Fix 8,0 < 8 < 1. Let Dbethesetofall (8, ) e R*suchthat0 <0 <m, —8 <r<$.
Let ® be the 2-surface in R?, with parameter domain D, given by

x = (1 —tsin 8)cos 26
y=(1—tsin #)sin 26
z=tcos f

where (x, y, z) = ®(0, t). Note that ®(m, t) = ®(0, —t), and that ® is one-to-one
on the rest of D.

The range M = ®(D) of ® is known as a Mdbius band. 1t is the simplest
example of a nonorientable surface.

Prove the various assertions made in the following description: Put
P = (0, —=8), p. = (w, —8), ps=(m, &), pa = (0, 8), ps =p.. Put y,=[p,, p:+1],
i=1,...,4,and put I'y = ® o ;. Then

8@:F1+F2+F3+F4.
Puta= (1,0, —8),b=1(1,0,38). Then
Q(p1)=C(p3) =2, P(p:)=D(ps)=b,

and 9@ can be described as follows.

I', spirals up from a to b; its projection into the (x, y)-plane has winding
number +1 around the origin. (See Exercise 23, Chap. 8.)

I', =[b, al.

I'; spirals up from a to b; its projection into the (x, ¥) plane has winding

number — 1 around the origin.

Iy =[b, a].

Thus 6@ =1, - T'5 + 2T',.

If we go from a to b along I'; and continue along the “‘edge’ of M until we
return to a, the curve traced out is

F = Fl - F3 3
which may also be represented on the parameter interval [0, 27] by the equations

x = (1 -+ &sin 6) cos 20
y=(1-+ 8sin ) sin 20
z= —3dcosf.

It should be emphasized that I" # 0®: Let n be the 1-form discussed in
Exercises 21 and 22. Since dn = 0, Stokes’ theorem shows that
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But although T is the “geometric” boundary of M, we have

J.rr; = 41,

In order to avoid this possible source of confusion, Stokes’ formula (Theorem
10.50) is frequently stated only for orientable surfaces .
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THE LEBESGUE THEORY

It is the purpose of this chapter to present the fundamental concepts of the
Lebesgue theory of measure and integration and to prove some of the crucial
theorems in a rather general setting, without obscuring the main lines of the
development by a mass of comparatively trivial detail. Therefore proofs are
only sketched in some cases, and some of the easier propositions are stated
without proof. However, the reader who has become familiar with the tech-
niques used in the preceding chapters will certainly find no difficulty in supply-
ing the missing steps.

The theory of the Lebesgue integral can be developed in several distinct
ways. Only one of these methods will be discussed here. For alternative
procedures we refer to the more specialized treatises on integration listed in
the Bibliography.

SET FUNCTIONS

If 4 and B are any two sets, we write 4 — B for the set of all elements x such
that x € 4, x ¢ B. The notation 4 — B does not imply that B < 4. We denote
the empty set by 0, and say that 4 and B are disjoint if 4 n B =0.
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11.1 Definition A family # of sets is called a ring if A € # and B € # implies
) Auv BeX, A—Be®.

Since AnB=A— (4 — B),wealso have A n Be Z if # is a ring.

A ring Z is called a o-ring if
@ \J A4, ez

whenever 4, e Z (n=1,2,3,...). Since

OlAn = Al - UI(AI - An)1

we also have

if #Z 1s a o-ring.

11.2 Definition We say that ¢ is a set function defined on Z if ¢ assigns to
every 4 € # a number ¢(A) of the extended real number system. ¢ is additive
if A n B =0 implies

3 $(4 v B) = $(4) + ¢(B),
and ¢ is countably additive if A; ~ A; =0 (i # j) implies

@ ¢ (Ua) =3 oc

We shall always assume that the range of ¢ does not contain both + oo
and —oo; for if it did, the right side of (3) could become meaningless. Also,
we exclude set functions whose only value is + o0 or — co.

It is interesting to note that the left side of (4) is independent of the order
in which the A4,’s are arranged. Hence the rearrangement theorem shows that
the right side of (4) converges absolutely if it converges at all; if it does not
converge, the partial sums tend to + oo, or to — oo,

If ¢ is additive, the following properties are easily verified:

®) $(0) = 0.
(©) PAyo - uA) = ¢(A) + -+ D(4,)
if A; n A; =0 whenever i # /.
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M D4, © 43) + ¢4y N 4;) = ¢(4) + ¢(4,).
If $(4) = 0 for all 4, and 4, = A4,, then
®) D(4,) < ¢(4y).

Because of (8), nonnegative additive set functions are often called
monotonic.

9) ¢(4 — B) = ¢(4) — ¢(B)
if B A, and |(¢B)] < + c0.

11.3 Theorem Suppose ¢ is countably additive on a ring #. Suppose A, € R
n=123..)4,cd,cAyc -, AeR, and

A =HL;)1A,,.

Then, as n — o0,
P(4,) > p(4).
Proof Put B, = A, and
B,=4,— A4, n=2,3...).
Then B, nB;=0fori#j,A,=8, v v B, and 4 =JB,. Hence

#4) = Y $(B)

and

S = 3 9B

CONSTRUCTION OF THE LEBESGUE MEASURE

11.4 Definition Let R? denote p-dimensional euclidean space. By an interval
in R? we mean the set of points x = (xy, ..., Xx,) such that

Q10) a;<x;<b; (i=1....p),

or the set of points which is characterized by (10) with any or all of the <
signs replaced by <. The possibility that a; = b, for any value of / is not ruled
out; in particular, the empty set is included among the intervals.
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If A is the union of a finite number of intervals, A4 is said to be an elemen-
tary set.
If 7 is an interval, we define

(D) = [T (6 - a.

no matter whether equality is included or excluded in any of the inequalities (10).
If A=1, U - ul,, and if these intervals are pairwise disjoint, we set
(11) m(4) =m(ly) + -+ + m(l).
We let & denote the family of all elementary subsets of R?,
At this point, the following properties should be verified:
(12) & is a ring, but not a o-ring.
(13) If A € &, then A is the union of a finite number of disjoint intervals.
(14) If A € &, m(A4) is well defined by (11); that is, if two different decompo-
sitions of A4 into disjoint intervals are used, each gives rise to the same

value of m(A4).
(15) m is additive on §&.

Note that if p =1, 2, 3, then m is length, area, and volume, respectively.

11.5 Definition A nonnegative additive set function ¢ defined on & is said to
be regular if the following is true: To every A € & and to every ¢ > 0 there
exist sets F € &, G € & such that Fis closed, G is open, F = A = G, and

(16) P(G) — & < p(4) < ¢(F) +e.

11.6 Examples

(@) The set function m is regular.

If 4 is an interval, it is trivial that the requirements of Definition
11.5 are satisfied. The general case follows from (13).
(b)) Take R?=R', and let  be a monotonically increasing func-
tion, defined for all real x. Put

u(la, b)) = alb—) — ala—),
u(la, b)) = a(b+) — a(a—),
p((a, b)) = a(b+) — ala+),
u(a, b)) = a(b—) — x(a+).

Here [a, b) is the set a < x < b, etc. Because of the possible discon-
tinuities of a, these cases have to be distinguished. If y is defined for
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elementary sets as in (11), p is regular on &. The proof is just like that
of (a).

Our next objective is to show that every regular set function on & can be
extended to a countably additive set function on a o-ring which contains &.

11.7 Definition Let u be additive, regular, nonnegative, and finite on §&.
Consider countable coverings of any set £ < R? by open elementary sets A,:

Ec|JA4,.
n=1
Define
(17) KH(E) =inf ) p(4,)

the inf being taken over all countable coverings of E by open elementary sets.
u*(E) is called the outer measure of E, corresponding to u.
It is clear that u*(E) = 0 for all £ and that

(18) HHE,) < uH(E,)
if E, cE,.

11.8 Theorem
(a) For every A € &, p*(A4) = u(A).
(b) IfE=|JE,, then
1

(19) HHE) < Zlu*(E,.)-

Note that (a) asserts that p* is an extension of u from & to the family of
all subsets of RP. The property (19) is called subadditivity.

Proof Choose 4 € £ and ¢ > 0.

The regularity of u shows that A4 is contained in an open elementary
set G such that u(G) < u(A4) + ¢. Since u*(4) < u(G) and since ¢ was
arbitrary, we have

(20) pH(A) < u(A).

The definition of u* shows that there is a sequence {4,} of open
elementary sets whose union contains A4, such that

Zﬂuosmuﬂw.
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The regularity of u shows that 4 contains a closed elementary set F such
that u(F) > u(A) — ¢; and since F is compact, we have

FcA u - u Ay

for some N. Hence
N
pA) <p(F)+e<u(dy - v Ay +e< ) u(d,) +e < pA) + 2.
1

In conjunction with (20), this proves (a).

Next, suppose £ = {JE,, and assume that py*(£,) < + oo for all n.
Given ¢ >0, there are coverings {4,},k=1,2,3,..., of E, by open
elementary sets such that

@1 kiuu"k) < ME)+ 27",

Then

PO

pTCRED WICARES

M8

wHE)<

1

and (19) follows. In the excluded case, i.e., if pu*(E,) =+ oo for some n,
(19) is of course trivial.

11.9 Definition For any 4 = RP, B < RP, we define
(22) S(4,B)=(4—-B)u (B—4),
(23) d(A4, B) = pu*(S(4, B)).
We write 4, —» A if
lim d(4, 4,) =0.

If there is a sequence {4,} of elementary sets such that 4, - A4, we say
that A is finitely p-measurable and write 4 € M ().

If A4 is the union of a countable collection of finitely y-measurable sets,
we say that 4 is u-measurable and write A € M(y).

S(A4, B) is the so-called ‘‘symmetric difference’ of 4 and B. We shall see
that d(A4, B) is essentially a distance function.

The following theorem will enable us to obtain the desired extension of u.

11.10 Theorem M(u) is a o-ring, and p* is countably additive on M(y).

Before we turn to the proof of this theorem, we develop some of the
properties of S(4, B) and d(4, B). We have
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(249 S(A, B) = S(B, A), S(4, A) =0.
(25) S(A4, B) = S(4, C) u S(C, B).
S(4, u 4,, B, v B,)
(26) S(4, n 4,, B, 0 By)} = S(A;, B)) v S(4,, B,).

S(4, — A,, B, — B))
(24) is clear, and (25) follows from
A—-B)c{4-C)u(C-B), B-A)c(C—A)vwB-C0).
The first formula of (26) is obtained from
(A; U A,) — (B, U By) = (A4, — B) u (4, — B,).
Next, writing E€ for the complement of £, we have
S(4; N Ay, B, 0 By) = S(45 U A, BS U BY)
< S(A49, BY) v S(45, BS) = S(4,, B)) v S(4,, B,);
and the last formula of (26) is obtained if we note that
A, — A, =4, n 45.
By (23), (19), and (18), these properties of S(4, B) imply

27 d(A, B) =d(B, A), d(A, A) =0,
(28) d(A4, B) < d(4, C) + d(C, B),
d(4, v A4,, B, U B,)
(29) d(4, N A,, B, n B,); <d(A,y, B)) + d(4,, B,).

d(A1 - Az » B1 - Bz)

The relations (27) and (28) show that d(4, B) satisfies the requirements
of Definition 2.15, except that d(A4, B) = 0 does not imply 4 = B. For instance,
if 4 =m, A is countable, and B is empty, we have

d(A, B) = m*(4) =0;
to see this, cover the nth point of 4 by an interval I, such that
m(l,) <27 ".
But if we define two sets 4 and B to be equivalent, provided
d(A, B) =0,

we divide the subsets of R? into equivalence classes, and d(A, B) makes the set
of these equivalence classes into a metric space. M () is then obtained as the
closure of &. This interpretation is not essential for the proof, but it explains
the underlying idea.
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We need one more property of d(A4, B), namely,

if at least one of u*(4), u*(B) is finite. For suppose 0 < p*(B) < u*(A4).
Then (28) shows that

d(4,0)<d(A4, B)+ d(B, 0),

that is,

1*(A) < d(A, B) + u*(B).

Since p*(B) is finite, it follows that

(3D
(32)
(33)
(34)

(35)

(36)

p¥(A) — p*(B) < d(4, B).

Proos of Theorem 11.10 Suppose A € M (), B € Mp(1). Choose {4,},
{B,} such that A,€&. B, €&, A, » A, B, — B. Then (29) and (30) show
that

A, v B, >4V B,
A,nB,—-An B,
A,—B,—~A—B,
u*(A4,) = p*(4),
and p*(A4) < + oo since d(4,, A) » 0. By (31) and (33), M (w) is a ring.
By (7),
w(A4,) + u(B,) = (A, v B,) + u(4, n B,).
Letting # — co, we obtain, by (34) and Theorem 11.8(a),
1 A) + p*(B) = (A v B) + u*(4 n B).

If A~ B=0, then u*(4 n B) = 0.

It follows that u* is additive on M (u).

Now let 4 e M(x). Then 4 can be represented as the union of a
countable collection of disjoint sets of Mp(u). For if 4 =[] 4, with
A, e Me(w), write A, = 4/, and

A, =(A{ v Vd)—(A, v VA, ) n=2,3,4,..)).
Then

A=A

1

n

1Cs

is the required representation. By (19)

1A < ;ilu*(An).
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On the other hand, 4 o 4; U ‘> U A,; and by the additivity of
p* on M.(u) we obtain

(37) pHA) 2 p*(Ay v U Ay = pt(A) + o+ A,

Equations (36) and (37) imply
(38) KHA) = T (A4,

Suppose u*(A4) is finite. Put B,= A, U --- U 4,. Then (38) shows
that

d(4, B)=p*( | 4)= Y p*4)—0
i=n+1 i=n+1
as n - . Hence B, —» A; and since B, € My(u), it is easily seen that
A € Mp(p).
We have thus shown that 4 € Mp(n) if 4 € M(u) and p*(A4) < + oo.
It is now clear that u* is countably additive on M(y). For if

A=14,,

where {4,} is a sequence of disjoint sets of M(x), we have shown that (38)
holds if u*(4,) < + oo for every n, and in the other case (38) is trivial.

Finally, we have to show that M(u) is a o-ring. If 4, e M(p), n =1,
2,3, ..., itis clear that | J 4, € M(y) (Theorem 2.12). Suppose 4 € M(y),
B € M(u), and

s

A=1\J4,, B=\JB,,
n=1

n=1

where A,, B, € My(u). Then the identity
A, nB= ) (4,nB)
i=1

shows that 4, n B € M(y); and since
p (A4, N B) < p*(4,) < + oo,

A, N BeM(n). Hence A,— BeMy (1), and 4 — BeM(y) since
A—B=\J=,(4, - B).

We now replace u*(A4) by u(A4) if A e M(p). Thus u, originally only de-
fined on &, is extended to a countably additive set function on the o-ring
M(u). This extended set function is called a measure. The special case p =m
is called the Lebesgue measure on RP.
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11.11 Remarks

(39)

(40)

(a) If A is open, then 4 € M(1). For every open set in R” is the union
of a countable collection of open intervals. To see this, it is sufficient to
construct a countable base whose members are open intervals,

By taking complements, it follows that every closed set is in 9M(y).
(b) If A e M(u) and & > 0, there exist sets F and G such that

FcAcG,
F is closed, G is open, and
wG — A) <, A4 —F)<e.

The first inequality holds since u* was defined by means of coverings
by open elementary sets. The second inequality then follows by taking
complements.

(¢) We say that E is a Borel set if E can be obtained by a countable
number of operations, starting from open sets, each operation consisting
in taking unions, intersections, or complements. The collection Z of all
Borel sets in R? is a o-ring; in fact, it is the smallest o-ring which contains
all open sets. By Remark (a), E e M(w) if E € 4.

(d) If 4 e M(y), there exist Borel sets F and G such that Fc 4 < G,
and

WG — A) =4 - F)=0.

This follows from (b) if we take ¢ = 1/n and let n — 0.

Since A = F u (4 — F), we see that every A4 € M(y) is the union of a
Borel set and a set of measure zero.

The Borel sets are u-measurable for every p. But the sets of measure
zero [that is, the sets E for which p*(E) = 0] may be different for different
ws.

(¢) For every u, the sets of measure zero form a o-ring.

(f) In case of the Lebesgue measure, every countable set has measure
zero. But there are uncountable (in fact, perfect) sets of measure zero.
The Cantor set may be taken as an example: Using the notation of Sec.
2.44, it is easily seen that

m(E,) = (3)" (n=1,2,3,..));

and since P = (| E,, P  E, for every n, so that m(P) = 0.
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MEASURE SPACES

11.12 Definition Suppose X is a set, not necessarily a subset of a euclidean
space, or indeed of any metric space. X is said to be a measure space if there
exists a o-ring M of subsets of X (which are called measurable sets) and a non-
negative countably additive set function p (which is called a measure), defined
on M.

If, in addition, X € I, then X is said to be a measurable space.

For instance, we can take X = RP, M the collection of all Lebesgue-
measurable subsets of R?, and p Lebesgue measure.

Or, let X be the set of all positive integers, M the collection of all subsets
of X, and u(E) the number of elements of E.

Another example is provided by probability theory, where events may be
considered as sets, and the probability of the occurrence of events is an additive
(or countably additive) set function.

In the following sections we shall always deal with measurable spaces.
It should be emphasized that the integration theory which we shall soon discuss
would not become simpler in any respect if we sacrificed the generality we have
now attained and restricted ourselves to Lebesgue measure, say, on an interval
of the real line. In fact, the essential features of the theory are brought out
with much greater clarity in the more general situation, where it is seen that
everything depends only on the countable additivity of y on a g-ring.

It will be convenient to introduce the notation

(41) {x|P}

for the set of all elements x which have the property P.

MEASURABLE FUNCTIONS

11.13 Definition Let / be a function defined on the measurable space X, with
values in the extended real number system. The function f'is said to be measur-
able if the set

(42) {x]/(x) > a}

is measurable for every real a.

11.14 Example If X =RP and 9 =M () as defined in Definition 11.9,
every continuous f is measurable, since then (42) is an open set.
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11.15 Theorem Each of the following four conditions implies the other three:

(43) {x|f(x) > a} is measurable for every real a.
(44) {x|f(x) = a} is measurable for every real a.
(45) {x|f(x) < a} is measurable for every real a.
(46) {x|f(x) < a} is measurable for every real a.

Proof The relations

@ >a =) (x> a-1),

Bl <@ = X— (1) 2 a
Glrw <= 1) [xlre <o),

I/ >at=X—{x|f(x) <a}
show successively that (43) implies (44), (44) implies (45), (45) implies
(46), and (46) implies (43).

Hence any of these conditions may be used instead of (42) to define
measurability.

11.16 Theorem If f is measurable, then |f| is measurable.

Proof
{x[|f®)] <a} = {x[f(x) <a} 0 {x|f(x) > —a}.

11.17 Theorem Let {f,} be a sequence of measurable functions. For x € X, put

gx) =supfux) (n=1,2,3,..),
h(x) = lim sup f,(x).

Then g and h are measurable.
The same is of course true of the inf and lim inf.

Proof

{xlo) > @ = U {170 > a
h(x) = inf g,(x),
where g,(x) = sup f,(x) (n > m).
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Corollaries

(@) Iffand g are measurable, then max (f, g) and min (f, g) are measurable.

If
47) ST =max(f,0), f~ = —min(f,0),

it follows, in particular, that f* and f~ are measurable.
(B) The limit of a convergent sequence of measurable functions is measurable.

11.18 Theorem Let f and g be measurable real-valued functions defined on X,
let F be real and continuous on R*, and put

h(x) = F(f(x),9(x))  (x€X).

Then h is measurable.
In particular, f + g and fg are measurable.

Proof Let
G, ={{u, v)| F(u, v) > a}.

Then G, is an open subset of R?, and we can write

Ga = U In,

n=1
where {/,} is a sequence of open intervals:
I ={(u,v)|a,<u<b,, c,<v<d,}
Since
{x|a, <f(x) < by} ={x|f(x) > a,} 0 {x[f(x) < b}

is measurable, it follows that the set

{x|(f(x), gx)) € L,} = {x|a, < f(x) < ba} N {x[c, < g(x) < d,}

is measurable. Hence the same is true of
{x|h(x) > a} = {x[(f(x), g(x)) € G}
= 10 g0 e 1

Summing up, we may say that all ordinary operations of analysis, includ-
ing limit operations, when applied to measurable functions, lead to measurable
functions; in other words, all functions that are ordinarily met with are measur-
able.

That this is, however, only a rough statement is shown by the following
example (based on Lebesgue measure, on the real line): If A(x) = f(g(x)), where



THE LEBESGUE THEORY 313

f is measurable and g is continuous, then & is not necessarily measurable.
(For the details, we refer to McShane, page 241.)

The reader may have noticed that measure has not been mentioned in
our discussion of measurable functions. In fact, the class of measurable func-
tions on X depends only on the o-ring M (using the notation of Definition 11.12).
For instance, we may speak of Borel-measurable functions on R®, that is, of
function f for which

{x[f(x) > a}

is always a Borel set, without reference to any particular measure.

SIMPLE FUNCTIONS

11.19 Definition Let s be a real-valued function defined on X. If the range
of s is finite, we say that s is a simple function.
Let £ < X, and put

it (xe E),
K is called the characteristic function of E.
Suppose the range of s consists of the distinct numbers ¢, ..., ¢,. Let

E, = {x|s(x) =c¢;} (i=1,...,n).

Then
Id
(49) s=Y ¢;Kg,,
n=1
that is, every simple function is a finite linear combination of characteristic
functions. It is clear that s is measurable if and only if the sets £, ..., E, are
measurable.

It is of interest that every function can be approximated by simple
functions:

11.20 Theorem Let f be a real function on X. There exists a sequence {s,} of
simple functions such that s,(x) = f(x) as n — oo, for every x € X. If f is measur-
able, {s,} may be chosen to be a sequence of measurable functions. If >0, {s,}
may be chosen to be a monotonically increasing sequence.

Proof If f> 0, define

- .
E,,,-={x e sfW<g  R=GlU@2n)
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forn=1,2,3,...,i=1,2,...,n2". Put
nan i— 1
(50) Sp= 3 > Ky, + nKg,.
i=1
In the general case, let f = f* — f~, and apply the preceding construction
tof* andtof~.
It may be noted that the sequence {s,} given by (50) converges
uniformly to fif f is bounded.

INTEGRATION

We shall define integration on a measurable space X, in which M is the o-ring
of measurable sets, and u is the measure. The reader who wishes to visualize
a more concrete situation may think of X as the real line, or an interval, and of
u as the Lebesgue measure m.

11.21 Definition Suppose

n

(5D sx)= Y ¢;Kg(x) (xeX,¢;>0)

i=1

is measurable, and suppose E € M. We define
(52) I(s) = _Zl c;E N E)y.
If fis measurable and nonnegative, we define
(53) [ fdu=sup I(s),
E

where the sup is taken over all measurable simple functions s such that 0 < s < f.
The left member of (53) is called the Lebesgue integral of f, with respect
to the measure p, over the set E. It should be noted that the integral may have
the value +oo.
It is easily verified that

(54) f s du = Ig(s)
E
for every nonnegative simple measurable function s.
11.22 Definition Let f be measurable, and consider the two integrals
(55) [ £ dn [ £ du,
E E
where f* and f~ are defined as in (47).



THE LEBESGUE THEORY 315

If at least one of the integrals (55) is finite, we define

+ -

(56) [ rau=] 1 du= fdu

If both integrals in (55) are finite, then (56) is finite, and we say that [ is
integrable (or summable) on E in the Lebesgue sense, with respect to u; we write
fe P on E. If u =m, the usual notation is: f € & on E.

This terminology may be a little confusing: If (56) is + 00 or — o0, then
the integral of f over E is defined, although f is not integrable in the above
sense of the word; fis integrable on E only if its integral over E is finite.

We shall be mainly interested in integrable functions, although in some
cases it is desirable to deal with the more general situation.

11.23 Remarks The following properties are evident:

(@ If fis measurable and bounded on E, and if U(E) < + o0, then
feP(w)onkFE.
) Ifa<f(x)<bforxekF, and u(E) < + oo, then
au(E) < fE fdu < bu(E).
(¢) Iffand ge £(u) on E, and if f(x) < g(x) for x € E, then
f fdu < f gdu.
E E
) Iffe #L(u)on E, then ¢f € £ (1) on E, for every finite constant ¢, and
J. cfdu:cJ. fdu.
E E
{¢&) 1f u(E) =0, and f is measurable, then
ff@=0
E
(f) IffeP(ponE, AeM, and A c E, then fe L(u) on A.

11.24 Theorem

(a) Suppose [ is measurable and nonnegative on X. For A € M, define

(57 $(4)=[ S
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(38)

(39)

(60)

Then ¢ is countably additive on IN.
(b) The same conclusion holds if f € £{u) on X.

Proof It is clear that (b) follows from (a) if we write f=f* —f~ and

apply (@) tof" and to f ™.
To prove (a), we have to show that

B = T (40

if 4, eMn=1,2,3,...),4,nA;=0foris#j, and 4 =J7 4,.
If f is a characteristic function, then the countable additivity of ¢ is
precisely the same as the countable additivity of u, since

L Ky du = (A n E).

If f is simple, then f is of the form (51), and the conclusion again
holds.

In the general case, we have, for every measurable simple function s
such that 0 < s <f,

J.A s di =n§1 L,. s di S,2021 (4.

Therefore, by (53),

$A) < 3 94,

Now if ¢(A4,) = + oo for some n, (58) is trivial, since ¢(4) = ¢(A4,).
Suppose ¢(4,) < + oo for every n.

Given ¢ >0, we can choose a measurable function s such that
0 < s </, and such that

Llsd#ZJ.Alfd#—s, fAzSd#ZJ.Azfd#_s'
Hence

dA; v Ay) = _[

Al v Az

sdu=f

Ay

sdu+ [ sduz(dr) + ¢(4r) — 2,
Az
so that

B4y U Ay) = $(A1) + $(A,).
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It follows that we have, for every n,
(61) HA; UV A) 2 P(A4y) + 0+ P(4,).
Since A o 4, U - U A4,, (61) implies

6 oA > o),
and (58) follows from (59) and (62).

Corollary If AeM, BeM, Bc A, and y(A — B) =0, then

Lfdu = fﬂfdu-

Since 4 = B U (4 — B), this follows from Remark 11.23(e).

11.25 Remarks The preceding corollary shows that sets of ineasure zero are
negligible in integration.
Let us write f ~ g on E if the set

x| f(x)#g(x)} N E

has measure zero.

Then f~ f;, f~ g implies g ~ f; and f~ g, g ~ h implies f ~ h. That is,
the relation ~ is an equivalence relation.

If f ~ g on E, we clearly have

Lfdu = L g4y,

provided the integrals exist, for every measurable subset A4 of E.

If a property P holds for every x € E — A4, and if u(4) =0, it is customary
to say that P holds for almost all x € E, or that P holds almost everywhere on
E. (This concept of “‘almost everywhere” depends of course on the particular

_measure under consideration. In the literature, unless something is said to the
contrary, it usually refers to Lebesgue measure.) ‘

If fe #(u) on E, it is clear that f(x) must be finite almost everywhere on E.
In most cases we therefore do not lose any generality if we assume the given
functions to be finite-valued from the outset.

11.26 Theorem If fe £ (u) on E, then |f| € £(u) on E, and

©3) \ jEfdu} <[ il du
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Proof Write £E=A4 v B, where f(x)>0 on 4 and f(x)<0 on B.
By Theorem 11.24,

[ Vftdu=[ \ftdut [ fldu=] 7 dus [ f~du< +eo,

so that |f| € £(u). Since f< |f] and ~f < |f|, we see that

[rdus[ 1flde,  ~[ rdus| |7l dw
and (63) follows.

Since the integrability of f implies that of |f], the Lebesgue integral is
often called an absolutely convergent integral. It is of course possible to define
nonabsolutely convergent integrals, and in the treatment of some problems it is
essential to do so. But these integrals lack some of the most useful properties
of the Lebesgue integral and play a somewhat less important role in analysis.

11.27 Theorem Suppose f is measurable on E, |f| <g, and g € ¥(u) on E.
Then f € £(u) on E.

Proof Wehavef* <gandf™ <g.

11.28 Lebesgue’s monotone convergence theorem Suppose E ¢ M. Let {f,} be
a sequence of measurable functions such thot

(64) 0</ix) <fox) < (x€E).
Let f be defined by
(65) fx) - f(x)  (x€E)

as n— . Then
(66) [ fodus| fan >0,
E E
Proof By (64) it is clear that, as n — oo,
(67) fﬁmhw
E
for some a; and since [f, < [f, we have

(68) ax< [ fu.



(69)

(70)

(1)

72
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Choose ¢ such that 0 <¢ <1, and let s be a simple measurable
function such that 0 <s <f. Put

E, = {x|f,(x) = es(x)} n=1,2,3,..).
By (64), E, « E, < E; = -+ ; and by (65),

E=

n

E

ne
1

18

For every #,

LﬁuduZJ.E"f,.duZC.[E"sdy,

We let # — o0 in (70). Since the integral is a countably additive set function
(Theorem 11.24), (69) shows that we may apply Theorem 11.3 to the last
integral in (70), and we obtain

a>c| sdu.
J, s

Letting ¢ — 1, we see that
o> | sdu,
J, o

and (53) implies

o> du.
L_f u

The theorem follows from (67), (68), and (72).

11.29 Theorem Suppose f=f, +f,, where fie L) on E (i=1,2). Then
feP)onkE, and

(73)

[ reu=] fidut] frdn

Proof First, suppose f; >0, f, = 0. If f; and f, are simple, (73) follows
trivially from (52) and (54). Otherwise, choose monotonically increasing
sequences {s,}, {sn} of nonnegative measurable simple functions which
converge to fi,f,. Theorem 11.20 shows that this is possible. Put
Sy = S, + 5,. Then

J‘E Sy dy = J.E sy du + J.E sy du,

and (73) follows if we let # — c0 and appeal to Theorem 11.28.
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Next, suppose f; =0, f, <0. Put
A={x|fx)=20}, B={x|f(x) <0}

Then f, f;, and —f, are nonnegative on 4. Hence

(74) L frdu = L fdu+ L (—f2) di = fA e fA /2 dy.

Similarly, —f, f;, and —f, are nonnegative on B, so that

[[rydue=] fidu+ [ (=Ndu.
or
(75) [ fdu=] rdu~] fidn

and (73) follows if we add (74) and (75).

In the general case, E can be decomposed into four sets E; on each
of which f](x) and f,(x) are of constant sign. The two cases we have proved
so far imply

| fan={ fidut| fodu (=1,2,3.9,
E; E; E;
and (73) follows by adding these four equations.
We are now in a position to reformulate Theorem 11.28 for series.

11.30 Theorem Suppose E € M. If{f.} is a sequence of nonnegative measurable
Sfunctions and

76) f6 =3 ) (eb)
then
[ rau=% | fdu.

Proof The partial sums of (76) form a monotonically increasing sequence.

11.31 Fatou’s theorem Suppose Ee M. If {f,} is a sequence of nonnegative
measurable functions and
f(x) = lim inf £,(x) (x e E),
then
an f fdu < lim inf f . du.
E E

n=roo
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Strict inequality may hold in (77). An example is given in Exercise 5.
Proof Forn=1,23,...and x € E, put
g(x) =inff(x)  (i=n).

Then g, is measurable on E, and

(78) 0<gi(x) <gr(x) <+,
(79) 9u(X) < fu(3),
(80) guX) =2 f(x)  (n—> ).

By (78), (80), and Theorem 11.28,
81 L du— | fdu,
81 [ gndu~ [ ran
so that (77) follows from (79) and (81).

11.32 Lebesgue’s dominated convergence theorem Suppose E € . Let {f,} be
a sequence of measurable functions such that

(82) flx) =f(x)  (xeE)

as n — . If there exists a function g € £ (u) on E, such that
(83) [Hx)] < g(x) (n=1,2,3,...,x€kE),
then

84 li = .

(84) tim [ fdu= | [

Because of (83), {f,} is said to be dominated by g, and we talk about
dominated convergence. By Remark 11.25, the conclusion is the same if (82)
holds almost everywhere on E.

Proof First, (83) and Theorem 11.27 imply that f, € £(1) and f e L (1)
on E.
Since f, + g > 0, Fatou’s theorem shows that

[ +gydu <timint [ (f, +g) dp,
E E

n—w

or

(85) fE fdu < lim inf fE f, du.

n=>w
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Since g — f,, > 0, we see similarly that

[ (9—fydu<limint [ (g—1)dn,
E n—oo E

so that

—f fdpsliminf[—f jf"dp],
E n—oo E

which is the same as

(86) f fdu > lim sup f fadu.
E E

n—w

The existence of the limit in (84) and the equality asserted by (84)
now follow from (85) and (86).

Corollary If u(E) < + 0, {f,} is uniformly bounded on E, and f,(x) — f(x) on E,
then (84) holds.

A uniformly bounded convergent sequence is often said to be boundedly
convergent.

COMPARISON WITH THE RIEMANN INTEGRAL

Our next theorem will show that every function which is Riemann-integrable
on an interval is also Lebesgue-integrable, and that Riemann-integrable func-
tions are subject to rather stringent continuity conditions. Quite apart from the
fact that the Lebesgue theory therefore enables us to integrate a much larger
class of functions, its greatest advantage lies perhaps in the ease with which
many limit operations can be handled; from this point of view, Lebesgue’s
convergence theorems may well be regarded as the core of the Lebesgue theory.

One of the difficulties which is encountered in the Riemann theory is
that limits of Riemann-integrable functions (or even continuous functions)
may fail to be Riemann-integrable. This difficulty is now almost eliminated,
since limits of measurable functions are always measurable.

Let the measure space X be the interval [a, b] of the real line, with y = m
(the Lebesgue measure), and 9t the family of Lebesgue-measurable subsets
of [a, b]. Instead of

f fdm

it is customary to use the familiar notation

fbfdx
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for the Lebesgue integral of f over [a, b]. To distinguish Riemann integrals
from Lebesgue integrals, we shall now denote the former by

%fbfdx.

11.33 Theorem

(87)

(88)

(89)

(90)

©OD

92)

(@ IffeRonla, bl thenfe L onla,b), and
b b
f fdx = f fdx.
(b) Suppose f is bounded on [a, b]. Then f € R on [a, b] if and only if f is
continuous almost everywhere on [a, b).

Proof Suppose f is bounded. By Definition 6.1 and Theorem 6.4 there
is a sequence {P,} of partitions of [a, b], such that P,,, is a refinement
of P,, such that the distance between adjacent points of P, is less than
1/k, and such that

lim L(P,,f) = & ffdx, lim U(P, . f) = @ffdx.
el k—

k—=wx

(In this proof, all integrals are taken over [a, b].)
If P, ={xo, X, ..., X,}, With x; = @, x,, = b, define

Ua) = Li(a) =f(a);
put Ux) =M, and Li(x) =m; for x,_; <x <x;,1 <i<n, using the

notation introduced in Definition 6.1. Then

L(Pe.f) = [Ledx,  UP.f) = [Upds,
and
Li(x<L,x)< - <fx)< - <U,(x) < U(x)
for all x € [a, b], since P, refines P,. By (90), there exist
L(x) =k1im L,(x), U(x) =klim U(x).

Observe that L and U are bounded measurable functions on [a, 5],
that

L(x) <f(x) < U(x) (a<x<b),
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(93)

%4

93)

and that
[Lax=a[fix, [vdx= ?/?J—.fdx,

by (88), (90), and the monotone convergence theorem.

So far, nothing has been assumed about f except that fis a bounded
real function on [q, b].

To complete the proof, note that f € # if and only if its upper and
lower Riemann integrals are equal, hence if and only if

J.L dx =J.de;

since L < U, (94) happens if and only if L(x) = U(x) for almost all
x € [a, b] (Exercise 1).
In that case, (92) implies that

Lx) =f(x) = U(x)

almost everywhere on [a, b], so that f is measurable, and (87) follows
from (93) and (995).

Furthermore, if x belongs to no Py, it is quite easy to see that U(x) =
L(x)if and only if fis continuous at x. Since the union of the sets Py is count-
able, its measure is 0, and we conclude that fis continuous almost every-
where on [a, b] if and only if L(x) = U(x) almost everywhere, hence
(as we saw above) if and only if f € &.

This completes the proof.

The familiar connection between integration and differentiation is to a

large degree carried over into the Lebesgue theory. If fe ¥ on [a, b], and

(96)

F(x)=fxfdt (@<x<b),

then F'(x) = f(x) almost everywhere on [a, b].

Conversely, if F is differentiable at every point of [a, b] (“almost every-

where”’ is not good enough here!) and if F' € &£ on [q, b], then

Fo)-F@=[ F() (@sx<b).

For the proofs of these two theorems, we refer the reader to any of the

works on integration cited in the Bibliography.
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INTEGRATION OF COMPLEX FUNCTIONS

Suppose f is a complex-valued function defined on a measure space X, and
S =u+iv, where u and v are real. We say that f is measurable if and only if
both u and v are measurable.

It is easy to verify that sums and products of complex measurable functions
are again measurable. Since

f] =@+ o),

Theorem 11.18 shows that |f| is measurable for every complex measurable f.

Suppose u is a measure on X, E is a measurable subset of X, and fis a
complex function on X. We say that f e #(u) on E provided that fis measurable
and

(07) [ Ifldi< +oo,
E
and we define
du = du+i| vd
fEf iz fEu e le [

if (97) holds. Since |u| < |f], |v| < |f]|, and |f| < |ul + |v|, it is clear that
(97) holds if and only if v € #(u) and v e £ (1) on E.

Theorems 11.23(a), (d), (e), (f), 11.24(b), 11.26, 11.27, 11.29, and 11.32
can now be extended to Lebesgue integrals of complex functions. The proofs
are quite straightforward. That of Theorem 11.26 is the only one that offers
anything of interest:

If f e £(1) on E, there is a complex number ¢, |¢| = I, such that

cfEfdy > 0.

Put g =c¢f=u+iv, uand v real. Then

Jg@

The third of the above equalities holds since the preceding ones show that
Jg du is real.

=CfEfdu=ngdu=fEudquE|f\ du.

FUNCTIONS OF CLASS £?

As an application of the Lebesgue theory, we shall now extend the Parseval
theorem (which we proved only for Riemann-integrable functions in Chap. 8)
and prove the Riesz-Fischer theorem for orthonormal sets of functions.
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11.34 Definition Let X be a measurable space. We say that a complex
function f e £%(u) on X if fis measurable and if

J. |f|?du < + 0.
X

If u is Lebesgue measure, we say fe £2. For fe %*(u) (we shall omit the
phrase “on X’ from now on) we define

1 ={[ 117

and call |||l the £2(x) norm of f.
11.35 Theorem Suppose f € F*(u) and g € L*(u). Then fg € L(u), and

98) [ gl du <11 gl

This is the Schwarz inequality, which we have already encountered for
series and for Riemann integrals. It follows from the inequality

0<[ (f] +2lgl du=IfI7 +22 [ \fg| du+ 2*lgl?,

which holds for every real A.

11.36 Theorem Iffe L*(u) and g € L*(u), then f + g € L*(w), and

If+ gl < If1 + lgll.
Proof The Schwarz inequality shows that

If+ g =[1f1*+ [fa+ [Jo + [ 1?
<IfI2+2111 gl + g}
= (11 + gt

11.37 Remark If we define the distance between two functions f and g in
Z%(u) to be | f— gl, we see that the conditions of Definition 2.15 are satisfied,
except for the fact that ||f— g| = 0 does not imply that f(x) = g(x) for all x,
but only for almost all x. Thus, if we identify functions which differ only on a
set of measure zero, £ 2(y) is a metric space.

We now consider #? on an interval of the real line, with respect to
Lebesgue measure.

11.38 Theorem The continuous functions form a dense subset of #? on [a, b].
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More explicitly, this means that for any f € £ on [, b], and any ¢ > 0,
there is a function g, continuous on [a, b], such that

-a={[ =gl as] <z

Proof We shall say that fis approximated in %2 by a sequence {g,} if
If~gal >0 asn—oo.
Let A4 be a closed subset of [a, b], and K its characteristic function.

Put
t(x) = inf [x — y| (yed)
and
1 )
= =1,2,3.. )%

Then g, is continuous on [a, b], g.(x) =1 on 4, and g,(x) »0 on B,
where B = [a, b] — A. Hence

1/2
lon= Kl = [ g2 ax] 0

by Theorem 11.32. Thus characteristic functions of closed sets can be
approximated in #? by continuous functions.

By (39) the same is true for the characteristi¢c function of any
measurable set, and hence also for simple measurable functions.

If f>0and fe £2, let {5,} be a monotonically increasing sequence
of simple nonnegative measurable functions such that s,(x) —f(x).
Since |f— s,|* <f?, Theorem 11.32 shows that | f — s, — 0.

The general case follows.

11.39 Definition We say that a sequence of complex functions {¢,} is an
orthonormal set of functions on a measurable space X if

fx ¢n$mdu={? (n 2 m)

(n=m).

In particular, we must have ¢, € £2(y). If f e £*(u) and if

Cn=.‘.f$nd# (n=l,2,3,...),
X
we write

f~ Y enn,

as in Definition 8.10.
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The definition of a trigonometric Fourier series is extended in the same
way to £? (or even to .¥) on [—n, n]. Theorems 8.11 and 8.12 (the Bessel
inequality) hold for any € #?(u). The proofs are the same, word for word.

We can now prove the Parseval theorem.

11.40 Theorem Suppose

©99) fe)~ e
where f € ¥* on [—n, n]. Let s, be the nth partial sum of (99). Then
(100) lim | f = s,| =0,
(101) Slalr=o[ 1717 dx
i 2nd_,

Proof Let ¢ >0 be given. By Theorem 11.38, there is a continuous
function g such that

&
— < —.
If =gl <3
Moreover, it is easy to see that we can arrange it so that g(n) = g(—n).
Then g can be extended to a periodic continuous function. By Theorem
8.16, there is a trigonometric polynomial 7, of degree N, say, such that

£
-7 <=.
lg — T 7

Hence, by Theorem 8.11 (extended to #?), n > N implies
s, = fIl < UT =1l <&,
and (100) follows. Equation (101) is deduced from (100) as in the proof of

Theorem 8.16.
Corollary If fe ¥* on [—n, ], and if
f f)e ™ dx=0 (n=0,+1,+2,...),
then ||f]| = 0.

Thus if two functions in #? have the same Fourier series, they differ at
most on a set of measure zero.
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11.41 Definition Let f and f, e L*(w)(n=1,2,3,...). We say that {f}
converges to fin £L2(u) if |If, —f]l = 0. We say that {f;} is a Cauchy sequence
in %2(y) if for every ¢ > 0 there is an integer N such that » > N, m > N implies

”fn '—fm” <e&.

11.42 Theorem If {f,} is a Cauchy sequence in L*(u), then there exists a
function f € LX) such that {f,} converges to [ in L2 (y).

This says, in other words, that #?(u) is a complete metric space.

Proof Since {f,} is a Cauchy sequence, we can find a sequence {n},
k=123, ..., such that

k=1,2,3,..).

1
e = Foced] < 55

Choose a function g € #?(u). By the Schwarz inequality,

Fl
[ 190 = Fu ] it < -

Hence

(102) S [ 1Us — o)l di < lgl.
k=1*X

By Theorem 11.30, we may interchange the summation and integration in
(102). It follows that

(103 9691 3. 1) = o (0] <+ 20

almost everywhere on X. Therefore
(104) k_lefnm(X) ~ @) <+ 0

almost everywhere on X. For if the series in (104) were divergent on a
set £ of positive measure, we could take g(x) to be nonzero on a subset of
E of positive measure, thus obtaining a contradiction to (103).

Since the kth partial sum of the series

3T Unee i) =)
which converges almost everywhere on X is

Srieei(X) = S, (%),
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we see that the equation
f(x) =klim JuX)

defines f(x) for almost all x € X, and it does not matter how we define
f(x) at the remaining points of X.

We shall now show that this function f has the desired properties.
Let € >0 be given, and choose N as indicated in Definition 11.41. If
n, > N, Fatou’s theorem shows that

1f = foull < liminf £, = £yl <.

Thus f — f,, € £*(u), and since f = (f — f,,) + /o, We see that f e £*(u).
Also, since ¢ is arbitrary,

lim || f =, [l = 0.

k=

Finally, the inequality
(105) If = fall < 1Uf = Sl + 1o — ful

shows that {f,} converges to f in #?(u); for if we take n and n, large
enough, each of the two terms on the right of (105) can be made arbi-
trarily small.

11.43 The Riesz-Fischer theorem Let {¢,} be orthonormal on X. Suppose
2|c,|? converges, and put 5, =c;¢, + -+ c,,. Then there exists a function
fe L2(u) such that {s,} converges to f in £*(u), and such that

[~

n

118

cn¢n'
1
Proof Forn>m,
”Sn _Sm”z = lcm+l|2 + I + |cn|2:

so that {s,} is a Cauchy sequence in £2(u). By Theorem 11.42, there is
a function f € #?(u) such that

lim | f— s, =0.

n=w

Now, for n >k,

[ fcdn—ci=| fBidu~ | 5B



THE LEBESGUE THEORY 331

so that

SUS = sall - Nl + 1S = s,

fxf$kaw-— G

Letting n — o0, we see that

ck=fxf$kdu (k=1,2,3,..),

and the proof is complete.

11.44 Definition An orthonormal set {¢,} is said to be complete if, for
fe #2(u), the equations

fﬁﬁ,du=0 (n=1,2,3,..)
X

imply that ||f|| = 0.

In the Corollary to Theorem 11.40 we deduced the completeness of the
trigonometric system from the Parseval equation (101). Conversely, the Parseval
equation holds for every complete orthonormal set:

11.45 Theorem Let {¢,} be a complete orthonormal set. If fe £*(u) and if

(106) f~ 5 cb

then

(107 [ 112 du= 3 Jel
X n=1

Proof By the Bessel inequality, X|c,|* converges. Putting
Sp :cld)l + +C"¢",

the Riesz-Fischer theorem shows that there is a function g € #?(y) such
that

ac

(108) g~ _Zlcnd)na
and such that ||g — s,|| = 0. Hence |,/ = |igl|. Since
“anz = lcllz oot }Cn|27
we have

(109) LMP@=;MH
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Now (106), (108), and the completeness of {¢,} show that | f — g|| =0,
so that (109) implies (107).

Combining Theorems 11.43 and 11.45, we arrive at the very interesting
conclusion that every complete orthonormal set induces a 1-1 correspondence
between the functions fe.22(u) (identifying those which are equal almost
everywhere) on the one hand and the sequences {c,} for which Z|c,|? converges,
on the other. The representation

a0

f~ Zl Cn¢n,

n=

together with the Parseval equation, shows that #2(u) may be regarded as an
infinite-dimensional euclidean space (the so-called “Hilbert space”), in which
the point f has coordinates ¢, , and the functions ¢, are the coordinate vectors.

EXERCISES

1. If f=0and [¢ fdp = 0, prove that f(x) = 0 almost everywhere on E. Hint: Let E,
be the subset of E on which f(x) > 1/n. Write 4 = |JE,. Then u(4) = 0if and only
if u(E,) = 0 for every n.

2. If [4 fdu =0 for every measurable subset A of a measurable set E, then f(x) =0
almost everywhere on E.

3. If {f.} is a sequence of measurable functions, prove that the set of points x at
which {f.(x)} converges is measurable.

4. If fe £(n) on E and g is bounded and measurable on E, then fy € Z(u) on E.
5. Put

_ 0 0<x <)),
9= (4 <x<1),
Sadx) = g(x) 0<x<1),
Srs1(x) =g(1 — x) 0<x<1).
Show that
liminf f(x)=0  (0<x <),
but

J.: fa(x) dx = 1.

[Compare with (77).]



6.

11.

12,

13.
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Let

[

(| x| > n).

Then f,(x) = 0 uniformly on R*, but
.F_nwzz (n=1,2,3,...).

(We write |2 in place of [z,.) Thus uniform convergence does not imply domi-
nated convergence in the sense of Theorem 11.32, However, on sets of finite
measure, uniformly convergent sequences of bounded functions do satisfy Theo-
rem 11.32.

. Find a necessary and sufficient condition that f€ Z(«) on [a, b]. Hint: Consider

Example 11.6(b) and Theorem 11.33.

. If fe R on [a, b] and if F(x)= [ f(t)dt, prove that F'(x) = f(x) almost every-

where on [a, b].

. Prove that the function F given by (96) is continuous on [a, b].
10.

If p(X) <+ and fe £*(u) on X, prove that fe #(u) on X. If
p(X) = oo,

this is false. For instance, if

f(X):1+|.X[,

then fe #? on R', but f¢ % on R'.
If £, g € Z(n) on X, define the distance between f and g by

fx | f—g| du.

Prove that #(u) is a complete metric space.
Suppose

(@ |fx,»)]<1ifo<x<1,0<y<1,

(b) for fixed x, f(x, y) is a continuous function of y,
(¢) for fixed y, f(x, y) is a continuous function of x.
Put

1
g =[ fxndy  ©@=x<).
Is g continuous?
Consider the functions

falx) = sin nx n=123.. —7<x<m
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14.

15,

16.

17.

18.

as points of .#2. Prove that the set of these points is closed and bounded, but
not compact,

Prove that a complex function f is measurable if and only if f~*(¥V) is measurable
for every open set V in the plane.

Let # be the ring of all elementary subsets of (0, 1]. If 0 <a < b <1, define

$([a, b)) = ¢([a, b)) = ¢ ((a, b)) = $((a, b)) = b — a,
but define
$((0, b)) = (0, b)) =1+ b

if 0 <b < 1. Show that this gives an additive set function ¢ on £, which is not
regular and which cannot be extended to a countably additive set function on a
o-ring.
Suppose {1} is an increasing sequence of positive integers and E is the set of all
x € (—m, 7) at which {sin nx} converges. Prove that m(E)= 0. Hint: For every
A< E,

L sin nyx dx — 0,
and
2 L (sin nx)t dx = L(l — COS 2n,x) dx — m(A) ask - .

Suppose E < (—m, m), m(E) > 0,8 > 0. Use the Bessel inequality to prove that
there are at most finitely many integers # such that sin nx > 8 for all x € E.
Suppose fe L), g € £*(). Prove that

|[fadu| = [1717du [ 191 d

if and only if there is a constant ¢ such that g(x) = ¢f(x) almost everywhere.
(Compare Theorem 11.35.)
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The symbols listed below are followed by a brief statement of their meaning and by
the number of the page on which they are defined.
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Lebesgue measure, 308
Lebesgue’s theorem, 155, 167,
318. 321
Left-hand limit, 94
Leibnitz, G. W, 71
Length, 136
L’Hospital’s rule, 109, 113
Limit, 47, 83, 144
left-hand, 94
lower, 56
pointwise, 144
right-hand, 94
subsequential. 51
upper, 56
Limit function, 144
Limit point, 32
Line, 17
Line integral, 255
Linear combination, 204
Linear function. 206
Linear mapping, 206
Linear operator, 207
Linear transformation, 206
Local maximum, 107
Localization theorem, 190
Locally one-to-one mapping, 223
Logarithm, 22, 180
Logarithmic function, (80
Lower bound, 3
Lower integral, 121, 122
Lower [imit, 56

McShane, E. J., 313

Mapping, 24

affine, 266

continuous, 85

continuously differentiable, 219

linear, 206

open, 100, 223

primitive, 248

uniformly continuous, 90

(See also Function)
Matrix, 210

product, 211
Maximum, 90
Mean square approximation, 187
Mean value theorem, 108, 235
Measurable function, 310
Measurable set, 305, 310
Measurable space. 310
Measure, 308

outer, 304
Measure space, 310
Measure zero, set of, 309, 317
Mertens, F., 74
Metric space, 30
Minimum, 90
Moébius band, 298
Monotone convergence theorem,

318

Monotonic function, 95, 302
Monotonic sequence, 55
Multiplication (see Product)

Negative number, 7
Negative orientation, 267
Neighborhood, 32
Newton’s method, 118
Nijenhuis, A., 223
Niven, L.. 65, 198
Nonnegative number, 60
Norm, 16, 140, 150, 326

of operator, 208
Normal derivative, 297
Normal space, 101
Normal vector, 284
Nowhere differentiable function,

154

Null space, 228
Null vector, 16
Number:

algebraic, 43

cardinal, 25

complex, 12

decimal, 11

finite, 12

irrational, 1, 10, 65

negative, 7

nonnegative, 60

positive, 7, 8

rational, 1

real, 8

One-to-one correspondence, 25
Onto, 24
Open cover, 36
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Open mapping. 100, 223
Open set, 32
Order, 3, 17
lexicographic, 22
Ordered field, 7, 20
k-tuple, 16
pair, 12
set, 3, 18, 22
Oriented simplex, 266
Origin, 16
Orthogonal set of functions, 187
Orthonormal set, 187, 327, 331
Quter measure, 304

Parameter domain, 254
Parameler interval, 136
Parseval’s theorem, 191, 198, 328.
331

Partial derivative, 215
Partial sum, 59, 186
Partition, 120

of unity, 251
Perfect set. 32
Periodic function, 183, 190
w, 183
Plane, 17
Poincaré’s lemma, 275, 280
Pointwise bounded sequence, 155
Pointwise convergence, 144
Polynomial, 88

trigonometric, 185
Positive orientation, 267
Power series, 69, 172
Primes. 197
Primitive mapping, 248
Product, 5§

Cauchy, 73

of complex numbers, 12

of determinants, 233

of field elements, 5

of forms, 258, 260

of functions, 85

inner, 16

of matrices, 211

of real numbers, 19, 20

scalar, 16

of series, 73

of transformations, 207
Projection, 228
Proper subset, 3

Radius, 31, 32

of convergence, 69, 79
Range, 24, 207
Rank, 228
Rank theorem, 229
Ratio test, 66
Rational function, 88
Rational number, 1
Real field, 8
Real line, 17
Real number, 8
Real part, 14
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Rearrangement, 75
Rectifiable curve, 136
Refinement, 123

Reflexive property, 25
Regular set function, 303
Relatively open set, 35
Remainder, 211, 244
Restriction, 99

Riemann, B., 76, 186
Riemann integral, 121
Riemann-Stieltjes integral, 122
Riesz-Fischer theorem, 330
Right-hand limit, 94

Ring, 301

Robison, G. B., 184

Root, 10

Root test. 65

Row matrix, 217

Saddle point. 240
Scalar product, 16
Schoenberg. 1. J.. 168
Schwarz inequality, 15. 139, 326
Segment, 31
Self-adjoint algebra. 165
Separable space, 45
Separated sets, 42
Separation of points, 162
Sequence. 26

bounded. 48

Cauchy, 52, 82, 329

convergent, 47

divergent. 47

double, 144

of functions, 143

increasing, 55

monotonic, 55

pointwise bounded, 155

pointwise convergent, 144

uniformly bounded, 155

uniformly convergent, 157
Series, 59

absolutely convergent, 71

alternating, 71

convergent, 59

divergent. 59

geometric, 61

nonabsolutely convergent, 72

power, 69, 172

product of, 73

trigonometric, 186

uniformly convergent, 157
Set. 3

at most countable, 25

Borel. 309

bounded, 32

bounded above, 3

Cantor, 41, 81, 138. 168, 309

closed. 32

compact, 36

complete orthonormal. 331

connected, 42

convex. 31

countable. 25

Set,
dense. 9, 32
elementary, 303
empty, 3
finite, 25
independent, 205
infinite, 25
measurable, 305, 310
nonempty, 3
open, 32
ordered, 3
perfect, 32, 41
relatively open, 35
uncountable, 25, 30, 41
Set function, 301
o-ring, 301
Simple discontinuity, 94
Simple function, 313
Simplex, 247
affine, 266
differentiable, 269
oriented, 266
Singer, [. M, 280
Solid angle., 294
Space:
compact metric, 36
complete metric, 54
connected, 42
of continuous functions, 150
euclidean, 16
Hilbert, 332

of integrable functions. 315, 326

measurable, 310

measure, 310

metric, 30

normal. 101

separable, 45
Span. 204
Sphere, 272, 277, 294
Spivak, M., 272, 280
Square root, 2, 81, 118
Standard basis, 205
Standard presentation, 257
Standard simplex, 266
Stark, E. L.. 199
Step function, 129
Stieltjes integral, 122
Stirling’s formula, 194, 200
Stokes’ theorem, 253, 272, 287

Stone-Weierstrass theorem. 162,

190. 246
Stromberg, K., 21
Subadditivity, 304
Subcover, 36
Subfield. 8, 13
Subsequence, 51
Subsequential limit, 51
Subset, 3

dense. 9, 32
proper. 3
Sum, 5
of complex numbers, 12
of field elements, 5
of forms, 256
of functions, 85

Sum,
of linear transformations, 207
of oriented simplexes, 268
of real numbers, 18
of series, 59
of vectors, 16
Summation by parts, 70
Support, 246
Supremum, 4
Supremum norm, 150
Surface, 254
Symmetric difference, 305

Tangent plane. 284

Tangent vector, 286

Tangential component, 286

Taylor polynomial, 244

Taylor’s theorem, 110, 116, 176, 243

Thorpe, J. A., 280

Thurston, H. A, 21

Torus, 239-240, 285

Total derivative, 213

Transformation (see Function;
Mapping)

Transitivity, 25

Triangle inequality, 14, 16. 30, 140

Trigonometric functions, 182

Trigonometric polynomial, 185

Trigonometric series, 186

Uncountable set, 25, 30. 41
Uniform boundedness, 155
Uniform closure, 151

Uniform continuity, 90
Uniform convergence, 147
Uniformly closed algebra, 161
Uniformly continuous mapping, 90
Union, 27

Uniqueness theorem. 119, 258
Unit cube, 247

Unit vector, 217

Upper bound, 3

Upper integral, 121, 122
Upper limit, 56

Value. 24

Variable of integration, 122

Vector, 16

Vector field, 281

Vector space, 16, 204

Vector-valued function, 85
derivative of., 112

Volume, 255, 282

Weierstrass test, 148
Weierstrass theorem, 40, 159
Winding number, 201

Zero set, 98, 117
Zeta function, 141
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