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PREFACE 

This book is intended to serve as a text for the course in analysis that is usually 
taken by advanced undergraduates or by first-year students who study mathe- 
matics. 

The present edition covers essentially the same topics as the second one, 
with some additions, a few minor omissions, and considerable rearrangement. I 
hope that these changes will make the material more accessible amd more attrac- 
tive to the students who take such a course. 

Experience has convinced me that it is pedagogically unsound (though 
logically correct) to start off with the construction of the real numbers from the 
rational ones. At the beginning, most students simply fail to appreciate the need 
for doing this. Accordingly, the real number system is introduced as an ordered 
field with the least-upper-bound property, and a few interesting applications of 
this property are quickly made. However, Dedekind's construction is not omit- 
ted. It is now in an Appendix to Chapter 1, where it may be studied and enjoyed 
whenever the time seems ripe. 

The material on functions of several variables is almost completely re- 
written, with many details filled in, and with more examples and more motiva- 
tion. The proof of the inverse function theorem-the key item in Chapter 9-is 
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simplified by means of the fixed point theorem about contraction mappings. 
Differential forms are discussed in much greater detail. Several applications of 
Stokes' theorem are included. 

As regards other changes, the chapter on the Riemann-Stieltjes integral 
has been trimmed a bit, a short do-it-yourself section on the gamma function 
has been added to Chapter 8, and there is a large number of new exercises, most 
of them with fairly detailed hints. 

I have also included several references to articles appearing in the American 
Mathematical Monthly and in Mathematics Magazine, in the hope that students 
will develop the habit of looking into the journal literature. Most of these 
references were kindly supplied by R. B. Burckel. 

Over the years, many people, students as well as teachers, have sent me 
corrections, criticisms, ahd other comments concerning the previous editions 
of this book. I have appreciated these, and I take this opportunity to express 
my sincere thanks to all who have written me. 

WALTER RUDIN 



THE REAL AND COMPLEX NUMBER SYSTEMS 

INTRODUCTION 

A satisfactory discussion of the main concepts of analysis (such as convergence, 
continuity, differentiation, and integration) must be based on an accurately 
defined number concept. We shall not, however, enter into any discussion of 
the axioms that govern the arithmetic of the integers, but assume familiarity 
with the rational numbers (i.e., the numbers of the form mln, where m and n 
are integers and n # 0). 

The rational number system is inadequate for many purposes, both as a 
field and as an ordered set. (These terms will be defined in Secs. 1.6 and 1.12.) 
For instance, there is no rational p such that p2 = 2. (We shall prove this 
presently.) This leads to the introduction of so-called "irrational numbers" 
which are often written as infinite decimal expansions and are considered to be 
"approximated" by the corresponding finite decimals. Thus the sequence 

"tends to fi." But unless the irrational number JZ has been clearly defined, 
the question must arise: Just what is it that this sequence "tends to"? 
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This sort of question can be answered as soon as the so-called "real 
number system" is constructed. 

1.1 Example We now show that the equation 

(1) p2 '2 

is not satisfied by any rational p. If there were such a p, we could write p = mln 
where m and n are integers that are not both even. Let us assume this is done. 
Then (1) implies 

(2) m2 = 2n2, 

This shows that m2 is even. Hence m is even (if m were odd, m2 would be odd), 
and so m2 is divisible by 4. It follows that the right side of (2) is divisible by 4, 
so that n2 is even, which implies that n is even. 

The assumption that (1) holds thus leads to the conclusion that both m 
and n are even, contrary to our choice of m and n. Hence (1) is impossible for 
rational p. 

We now examine this situation a little more closely. Let A be the set of 
all positive rationals p such that p2 < 2 and let B consist of all positive rationals 
p such that p2 > 2. We shall show that A contains no largest number and B con- 
tains no smallest. 

More explicitly, for every p in A we can find a rational q in A such that 
p < q, and for every p in B we can find a rational q in B such that q < p. 

To do this, we associate with each rational p > 0 the number 

Then 

If p is in A then p2 - 2 < 0, (3) shows that q > p, and (4) shows that 
q2 < 2. Thus q is in A. 

If p is in B then p2 - 2 > 0, (3) shows that 0 < q < p, and (4) shows that 
q2 > 2. Thus q is in B. 

1.2 Remark The purpose of the above discussion has been to show that the 
rational number system has certain gaps, in spite of the fact that between any 
two rationals there is another: If r < s then r < (r + s)/2 < s. The real number 
system fills these gaps. This is the principal reason for the fundamental role 
which it plays in analysis. 
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In order to  elucidate its structure, as well as that of the complex numbers, 
we start with a brief discussion of the general concepts of ordered set and field. 

Here is some of the standard set-theoretic terminology that will be used 
throughout this book. 

1.3 Definitions If A is any set (whose elements may be numbers or any other 
objects), we write x E A to indicate that x is a member (or an element) of A. 

If x is not a member of A, we write: x 4 A. 
The set which contains no element will be called the empty set. If a set has 

at least one element, it is called nonempty. 
If A and B are sets, and if every element of A is an element of B, we say 

that A is a subset of B, and write A c B, or B 3 A. If, in addition, there is an 
element of B which is not in A, then A is said to be a proper subset of B. Note 
that A c A for every set A. 

If A c B and B c A, we write A = B. Otherwise A # B. 

1.4 Definition Throughout Chap. 1 ,  the set of all rational numbers will be 
denoted by Q. 

ORDERED SETS 

1.5 Definition Let S be a set. An order on S is a relation, denoted by <, with 
the following two properties: 

(i) If x E S and y E S then one and only one of the statements 

X < Y ,  x = y ,  Y < x  
is true. 

(ii) If x, y ,  z E S, if x < y and y < z, then x < z. 
The statement " x  < y" may be read as "x is less than y" or " x  is smaller 

than y" or " x  precedes y". 
It is often convenient to write y > x in place of x < y.  
The notation x I y indicates that x < y or x = y ,  without specifying which 

of these two is to hold. In other words, x I y is the negation of x > y. 

1.6 Definition An ordered set is a set S in which an order is defined. 
For example, Q is an ordered set if r < s is defined to mean that s - r is a 

positive rational number. 

1.7 Definition Suppose S is an ordered set, and E c S. If there exists a 
p E S such that x I P for every x E E, we say that E is bounded above, and call 
p an upper bound of E. 

Lower bounds are defined in the same way (with 2 in place of I). 



4 PRINCIPLES OF MATHEMATICAL ANALYSIS 

1.8 Definition Suppose S is an ordered set, E c S, and E is bounded above. 
Suppose there exists an u E S with the following properties: 

(i) a is an upper bound of E. 
(ii) If y < u then y is not an upper bound of E. 

Then u is called the least upper bound of E [that there is at most one such 
u is clear from (ii)] or the supremum of E, and we write 

u = sup E. 

The greatest lower bound, or injimum, of a set E which is bounded below 
is defined in the same manner: The statement 

u = inf E 

means that a is a lower bound of E and that no f l  with f l  > a is a lower bound 
of E. 

1.9 Examples 

(a) Consider the sets A and B of Example 1.1 as subsets of the ordered 
set Q. The set A is bounded above. In fact, the upper bounds of A are 
exactly the members of B. Since B contains no smallest member, A has 
no least upper bound in Q. 

Similarly, B is bounded below: The set of all lower bounds of B 
consists of A and of all r E Q with r 0. Since A has no lasgest member, 
B has no greatest lower bound in Q. 
(b) If a = sup E exists, then a may or may not be a member of E. For 
instance, let El be the set of all r E Q with r < 0. Let E2 be the set of all 
r E Q with r 1 0 .  Then 

SUP El = SUP E2 = 0, 

a n d O # E l , 0 ~ E 2 .  
(c) Let E consist of all numbers I/n, where n = 1, 2, 3, . . . . Then 
sup E = 1, which is in E, and inf E = 0, which is not in E. 

1.10 Definition An ordered set S is said to have the least-upper-boundproperty 
if the following is true: 

If E c S, E is not empty, and E is bounded above, then sup E exists in S.  
Example 1.9(a) shows that Q does not have the least-upper-bound property. 
We shall now show that there is a close relation between greatest lower 

bounds and least upper bounds, and that every ordered set with the least-upper- 
bound property also has the greatest-lower-bound property. 
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1.11 Theorem Suppose S is an ordered set with the least-upper-bound property, 
B c S,  B is not empty, and B is bounded below. Let L be the set of all lower 
bounds of B. Then 

a = supL 
exists in S ,  and a = inf B. 

In particular, inf B exists in S. 

Proof Since B is bounded below, L is not empty. Since L consists of 
exactly those y E S which satisfy the inequality y 5 x for every x E B, we 
see that every x E B is an upper bound of L. Thus L is bounded above. 
Our hypothesis about S implies therefore that L has a supremum in S ;  
call it a. 

If y < a then (see Definition 1.8) y is not an upper bound of L, 
hence y $ B. It follows that a x for every x E B. Thus a EL.  

If a < /I then /I $ L, since a is an upper bound of L. 
We have shown that a E L  but /I $ L if /I > a. In other words, a 

is a lower bound of B, but P is not if 5 > a. This means that a = inf B. 

FIELDS 

1.12 Definition A jield is a set F with two operations, called addition and 
multiplication, which satisfy the following so-called "field axioms" (A), (M), 
and (D) : 

(A) Axioms for addition 

(Al) If x E F and y E F, then their sum x + y is in F. 
(A2) Addition is commutative: x + y = y + x for all x,  y E F. 
(A3) Addition is associative: ( x  + y) + z = x + ( y  + z) for all x ,  y, z E F. 
(A4) F contains an element 0 such that 0 + x = x for every x E F. 
(A5) To every x E F corresponds an element - X E  F such that 

(M) Axioms for multiplication 

(Ml) If x E F and y E F, then their product xy is in F. 
(M2) Multiplication is commutative: xy = yx for all x,  y E F. 
(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, z E F. 
(M4) F contains an element 1 # 0 such that l x  = x for every x E F. 
(M5) If x E F and x # 0 then there exists an element l l x  E F such that 







1.18 Proposition The following statements are true in every orderedJield. 

(a) I f x  > 0 then - x < 0, and vice versa. 
(b) I f x > O a n d y < z t h e n x y < x z .  
(c) I f x < O a n d y < z t h e n x y > x z .  
(d) I fx  # 0 then x2 > 0. In particular, 1 > 0. 
(e) I f0  < x < y then 0 < l/y < llx. 

Proof 
(a) I f x > O t h e n O =  - x + x >  -x+O,sotha t  -x<O.  I fx<Othen  
O =  - x + x <  - x +  0, so that - x > O .  This proves (a). 
(b) Since z > y, we have z - y > y - y = 0, hence x(z - y) > 0, and 
therefore 

xz = x(z - y) + xy > 0 + xy = xy. 

(c) By (a), (b), and Proposition 1.16(c), 

so that x(z - y) < 0, hence xz < xy. 
(d) If x > 0, part (ii) of Definition 1.17 gives x2 > 0. If x < 0, then 
- x > 0, hence (-x)' > 0. But x2 = (-x)', by Proposition 1.16(d). 
Since 1 = 12, 1 > 0 .  
(e) I fy  > 0 and v I 0, then yv I 0. But y . (lly) = 1 > 0. Hence I/y > 0. 
Likewise, Ilx > 0. If we multiply both sides of the inequality x < y by 
the positive quantity (l/x)(l/y), we obtain l/y < llx. 

THE REAL FIELD 

We now state the existence theorem which is the core of this chapter. 

1.19 Theorem There exists an orderedJield R which has the least-upper-bound 
property. 

Moreover, R contains Q as a subJield. 

The second statement means that Q c R and that the operations of 
addition and multiplication in R, when applied to members of Q, coincide with 
the usual operations on rational numbers; also, the positive rational numbers 
are positive elements of R. 

The members of R are called real numbers. 
The proof of Theorem 1.19 is rather long and a bit tedious and is therefore 

presented in an Appendix to Chap. 1. The proof actually constructs R from Q. 
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The next theorem could be extracted from this construction with very 
little extra effort. However, we prefer to derive it from Theorem 1.19 since this 
provides a good illustration of what one can do  with the least-upper-bound 
property. 

1.20 Theorem 

(a )  I f x  E R, y E R, and x > 0, then there is a positive integer n such that 

(b )  I f x  E R, j9 E R, and x < y, then there exists u p  E Q SUCII that x < p < y. 

Part (a) is usually referred to  as the archimedean property of R. Part (b)  
may be stated by saying that Q is dense in R :  Between any two real numbers 
there is a rational one. 

Proof 
(a)  Let A be the set of all nx, where n runs through the positive integers. 
If (a )  were false, then y would be an upper bound of A .  But then A has a 
least upper bound in R. Put a = sup A. Since x > 0, a - x < a,  and 
r - x is not an upper bound of A.  Hence r - x < mx for some positive 
integer m. But then a < ( m  + 1)x E A, which is impossible, since c i  is an 
upper bound of A. 
(6 )  Since s < y, we have y - x > 0 ,  and (a)  furnishes a positive integer 
n such that 

n(y - x )  > 1 .  

Apply (a) again, to  obtain positive integers m, and nz, such that m, > nx, 
m ,  > -nx.  Then 

Hence there is an integer m (with -m,  < m < m,) such that 

If we combine these inequalities, we obtain 

nx < m I 1 + nx < ny. 

Since n > 0, it follows that 

This proves (b),  with p = mln. 
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We shall now prove the existence of nth roots of positive reals. This 
proof will show how the difficulty pointed out in the Introduction (irration- 
ality of JZ) can be handled in R. 

1.21 Theorem For every real x > 0  and every integer n > 0  there is one 
and only one po~itive real y such that yn = x. 

This number y is written $ or xlln 

Proof That there is at most one such y is clear, since 0 < y, < y, implies 
fl < Y Z .  

Let E be the set consisting of all positive real numbers t such that 
t n < x. 

If t = x/( l  + x )  then O <  t < 1 .  Hence t n s t  < x. Thus t~ E, and 
E is not empty. 

If t > 1 + x then t n 2 t > x, so that t 4 E. Thus 1 + x is an upper 
bound of E. 

Hence Theorem 1.19 implies the existence of 

y = sup E. 

T o  prove that yn = x we will show that each of the inequalities yn < x 
and yn > x leads to a contradiction. 

The identity bn - an = (b - a)(bn-' + bn-'a + a + an- ') yields 
the inequality 

bn - a n < (b - a)nbn-' 

when 0  < a < b. 
Assume yn < x. Choose h so that 0  < h < 1 and 

x - yn 

h < 
n(y + I)"-' 

Put a = y, b = y + h. Then 

( y  + h)" - yn < hn(y + h)"-' < hn(y + I)"-' < x - yn. 

Thus ( y  + h)" < x,  and y + h E E. Since y + h > y, this contradicts the 
fact that y is an upper bound of E. 

Assume yn > x. Put 

y " - x  k = - .  
nyn-' 

Then 0  < k < y. If t 2 y - k ,  we conclude that 

Thus t n > x,  and t 4 E. It follows that y - k is an upper bound of E. 
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But y - k < y,  which contradicts the fact that y is the least upper bound 
of E. 

Hence yn = x ,  and the proof is complete. 

Corollary If a and b are positive real numbers and n is a positive integer, then 

(ab)l/n = al/nbl/n. 

Proof Put cr = a'/", P = blln. Then 

ab = crnPn = (up>", 

since multiplication is commutative. [Axiom (M2) in Definition 1.12.1 
The uniqueness assertion of Theorem 1.21 shows therefore that 

1.22 Decimals We conclude this section by pointing out the relation between 
real numbers and decimals. 

Let x > 0 be real. Let no be the largest integer such that no I x .  (Note that 
the existence of no depends on the archimedean property of R.) Having chosen 
no , n,, . . . , nk- , ,  let nk be the largest integer such that 

Let E be the set of these numbers 

Then x  = sup E. The decimal expansion of x  is 

(6)  no . n,n, n, . . a . 
Conversely, for any infinite decimal (6)  the set E of numbers ( 5 )  is bounded 

above, and (6)  is the decimal expansion of sup E. 
Since we shall never use decimals, we do  not enter into a detailed 

discussion. 

THE EXTENDED REAL NUMBER SYSTEM 

1.23 Definition The extended real number system consists of the real field R 
and two symbols, + co and - co. We preserve the original order in R,  and 
define 

- c o < x <  $00 

for every x E R.  
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I t  is then clear that + c~ is an upper bound of every subset of the extended 
real number system, and that every nonempty subset has a least upper bound. 
If, for example, E is a nonempty set of real numbers which is not bounded 
above in l t ,  then sup E = + c~ in the extended real number system. 

Exactly the same remarks apply to lower bounds. 

The extended real number system does not form a field, but it is customary 
to make the following conventions: 

(a) If x is real then 

(b) I f x > O t h e n x . ( + c O ) =  + c o , x . ( - a ) =  - a .  
(c) l f x < O t h e n x . ( + a ) =  - c o , x e ( - a ) =  +a. 

When it is desired to make the distinction between real numbers on the 
one hand and the symbols + c~ and - a on the other quite explicit, the former 
are called finite. 

THE COMPLEX FIELD 

1.24 Definition A complex number is an ordered pair (a, b) of real numbers. 
"Ordered" means that (a, b) and (b, a) are regarded as distinct if a # b. 

Let x = (a, b), y = (c, d) be two complex numbers. We write x = y if and 
only if a = c and b = d. (Note that this definition is not entirely superfluous; 
think of equality of rational numbers, represented as quotients of integers.) We 
define 

x + y = ( a + c , b + d ) ,  

xy = (ac - bd, ad + be). 

1.25 'Theorem These definitions of addition and multiplication turn the set of 
all complex numbers into afield, with (0,O) and (1 ,O)  in the role of 0 and 1. 

Proof We simply verify the field axioms, as listed in Definition 1.12. 
(Of course, we use the field structure of R.) 

Let x = (a, b), y = (c, d), z = (e, f ) .  
(Al) is clear. 
(A2) x + y = ( a + c , b + d ) = ( c + a , d + b ) = y + x .  



(A3)  ( x + y ) + z = ( a + c , b + d ) + ( e , f )  
= ( a + c + e , b + d + f )  
= ( a ,  b )  + (c + e , d +  f )  = x + ( y + z ) .  

( A 4 )  x+O=(a ,b )+(O,O)=(a ,b )=x .  
( A 5 )  Put - x =  (- a ,  -b). T h e n x +  ( - x )  = ( O , O )  = O .  
( M l )  isclear. 
( M 2 )  xy = (ac - bd, ad + bc) = (ca - db, da + cb) = yx. 
( M 3 )  (xy)z = (ac - bd, ad + bc)(e, f )  

= (ace - bde - adf - bcf, acf - bdf + ade + bce) 
= (a,  b)(ce - df,  cf + de) = x(yz). 

(M4)  l x = ( l , O ) ( a , b ) = ( a , b ) = x .  
( M 5 )  If x # 0 then (a,  b )  # (0, 0),  which means that at least one of the 
real numbers a, b is different from 0. Hence a' + b2 > 0 ,  by Proposition 
1.1 8(d), and we can define 

Then 

(Dl x ( y  + z )  = (a, b)(c + e,  d + f )  

= (ac - bd, ad + bc) + (ae - bf, af + be) 

= xy + xz.  

1.26 Theorem For any real nutnbers a and b we have 

(a,  0 )  + (b, 0 )  = (a + b, 0),  (a, O)(b, 0 )  = (ab, 0). 

The proof is trivial. 

Theorem 1.26 shows that the complex numbers of the form (a,  0 )  have the 
same arithmetic properties as the corresponding real numbers a. We can there- 
fore identify (a,  0 )  with a. This identification gives us the real field as a subfield 
of the complex field. 

The reader may have noticed that we have defined the complex numbers 
without any reference to the mysterious square root of - 1 .  We now show that 
the notation (a,  b )  is equivalent to the more customary a + bi. 



1.28 Theorem i 2 = - 1 .  

Proof i2 = (0, 1)(0, 1 )  = (- 1 , O )  = - 1 .  

1.29 Theorem I f a  and b are real, then (a,  b)  = a + bi. 

Proof 

a + bi = (a,  0 )  + (b,  0)(0, 1 )  

= (a,O) + (0,  b)  = ( a ,  b). 

1.30 Definition If a,  b are real and z = a + bi, then the complex number 
Z = a - bi is called the conjugate of z. The numbers a and b are the real part 
and the imaginary part of z ,  respectively. 

We shall occasionally write 

1.31 Theorem I ' z  and w are complex, then 
- 

(a)  z +  w = I +  W ,  - 
(b )  zw = . ? a  E, 

(c)  z + 5 = 2 Re(z),  z - Z = 2i Im(z),  
( d )  z5 is real and positive (except when z = 0) .  

Proof (a) ,  (b),  and (c) are quite trivial. To prove ( d ) ,  write z = a + bi, 
and note that z z  = a2 + b2. 

1.32 Definition If z is a complex number, its absolute value 1 zl is the non- 
negative square root of z5; that is, I z I = ( z ~ ) ' ~ ~ .  

The existence (and uniqueness) of ( z J  follows from Theorem 1.21 and 
part ( d )  of Theorem 1.3 1 .  

Note that when x is real, then .f = x,  hence ( x 1 =d7. Thus I x 1 = x 
i f x 2 0 ,  1x1 = - x i f , r  <O. 

1.33 Theorem Let z and w be complex numbers. Then 

(a) J z l  >Ounlessz=O,  101 = 0 ,  
(b) IF1 = IzI, 
( 4  Izwl = lzl Iwl: 
(d l  I R e z l l  l z l ,  
(e)  I z t  wI 5 I Z  t IwI. 



Proof (a) and (b) are trivial. Put z = a + bi, w = c + di, with a, b, c, d 
real. Then 

I z w J 2  =(ac - bd)2 + ( a d +  = ( a 2  + b2)(c2 + d 2 ) =  1 ~ 1 ~ 1 ~ ) ~  
or I zw 1 = ( J z I I w Now (c) follows from the uniqueness assertion of 
Theorem 1.21. 

To prove (d ) ,  note that a2 < a2 + b2,  hence 

la1 =\hi I Ja2  + b2. 

To prove (e), note that Tw is the conjugate of zw, so that zE + zw = 
2 Re (zE). Hence 

Now (e)  follows by taking square roots. 

1.34 Notation If x,, . . . , x, are complex numbers, we write 

We conclude this section with an important inequality, usually known as 
the Schwarz inequality. 

1.35 Theorem If a , ,  . . . , a, and b,, . . . , b, are complex numbers, then 

Proof Put A = Z I a, 1 2 ,  B = Z I bj ( 2 ,  C = Za, bj (in all sums in this proof, 
j runsover theva lues l ,  . . . ,  n). l f B = O , t h e n b , = . . .  = b , = O , a n d t h e  
conclusion is trivial. Assume therefore that B > 0. By Theorem 1.31 we 
have 

1 1 Ba, - Cb, 1 = 2 (Ba, - Cb,)(B?ij - Cbj )  

= B 2 x  )a,I2 - B ~ x a j b j - ~ C ~ a j b j +  I C 1 2 E  IbjI2 

= B ~ A  - B J  c12 
= B(AB - ( C 1 2 ) .  



Since each term in the first sum is nonnegative, we see that 

B(AB- ICI2) 2 0 .  

Since B > 0, it follows that AB - I C /  2 0. This is the desired inequality. 

EUCLIDEAN SPACES 

1.36 Definitions For each positive integer k, let Rk be the set of all ordered 
k-tuples 

= (XI, X2, .  e . 7  xk), 

where x,, . . . , xk are real numbers, called the coordinates of x. The elements of 
Rk are called points, or vectors, especially when k > 1. We shall denote vectors 
by boldfaced letters. If y = (y,, . . . , y,) and if cc is a real number, put 

so that x + y E R~ and ax E Rk. This defines addition of vectors, as well as 
multiplication of a vector by a real number (a scalar). These two operations 
satisfy the commutative, associative, and distributive laws (the proof is trivial, 
in view of the analogous laws for the real numbers) and make Rk into a vector 
space over the realjeld. The zero element of Rk (sometimes called the origin or 
the null vector) is the point 0, all of whose coordinates are 0. 

We also define the so-called "inner product" (or scalar product) of x and 
Y by 

- - 
and the norm of x by 

The structure now defined (the vector space Rk with the above inner 
product and norm) is called euclidean k-space. 

1.37 Theorem Suppose x, y, z E Rk, and a is real. Then 

(a) 1x1 2 0 ;  
(b) 1x1 =Oifandonly i fx=O;  
( 4  lax1 = la1 1x1; 
( 4  Ix.yI 1x1 I Y I ;  
(el lx + Y I  5 1x1 + I Y I ;  
(f) Ix-zls lx-YI fly-zl. 



Proof (a), (b), and (c) are obvious, and (d) is an immediate consequence 
of the Schwarz inequality. By (d) we have 

so that (e) is proved. Finally, (f) follows from (e) if we replace x by 
x - y and y by y - z. 

1.38 Remarks Theorem 1.37 (a), (b), and (f) will allow us (see Chap. 2) to 
regard Rk as a metric space. 

R1 (the set of all real numbers) is usually called the line, or the real line. 
Likewise, R' is called the plane, or the complex plane (compare Definitions 1.24 
and 1.36). In these two cases the norm is just the absolute value of the corre- 
sponding real or complex number. 

APPENDIX 

Theorem 1.19 will be proved in this appendix by constructing R from Q. We 
shall divide the construction into several steps. 

Step 1 The members of R will be certain subsets of Q, called cuts. A cut is, 
by definition, any set a c Q with the following three properties. 

(I) a is not empty, and a # Q. 
(11) If p E a, q E Q, and q < p, then q E a. 

(111) If p E a, then p < r for some r E a. 

The letters p, q, r, . . . will always denote rational numbers, and a, fl, y ,  . . . 
will denote cuts. 

Note that (111) simply says that a has no largest member: (11) implies two 
facts which will be used freely: 

I f p ~ a a n d q # a  thenp<q .  
If r $ a  and r < s  t hens#a .  

Step 2 Define "a < P" to mean: a is a proper subset of fl. 
Let us check that this meets the requirements of Definition 1.5. 
If a < fl and fl < y it is clear that a < y. (A proper subset of a proper sub- 

set is a proper subset.) It is also clear that at most one of the three relations 



can hold for any pair a,  P. To show that at least one holds, assume that the 
first two fail. Then ci is not a subset of P. Hence there is a p E ci with p 4 P. 
If q E p, it follows that q < p (since p 4 P), hence q E ci, by (11). Thus P c a. 
Since p # a,  we conclude: P < a. 

Thus R is now an ordered set. 

Step 3 The ordered set R has the least-upper-bound property. 
To prove this, let A be a nonempty subset of R, and assume that P E R 

is an upper bound of A. Define y to be the union of all ci E A. In other words, 
p E y if and only if p E LY for some ci E A. We shall prove that y E R and that 
y = sup A. 

Since A is not empty, there exists an a ,  E A. This a ,  is not empty. Since 
a ,  c y,  y is not empty. Next, y c /? (since cx c P for every ci E A), and therefore 
y # Q. Thus y satisfies property (I). To prove (11) and (111), pick p E y. Then 
p E a1 for some cil E A. If q < p, then q E c i l ,  hence q E y; this proves (11). I f  
r E a1 is SO chosen that r > p, we see that r E y (since ci, c y), and therefore y 
satisfies (111). 

Thus y E R. 
It is clear that ci I y for every ci E A. 
Suppose 6 < y. Then there is an s E y and that s 4 6. Since s E y, s E ci 

for some ci E A. Hence 6 < ci, and 6 is not an upper bound of A. 
This gives the desired result: y = sup A. 

Step 4 If ci E R and P E R we define ci + P to be the set of all sums r + s ,  where 
r E c i  a n d s ~ p .  

We define 0* to be the set of all negative rational numbers. It is clear that 
0* is a cut. We verijj that the axioms for addition (see Definition 1.12) hold in 
R, with 0* playing the role of 0. 

(Al) We have to show that ci + P is a cut. It is clear that ci + P is a 
nonempty subset of Q. Take r' 4 ci, s' 4 P. Then r' + s' > r + s for all 
choices of r E ci, s E P. Thus r' + S' 4 ci + P. It follows that ci + P has 
property (I). 

Pick p E ci + P. Then p = r + s ,  with r E ci, s E P. If q < p, then 
q - s < r ,  so q - s E ci, and q = (q - s )  + s E ci + p. Thus (11) holds. 
Choose t E ci so that t > r .  Then p < t + s and t + s E ci + p. Thus (111) 
holds. 
(A2) ci + P is the set of all r + s ,  with r E ci, s E P. By the same definition, 
p + ci is the set of all s + r .  Since r + s = s + r for all r E Q, s E Q ,  we 
have ci + p = P + a. 
(A3) As above, this follows from the associative law in Q. 
(A4) If r E ci and s E 0*, then r + s < r,  hence r + s E ci. Thus ci + 0* c ci. 
To obtain the opposite inclusion, pick p E a ,  and pick r E a,  r > p. Then 



p - ~ E O * ,  a n d p = r + ( p - r ) ~ u + O * .  Thus u c u + O * .  We conclude 
that a + 0* = a. 
(A5) Fix a E R. Let P be the set of all p with the following property: 

There exists r > 0 such that -p - r $ a. 

In other words, some rational number smaller than -p fails to 
be in u. 

We show that p E R and that a + p = O*. 
I f s $ a  a n d p  = -s - 1, then -p - 1 $a ,  h e n c e p ~ p .  So p i s  not 

empty. If q E a ,  then -q $ P. So P # Q. Hence P satisfies (I). 
Pick p E P, and pick r > 0, so that -p - r $ u. If q < p, then 

-q - r > -p - r, hence -q - r $ u. Thus q E P, and (11) holds. Put 
t = p +(r/2). Then t > p, and - t - (r/2) = -p - r $ u, so that t E P. 
Hence satisfies (111). 

We have proved that P E R. 
If r E u and s E 1, then --s $ a, hence r < -s, r + s < 0. Thus 

a + p c O*. 
To prove the opposite inclusion, pick v E O*, put w = -v/2. Then 

w > 0, and there is an integer n such that nw E u but (n + l)w $a .  (Note 
that this depends on the fact that Q has the archimedean property!) Put 
p = -(n + 2)w. Then p E P, since -p - w $ a, and 

v = n w + p ~ a + p .  
Thus 0* c ci + P. 

We conclude that u + P = O*. 
This P will of course be denoted by -u. 

Step 5 Having proved that the addition defined in Step 4 satisfies Axioms (A) 
of Definition 1.12, it follows that Proposition 1.14 is valid in R, and we can 
prove one of the requirements of Definition 1 .I 7: 

If a, 1, y E R and p < y ,  then u + p < u + y .  

Indeed, it is obvious from the definition of + in R that u + P c a + y; if 
we had u + 1 = u + y, the cancellation law (Proposition 1.14) would imply 
P = r .  

It also follows that u > 0* if and only if -u < O*. 

Step 6 Multiplication is a little more bothersome than addition in the present 
context, since products of negative rationals are positive. For this reason we 
confine ourselves first to R f ,  the set of all a E R with ci > O*. 

If u E R+ and E R+, we define ap to be the set of all p such that p 5 r-s 
for some choice of r E a,  s E P, r > 0, s > 0. 

We define l* to be the set of all q < 1. 
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Then the axioms ( M )  and ( D )  of Definition 1.12 hold, with R' in place of F, 
and with l* in the role of 1. 

The proofs are so similar to  the ones given in detail in Step 4 that we omit 
them. 

Note, in particular, that the second requirement of Definition 1.17 holds: 
If a > O* and p > 0* then up > O*. 

Step 7 We complete the definition of multiplication by setting NO* = O*u = O*, 
and by setting 

( - ) (  if u < 0*, P < O*, 

-[(-u)P] i f u < O * , P > O * ,  

- [u . ( -P)]  if u > 0*, f l  < O*. 

The products on the right were defined in Step 6 .  
Having proved (in Step 6 )  that the axioms (M) hold in R', it is now 

perfectly simple to prove them in R ,  by repeated application of the identity 
y = - ( - y )  which is part of Proposition 1.14. (See Step 5 . )  

The proof of the distributive law 

breaks into cases. For instance, suppose u > 0*, P < 0*, P + y > O*. Then 
y = (P + y) + ( -P) ,  and (since we already know that the distributive law holds 
in R') 

uy = u(P + y) + u . ( - P ) .  

But u - ( - P )  = -(up). Thus 

up + ay = u(p + y). 

The other cases are handled in the same way. 
W e  have now conzplered the proof that R is an orderedfield with the least- 

upper-bound property. 

Step 8 We associate with each r E Q the set r* which consists of all p E Q 
such that p < r. It is clear that each r* is a cut; that is, r* E R.  These cuts satisfy 
the following relations: 

(a) r* + s* = (r +s)* ,  
(b) r *s* = (rs)*, 
(c)  r* < s *  i fandonly  i f r  < s .  

To prove (a) ,  choose p E r* + s*. Then p = u + u,  where u < r, u < s. 
Hence p < r + s,  which says that p E (r + s)*. 
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Conversely, suppose p E ( r  + s)*. Then p < r + s. Choose t so that 
2 t = r + s - p , p u t  

r t = r - t , s l = s - t .  

Then r' E r*,  s f  ES* ,  and p = r' + s t ,  so that p E r* + s*. 
This proves (a). The proof of (b)  is similar. 
If r < s then r E s*, but r # r*;  hence r* < s*. 
If r* < s*, then there is a p E S* such that p # r*. Hence r 5 p < s, so 

that r < s. 
This proves (c). 

Step 9 We saw in Step 8 that the replacement of the rational numbers r by the 
corresponding "rational cuts" r* E R preserves sums, products, and order. This 
fact may be expressed by saying that the ordered field Q is isomorphic to the 
ordered field Q* whose elements are the rational cuts. Of course, r* is by no 
means the same as r, but the properties we are concerned with (arithmetic and 
order) are the same in the two fields. 

It is this identification of Q with Q* which allows us to regard Q as a 
subfield of R. 

The second part of Theorem 1.19 is to be understood in terms of this 
identification. Note that the same phenomenon occurs when the real numbers 
are regarded as a subfield of the complex field, and it also occurs at a much 
more elementary level, when the integers are identified with a certain subset of Q. 

It is a fact, which we will not prove here, that any two orderedfields with 
the least-upper-bound property are isomorphic. The first part of Theorem 1.19 
therefore characterizes the real field R completely. 

The books by Landau and Thurston cited in the Bibliography are entirely 
devoted to number systems. Chapter 1 of Knopp's book contains a more 
leisurely description of how R can be obtained from Q. Another construction, 
in which each real number is defined to be an equivalence class of Cauchy 
sequences of rational numbers (see Chap. 3), is carried out in Sec. 5 of the book 
by Hewitt and Stromberg. 

The cuts in Q which we used here were invented by Dedekind. The 
construction of R from Q by means of Cauchy sequences is due to Cantor. 
Both Cantor and Dedekind published their constructions in 1872. 

EXERCISES 

Unless the contrary is explicitly stated, all numbers that are mentioned in these exer- 
cises are understood to be real. 

1. If r is rational (r # 0) and x is irrational, prove that r + x and rx are irrational. 





Prove that z2 = w if v 2 0 and that (1)2 = w if v 1 0 .  Conclude that every complex 
number (with one exception!) has two complex square roots. 

11. If z  is a complex number, prove that there exists an r 2 0 and a complex number 
w with I wl = 1 such that z = rw. Are w  and r always uniquely determined by z?  

12. If z,, . . . , z. are complex, prove that 

I z l + z z + . - . + z " I  I lz,I + Izz) +...+ 1z.I. 

13. If x, y  are complex, prove that 

11x1 - lull 1 l x - u l .  

14. If z  is a complex number such that Izl = 1, that is, such that z i  = 1, compute 

( 1  + z J 2 +  11 -21'. 

15. Under what conditions does equality hold in the Schwarz inequality? 
16. S u p p o s e k > 3 , x , y ~ R ~ ,  I x - y (  =d>O,andr>O.  Prove: 

(a) If 2r > d, there are infinitely many z E Rk such that 

(6)  If 2r = d, there is exactly one such z. 
(c) If 2r < d, there is no such z. 
How must these statements be modified if k is 2  or 1 ? 

17. Prove that 

I X + Y I ~ + I X - Y I ~  = 2 1 ~ 1 ~ + 2 1 ~ 1 ~  

if X E  Rk and y  E Rk. Interpret this geometrically, as a statement about parallel- 
ograms. 

18. If k 2 2  and x  E Rk, prove that there exists y  E Rk such that y # 0 but x  y  = 0. 
Is this also true if k = 1  ? 

19. Suppose a  E Rk, b  E Rk. Find c E Rk and r  > 0 such that 

Ix -a1 =21x-bJ 

if and only if ( x  - cJ = r. 
(Solution: 3c = 4b - a, 3r = 2  1 b  - a  1 .) 

20. With reference to the Appendix, suppose that property (111) were omitted from the 
definition of a cut. Keep the same definitions of order and addition. Show that 
the resulting ordered set has the least-upper-bound property, that addition satisfies 
axioms (Al) to (A4) (with a slightly different zero-element!) but that (AS) fails. 
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BASIC TOPOLOGY 

FINITE, COUNTABLE, AND UNCOUNTABLE SETS 

We begin this section with a definition of the function concept. 

2.1 Definition Consider two sets A and B, whose elements may be any objects 
whatsoever, and suppose that with each element x of A there is associated, in 
some manner, an element of B, which we denote by f ( x ) .  Then f is said to be a 
function from A to B (or a mapping of A into B). The set A is called the domain 
o f f  (we also sayf  is defined on A),  and the elements f ( x )  are called the values 
off. The set of all values off is called the range off. 

2.2 Definition Let A and B be two sets and let f be a mapping of A into B. 
If E c A, f ( E )  is defined to be the set of all elements f ( x ) ,  for x E E. We call 
f ( E )  the image of E under f. In this notation, f ( A )  is the range off. It is clear 
that f ( A )  c B. Iff ( A )  = B, we say that f'maps A onto B. (Note that, according 
to this usage, onto is more specific than into.) 

If E c B, f - '(E) denotes the set of all x E A such that f ( x )  E E. We call 
f -' ( E )  the inverse image of E under f. If y E B, f - ' ( , y )  is the set of all x E A 



such that f(x) = y. If, for each y E B, f - ' ( y )  consists of at most one element 
of A, then f is said to be a 1-1 (one-to-one) mapping of A into B. This may 
also be expressed as follows: f is a 1-1 mapping of A into B provided that 
f(xl)  # f(x,) whenever x, # x,,  x, E A, x, E A .  

(The notation x, # x, means that x, and x, are distinct elements; other- 
wise we write x, = x, .) 

2.3 Definition If there exists a 1-1 mapping of A onto B, we say that A and B 
can be put in 1-1 correspondence, or that A and B have the same cardinal number, 
or, briefly, that A and B are equivalent, and we write A - B. This relation 
clearly has the following properties : 

I t  is reflexive: A - A. 
It is symmetric: If A - B, then B - A. 
It  is transitive: If A - B and B - C, then A - C. 

Any relation with these three properties is called an equivalence relation. 

2.4 Definition For any positive integer n, let J, be the set whose elements are 
the integers 1, 2, . . . , n ;  let J be the set consisting of all positive integers. For any 
set A, we say: 

(a) A isjinite if A - J, for some n (the empty set is also considered to be 
finite). 

(b) A is infinite if A is not finite. 

(c) A is coutitable if A - J .  

(d) A is uncountable if A is neither finite nor countable. 

(e) A is a t  most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 
For two finite sets A and B, we evidently have A - B if and only ifA and 

B contain the same number of elements. For infinite sets, however, the idea of 
"having the same number of elements" becomes quite vague, whereas the notion 
of 1-1 correspondence retains its clarity. 

2.5 Example Let A be the set of all integers. Then A is countable. For, 
consider the following arrangement of the sets A and J :  
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We can, in this example, even give an explicit formula for a function f 
from J to A which sets up a 1- 1 correspondence: 

(11 even), 
I' I ( n )  = - 

(n odd). 

2.6 Remark A finite set cannot be equivalent to one of its proper subsets. 
That this is, however, possible for infinite sets, is shown by Example 2.5, in 
which J is a proper subset of A .  

In fact, we could replace Definition 2.4(b) by the statement: A is infinite if 
A is equivalent to one of its proper subsets. 

2.7 Definition By a sequence, we mean a function f defined on the set J of all 
positive integers. Iff (n) = x , ,  for n E J ,  it is customary to denote the sequence 
f by the symbol {x, ) ,  or sometimes by x,, x , ,  x , ,  . . . . The values off, that is, 
the elements x , ,  are called the terms of the sequence. If A is a set and if x, E A 
for all n E J, then {x,) is said to be a sequence in A ,  or a sequence of elements of A. 

Note that the terms x,, x ,  , x ,  , . . . of a sequence need not be distinct. 
Since every countable set is the range of a 1-1 function defined on J, we 

may regard every countable set as the range of a sequence of distinct terms. 
Speaking more loosely, we may say that the elements of any countable set can 
be "arranged in a sequence." 

Sometimes it is convenient to replace J in this definition by the set of all 
nonnegative integers, i.e., to start with 0 rather than with 1. 

2.8 Theorem Every infinite subset of a countable set A is co~mtable. 

Proof Suppose E c A,  and E is infinite. Arrange the elements x of A in 
a sequence {x, )  of distinct elements. Construct a sequence {n,) as follows: 

Let n, be the smallest positive integer such that x,, E E. Having 
chosen n,, . . . , nk- ,  ( k  = 2, 3,  4,  . . .), let n, be the smallest integer greater 
than nk- ,  such that x,,, E E. 

Putting f ( k )  = x,, ( k  = 1, 2, 3, . . .), we obtain a 1-1 correspondence 
between E and J. 

The theorem shows that, roughly speaking, countable sets represent 
the "smallest" infinity: No uncountable set can be a subset of a countable 
set. 

2.9 Definition Let A and fl be sets, and suppose that with each element a of 
A there is associated a subset of fl which we denote by E,. 



The set whose elements are the sets Ea will be denoted by {E,} .  Instead 
of speaking of sets of sets, we shall sometimes speak of a collection of sets, or 
a family of sets. 

The union of the sets Ea is defined to be the set S such that x E S if and only 
if x E Ea for at least one a E A .  We use the notation 

If A consists of the integers 1, 2, . . . , n, one usually writes 

If A is the set of all positive integers, the usual notation is 

The symbol co in ( 4 )  merely indicates that the union of a countable col- 
lection of sets is taken, and should not be confused with the symbols + co, - co, 
introduced in Definition 1.23. 

The intersection of the sets Ea is defined to be the set P such that x E P if 
and only if x E Ea for every a E A. We use the notation 

n 

P =  0 E , , = E ,  n E, n * . .  n E,,, 
m =  1 

as for unions. If A n B is not empty, we say that A and B intersect; otherwise 
they are disjoint. 

2.10 Examples 

( a )  Suppose El consists of 1. 2, 3 and E, consists of 2, 3, 4. Then 
El u E, consists of 1 ,  2, 3, 4,  whereas El n E2 consists of 2, 3. 





2.12 Theorem Let {E,), n = 1,_2, 3, . . . , be a sequence of countable sets, andput 

(15) 

Then S is countable. 

Proof Let every set En be arranged in a sequence {x,,), k = 1 ,  2, 3, . . . , 
and consider the infinite array 

in which the elements of En form the nth row. The array contains all 
elements of S .  As indicated by the arrows, these elements can be 
arranged in a sequence 

If any two of the sets En have elements in common, these will appear more 
than once in (17). Hence there is a subset T of the set of all positive 
integers such that S - T ,  which shows that S is at  most countable 
(Theorem 2.8). Since El c S ,  and E ,  is infinite, S is infinite, and thus 
countable. 

Corollary Suppose A is at most countable, and, for every a G A ,  Ba is at most 
co~intable. Put 

T = U B,. 
a e A  

Then T is nt most countable. 
For T is equivalent to  a subset of (15). 

2.13 Theorem Let A be a countable set, and let B, be the set of all n-tuples 
(a,, . . . , a,), wlzerr a, E A (k = 1, . . . , tz) ,  and the elements a,, . . . , a, need not be 
distinct. Tlien B, is countable. 

Proof That B, is countable is evident, since B,  = A .  Suppose B,-, is 
countable (n = 2, 3, 4. . . .). The elements of B, are of the form 

For every fixed b, the set of pairs (b,  a )  is equivalent to A,  and hence 
countable. Thus B, is the union of a countable set of countable sets. By 
Theorem 2.12, B, is countable. 

The theorem follows by induction. 
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Corollary The set of all rational numbers is countable. 

Proof We apply Theorem 2.13, with n = 2, noting that every rational r 
is of the form bla, where a and b are integers. The set of pairs (a, b), and 
therefore the set of fractions bla, is countable. 

In fact, even the set of all algebraic numbers is countable (see Exer- 
cise 2). 

That not all infinite sets are, however, countable, is shown by the next 
theorem. 

2.14 Theorem Let A be the set of all sequences whose elements are the digits 0 
and 1. This set A is uncountable. 

The elements of A are sequences like 1, 0, 0, 1, 0, 1, 1, 1, . . . . 

Proof Let E be a countable subset of A ,  and let E consist of the se- 
quences s,, s , ,  s , ,  . . . . We construct a sequence s as follows. If the nth 
digit in s, is 1, we let the nth digit of s be 0, and vice versa. Then the 
sequence s differs from every member of E in at least one place; hence 
s @ E. But clearly s E A ,  so that E is a proper subset of A .  

We have shown that every countable subset of A is a proper subset 
of A .  It follows that A is uncountable (for otherwise A would be a proper 
subset of A ,  which is absurd). 

The idea of the above proof was first used by Cantor, and is called Cantor's 
diagonal process; for, if the sequences s,, s, , s, ,  . . . are placed in an array like 
(1 6), it is the elements on the diagonal which are involved in the construction of 
the new sequence. 

Readers who are familiar with the binary representation of the real 
numbers (base 2 instead of 10) will notice that Theorem 2.14 implies that the 
set of all real numbers is uncountable. We shall give a second proof of this 
fact in Theorem 2.43. 

METRIC SPACES 

2.15 Definition A set X, whose elements we shall call points, is said to be a 
metric space if with any two points p and q of X there is associated a real 
number d(p, q), called the distance from p to q, such that 

Any function with these three properties is called a distance function, or 
a metric. 



2.16 Examples The most important examples of metric spaces, from our 
standpoint, are the euclidean spaces Rk, especially R' (the real line) and R2 (the 
complex plane); the distance in Rk is defined by 

By Theorem 1.37, the conditions of Definition 2.1 5 are satisfied by (19). 
I t  is important to observe that every subset Y of a metric space X is a metric 

space in its own right, with the same distance function. For it is clear that if 
conditions (a) to (c) of Definition 2.15 hold for p ,  q, r E X, they also hold if we 
restrict p,  q. r to lie in Y. 

Thus every subset of a euclidean space is a metric space. Other examples 
are the spaces W(K)  and Y2@), which are discussed in Chaps. 7 and 11, respec- 
tively. 

2.17 Definition By the segment (a, b) we mean the set of all real numbers x 
such that a < x < b. 

By the interval [a. b] we mean the set of all real numbers x such that 
a ~ x s b .  

Occasionally we shall also encounter "half-open intervals" [a, b) and (a, b] ; 
the first consists of all x such that a j x < b, the second of all x such that 
a < x s b .  

If a ,  < b, for i = 1 ,  . . . , k, the set of all points x = (x,, . . . , x,) in Rk whose 
coordinates satisfy the inequalities a i  5 x i  I bi (1 2 i k) is called a k-cell. 
Thus a 1-cell is an interval, a 2-cell is a rectangle, etc. 

If x E Rk and r > 0. the open (or closed) ball B with center at x and radius r 
i s d e f i i ~ e d t ~ b e t h e s e t o f a l l ~ ~ ~ ~ ~ u c h t h a t  l y - x / < r ( o r  l y - x J ~ r ) .  

We call a set E c Rk convex if 

whenever X E E ,  ~ E E ,  and O < A <  1. 
For example, balls are convex. For if 1 y - x ( < r, 1 z - x 1 < r, and 

0 < i. < 1, we have 

The same proof applies to closed balls. It is also easy to see that k-cells are 
convex. 



2.18 Definition Let X be a metric space. All points and sets mentioned below 
are understood to be elements and subsets of X. 

(a) A neighborhood of p is a set Nr(p) consisting of all q such that 
d(p, q )  < r , for some r > 0. The number r is called the radius of Nr(p). 

(b )  A point p is a limit point of the set E if every neighborhood of p 
contains a point q # p such that q E E. 

(c)  If p E E and p is not a limit point of E, then p is called an isolated 
point of E. 

( d )  E is closed if every limit point of E is a point of E. 
(e) A point p is an interior point of E if there is a neighborhood N o f p  

such that N c E. 
( f )  E is open if every point of E is an interior point of E. 
( g )  The complement of E (denoted by Ec) is the set of all points p E X 

such that p # E.  
(h) E is perfect if E is closed and if every point of E is a limit point 

of E. 
( i )  E is bounded if there is a real number M and a point q E X such that 

d(p, q )  < M for all p E E. 
( j )  E is dense in X if every point of X is a limit point of E, or a point of 

E (or both). 

Let us note that in R1 neighborhoods are segments, whereas in RZ neigh- 
borhoods are interiors of circles. 

2.19 Theorem Every neighborhood is un open set. 

Proof Consider a neighborhood E = Nr(p), and let q be any point of E. 
Then there is a positive real number h such that 

For all points s such that d(q, s )  < h, we have then 

so that s E E. Thus q is an interior point of E. 

2.20 Theorem If p is a limit point of a set E, then every neighborhood of p 
contains infinitely many points of E. 

Proof Suppose there is a neighborhood N of p which contains only a 
finite number of points of E. Let q,, . . . , q, be those points of N n E, 
which are distinct from p, and put 

r = min d(p, qm) 
I S m S n  



[we use this notation to denote the smallest of the numbers d(p, q,) ,  . . . , 
d(p ,  q,)]. The minimum of a finite set of positive numbers is clearly posi- 
tive, so that r > 0 .  

The neighborhood N,(p) contains no point q of E such that q # p, 
so that p is not a limit point of E. This contradiction establishes the 
theorem. 

Corollary A finite point set has no limit points. 

2.21 Examples Let us consider the following subsets of R2 : 

(a) The set of all complex z  such that I z  1 < 1 .  
(6)  The set of all complex z  such that I z l  < 1. 
(c)  A nonempty finite set. 
( d )  The set of all integers. 
(e)  The set consisting of the numbers l / n  (n = 1 ,  2, 3, . . .). Let us note 
that this set E has a limit point (namely, z  = 0 )  but that no point of E is 
a limit point of E ;  we wish to stress the difference between having a limit 
point and containing one. 
( f )  The set of all complex numbers (that is, R2).  
( g )  The segment (a ,  b).  

Let us note that (d ) ,  (e) ,  ( g )  can be regarded also as subsets of R'. 
Some properties of these sets are tabulated below: 

Closed Open Perfect Bounded 
(a )  No Yes No Yes 
(b) Yes No Yes Yes 
( c )  Yes No No Yes 
( 4  Yes No No No 
( 4  No No No Yes 
( f )  Yes Yes Yes No 
( 9 )  No No Yes 

In (g ) ,  we left the second entry blank. The reason is that the segment 
(a,  b )  is not open if we regard it as a subset of R Z,  but it is an open subset of R'. 

2.22 Theorem Let {Em) be a (finite or infnite) collection of sets Ea . Then 

Proof Let A and B be the left and right members of (20). If x E A, then 
x 4 UPI Ea,  hence x 4 Ea for any a, hence x E E,'for every a, so that x E n E: . 
Thus A c B. 
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Conversely, if x E B, then x E E,' for every a,  hence x $ E, for any a, 
hence x $ U, E, , so that x E ( U ,  Em)'. Thus B c A.  

It follows that A = B. 

2.23 Theorem A set E is open if and only if its complement is closed. 

Proof First, suppose Ec is closed. Choose x E E. Then x + Ec, and x is 
not a limit point of Ec. Hence there exists a neighborhood N of x such 
that Ec n N is empty, that is, N c E. Thus x is an interior point of E, 
and E is open. 

Next, suppose E is open. Let x be a limit point of Ec. Then every 
neighborhood of x contains a point of Ec, so that x is not an interior point 
of E. Since E is open, this means that x E Ec. It follows that Ec is closed. 

Corollary A set F is closed if and only if its complement is open. 

2.24 Theorem 

(a)  For any collection {Gal of open sets, u, G, is open. 
(b) For any collectiorz {Fa) of closed sets, 0, Fa is closed. 
( c )  For anyfinite collection G I ,  . . . , G, of open sets, G,  is open. 
( d )  For anyfinite collection Fl,  . . . , Fn of closed sets, Uy= Fi is closed. 

Proof Put G = U, G,. If x E G, then x E G, for some a. Since x is an 
interior point of G,, x is also an interior point of G, and G is open. This 
proves (a). 

By Theorem 2.22, 

and F,' is open, by Theorem 2.23. Hence (a) implies that (21) is open so 
that 0, Fa is closed. 

Next, put H = f l y = ,  G, . For any x E H, there exist neighborhoods 
N i  of x, with radii r i ,  such that N ,  c G,  ( i  = 1, . . . ,  n). Put 

r = min (r l ,  . . . , rn), 

and let N be the neighborhood of x of radius r. Then N c Gi  for i = 1, 
. . . , n, so that N c H, and H i s  open. 

By taking complements, ( d )  follows from (c):  
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2.25 Examples In parts (c)  and ( d )  of the preceding theorem, the finiteness of 

the collections is essential. For let G, be the segment - -, - ( n  = 1, 2,  3, . . .). ( : :) 
Then G, is an open subset of R1. Put G = r),"=, G, . Then G consists of a single 
point (namely, x = 0) and is therefore not an open subset of R1. 

Thus the intersection of an infinite collection of open sets need not be open. 
Similarly, the union of an infinite collection of closed sets need not be closed. 

2.26 Definition If X is a metric space, if E c X, and if E' denotes the set of 
all limit points of E in X,  then the closure of E is the set E = E u E'. 

2.27 Theorem I f  X is a metric space and E c X,  then 

(a )  E is closed, 
(b)  E = E if and only if E is closed, 
(c )  E c F for every closed set F c X such that E c F, 

By (a)  and (c) ,  E IS the smallest closed subset of X that contains E. 

Proof 
(a)  Ifp E X and p $ E thenp is neither a point of E nor a limit point of E. 
Hence p has a neighborhood which does not intersect E. The complement 
of E is therefore open. Hence E is closed. 
(b)  If E = E ,  (a) implies that E is closed. If E is closed, then E' c E 
[by Definitions 2.18(d) and 2.261, hence E = E. 
(c)  If F is closed and F 3 E, then F 3 F', hence F 3 E'. Thus F 3 E .  

2.28 Theorem Let E be a nonempty set of real numbers which is bounded above. 
Let y = sup E. Then y E E .  Hence y E E i f E  is closed. 

Compare this with the examples in Sec. 1.9. 

Proof If y E E then y E E.  Assume y $ E. For every h > 0 there exists 
then a point x E E such that y - I1 < x < y ,  for otherwise y - h would be 
an upper bound of E. Thus g is a limit point of E. Hence y E E .  

2.29 Remark Suppose E c Y c X, where X i s  a metric space. To say that E 
is an open subset of X means that to each point p E E there is associated a 
positive number r such that the conditions d(p, q )  < r, q E X imply that q E E. 
But we have already observed (Sec. 2.16) that Y is also a metric space, so that 
our definitions may equally well be made within Y. To be quite explicit, let us 
say that E is open relative to Y if to each p E E there is associated an r > 0 such 
that q E E whenever d(p, q )  < r and q E Y. Example 2.21(g) showed that a set 
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2.39 Theorem Let k be a positive integer. I f  {I,) is a sequence of k-cells such 
that I, 2 In+,(n = 1, 2, 3, . . .), then ny I, is not empty. 

Proof Let In consist of all points x = (x,, . . . , x,) such that 

and put Inpj = [an,j, b,,,]. For each j, the sequence {I,,,) satisfies the 
hypotheses of Theorem 2.38. Hence there are real numbers xT(1 < j < k) 
such that 

anPj <xy < bnSj (1 < j  < k ;  n = 1, 2, 3, . . .). 

Setting x* = (xr, . . . , x:), we see that x* E In for n = 1, 2, 3, . . . . The 
theorem follows. 

2.40 Theorem Every k-cell is compact. 

Proof Let I be a k-cell, consisting of all points x = (x,, . . . , x,) such 
that a, <xi < bj (1 < j < k). Put 

Then I x -  yI < 6 ,  i f x ~ I , y ~ I .  
Suppose, to get a contradiction, that there exists an open cover {G,) 

of I which contains no finite subcover of I .  Put c, = (aj + bj)/2. The 
intervals [aj, c,] and [c,, bj] then determine 2k k-cells Qi whose union is I. 
At least one of these sets Q , ,  call it I,, cannot be covered by any finite 
subcollection of {G,) (otherwise I could be so covered). We next subdivide 
I, and continue the process. We obtain a sequence {I,) with the following 
properties : 

(a) I I I ~ I I ~ I I ~ I . . . ;  
(b) In is not covered by any finite subcollection of {G,); 
(c) i f x ~ I , a n d y ~ I , , , t h e n  Ix -yI  12-"6. 

By (a) and Theorem 2.39, there is a point x* which lies in every I,. 
For some a, x* E G,. Since G, is open, there exists r > 0 such that 

1 y - x* I < r implies that y E G,. If n is so large that 2-"6 < r (there is 
such an n, for otherwise 2" < 6 / r  for all positive integers n, which is 
absurd since R is archimedean), then (c) implies that I, c G,, which con- 
tradicts (b). 

This completes the proof. 

The equivalence of (a) and (b) in the next theorem is known as the Heine- 
Bore1 theorem. 



2.41 Theorem I fa  set E in Rk has one of the following three properties, then it 
has the other two: 

(a) E is closed and bounded. 
(b) E is compact. 

(c) Every infinite subset of E has a limit point in E. 

Proof If (a) holds, then E c I for some k-cell I, and (b) follows from 
Theorems 2.40 and 2.35. Theorem 2.37 shows that (b) implies (c). It 
remains to  be shown that (c) implies (a). 

If E is not bounded, then E contains points x, with 

The set S consisting of these points x, is infinite and clearly has no limit 
point in Rk, hence has none in E. Thus (c) implies that E is bounded. 

If E is not closed, then there is a point x, E R~ which is a limit point 
of E but not a point of E. For n = 1, 2, 3, . . . , there are points x, E E 
such that (x, - x, ( < lln. Let S be the set of these points x, . Then S is 
infinite (otherwise I x, - x, I would have a constant positive value, for 
infinitely many n), S has x, as a limit point, and S has no other limit 
point in Rk. For if y E Rk, y Z X, , then 

for all but finitely many n; this shows that y is not a limit point of S 
(Theorem 2.20). 

Thus S has no limit point in E; hence E must be closed if (c) holds. 

We should remark, a t  this point, that (b) and (c) are equivalent in any 
metric space (Exercise 26) but that (a) does not, in general, imply (b) and (c). 
Examples are furnished by Exercise 16 and by the space Y2,  which is dis- 
cussed in Chap. 11. 

2.42 Theorem (Weierstrass) Every bounded infinite subset of Rk has a limit 
point in Rk. 

Proof Being bounded, the set E in question is a subset of a k-cell I c Rk. 
By Theorem 2.40, I is compact, and so E has a limit point in I, by 
Theorem 2.37. 
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PERFECT SETS 

2.43 Theorem Let P be a nonempty perfect set in Rk. Then P is uncountable. 

Proof Since P has limit points, P must be infinite. Suppose P is count- 
able, and denote the points of P by x,, x,, x,, . . . . We shall construct a 
sequence {V,,} of neighborhoods, as follows. 

Let V, be any neighborhood of x,. If V, consists of all y E R~ such 
that 1 y - x, I < r, the closure Vl of V, is the set of all y E R~ such that 
ly -xll < r. 

Suppose V,, has been constructed, so that V,, n P is not empty. Since 
every point of P is a limit point of P, there is a neighborhood V,,,, such 
that (i) v,+, c V,, , (ii) x, # v,,+,, (iii) V,,, , n P is not empty. By (iii), 
Vn+, satisfies our induction hypothesis, and the construction can proceed. 

Put K,, = I/,, n P. Since vn is closed and bounded, vn is compact. 
Since x, # K,,,,, no point of P lies in 0: K,, . Since K,, c P, this implies 
that ny K,, is empty. But each K,, is nonempty, by (iii), and K,, 2 K,,,,, 
by (i); this contradicts the Corollary to Theorem 2.36. 

Corollary Ecery interval [a, b] (a < b) is uncountable. In particular, tlze set of 
all real numbers is uncountable. 

2.44 The Cantor set The set which we are now going to construct shows 
that there exist perfect sets in R' which contain no segment. 

Let E, be the interval [0, I]. Remove the segment (+? #), and let El be 
the union of the intervals 

Remove the middle thirds of these intervals, and let E, be the union of the 
intervals 

Continuing in this way, we obtain a sequence of compact sets E n ,  such that 

(a) El 2 E, I> E, 2 - . . ; 
(b) En is the union of 2" intervals, each of length 3-". 

The set 

is called the Cantor set. P is clearly compact, and Theorem 2.36 shows that P 
is not empty. 



No segment of the form 

where k and m are positive integers, has a point in common with P. Since every 
segment (u,  p) contains a segment of the form (24), if 

P contains no segment. 
To show that P is perfect, it is enough to show that P contains no isolated 

point. Let x  E P, and let S be any segment containing x .  Let In be that interval 
of En which contains x .  Choose n large enough, so that In c S.  Let xn be an 
endpoint of I n ,  such that x ,  # x .  

It follows from the construction of P that x ,  E P. Hence x  is a limit point 
of P, and P is perfect. 

One of the most interesting properties of the Cantor set is that it provides 
us with an example of an uncountable set of measure zero (the concept of 
measure will be discussed in Chap. 11). 

CONNECTED SETS 

2.45 Definition Two subsets A and B of a metric space X are said to be 
separated if both A n B and 2 n B are empty, i.e., if no point of A lies in the 
closure of B and no point of B lies in the closure of A.  

A set E c X is said to be connected if E  is not a union of two nonempty 
separated sets. 

2.46 Remark Separated sets are of course disjoint, but disjoint sets need not 
be separated. For example, the interval [0, 11 and the segment (1, 2)  are not 
separated, since 1 is a limit point of ( 1 ,  2). However, the segments (0 ,  1) and 
( 1 .  2) are separated. 

The connected subsets of the line have a particularly simple structure: 

2.47 Theorem A subset E of the real line R' is connected i fand only i f i t  has the 
following property: If x  E E, y E E, and x  < z < y ,  then z E E. 

I 

Proof If there exist x  E E. y E E, and some z E ( x ,  y )  such that z 4 E, then 
E = A, u B, where 

A, = E n  ( -a ,  z),  B, = E n  ( z ,  a ) .  
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Since x E A, and y E B, ,  A and B are nonempty. Since A, c (- co, z )  and 
B, c ( z ,  m), they are separated. Hence E is not connected. 

To prove the converse, suppose E is not connected. Then there are 
nonempty separated sets A and B such that A u B = E. Pick x E A,  y E B, 
and assume (without loss of generality) that x < y.  Define 

z = sup ( A  n [x, y]) .  

By Theorem 2.28, z E A; hence z q! B. In  particular, x < z < y. 
If z q! A, it follows that x < z < y and z 6 E. 
If z E A ,  then z q! B, hence there exists z ,  such that z < z ,  < y and 

z, 6 B. Then x < z ,  < y and z, q! E. 

EXERCISES 

1. Prove that the empty set is a subset of every set. 
2. A complex number z is said to be algebraic if there are integers a o ,  . . . , a,, not all 

zero, such that 
a o z " + a l z " - l + ~ ~ ~ + a . ~ , z + a . = O .  

Prove that the set of all algebraic numbers is countable. Hint: For every positive 
integer N there are only finitely many equations with 

3. Prove that there exist real numbers which are not algebraic. 
4. Is the set of all irrational real numbers countable? 
5. Construct a bounded set of real numbers with exactly three limit points. 
6. Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that 

E and I!? have the same limit points. (Recall that I? = E U  E'.) Do Eand E'always 
have the same limit points? 

7. Let A,, A2 ,  As,  . . . be subsets of a metric space. - 
(a) IfB.= U;=,Ai,provethatB.= U;= ,Al , fo rn=1 ,2 ,3 ,  . . . .  
(6) I f B =  U,"=, Ai, prove that B I  U,"=, 2,. 
Show, by an example, that this inclusion can be proper. 

8. Is every point of every open set E c R2 a limit point of E ?  Answer the same 
question for closed sets in R2. 

9. Let E O denote the set of all interior points of a set E. [See Definition 2.18(e); 
E o  is called the interior of E.] 
(a) Prove that E' is always open. 
(6) Prove that E is open if and only if EO 

= E. 
(c) If G c E and G is open, prove that G c EO. 
(d) Prove that the complement of E o  is the closure of the complement of E. 
(e) Do E and l? always have the same interiors? 
(f) Do E and E" always have the same closures? 
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10. Let X be a n  infinite set. For  p E X and q E X, define 

Prove that this is a metric. Which subsets of the resulting metric space are open? 
Which are closed? Which are compact? 

11. F o r  x E R1 and  y E R1, define 

d ~ ( x ,  Y) = (x - Y)', 
-- 

~ z ( x , Y ) = ~ I x - Y I ,  

d d x ,  Y) = I x2  - y2 I, 

~ ~ ( X , Y ) = / X - ~ Y I ,  

Determine. for each of these, whether it is a metric or not. 
12. Let K c  R1 consist of 0 and the numbers lln, for n = 1, 2, 3, . . . . Prove that K is 

compact directly from the definition (without using the Heine-Bore1 theorem). 
13. Construct a compact set of real numbers whose limit points form a countable set. 
14. Give an example of a n  open cover of the segment (0, 1) which has n o  finite sub- 

cover. 
15. Show that Theorem 2.36 and its Corollary become false (in R1, for example) if the 

word "compact" is replaced by "closed" or by "bounded." 
16. Regard Q, the set of all rational numbers, as  a metric space, with d(p, q) = Ip - q 1 .  

Let E be the set of all p E Q such that 2 < p 2  < 3. Show that E is closed and 
bounded in Q, but that E is not compact. Is E open in Q? 

17. Let E be the set of all x E [O. 11 whose decimal expansion contains only the digits 
4 and 7. Is E countable? Is E dense in [0, l ] ?  Is E compact? Is E perfect? 

18. Is there a nonempty perfect set in R' which contains no rational number? 
19. (a) If A and B are disjoint closed sets in some metric space X, prove that they 

are separated. 
(b) Prove the same for disjoint open sets. 
(c) Fix p E X, 6 > 0, define A to  be the set of all q E X for which d(p, q) < 6, define 
B similarly, with > in place of <. Prove that A and B are separated. 
(d) Prove that every connected metric space with at  least two points is uncount- 
able. Hint: Use (c). 

20. Are closures and interiors of connected sets always connected? (Look at subsets 
of R2.) 

21. Let A and B be separated subsets of some Rk, suppose a E A, b E B, and define 

for t E R1. Put A. = p-'(A), Bo = p-'(B). [Thus t E A. if and only if p(t) E A.] 
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(a) Prove that A, and Bo are separated subsets of R1. 
(6) Prove that there exists to E (0, 1) such that p(to) $ A u B. 
(c) Prove that every convex subset of R k is connected. 

22. A metric space is called separable if it contains a countable dense subset. Show 
that R k is separable. Hilrr: Consider the set of points which have only rational 
coordinates. 

23. A collection {V,) of open subsets of X is said to be a base for X if the following 
is true: For every x E X and every open set G c X such that .XE G, we have 
x E V, c G for some a. In other words, every open set in X is the union of a 
subcollection of { V,}. 

Prove that every separable metric space has a corr~rtable base. Hint: Take 
all neighborhoods with rational radius and center in some countable dense subset 
of X. 

24. Let X be a metric space in which every infinite subset has a limit point. Prove that 
X i s  separable. Hint: Fix 6 > 0, and pick x l  E X. Having chosen XI, . . . , x, E X, 
choose . Y , + I  E X, if possible, so that d ( x i ,  x,,,) 2 6 for i = 1, . . . , j .  Show that 
this process must stop after a finite number of steps, and that X can therefore be 
covered by finitely many neighborhoods of radius 6. Take 6 = 1/11 (n = 1, 2,3,  . . .), 
and consider the centers of the corresponding neighborhoods. 

25. Prove that every compact metric space K has a countable base, and thdt K is 
therefore separable. Hint: For  every positive integer n, there are finitely many 
neighborhoods of radius 1/11 whose union covers K. 

26. Let X be a metric space in which every infinite subset has a limit point. Prove 
that X is compact. Hint: By Exercises 23 and 24, X has a countable base. It  
follows that every open cover of X has a countable subcover {G.), n = 1, 2, 3, . . . . 
If n o  finite subcollection of {G.} covers X, then the complement F, of GI u . . .  u G. 
is nonempty for each 17, but n F, is empty. If E is a set which contains a point 
from each F , ,  consider a limit point of E, and obtain a contradiction. 

27. Define a point p in a metric space X to be a corrdensatiotz point of a set E c X if 
every neighborhood of p contains uncountably many points of E. 

Suppose E c R*, E is uncountable, and let P be the set of all condensation 
points of E. Prove that P is perfect and that at most countably many points of E 
are not in P. In other words, show that PC n E is at  most countable. Hint: Let 
{ V.; be a countable base of Rk, let W be the union of those V,, for which E n V,, 
is a t  most countable, and show that P = W c .  

28. Prove that every closed set in a separable metric space is the union of a (possibly 
empty) perfect set and a set which is at most countable. (Corollary: Every count- 
able closed set in R k has isolated points.) Hint: Use Exercise 27. 

29. Prove that every open set in R' is the union of an at  most countable collection of 
disjoint segments. Hint: Use Exercise 22. 



30. Imitate the proof of Theorem 2.43 to obtain the following result: 

If Rk = UPF,,, where each F. is a closed subset of Rk, then at least one F, 
has a nonempty interior. 

Eqltivalent statement: If G, is a dense open subset of Rk, for n = 1, 2, 3, . . . , 
then n F G ,  is not empty (in fact, it is dense in Rk). 

(This is a special case of Baire's theorem; see Exercise 22, Chap. 3, for the general 
case.) 



NUMERICAL SEQUENCES AND SERIES 

As the title indicates, this chapter will deal primarily with sequences and series 
of complex numbers. The basic facts about convergence, however, are just as 
easily explained in a more general setting. The first three sections will therefore 
be concerned with sequences in euclidean spaces, or even in metric spaces. 

CONVERGENT SEQUENCES 

3.1 Definition A sequence {p , }  in a metric space X is said to converge if there 
is a point p E X with the following property: For every E > 0 there is an integer 
N such that n 2 N implies that d(p , ,  p) < E .  (Here d denotes the distance in X.) 

In this case we also say that {p , }  converges to p,  or that p is the limit of 
{p,) [see Theorem 3.2(6)], and we write p, + p ,  or 

lim p, = p. 
n+ m 

If  { p , )  does not converge, it is said to diverge. 



It might be well to point out that our definition of "convergent sequence" 
depends not only on {p,) but also on X ;  for instance, the sequence {lln) con- 
verges in R' (to O), but fails to converge in the set of all positive real numbers 
[with d(x, y) = ( x  - yl]. In cases of possible ambiguity, we can be more 
precise and specify "convergent in X" rather than "convergent." 

We recall that the set of all points p, (n = 1 , 2 ,  3, . . .) is the range of {p,). 
The range of a sequence may be a finite set, or it may be infinite. The sequence 
{p,) is said to be bounded if its range is bounded. 

As examples, consider the following sequences of complex numbers 
(that is, X  = R2): 

(a) If s, = lln, then lim,,,, s, = 0; the range is infinite, and the sequence 
is bounded. 

(b) If s, = n2, the sequence {s,) is unbounded, is divergent, and has 
infinite range. 

(c) If s, = 1 + [(- l)"/n], the sequence (s,) converges to 1, is bounded, 
and has infinite range. 

(d) If sn = in, the sequence {s,) is divergent, is bounded, and has finite 
range. 

(e) If s, = 1 (n = 1,2,  3, . . .), then {s,) converges to 1, is bounded, and 
has finite range. 

We now summarize some important properties of convergent sequences 
in metric spaces. 

3.2 Theorem Let {p,) be a sequence in a metric space X .  

(a) {p,) converges to p E X  ifand only ifevery neighborhood ofp contains 
p, for all but finitely many n. 

(b) I f p  E X, p' E X ,  and if{pn) converges to p and to p', then p' = p. 
(c) If {p,) converges, then {p,) is bounded. 
(d) If E c X  and ifp is a limit point of E, then there is a sequence {p,) in E 

such that p = limp, . 
n - t m  

Proof (a) Suppose p, - tp  and let V be a neighborhood of p. For 
some E > 0, the conditions d(q, p) < E, q E X imply q E V. Correspond- 
ing to this E, there exists N such that n > N implies d(p,, p) < &. Thus 
n 2 N  implies p, E V. 

Conversely, suppose every neighborhood of p contains all but 
finitely many of the p,. Fix E > 0, and let V be the set of all q E X such 
that d(p, q) < E. By assumption, there exists N  (corresponding to this V) 
such that p, E V if n > N. Thus d(p,,p) < 6 if n 2 N ;  hence p, -tp. 
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(b)  Let E > 0 be given. There exist integers N, N '  such that 

E 
n 2 N implies d(p,  , p) < 2, 

E 
n 2 N'  implies d(p,, p') < 

Hence if n 2 max ( N ,  N ' ) ,  we have 

Since E was arbitrary, we conclude that d(p ,  p') = 0. 
(c)  Suppose p, +p .  There is an integer N such that n > N 

implies d(p ,  , p)  < 1. Put 

Then d(p,, p)  I r for n = 1, 2,  3, . . . . 
( d )  For each positive integer n,  there is a point p, E E such that 

d(p , ,  p) < l ln .  Given E > 0,  choose N so that ,WE > 1 .  If n > N ,  it 
follows that d(p ,  , p) < E .  Hence p, +p.  

This completes the proof. 

For sequences in Rk we can study the relation between convergence, on 
the one hand, and the algebraic operations on the other. We first consider 
sequences of complex numbers. 

3.3 Theorem Suppose {s,,), { t , )  are complex sequences, and lirn,,, s, = s, 
lirn,,, t, = t .  Then 

(a )  lim(s, + t , ) = s +  t ;  
I t  - r, 

(b)  lirn cs, = cs, lirn ( c  + s,) = c + s,  for any number c ;  
n- b: n+ cc 

(c)  lirn s,t, = s t ;  
n+ b: 

1 1  
( d )  lirn - = -, prol>ided s, # 0 ( n  = 1 .  2 ,  3, . . .), and s # 0 .  

n + m S n  S 

Proof 

(a) Given E > 0: there exist integers N , ,  N ,  such that 

E 
n > N ,  implies I s , - s  <-, 

2 

E 
n 2 N ,  implies I t , - t 1 < -. 

2 



If N = max (N , ,  N,), then n 2 N implies 

) ( s , f  r , ) -(s+t)I  2 I S , - S (  + It,-tl <E. 

This proves (a). The proof of (b) is trivial. 

(c) We use the identity 

( 1  s,tn - st = (s, - s)(t, - t )  + ~ ( t ,  - 1 )  + t(s, - s). 

Given E > 0, there are integers N,, N2 such that 

n 2 N,  implies Isn - s 1 < JE, 
n 2 N2 implies ( t, - t 1 < Ji. 

If we take N = max (N, ,  N,), n >_ N implies 

so that 

lim (s, - s)(t, - t )  = 0. 
n+ m 

We now apply (a) and (b) to ( I ) ,  and conclude that 

lim (s,t, - st) = 0. 
n-t m 

( d )  Choosing m such that Is, - sl < 4 1 s J  i f  n 2 m, we see that 

Given E > 0, there is an integer N > m such that n 2 N implies 

2 Isn - s <:Is1 E .  

Hence, for n 2 N,  

3.4 Theorem 

(a) Slippose x, E Rk (n = 1 ,  2, 3 ,  . . .) and 

X n  = (@I ,n . . . @k,n). 

Then {x,} converges to x = (or,, . . . , or,) if and only if 

lim or j , ,  = ~j ( 1  5 j 5 k) .  
n-t m 
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(b )  Suppose {x,), {y,) are sequences in Rk, {P,) is a sequence of real numbers, 
and x ,  + x ,  y, + y, p, + P. Then 

lim ( x ,  + y,) = x + y, lim x ,  y, = x . y, lim p, x ,  = px. 
n+ m n-rm n-m 

Proof 

( a )  If x ,  -+ x ,  the inequalities 

which follow immediately from the definition of the norm in Rk, show that 
( 2 )  holds. 

Conversely, if ( 2 )  holds, then to  each E > 0 there corresponds an  
integer N such that n 2 N implies 

Hence n 2 N implies 

so that x,, -+ x .  This proves (a) .  
Part ( b )  follows from ( a )  and Theorem 3.3. 

SUBSEQUENCES 

3.5 Definition Given a sequence {p,}, consider a sequence {n,) of positive 
integers, such that n,  < n ,  < n ,  < . . . . Then the sequence {p,,} is called a 
subsequence of {p,}. If {p,,} converges, its limit is called a subsequential limit 
of { ~ n } .  

I t  is clear that {p,} converges to p if and only if every subsequence of 
{p,,} converges to p. We leave the details of the proof to the reader. 

3.6 Theorem 

( a )  If {p,} is a sequence in a compact metric space X ,  then some sub- 
sequence of  {p,) converges to a point of X .  

(b)  Every bounded sequence in Rk contains a convergent subsequence. 
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Proof 

(a)  Let E be the range of {p,). If E is finite then there is a p E E and a 
sequence {n,) with n, < n ,  < n ,  < a ,  such that 

The subsequence {p,,) so obtained converges evidently to p. 
If E is infinite, Theorem 2.37 shows that E has a limit point p E X. 

Choose n, so that d(p, p,,) < 1 .  Having chosen n,, . . . , ni-,,  we see from 
Theorem 2.20 that there is an integer ni  > n i - ,  such that d(p,p,,) < l / i .  
Then {p,,) converges to p. 

(b )  This follows from (a),  since Theorem 2.41 implies that every bounded 
subset of Rk lies in a compact subset of Rk. 

3.7 Theorem The subsequential limits of a sequence {p,) in a metric space X 
form a closed subset of X. 

Proof Let E* be the set of all subsequential limits of {p,) and let q be a 
limit point of E*. We have to show that q E E*. 

Choose n ,  so that p,, # q. (If no such n, exists, then E* has only 
one point, and there is nothing to prove.) Put 6 = d(q, p,,). Suppose 
n,,  . . . , n i - ,  are chosen. Since q is a limit point of E*, there is an x E E* 
with d(x ,  q )  < 2-'6. Since x E E*, there is an ni > n i - ,  such that 
d(x,p,,) < 2 - ' 6 .  Thus 

d(q, p,,) s 2 l -  '6 

for i = 1, 2, 3, . . . . This says that {p,,) converges to q. Hence q E E*. 

CAUCHY SEQUENCES 

3.8 Definition A sequence {p,) in a metric space X is said to be a Cauchy 
sequence if for every E > 0 there is an integer N such that d(p, ,  p,) < E if n 2 N 
and m 2 N. 

In our discussion of Cauchy sequences, as well as in other situations 
which will arise later, the following geometric concept will be useful. 

3.9 Definition Let E be a nonempty subset of a metric space X, and let S be 
the set of all real numbers of the form d(p,  q) ,  with p E E and q E E. The sup 
of S is called the diameter of E. 
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If{p,) is a sequence in Xand  if EN consists of the pointsp,, pN+, ,pN+,  , . . . , 
it is clear from the two preceding definitions that {p,) is a Caucl~y sequence 
if and only if 

lim diam EN = 0. 
N-t  m 

3.10 Theorem 

( a )  I f E  is the closure of  a set E in a metric space X, then 

diam E = diam E. 

(b)  I f  K,, is a sequence of  compact sets in X such that K,, I> K,,, 
( n  = I ,  2, 3,  . . .) and if 

lim diam K, = 0, 
1 1 - 0 0  

then 0 PK, consists of  exactly one point. 

Proof 

(a)  Since E c E ,  it is clear that 

diam E I diam E .  

Fix E > 0, and choose p E E ,  q E E .  By the definition of E,  there are 
points p', q',  in E such that d(p,  p') c E ,  d(q, q ')  < E .  Hence 

d(p,  q )  5 d(p, P ' )  + d(p' q ' )  + q )  
c 2~ + d(p' ,  q ' )  5 2~ $ diam E. 

It follows that 
diam E I 2~ + diam E, 

and since E was arbitrary, (a )  is proved. 
(b)  Put K = ~ F K ,  . By Theorem 2.36, K is not empty. If K contains 
more than one point, then diam K > 0. But for each n,  K, I> K,  so that 
diam K,  2 diam K. This contradicts the assumption that diam K, -0. 

3.11 Theorem 

(a )  In any metric space X, every convergent sequence is a Cauchy sequence. 
(6 )  If X is a compact metric space and i j { p , )  is a Cauchy sequence in X. 

then {p,) converges to some point of  X. 
( c )  In Rk,  every Caucl~y sequence converges. 

Note: The difference between the definition of convergence and 
the definition of a Cauchy sequence is that the limit is explicitly involved 
in the former, but not in the latter. Thus Theorem 3.11(b) may enable us 
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to decide whether or not a given sequence converges without knowledge 
of the limit to which it may converge. 

The fact (contained in Theorem 3.1 1) that a sequence converges in 
Rk if and only if it is a Cauchy sequence is usually called the Cauchy 
criterion for convergence. 

Proof 

(a) If p, + p  and if E > 0, there is an integer N  such that d(p,pn) < E 

for all n 2 N .  Hence 

d(pn 3 pn,) 5 d(pn 3 P) + n(p, pm) < 2~ 

as soon as n 2 N  and m 2 N .  Thus {p,) is a Cauchy sequence. 

(6) Let {p,) be a Cauchy sequence in the compact space X. For 
N  = 1 , 2, 3, . . . , let EN be the set consisting of p, , p,+,, p,+, , . . . . 
Then 

(3) lim diam EN = 0, 
N + m  

by Definition 3.9 and Theorem 3.10(a). Being a closed subset of the 
compact space X ,  each EN is compact (Theorem 2.35). Also EN 2 EN+, ,  
so that E, 2 EN + , . 

Theorem 3.10(b) shows now that there is a unique p E X which lies 
in every E N .  

Let E > 0 be given. By (3) there is an integer No such that 
diam E, < E if N  2 N o .  Since p E E N ,  it follows that d(p, q) < E for 
every q E E N ,  hence for every q E E N .  In other words, d(p, p,) < E if 
n 2 N o .  This says precisely that p, +p.  

(c) Let (x,) be a Cauchy sequence in Rk. Define EN as in (b), with x i  
in place of p i .  For some N, diam EN < 1. The range of {x,] is the union 
of EN and the finite set {x,, . . . , xN-,). Hence {x,) is bounded. Since 
every bounded subset of Rk has compact closure in R~ (Theorem 2.41), 
(c) follows from (6). 

3.12 Definition A metric space in which every Cauchy sequence converges is 
said to be complete. 

Thus Theorem 3.1 1 says that all compact metric spaces and all Euclidean 
spaces are complete. Theorem 3.1 1 implies also that every closed subset E o/ a 
complete metric space X is complete. (Every Cauchy sequence in E is a Cauchy 
sequence in X. hence it converges to some p E X,  and actually p E E since E is 
closed.) An example of a metric space which is not complete is the space of all 
rational numbers, with d(x, y) = 1 x - y 1 .  
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Theorem 3.2(c) and example ( d )  of Definition 3.1 show that convergent 
sequences are bounded, but that bounded sequences in Rk need not converge. 
However, there is one important case in which convergence is equivalent to 
boundedness; this happens for monotonic sequences in R1.  

3.13 Definition A sequence {s,) of real numbers is said to be 

(a)  nzonotonically increasing if s, I s, +, (n = 1, 2, 3, . . .); 
(6)  monotonically decreasing if s, 2 s , + ~  (n  = 1 ,2 ,  3, . . .). 
The class of monotonic sequences consists of the increasing and the 

decreasing sequences. 

3.14 Theorem Suppose {s,) is monotonic. Then {s,) converges i fand only if it 
is bounded. 

Proof Suppose s, I s,,, (the proof is analogous in the other case). 
Let E be the range of {s,). If {s,) is bounded, let s be the least upper 
bound of E. Then 

For every E > 0, there is an integer N such that 

for otherwise s - E would be an upper bound of E. Since {s,) increases, 
n 2 N therefore implies 

which shows that {s,) converges (to s). 
The converse follows from Theorem 3.2(c). 

UPPER AND LOWER LIMITS 

3.15 Definition Let {s,) be a sequence of real numbers with the following 
property: For every real M there is an integer N such that n 2 N implies 
s, 2 M. We then write 

S ,  -+ +a. 

Similarly, if for every real M there is an integer N such that n 2 N implies 
s, < M, we write 



It should be noted that we now use the symbol --+ (introduced in Defini- 
tion 3.1) for certain types of divergent sequences, as well as for convergent 
sequences, but that the definitions of convergence and of limit, given in Defini- 
tion 3.1, are in no way changed. 

3.16 Definition Let {s,} be a sequence of real numbers. Let E be the set of 
numbers x (in the extended real number system) such that s,, -+x for some 
subsequence {s,,}. This set E contains all subsequential limits as defined in 
Definition 3.5, plus possibly the numbers + co, - co. 

We now recall Definitions 1.8 and 1.23 and put 

s* = sup E, 

s, = inf E. 

The numbers s*, s, are called the upper and lower limits of {s,}; we use the 
notation 

lim sup s, = s*, lim inf s, = s,. 
11-02 n- a0 

3.17 Theorem Let {s,} be a sequence ofreal numbers. Let E and s* have the 
same meaning as in Definition 3.16. Then s* has the following two properties: 

(a) s* E E. 
(b) Ifx > s*, there is an integer N such that n 2 N implies s, < x. 

Moreouer, s* is the only number with the properties (a) and (b). 

Of course, an analogous result is true for s,. 

Proof 

(a) If s* = + co, then E is not bounded above; hence {s,} is not bounded 
above, and there is a subsequence {s,,} such that s,, -+ +a. 

If s* is real, then E is bounded above, and at least one subsequential 
limit exists, so that (a) follows from Theorems 3.7 and 2.28. 

If s* = - co, then E contains only one element, namely - co, and 
there is no subsequential limit. Hence, for any real M, s, > M for at 
most a finite number of values of n, so that s, -+ -a. 

This establishes (a) in all cases. 
(b) Suppose there is a number x > s* such that s, 2 x for infinitely 
many values of n. In that case, there is a number y E E such that 
y 2 x > s*, contradicting the definition of s*. 

Thus s* satisfies (a) and (b). 
To show the uniqueness, suppose there are two numbers, p and q, 

which satisfy (a) and (b), and suppose p < q. Choose x such that p < x < q. 
Sincep satisfies (b), we have s, < x for n 2 N. But then q cannot satisfy (a). 





Proof 

(a) Take n > ( I / E ) ' ~ ~ .  (Note that the archimedean property of the real 
number system is used here.) 

(b) If p > 1, put x,  = di - 1. Then x,  > 0, and, by the binomial 
theorem, 

1 + nx, I (1 + x,)" = p, 

so that 

Hence x,  + 0. I fp  = 1, (b) is trivial, and if 0 < p < 1, the result is obtained 
by taking reciprocals. 

(c) Put xn = dfln - 1. Then x,  2 0, and, by the binomial theorem, 

Hence 

(d) Let k be an integer such that k > a, k > 0. For n > 2k, 

Hence 

Since a - k < 0, nu- ,  +0, by (a).  
( e )  Take a = 0 in (d). 

SERIES 

In the remainder of this chapter, all sequences and series under consideration 
will be complex-valued, unless the contrary is explicitly stated. Extensions of 
some of the theorems which follow, to series with terms in Rk, are mentioned 
in Exercise 15. 
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3.21 Definition Given a sequence {a,), we use the notation 

to denote the sum a ,  + a,,, + . + a,. With {a,) we associate a sequence 
{s,), where 

For {s,) we also use the symbolic expression 

a,  + a ,  + a,  + - . .  
or, more concisely, 

m 

(4) C a n .  
n= 1 

The symbol (4) we call an injinire series, or just a series. The numbers 
s, are called the partial sums of the series. If {s,) converges to s, we say that 
the series converges, and write 

The number s is called the sum of the series; but it should be clearly under- 
stood that s is the limit of  a sequence of  sums, and is not obtained simply by 
addition. 

If {s,) diverges, the series is said to diverge. 
Sometimes, for convenience of notation, we shall consider series of the 

form 

( 5 )  

And frequently, when there is no possible ambiguity, or when the distinction 
is immaterial, we shall simply write Xa, in place of (4) or (5). 

It is clear that every theorem about sequences can be stated in terms of 
series (putting a, = s,, and a,  = s, - s,-, for n > I), and vice versa. But it is 
nevertheless useful to consider both concepts. 

The Cauchy criterion (Theorem 3.11) can be restated in the following 
form : 

3.22 Theorem Xu, converges if and only i f f o r  every E > 0 there is an integer 
N such tlzat 



In particular, by taking m = n, (6)  becomes 

)a,(  I E ( n  2 N ) .  

In other words: 

3.23 Theorem I f  Za, converges, then limn,, a, = 0. 

The condition a,  + O  is not, however, sufficient to ensure convergence 
of Za, . For instance, the series 

diverges; for the proof we refer to Theorem 3.28. 

Theorem 3.14, concerning monotonic sequences, also has an immediate 
counterpart for series. 

3.24 Theorem A series of  nonnegative' terms converges i f  and only i f  its 
partial sums form a bounded sequence. 

We now turn to a convergence test of a different nature, the so-called 
"comparison test." 

3.25 Theorem 

(a )  If I a,  I 5 c, for n 2 N o ,  where N o  is some fixed integer, and i f  Cc, 
converges, then Can converges. 

(b)  I f  a,  2 dn 2 0 for n 2 N o ,  and i f  Cd, diverges, then Can diverges. 

Note that (b)  applies only to series of nonnegative terms a,. 

Proof Given E > 0, there exists N 2 N o  such that m 2 n 2 N implies 

by the Cauchy criterion. Hence 

and (a)  follows. 
Next, (b)  follows from (a) ,  for if Za, converges, so must Cd, [note 

that (b)  also follows from Theorem 3.241. 

1 The expression " nonnegative" always refers to real numbers. 



The comparison test is a very useful one; to  use it efficiently, we have to  
become familiar with a number of series of nonnegative terms whose conver- 
gence or  divergence is known. 

S E R I E S  O F  NONNEGATIVE T E R M S  

The simplest of all is perhaps the geometric series. 

3.26 Theorem If 0 < x < 1, then 

If x > 1, the series diverges. 

Proof If x # 1, 

The result follows if we let n -, co. For x = 1, we get 

1 + 1 + 1 + . . . ,  

which evidently diverges. 

In many cases which occur in applications, the terms of the series decrease 
monotonically. The following theorem of Cauchy is therefore of particular 
interest. The striking feature of the theorem is that a rather "thin" subsequence 
of {a,) determines the convergence or divergence of Xun. 

3.27 Theorem Suppose a, > a, 2 a3 2 . 2 0 .  Then the series C,"=, a, con- 
verges if and only if the series 

m 

(7) C 2ka2k = a, + 2a2 + 4a4 + 8a, + 
k =  0 

converges. 

Proof By Theorem 3.24, it suffices to consider boundedness of the 
partial sums. Let 



For n < 2k, 

so that 

(8) 

s, I a ,  + (a ,  +a , )  + + (azk  + + a 2 k + l - , )  

< a, + 2a2 + . . .  + 2ka2k 

On the other hand, if n > 2k, 

s , 2 a 1  + a 2  + ( a ,  + a 4 ) + . - .  + ( a z k - , + ,  + - . .  + a z k )  

2 +a, + a ,  + 2a4 + . . . + 2k-'a2k 
- 
- +tk 9 

so that 

(9) 2s, 2 tk . 
By (8) and (9), the sequences {s,) and {t,) are either both bounded 

or both unbounded. This completes the proof. 

1 
3.28 Theorem 1 - converges i f p  > 1 and diverges i f p  5 1 .  

nP 

Proof If p S O ,  divergence follows from Theorem 3.23. lf p > 0 ,  
Theorem 3.27 is applicable, and we are led to the series 

Now, 2 l V P  < 1 if and only if 1 - p < 0 ,  and the result follows by com- 
parison with the geometric series (take x = 21-P in Theorem 3.26). 

As a further application of Theorem 3.27, we prove: 

3.29 Theorem If p > 1,  

converges; ij'p I 1, the series diverges. 

Remark "log n" denotes the logarithm of n to the base e (compare Exercise 7 ,  
Chap. I ) ;  the number e will be defined in a moment (see Definition 3.30). We 
let the series start with n = 2,  since log I = 0.  



Proof The monotonicity of the logarithmic function (which will be 
discussed in more detail in Chap. 8) implies that {log n) increases. Hence 
{lln log n) decreases, and we can apply Theorem 3.27 to (10); this 
leads us to the series 

and Theorem 3.29 follows from Theorem 3.28. 

This procedure may evidently be continued. For instance, 

diverges, whereas 

f 1 
,,3n log n log log n 

2 1 
,= 3 n log n(log log n)? 

converges. 

We may now observe that the terms of the series (12) differ very little 
from those of (13). Still, one diverges, the other converges. If we continue the 
process which led us from Theorem 3.28 to Theorem 3.29, and then to (12) and 
(13), we get pairs of convergent and divergent series whose terms differ even 
less than those of (12) and (13). One might thus be led to the conjecture that 
there is a limiting situation of some sort, a "boundary" with all convergent 
series on one side, all divergent series on the other side-at least as far as series 
with monotonic coefficients are concerned. This notion of "boundary" is of 
course quite vague. The point we wish to make is this: No matter how we make 
this notion precise, the conjecture is false. Exercises 1 l(b) and 12(b) may serve 
as illustrations. 

We do not wish to go any deeper into this aspect of convergence theory, 
and refer the reader to Knopp's "Theory and Application of Infinite Series," 
Chap. IX, particularly Sec. 41. 

THE NUMBER e 

" 1 
3.30 Definition e = I. 

,=on.  



Since 
1 1 1 

s , = 1 + 1 + - + - + . . . +  
1 . 2  1 . 2 . 3  1 . 2 . . . n  

the series converges, and the definition makes sense. In fact, the series converges 
very rapidly and allows us to compute e with great accuracy. 

It  is of interest to note that e can also be defined by means of another 
limit process; the proof provides a good illustration of operations with limits: 

3.31 Theorem lirn 
n-m 

Proof Let 

By the binomial theorem, 

Hence t ,  I s,, so that 
lirn sup t ,  I e, 

n-t cc 

by Theorem 3.19. Next, if n 2 m, 

Let n -+ co, keeping m fixed. We get 

so that 
s, I lim inf t, 

n-tm 

Letting m -+ co, we finally get 

(1 5) e I lim inf t, . 
n+ cc 

The theorem follows from (14) and (15). 



1 
The rapidity with which the series 1 converges can be estimated as 

n .  
follows: If s, has the same meaning as above, we have 

1 1 1 1 
I +-  

so that 

Thus s,,, for instance, approximates e with an  error less than The 
inequality (16) is of theoretical interest as well, since it enables us to  prove the 
irrationality of e very easily. 

3.32 Theorem e is irrational. 

Proof Suppose e is rational. Then e =p /q ,  where p and q are positive 
integers. By (16), 

1 
O < q ! ( e - s , ) < - .  

9 

By our assumption, q!e  is an  integer. Since 

is an integer, we see that q! (e  - s,) is an integer. 
Since q 2 1, ( 1  7) implies the existence of an  integer between 0 and 1. 

We have thus reached a contradiction. 

Actually, e is not even an algebraic number. For a simple proof of this, 
see page 25 of Niven's book, or  page 176 of Herstein's, cited in the Bibliography. 

THE ROOT AND RATIO TESTS 

3.33 Theorem (Root Test) Given Xa,, put a = lim sup ~ m .  
n - t m  

Tlien 

(a )  if a < 1, Xa, converges; 
(b) if a > 1, Xa, diverges; 
( c )  i f o r  = 1 ,  the test gives no information. 



Proof If a < 1, we can choose f l  so that a < p < 1, and an integer N 
such that 

d la , l<~  
for n 2 N [by Theorem 3.17(b)]. That is, n 2 N implies 

lanI < B". 
Since 0 < p < 1, Xjl" converges. Convergence of Xun follows now from 
the comparison test. 

If a > 1, then, again by Theorem 3.17, there is a sequence {n,) such 
that 

ndm +a. 

Hence J a n \  > 1 for infinitely many values of n, so that the condition 
an + 0, necessary for convergence of Can, does not hold (Theorem 3.23). 

To prove (c), we consider the series 

For each of these series a = 1, but the first diverges, the second converges. 

3.34 Theorem (Ratio Test) The series Xun 

an+1 (a) converges if lim sup - < 1, 
n - o  1 an I 

(b) diverges if 19 1 2 1 for oil n 2 no, where no is some fixed integer. 

Proof If condition (a) holds, we can find f i  < 1, and an integer N, such 
that 

for n 2 N. In particular, 



That is, 

for n 2 N ,  and (a) follows from the comparison test, since Z/?" converges. 
If I a,+ , I  2 (a, ( for n 2 no, it is easily seen that the condition a, + 0 

does not hold, and (b) follows. 

Note: The knowledge that lim a,+,/a, = 1 implies nothing about the 
convergence of Za, . The series Zlln and Zl/nz demonstrate this. 

3.35 Examples 

(a) Consider the series 

for which 

an+ 1 lirn inf - = lim 
n - m  a, n - m  

.- 
2 n  1 1 lirn inf fin = lim - - - 

n - m  n - m  J 3 n - j j .  

an+ 1 limsup-= lirn 
n - m  a, n - m  

The root test indicates convergence; the ratio test does not apply. 
(b) The same is true for the series 

where 

a,+, 1 lim inf - = 
n - m  a, is 

an+, lim sup - = 2, 
n - m  a, 

but 



3.36 Remarks The ratio test is frequently easier to apply than the root test, 
since it is usually easier to compute ratios than nth roots. However, the root 
test has wider scope. More precisely: Whenever the ratio test shows conver- 
gence, the root test does too; whenever the root test is inconclusive, the ratio 
test is too. This is a consequence of Theorem 3.37, and is illustrated by the 
above examples. 

Neither of the two tests is subtle with regard to divergence. Both deduce 
divergence from the fact that an does not tend to zero as n + co. 

3.37 Theorem For any sequence {cn) of positive numbers, 

lirn inf 5 am inffin,  
n-w cn n+ w 

c n + ~  lim sup f i  I lirn sup - 
n+w n-w Cn 

Proof We shall prove the second inequality; the proof of the first is 
quite similar. Put 

C n + i  a = lim sup-. 
n+w Cn 

If a = +a, there is nothing to prove. If a is finite, choose p > a. There 
is an integer N such that 

for n 2 N. In particular, for any p > 0, 

Multiplying these inequalities, we obtain 

Hence 

so that 

lirn sup tf/c, I p, 
n-rm 



by Theorem 3.20(b). Since (18) is true for every > a, we have 

lim sup fin I a. 
n + m  

POWER SERIES 

3.38 Definition Given a sequence {en) of complex numbers, the series 

is called a power series. The numbers cn are called the coeficients of the series; 
z is a complex number. 

In general, the series will converge or diverge, depending on the choice 
of z. More specifically, with every power series there is associated a circle, the 
circle of convergence, such that (19) converges if z is in the interior of the circle 
and diverges if z is in the exterior (to cover all cases, we have to consider the 
plane as the interior of a circle of infinite radius, and a point as a circle of radius 
zero). The behavior on the circle of convergence is much more varied and can- 
not be described so simply. 

3.39 Theorem Given the power series Xcn z", put 

(Ifu=O, R =  + c o ; i f u =  +a, R=O.) ThenEcnznconvergesiflzl < R ,  and 
diverges if 1 z 1 > R. 

Proof Put an = cnzn, and apply the root test: 

Note: R is called the radius of convergence of Xcnz". 

3.40 Examples 

(a) The series Xnnz" has R = 0. . . 

zn 

(b) The series C- has R = + co. (In this case the ratio test is easier to 
n! 

apply than the root test.) 
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(c) The series Zzn has R = 1. If 1 z 1 = 1, the series diverges, since (zn) 
does not tend to 0 as n + a. 

zn 
(d)  The series 1 - has R = 1. It diverges if z = 1. I t  converges for all 

n 
other z with 1 zl = 1. (The last assertion will be proved in Theorem 3.44.) 

zn 
(e) The series C - has R = 1. It converges for all z with 1 z 1 = 1, by 

n2 

the comparison test, since 1 z"/n2 I = l/n2. 

SUMMATION BY PARTS 

3.41 Theorem Given two sequences (a,), (b,), put 

i f n  2 0;put  A-1  = 0. Then, i f 0  I p  Iq, we have 

Proof 

and the last expression on the right is clearly equal to the right side of 
(20). 

Formula (20), the so-called "partial summation formula," is useful in the 
investigation of series of the form Canbn, particularly when (6,) is monotonic. 
We shall now give applications. 

3.42 Theorem Suppose 

(a) the partial sums An of Can form a bounded sequence; 
(b) bo 2 bl 2 b2 2 ' ; 
(c) lim bn = 0. 

n d m  

Then Can b, converges. 



Proof Choose M such that I An I 5 M for all n. Given E > 0,  there is an 
integer N such that b, 5 (~12M).  For N < p 5 q, we have 

Convergence now follows from the Cauchy criterion. We note that the 
first inequality in the above chain depends of course on the fact that 
b,- b,+l 2 0 .  

3.43 Theorem Suppose 

(a) Icll 2 1 ~ 2 1  2 lc,l 2 . - .  ; 
(b) c ~ , - ~ ~ O , C ~ , I O  (m=1,2,3,  ... 1; 
(c) limn,, cn = 0. 

Then Zc, converges. 

Series for which (b) holds are called "alternating series"; the theorem was 
known to Leibnitz. 

Proof Apply Theorem 3.42, with a, = (- l)"", b, = I cn 1 .  

3.44 Theorem Suppose the radius of convergence of Ccnzn is 1, and suppose 
co 2 cl 2 c2 2 , limn+,, cn = 0.  Then Ecn zn converges at every point on the 
circle 1 z 1 = 1, except possibly at z = 1. 

Proof Put an = zn, bn = cn. The hypotheses of Theorem 3.42 are then 
satisfied, since 

ABSOLUTE CONVERGENCE 

The series Zan is said to converge absolutely if the series E 1 a, 1 converges. 

3.45 Theorem If Xa, converges absolutely, then Can converges. 



Proof The assertion follows from the inequality 

plus the Cauchy criterion. 

3.46 Remarks For series of positive terms, absolute convergence is the same 
as convergence. 

If Can converges, but Zlanl diverges, we say that Za, converges non- 
absolutely. For instance, the series 

converges nonabsolutely (Theorem 3.43). 
The comparison test, as well as the root and ratio tests, is really a test for 

absolute convergence, and therefore cannot give any information about non- 
absolutely convergent series. Summation by parts can sometimes be used to 
handle the latter. In particular, power series converge absolutely in the interior 
of the circle of convergence. 

We shall see that we may operate with absolutely convergent series very 
much as with finite sums. We may multiply them term by term and we may 
change the order in which the additions are carried out, without affecting the 
sum of the series. But for nonabsolutely convergent series this is no longer true, 
and more care has to be taken when dealing with them. 

ADDITION AND MULTIPLICATION OF SERIES 

3.47 Theorem If Za, = A, and Zb, = B, then Z(a, + b,) = A + B, and 
Cca, = cA, for any$xed c. 

Proof Let 

Then 
n 

A, + Bn = C (ak + b,). 
k = O  

Since lim,,, A, = A and lim,,, B, = B, we see that 

lim (An + B,) = A  + B. 
n-co 

The proof of the second assertion is even simpler. 
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so that 

Since 

we have 
" 2 2(n + 1 )  - I c , J  2 C  ---3 

k = o n + 2  n + 2  

so that the condition cn + O ,  which is necessary for the convergence of Zc,, is 
not satisfied. 

In  view of the next theorem, due to  Mertens, we note that we have here 
considered the product of two nonabsolutely convergent series. 

3.50 Theorem Suppose 

m 

(a) an converges absolutely, 
I ,  0 

n 

( d )  C n = x a k b n - k  ( n = o , l , 2  , . . .  ). 
k = O  

Then 
m x cn = AB. 

n = 0 

That is, the product of two convergent series converges, and to  the right 
value, if at least one of the two series converges absolutely. 

Proof Put 

Then 
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Put 
Yn=aoPn+alPn-l +". +anPo. 

We wish to show that Cn + AB. Since A, B + AB, it suffices to 
show that 

(21) 

Put 

lim y, = 0. 
n-m 

[It is here that we use (a).] Let E > 0 be given. By (c), P, +O. Hence we 
can choose N such that I pn I I E for n 2 N, in which case 

Keeping N fixed, and letting n + co, we get 

lim sup 17.1 5 &a, 
n- 00 

since ak + 0 as k + co. Since E is arbitrary, (21) follows. 

Another question which may be asked is whether the series Zen, if con- 
vergent, must have the sum AB. Abel showed that the answer-is in the affirma- 
tive. 

3.51 Theorem If the series Can, Zbn, Zc, converge to A, B, C, and 
c n = a o b n + . . - + a n b o , t h e n C = A B .  

Here no assumption is made concerning absolute convergence. We shall 
give a simple proof (which depends on the continuity of power series) after 
Theorem 8.2. 

REARRANGEMENTS 

3.52 Definition Let {k,), n = 1,2,3, . . . , be a sequence in which every 
positive integer appears once and only once (that is, {k,} is a 1-1 function from 
J onto J ,  in the notation of Definition 2.2). Putting 

we say that Cai is a rearrangement of Za, . 
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Then p, - q, = a,, p, + q, = 1 a, 1 ,  p, 2 0,  q, 2 0.  The series Zp,, Zq, 
must both diverge. 

For if both were convergent, then 

would converge, contrary to hypothesis. Since 

divergence of Zp, and convergence of Zq, (or vice versa) implies diver- 
gence of Can , again contrary to hypothesis. 

Now let P I ,  P ,  , P,  , . . . denote the nonnegative terms of Za,, in the 
order in which they occur, and let Q,, Q ,  , Q ,  , . . . be the absolute values 
of the negative terms of Can, also in their original order. 

The series CP,, CQ, differ from Cp,, Cq, only by zero terms, and 
are therefore divergent. 

We shall construct sequences {m,), {k,), such that the series 

which clearly is a rearrangement of Za,, satisfies (24). 
Choose real-valued sequences {a,), {P,) such that a, +a,  ,On -+p, 

a, < P n ,  P I  > 0 .  
Let m,, k ,  be the smallest integers such that 

P,  + ... + Pml > p,, 
P I  + ... + P,, - Q, - . . .  - Q k l  < "1; 

let rn, , k ,  be the smallest integers such that 

P , + . . . + P m l  - Q ,  - . . . -  Q k l  +Pntl+l + ". +f',,, > P z 3  

PI + ,.. + P,,, - Q ,  - .. .  - Q k ,  + P m l + ,  + ... + Pm2 - Q k l + ,  
- .. .  - 

Q k 2  < a2 ; 

and continue in this way. This is possible since CP, and ZQ, diverge. 
If x,, y, denote the partial sums of (25) whose last terms are Pmn,  

- Q k n  , then 

/x ,-pnI 5Prnn, I~n-anI  5 Q k n .  

Since P, + O  and Q, + O  as n 4 a, we see that x, + p ,  y, +a.  
Finally, it is clear that no number less than a or greater than P can 

be a subsequential limit of the partial sums of (25). 



3.55 Theorem V Z a ,  is a series of complezc numbers which converges absolutely, 
then every rearrangement of La, converges, and they all converge to the same sum. 

Proof Let Za; be a rearrangement, with partial sums s; .  Given E > 0, 
there exists an  integer N such that m 2 n 2 N implies 

Now choose p such that the integers 1, 2, . . . , N are all contained in the 
set k , ,  k , ,  . . . , k ,  (we use the notation of Definition 3.52). Then if n > p, 
the numbers a,,  . . . , a, will cancel in the difference s, - s i ,  so that 

1 s, - s: ( 5 E,  by (26). Hence {s:) converges to the same sum as {s,). 

EXERCISES 

1. Prove that convergence of {s,) implies convergence of {Is, 1 ) .  Is the converse true? 
-- 

2. Calculate lirn (V n2 + n - n). 
n - m  

3. If sl = d 2 ,  and 
-- 

S . + ~ = V ~ + ~ S ,  ( n = 1 , 2 , 3 ,  . . .  I, 
prove that {s.) converges, and that s. < 2 for n = 1, 2, 3, . . . . 

4. Find the upper and lower limits of the sequence {s,j defined by 

5. For any two real sequences {a.), {b,), prove that 

lim sup (a, + b,) I lirn sup a, + lim sup b,, 
"+.a n - s  n- 33 

provided the sum on the right is not of the form rn - so. 
6. Investigate the behavior (convergence or divergence) of Can if 

(a) n,, = d i g  - d n ;  

I 
(d )  a. = - 

I + z n '  
for complex values of z. 

7. Prove that the convergence of Xa, implies the convergence of 
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8. If Ca,, converges, and if {b.) is monotonic and bounded, prove that Ca.6. con- 
verges. 

9. Find the radius of convergence of each of the following power series: 

10. Suppose that the coefficients of the power series x u , ,  z" are integers, infinitely many 
of which are distinct from zero. Prove that the radius of convergence is at most 1. 

11. Suppose a. > 0, s. = a ,  + .. . + a n ,  and Ca,  diverges. 

a. 
( a )  Prove that 1 - diverges. 

1 + a. 

( b )  Prove that 

aiv + I  a ~ ~ ~  s .V - + . . . + - 2 1 - -  
S Y + I  3.v + k  SN + k 

a  
and deduce that Z" diverges. 

Sn 

( c )  Prove that 

a  
and deduce that C --"converges. 

s.2 

(d j  What can be said about 

a. a  
=l$-na. and Z A ?  

1 + n2a. ' 

12. Suppose a. > 0 and Can converges. Put 

( a )  Prove that 

a  
if m < n, and deduce that Z diverges. 

r.  
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(b) Prove that 

a, 
and deduce that -converges. 

dr. 

13. Prove that the Cauchy product of two absolutely convergent series converges 
absolutely. 

14. If {s.) is a complex sequence, define its arithmetic means a. by 

(a) If lim s. = s, prove that lirn a. = S .  

(b)  Construct a sequence {s.} which does not converge, although lirn a. - 0. 
(c) Can it happen that s. > 0 for all n and that lirn sup s. = a, although lirn a. = O ?  
( d )  Put a. = s. - s,,-,, for 12 2 1 .  Show that 

Assume that lim (ria.) = 0 and that {on} converges. Prove that {s.} converges. 
[This gives a converse of (a), but under the additional assumption that nu.+ 0.1 
(e) Derive the last conclusion from a weaker hypothesis: Assume M < a, 
I nu, 1 < M for all n, and lirn a. = a. Prove that lirn s. = a, by completing the 
following outline: 

If m < 12, then 

m + l  
S. - a. = - 

1 " 
(a. - 0,) + - 

n - m  
C (s. - st,. 

n - m  i = m + l  

For these i, 

Fix E > 0 and associate with each n the integer m that satisfies 

Then ( m  t l ) / (n  - m) I I / &  and 1 s, - S ,  I < M E.  Hence 

Since E was arbitrary, lirn s, = a. 



15. Definition 3.21 can be extended to the case in which the a. lie in some fixed Rk. 
Absolute convergence is defined as convergence of C / a. 1 .  Show that Theorems 
3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 are true in this more 
general setting. (Only slight modifications are required in any of the proofs.) 

16. Fix a positive number a. Choose x, > Z/a, and define x,, x,, x4, . . .  , by the 
recursion formula 

(a) Prove that {x,) decreases monotonically and that lim x, = 4;. 
(b) Put en = x. - Z/a, and show that 

so that, setting p = 2 4 a ,  

(c) This is a good algorithm for computing square roots. since the recursion 
formula is simple and the convergence is extremely rapid. For  example, if a = 3 
and x, = 2, show that e,/P < r'rj and that therefore 

F 5  < 4 . 10-16, E6 < 4 . 

17. Fix a > 1. Take x, > Z/a, and define 

(a) Prove that x, > x3 > .YS > ..  . . 
(b) Prove that x, < x4 < x6 ( . . . . 
(c) Prove that lim x,, = Z/a. 
(d)  Compare the rapidity of convergence of this process with the one described 
in Exercise 16. 

18. Replace the recursion formula of Exercise 16 by 

where p is a fixed positive integer. and describe the behavior of the resulting 
sequences {x,,). 

19. Associate to each sequence o ={a,), in which a,, is 0 or  2, the real number 

Prove that the set of all x(a) is precisely the Cantor set described in Sec. 2.44. 



20. Suppose {p.) is a Cauchy sequence in a metric space X, and some subsequence 
{p.,) converges to a point p E X. Prove that the full sequence {p,) converges to p. 

21. Prove the following analogue o f  Theorem 3.10(b): I f  {En) is a sequence o f  closed 
nonempty and bounded sets in a complete metric space X, i f  En 2 En+,, and i f  

lim diam En = 0, 
n - m  

then 0 ?En consists o f  exactly one point. 
22. Suppose X is a nonempty complete metric space, and {G,,) is a sequence o f  

dense open subsets o f  X. Prove Baire's theorem, namely, that nFG. is not 
empty. (In fact, it 1s dense in X.) Hint: Find a shrinking sequence o f  neighbor- 
hoods E, such that En ;. GG and apply Exercise 21. 

23. Suppose {p.) and {q,) are Cauchy sequences in a metric space X. Show that the 
sequence {d(p., 9.)) converges. Hint: For any rn, n, 

it follows that 

is  small i f  rn and n are large. 
24. Let X be a metric space. 

(a) Call two Cauchy sequences {p.), {q.) in X equivalent i f  

lim d(p., q,) = 0. 
n - m  

Prove that this is an equivalence relation. 
(b) Let X* be the set o f  all equivalence classes so obtained. I f  P E X*, Q E X*, 
{p.) E P, {q,) E Q, define 

A(P, Q )  = lim d(p., 9.); 
n - m  

by Exercise 23, this limit exists. Show that the number A(P, Q)  is unchanged i f  
{p.) and {q.) are replaced by equivalent sequences, and hence that A is a distance 
function in X*. 
(c) Prove that the resulting metric space X* is complete. 
(d)  For each p E X, there is  a Cauchy sequence all o f  whose terms are p; let P, 
be the element o f  X* which contains this sequence. Prove that 

for all p, q E X. In other words, the mapping cp defined by cp(p) = P, is an isometry 
(i.e., a distance-preserving mapping) o f  X into X*. 
(e) Prove that cp(X) is  dense in X*, and that cp(X) = X* i f  X is complete. By (d), 
we may identify X and cp(X) and thus regard X as embedded in the complete 
metric space X*. We call X* the completion o f  X. 

25. Let X be the metric space whose points are the rational numbers, with the metric 
d(x, y) = ( X  - yl . What is the completion o f  this space? (Compare Exercise 24.) 



CONTINUITY 

The function concept and some of the related terminology were introduced in 
Definitions 2.1 and 2.2. Although we shall (in later chapters) be mainly interested 
in real and complex functions (i.e., in functions whose values are real or complex 
numbers) we shall also discuss vector-valued functions (i.e., functions with 
values in Rk) and functions with values in an arbitrary metric space. The theo- 
rems we shall discuss in this general setting would not become any easier if we 
restricted ourselves to real functions, for instance, and it actually simplifies and 
clarifies the picture to discard unnecessary hypotheses and to state and prove 
theorems in an appropriately general context. 

The domains of definition of our functions will also be metric spaces, 
suitably specialized in various instances. 

LIMITS OF FUNCTIONS 

4.1 Definition Let X and Y be metric spaces; suppose E c X ,  f maps E into 
Y, and p is a limit point of E. We write f (x) -+ q as x -+p ,  or 

lim f (x) = q 
x - P  
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if there is a point q E Y with the following property: For every E > 0 there 
exists a 6 > 0 such that 

for all points x E E for which 

The symbols dx and d ,  refer to the distances in X and Y, respectively. 
If X and/or Yare replaced by the real line, the complex plane, or by some 

euclidean space Rk, the distances d x ,  d ,  are of course replaced by absolute values, 
or by norms of differences (see Sec. 2.16). 

It should be noted that p E X, but that p need not be a point of E 
in the above definition. Moreover, even if p E E, we may very well have 
f ( P )  Z limx-tp f (x). 

We can recast this definition in terms of limits of sequences: 

4.2 Theorem Let X,  Y, E, S, and p be us in Dejnition 4.1. Then 

i f  and only i f  

lim f ( x )  = q 
x-P 

lim f (P,) = q 
n-tm 

for every sequence { p , )  in E such that 

Proof Suppose (4 )  holds. Choose {p,) in E satisfying (6). Let E > 0 
be given. Then there exists 6 > 0 such that d,( f ( x ) ,  q )  < E if x E E 
and 0 < dx(x ,  p)  < 6. Also, there exists N such that n > N implies 
0 < d x ( p n , p )  < 6 .  Thus, for n > N, we have d,(f(p,), q )  < E ,  which 
shows that (5 )  holds. 

Conversely, suppose (4)  is false. Then there exists some E > 0 such 
that for every 6 > 0 there exists a point x E E (depending on 6) ,  for which 
d y ( f ( x ) ,  q )  2 E but 0 < dx(x ,  p) < 6.  Taking 6, = l/n (n  = 1 ,  2 ,  3, . . .), we 
thus find a sequence in E satisfying (6 )  for which (5) is false. 

Corollary I f f  has a limit at p, this limit is unique. 

This follows from Theorems 3.2(b) and 4.2. 



4.3 Definition Suppose we have two complex functions, f and g, both defined 
on E. By f + g we mean the function which assigns to each point x of E the 
number f(x) + g(x). Similarly we define the difference f - g, the product fg, 
and the quotient f/g of the two functions, with the understanding that the quo- 
tient is defined only at those points x of E at which g(x) # 0. Iff assigns to each 
point x of E the same number c, then f is said to be a constant function, or 
simply a constant, and we write f = c. I f f  and g are real functions, and if 
f(x) 2 g(x) for every x E E, we shall sometimes write f 2 g,  for brevity. 

Similarly, i f f  and g map E into Rk, we define f + g and f , g by 

(f + g)(x) = f(x) + g(x), (f . g)(x) = f(x) . 
and if A is a real number, (l.f)(x) = i,f(x). 

4.4 Theorem Suppose E c X,  a metric space, p is a limit point of E, f and g 
are complex functions on E, and 

lim f (x) = A, lim g(x) = B. 
X - ' P  X - ' P  

Then (a) lim (f +g)(x) = A  + B;  
X - ' P  

(b) lim (fg)(x) = AB; 
x - P  

Proof In view of Theorem 4.2, these assertions follow immediately from 
the analogous properties of sequences (Theorem 3.3). 

Remark I f f  and g map E into R ~ ,  then (a) remains true, and (b) becomes 
(b') lim (f .g)(x) = A a B .  

X - ' P  

(Compare Theorem 3.4.) 

CONTINUOUS FUNCTIONS 

4.5 Definition Suppose X and Yare metric spaces, E c X, p E E, and f maps 
E into Y. Then f is said to be continuous at  p if for every E > 0 there exists a 
S > 0 such that 

d,(f ( 4 f  (PI) < E 

for all points x E E for which d,(x, p) < 6. 
Iff is continuous at every point of E, then f is said to be continuous on E. 
It should be noted that f has to be defined at the point p in order to be 

continuous at p. (Compare this with the remark following Definition 4.1.) 
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Ifp is an isolated point of E, then our definition implies that every function 
f which has E as its domain of definition is continuous at p. For, no matter 
which E > 0 we choose, we can pick 6 > 0 so that the only point x E E for which 
dx(x ,  p) < 6 is x = p;  then 

d , ( f ( x ) , f  ( P I )  = 0 < &. 

4.6 Theorem In the situation given in Definition 4.5, assume also that p is a 
limit point of E. Then f is continuous at p if and only if lim,,, f (x) = f (p) .  

Proof This is clear if we compare Definitions 4.1 and 4.5. 

We now turn to compositions of functions. A brief statement of the 
following theorem is that a continuous function of a continuous function is 
continuous. 

4.7 Theorem Suppose X ,  Y ,  Z are metric spaces, E c X ,  f maps E into Y,  g 
maps the range o f f ,  f ( E ) ,  into Z, and h is the mapping of E into Z defined by 

4 x 1  = g ( f  ( x ) )  ( x  E E).  

I f f  is continuous at a point p E E and i f g  is continuous at the point f ( p ) ,  then h is 
continuous at p. 

This function h is called the composition or the composite off  and g. The 
notation 

h = g o  f 

is frequently used in this context. 

Proof Let E > 0 be given. Since g is continuous at f ( p ) ,  there exists 
q > 0 such that 

dz(g(y),  g ( f  (P))) < & if d,(y,f (PI) < II and Y ~f (E) .  

Since f is continuous at p, there exists 6 > 0 such that 

d y ( f  (4, f (PI) < v if dX(x ,  P )  < 6 and x E E. 

It follows that 

dz(h(x), h(p))  = dz(g( f  (XI) ,  g ( f  (PI)) < & 

if dx(x,  p) < 6 and x E E. Thus h is continuous at p. 

4.8 Theorem A mapping f 'o f  a metric space X into a metric space Y is con- 
tinuous on X if and only i f  f - ' ( ~ )  is open in X for every open set V in Y. 

(Inverse images are defined in Definition 2.2.) This is a very useful charac- 
terization of continuity. 



Proof Suppose f is continuous on X and V is an open set in Y. We have 
to show that every point off - ' ( V )  is an interior point off - ' ( V ) .  So, 
suppose p E X and f ( p )  E V.  Since V is open, there exists E > 0 such that 
y E V if d y ( f ( p ) ,  y )  < E ;  and since f is continuous at p, there exists 6 > 0 
such that dy(  f ( x ) ,  f ( p ) )  < E if dx(x, p) < 6 .  Thus x E f - ' ( V )  as soon as 
dx(x, P )  < 6. 

Conversely, suppose f - ' ( v )  is open in X for every open set V in Y. 
Fix p E X and E > 0, let V be the set of all y E Y such that dy(y ,  f (p)) < E .  

Then V is open; hence f - ' ( V )  is open; hence there exists 6 > 0 such that 
x E f -'(V)as soon as dx(p, x )  < 6 .  But if x E f - ' (V) ,  then f ( x )  E V ,  so 
that dY(f ( x h f  (p)) < E .  

This completes the proof. 

Corollary A mapping f of a metric space X into a metric space Y is continuous Sf 
and only i f f  - ' ( C )  is closed in X for every closed set C in Y.  

This follows from the theorem, since a set is closed if and only if its com- 
plement is open, and since f - ' (Ec)  = [ f  -'(E)]' for every E c Y.  

We now turn to complex-valued and vector-valued functions, and to 
functions defined on subsets of Rk.  

4.9 Theorem Let f and g be complex continuous functions on a metric space X .  
Then f + g,  fg, and f /g are continuous on X .  

In the last case, we must of course assume that g(x)  # 0, for all x E X. 

Proof At isolated points of X there is nothing to prove. At limit points, 
the statement follows from Theorems 4.4 and 4.6. 

4.10 Theorem 

(a) Let ,f,, . . . , ,f, be real functions on a metric space X, and let f be the 
mapping of X into R~ defned by 

then f is continuous ifandonly ifeach of the functions f , ,  . . . ,f, is continuous. 
(6) Iff and g are continuous mappings of X into R ~ ,  then f + g and f . g 
are continuous on X. 

The functions f,, . . . , fk are called the components of f. Note that 
f + g is a mapping into Rk,  whereas f . g is a real function on X.  



Proof Part (a) follows from the inequalities 

for j = 1, . . . , k. Part (b) follows from (a) and Theorem 4.9. 

4.11 Examples If x,, . . . , xk are the coordinates of the point x E Rk, the 
functions $i defined by 

are continuous on Rk, since the inequality 

shows that we may take 6 = E in Definition 4.5. The functions q5i are sometimes 
called the coordinate functions. 

Repeated application of Theorem 4.9 then shows that every monomial 

where n,, . . . , n, are nonnegative integers, is continuous on Rk. The same is 
true of constant multiples of (9), since constants are evidently continuous. It 
follows that every polynomial P, given by 

is continuous on Rk. Here the coefficients c ,,..., are complex numbers, n,, . . . , nk 
are nonnegative integers, and the sum in (10) has finitely many terms. 

Furthermore, every rational function in x,, . . . , x,, that is, every quotient 
of two polynomials of the form (lo), is continuous on Rk wherever the denomi- 
nator is different from zero. 

From the triangle inequality one sees easily that 

(1 1) I - I I - I  (x ,yERk).  

Hence the mapping x -+ (x I is a continuous real function on Rk. 
If now f is a continuous mapping from a metric space X into Rk, and if q5 

is defined on X by setting $(p) = If(p) 1 ,  it follows, by Theorem 4.7, that q5 is a 
continuous real function on X. 

4.12 Remark We defined the notion of continuity for functions defined on a 
subset E of a metric space X. However, the complement of E in X plays no 
role whatever in this definition (note that the situation was somewhat different 
for limits of functions). Accordingly, we lose nothing of interest by discarding 
the complement of the domain off. This means that we may just as well talk 
only about continuous mappings of one metric space into another, rather than 



of mappings of subsets. This simplifies statements and proofs of some theorems. 
We have already made use of this principle in Theorems 4.8 to 4.10, and will 
continue to do so in the following section on compactness. 

CONTINUITY AND COMPACTNESS 

4.13 Definition A mapping f of a set E into R~ is said to becbounded if there is 
a real number M such that If(x) I 5 M for all x E E. 

4.14 Theorem Suppose f is a continuous nzapping of a compact metric space 
X into a metric space Y .  Then f ( X )  is compact. 

Proof Let {V,) be an open cover off ( X ) .  Since f is continuous, Theorem 
4.8 shows that each of the sets f - '(V,) is open. Since X is compact, 
there are finitely many indices, say a,, . . . , a,, such that 

(12) x c f - ' (V, ,)  u . . . u f - ' (Van).  

Since f ( f  - ' (E) )  c E for every E c Y, (12) implies that 

(13) f ( X )  c v,, u . . . u V a n .  

This completes the proof. 

Note: We have used the relation f ( f  - ' (E) )  c E, valid for E c Y.  If 
E c X,  then f - ' ( f ( E ) )  3 E;  equality need not hold in either case. 

We shall now deduce some consequences of Theorem 4.14. 

4.15 Theorem I f f  is a continuous mapping of a compact metric space X into 
Rk, then f ( X )  is closed and bounded. Thus, f is bounded. 

This follows from Theorem 2.41. The result is particularly important 
when f is real: 

4.16 Theorem Suppose f is a continuous real function on a compact metric 
space X,  and 

(14) M = sup f (p ) ,  m = inf f ( p ) .  
P E X  p E x 

Then there exist points p, q E X such that f ( p )  = M and f (q)  = m. 

The notation in (14) means that M is the least upper bound of the set of 
all numbers j (p ) ,  where p ranges over X,  and that m is the greatest lower bound 
of this set of numbers. 



The conclusion may also be stated as follows: There exist points y and q 
in X such that f (q) sf (x) 5 f (p) for all x E X; that is, f attains its maximum 
(at p) and its minimum (at q). 

Proof By Theorem 4.15, f (X)  is a closed and bounded set of real num- 
bers; hence f (X) contains 

M = sup f (X) and m = inf f (X), 

by Theorem 2.28. 

4.17 Theorem Suppose f is a continuous 1-1 mapping of a conlpact metric 
space X onto a metric space Y. Then the inverse mapping f -' dejined on Y by 

is a continuous nlapping of Y onto X. 

Proof Applying Theorem 4.8 t o f  -' in place off, we see that it suffices 
to prove that f (V) is an open set in Y for every open set V in X. Fix such 
a set V. 

The complement V of V is closed in X, hence compact (Theorem 
2.35); hence f(Vc) is a compact subset of Y (Theorem 4.14) and so is 
closed in Y (Theorem 2.34). Since f is one-to-one and onto, f (V) is the 
complement of f(Vc).  Hence f(V) is open. 

4.18 Definition Let f be a mapping of a metric space X into a metric space Y. 
We say that f is uniformly continuous on X if for every E > 0 there exists 6 > 0 
such that 

for all p and q in X for which d,(p, q) < 6. 
Let us consider the differences between the concepts of continuity and of 

uniform continuity. First, uniform continuity is a property of a function on a 
set, whereas continuity can be defined at a single point. To ask whether a given 
function is uniformly continuous at a certain point is meaningless. Second, if 
f is continuous on X, then it is possible to find, for each E > 0 and for each 
pointp of X, a number 6 > 0 having the property specified in Definition 4.5. This 
6 depends on E and on p. Iff is, however, uniformly continuous on X, then it is 
possible, for each E > 0, to find one number 6 > 0 which will do for all points 
p of X. 

Evidently, every uniformly continuous function is continuous. That the 
two concepts are equivalent on compact sets follows from the next theorem. 
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4.19 Theorem Let f be a continuous mapping of a compact metric space X 
into a metric space Y. Then f is uniformly continuous on X .  

Proof Let E > 0 be given. Since f is continuous, we can associate to 
each point p E X a positive number 4 ( p )  such that 

Let J(p) be the set of all q E X for which 

Since p E J(p),  the collection of all sets J(p) is an open cover of X ;  and 
since X i s  compact, there is a finite set of points p,, . . . , p, in X ,  such that 

(18) X c J ( p , )  u u J(p,). 
We put 

(19) 6 = 4 min [ 4 ( ~ , > ,  . . . , 4(~,)1. 
Then 6 > 0. (This is one point where the finiteness of the covering, in- 
herent in the definition of compactness, is essential. The minimum of a 
finite set of positive numbers is positive, whereas the inf of an infinite set 
of positive numbers may very well be 0.) 

Now let q and p be points of X ,  such that dx(p,  q )  < 6 .  By (18), there 
is an integer m ,  1 < m < n, such that p E J(prn);  hence 

and we also have 

Finally, (16) shows that therefore 

dY(f ( p ) , f  (9))  dY(f ( p ) , f  (P,)) + dY(f (q ) , f  (P,)) < E .  

This completes the proof. 

An alternative proof is sketched in Exercise 10. 
We now proceed to show that compactness is essential in the hypotheses 

of Theorems 4.14, 4.15, 4.16, and 4.19. 

4.20 Theorem Let E be a noncompact set in R'. Then 

(a )  there exists a continuous function on E which is not bounded; 
(b)  there exists a continuous and bounded ,function on E which has no 
maximum. 

I f ,  in addition, E is bounded, then 
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(c) there exists a continuous function on E which is not uniformly 
continuous. 

Proof Suppose first that E is bounded, so that there exists a limit point 
xo of E which is not a point of E. Consider 

1 
(21) f ( 4  = - (X E E). 

X - Xo 

This is continuous on E (Theorem 4.9), but evidently unbounded. To see 
that (21) is not uniformly continuous, let E > 0 and 6 > 0 be arbitrary, and 
choose a point x E E such that ( x  - x o )  < 6. Taking t close enough to 
x, , we can then make the difference I f  ( t)  - f (x) 1 greater than E ,  although 
It - x 1 < 6. Since this is true for every 6 > 0, f is not uniformly continu- 
ous on E. 

The function g given by 

is continuous on E, and is bounded, since 0 < g(x) < 1. It is clear that 

whereas g(x) < 1 for all x E E. Thus g has no maximum on E. 
Having proved the theorem for bounded sets E, let us now suppose 

that E is unbounded. Then f(x) = x establishes (a), whereas 

establishes (b), since 

sup h(x) = 1 
x s E  

and h(x) < 1 for all x E E. 
Assertion (c) would be false if boundedness were omitted from the 

hypotheses. For, let E be the set of all integers. Then every function 
defined on E is uniformly continuous on E. To see this, we need merely 
take 6 < 1 in Definition 4.18. 

We conclude this section by showing that compactness is also essential in 
Theorem 4.17. 
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4.21 Example Let X be the half-open interval [O, 27r) on the real line, and 
let f be the mapping of X onto the circle Y consisting of all points whose distance 
from the origin is 1. given by 

(24) f(t) = (COS t, sin t) (0 i t < 2n). 

The continuity of the trigonometric functions cosine and sine, as well as their 
periodicity properties, will be established in Chap. 8. These results show that 
f is a continuous 1-1 mapping of X onto Y. 

However, the inverse mapping (which exists, since f is one-to-one and 
onto) fails to be continuous at  the point (1, 0) = f(0). Of course, X i s  not com- 
pact in this example. (It may be of interest to observe that f - '  fails to be 
continuous in spite of the fact that Y is compact!) 

CONTINUITY AND CONNECTEDNESS 

4.22 Theorem Iff is a continuous mapping of a metric space X into a metric 
space Y, and if E is a connected subset of X, then f (E)  is connected. 

Proof Assume, on the contrary, that f ( E )  = A  u B, where A and B are 
nonempty separated subsets of Y. Put G = E n f - ' ( A ) ,  H = E n f -'(B). 

Then E = G u H ,  and neither G nor H i s  empty. 
Since A c A (the closure of A), we have G c f - '(A); the latter set is 

closed, since f is continuous; hence G c f -'(A). It follows that f(G) c A. 
Since f (H)  = B and A n B is empty, we conclude that G n H is empty. 

The same argument shows that G n B is empty. Thus G and H are 
separated. This is impossible if E is connected. 

4.23 Theorem Let f be a continuous real function on the interval [a, b]. If 
f (a) < f (b) and if c is a number such that f (a) < c < f (b), then there exists a 
point x E (a, b) such that f (x) = c. 

A similar result holds, of course, if f(a) > f(b). Roughly speaking, the 
theorem says that a continuous real function assumes all intermediate values on 
an interval. 

Proof By Theorem 2.47, [a, b] is connected; hence Theorem 4.22 shows 
that f([a, b]) is a connected subset of R', and the assertion follows if we 
appeal once more to Theorem 2.47. 

4.24 Remark At first glance, it might seem that Theorem 4.23 has a converse. 
That is, one might think that if for any two points x, < x2 and for any number c 
between f (x,) and f (x2) there is a point x in (x,, x,) such that f (x) = c, then f 
must be continuous. 

That this is not so may be concluded from Example 4.27(d). 
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DISCONTINUITIES 

If x is a point in the domain of definition of the function f at which f is not 
continuous, we say that f is discontinuous at x, or that f has a discontinuity at  x. 
Iff is defined on an interval or on a segment, it is customary to divide discon- 
tinuities into two types. Before giving this classification, we have to define the 
right-hand and the left-hand limits off at x, which we denote by f (x+)  and f (x- ), 
respectively. 

4.25 Definition Let f be defined on (a, b). Consider any point x such that 
a 5 x < b. We write 

iff (t,) -t q as n -t oo, for all sequences {t,,) in (x, b) such that t, -t x. To obtain 
the definition of f(x-), for a < x 5 b, we restrict ourselves to sequences {t,) in 
(a, 4 .  

It is clear that any point x of (a, b), lim f ( t )  exists if and only if 
1 - X  

4.26 Definition Let f be defined on (a, b). Iff  is discontinuous at a point x, 
and if f ( x + )  and f(x-)  exist, thenf is said to have a discontinuity of the .first 
kind, or a simple discontinuity, at x. Otherwise the discontinuity is said to be of 
the second kind. 

There are two ways in which a function can have a simple discontinuity: 
either f ( x + )  # f (x-)  [in which case the value f(x) is immaterial], or f ( x + )  = 

f ( x - 1  #f(x).  

4.27 Examples 
(a) Define 

1 (x rational), 
0 (x irrational). 

Then f has a discontinuity of the second kind at every point x, since 
neither f ( x + )  nor f (x-)  exists. 
(b) Define 

x (x rational), 
0 (x irrational). 





Proof By hypothesis, the set of numbers f ( t ) .  where a < t < x ,  is bounded 
above by the number f ( x ) ,  and therefore has a least upper bound which 
we shall denote by A .  Evidently A  2 f ( x ) .  We have to show that 
A  = f ( x - ) .  

Let E > 0 be given. It follows from the definition of A  as a least 
upper bound that there exists 6 > 0 such that a < x - S < x and 

Since f is monotonic, we have 

Combining (27) and (28), we see that 

Hence f ( x - )  = A .  
The second half of (25) is proved in precisely the same way. 
Next, if a < x < J, < b. we see from (25) that 

f ( x + )  = inf f ( t )  = inf f ( t ) .  
x < l < b  x < l < y  

The last equality is obtained by applying (25) to (a, y )  in place of (a, b). 
Similarly, 

Comparison of (29) dnd (30) gives (26). 

Corollary Monotonic functions have no discontinuities of the second kind. 

This corollary implies that every monotonic function is discontinuous at 
a countable set of points at most. Instead of appealing to the general theorem 
whose proof is sketched in Exercise 17, we give here a simple proof which is 
applicable to monotonic functions. 

4.30 Theorem Let f be monotonic on (a,  b). Then the set of points of (a,  b) at 
which f is discontinuous is at most countable. 

Proof Suppose, for the sake of definiteness, that f is increasing. and 
let E be the set of points at which f is discontinuous. 

With every point x of E we associate a rational number r (x)  such 
that 
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Since x, < x, implies f(x, +) I f(x,-), we see that r(x,) # r(x2) if 
x,  # x, . 

We have thus established a 1-1 correspondence between the set E and 
a subset of the set of rational numbers. The latter, as we know, is count- 
able. 

4.31 Remark I t  should be noted that the discontinuities of a monotonic 
function need not be isolated. In  fact, given any countable subset E of (a, b). 
which may even be dense, we can construct a function f, monotonic on (a, b), 
discontinuous at  every point of E, and at no other point of (a, b). 

T o  show this: let the points of E be arranged in a sequence {x,), 
n = 1, 2, 3 , .  . . . Let {c,) be a sequence of positive numbers such that Ec, 
converges. Define 

The summation is to be understood as follows: Sum over those indices n 
for which x, < x. If there are no points x, to the left of x. the sum is empty; 
following the usual convention, we define it to be zero. Since (31) converges 
absolutely. the order in which the terms are arranged is immaterial. 

We leave the verification of the following properties off to the reader: 

(u) f is monotonically increasing on (a, b); 
(b) f'is discontinuous at  every point of E ;  in fact, 

( c )  f is continuous at  every other point of (a, b). 

Moreover, it is not hard to see that f (x-)  = f (x) at  all points of (a, b). If 
a function satisfies this condition, we say that f is continuous from the left. If 
the summation in (31) were taken over all indices n for which x, I x, we would 
havef(x+)  = f ( x )  at every point of (a, b); that is, f would be continuous,from 
the right. 

Functions of this sort can also be defined by another method; for an 
example we refer to Theorem 6.16. 

INFINITE LIMITS A N D  LIMITS AT INFINITY 

T o  enable us to  operate in the extended real number system, we shall now 
enlarge the scope of Definition 4.1, by reformulating it in terms of neighborhoods. 

For  any real number x, we have already defined a neighborhood of x to 
be any segment (x - 6, x + 6). 
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4.32 Definition For any real c, the set of real numbers x such that x > c is 
called a neighborhood of + oo and is written (c, + oo). Similarly, the set (- oo, c) 
is a neighborhood of - oo. 

4.33 Definition Let f be a real function defined on E c R. We say that 

where A and x are in the extended real number system, if for every neighborhood 
U of A there is a neighborhood V of x such that V n E is not empty, and such 
t h a t f ( t ) ~  Ufor all t~ V n  E, t # x .  

A moment's consideration will show that this coincides with Definition 
4.1 when A and x are real. 

The analogue of Theorem 4.4 is still true, and the proof offers nothing 
new. We state it, for the sake of completeness. 

4.34 Theorem Let f and g be dejned on E c R. Suppose 

f ( t ) + A ,  g ( t ) + B  ast+.r .  
Then 

(a) f ( t ) - + A f  implies A ' = A .  
( 4  ( f+g ) (O-+A + B ,  
( 4  Cfg)(t -+ A BI 
( 4  ( f  lg)(t -+ A lB, 

provided the right members of (b), (c), and (d) are dejined. 
Note that oo - co, 0 .  oo, oo/oo, A10 are not defined (see Definition 1.23). 

EXERCISES 

1. Suppose f is a real function defined on R1 which satisfies 

lim [f(x + h) - f (x - h)l = 0 
h + O  

for every x E R1. Does this imply that f is continuous? 
2. I ff  is a continuous mapping of a metric space X into a metric space Y, prove that 

- 
f ( E )  f ( E )  

for every set E c X. (I? denotes the closure of E.) Show, by an example, that 

f (I?) can be a proper subset of f(E). 
3. Let f be a continuous real function on a metric space X. Let Z ( f )  (the zero set of f )  

be the set of all p E X a t  which f(p) = 0. Prove that Z (  f )  is closed. 
4. Let f and g be continuous mappings of a metric space X into a metric space Y, 
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arld let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) =f(p) 
for all p E E, prove that g(p) = f(p) for all p E X. (In other words, a continuous 
mapping is determined by its values on a dense subset of its domain.) 

5. I f f  is a real continuous function defined on a closed set E c R1, prove that there 
exist continuous real functions g on  R1 such that g(x) = f(x) for all x E E. (Such 
functions g are called continuous extensions o f f  from E to R1.) Show that the 
result becomes false if the word "closed" is omitted. Extend the result to vector- 
valued functions. Hint: Let the graph of g be a straight line on  each of the seg- 
ments which constitute the complement of E (compare Exercise 29, Chap. 2). 
The result remains true if R1 is replaced by any metric space, but the proof is not 
so  simple. 

6. If f'is defined on E, the graph off is the set of points (x, f(x)), for x E E. In partic- 
ular, if E is a set of real numbers, andf'is real-valued, the graph off  is a subset of 
the plane. 

Suppose E is compact, and prove thar f is continuous on E if and only if 
its graph is compact. 

7. If E c X and iff is a function defined on X, the restriction off to  E is the function 
g whose domain of definition is E, such that g(p) = f(p)  for p E E. Define f and g 
on  R' by: f(0, 0) = g(0, 0) = 0, f (x ,  Y) = xy2/(x2 + y4), g(x, y) = xy2/(xZ + y6) 
if (x, y) # (0, 0). Prove that f is bounded on R2, that g is unbounded in every 
neighborhood of (0, O), and that f is nor continuous at (0,O); nevertheless, the 
restrictions of both f and g to every straight line in R 2 are continuous! 

8. Let f'be a real uniformly continuous function on the bounded set E in R1. Prove 
that f is bounded on  E. 

Show that the conclusion is false if boundedness of E is omitted from the 
hypothesis. 

9. Show that the requirement in the definition of uniform continuity can be rephrased 
as follows, in terms of diameters of sets: T o  every E > 0 there exists a 6 > 0 such 
that diam f (E)  < E for all E c X with diam E < 6. 

10. Complete the details of the following alternative proof of Theorem 4.19: Iff is not 
uniformly continuous, then for some E > 0 there are sequences {p,), {q,) in X such 
that d,(p,, q.) -; 0 but d,(f(p.), f(q,)) > E .  Use Theorem 2.37 to obtain a contra- 
diction. 

11. Suppose f is a uniformly continuous mapping of a metric space X into a metric 
space Y and prove that {f(x.)) is a Cauchy sequence in Y for every Cauchy se- 
quence {x , }  in X. Use this result to  give an alternative proof of the theorem stated 
in Exercise 13. 

12. A uniformly continuous function of a uniformly continuous function is uniformly 
continuous. 

State this more precisely and prove it. 
13. Let E be a dense subset of a metric space X, and let f'be a uniformly continuous 

real function defined on E. Prove that f has a continuous extension from E to X 
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MEAN VALUE THEOREMS 

5.7 Definition Let f be a real function defined on a metric space X. We say 
that f has a local maximum at a point p E X if there exists 6 > 0 such that f (q) I 
f ( p )  for all q E X with d(p,  q) < 6. 

Local minima are defined likewise. 
Our next theorem is the basis of many applications of differentiation. 

5.8 Theorem Let f be dejined on [a, b ] ;  i f f  has a local maximum at a point 
x E (a,  b), and i f f  ' ( x )  exists, then j"(x) = 0. 

The analogous statement for local minima is of course also true. 

Proof Choose 6 in accordance with Definition 5.7, so that 

I f x - 6  < t < x ,  then 

Letting t -+ x ,  we see that f ' ( x )  2 0. 
If x < t < x + 6, then 

f ( t >  - f ( x >  
10, 

t - x  

which shows that f ' ( x )  I 0. Hence f f ( x )  = 0. 

5.9 Theorem I f f  and g are continuous real functions on [a, b] n,hich are 
diferentiable in (a,  b),  then there is a point x E (a,  b) at which 

[ f  (b)  - f (a:,1g1(x) = [g(b) - g(u)lf ' ( x ) .  

Note that differentiability is not required at the endpoints. 

Proof Put 

h(t = [ f  (b)  - f (a)lg(t)  - [g(b) - g(a)lf ( t  (a 5 t I b). 

Then h is continuous on [a, b] ,  h is differentiable in (a, b), and 

(12) h(a) = f (b)g(a) - f (a)g(b) = 

To prove the theorem, we have to show that hl(x)  = 0 for some x E (a,  b). 
If h is constant, this holds for every x E (a,  b). If h ( t )  > h(a) for 

some t E (a,  b),  let x be a point on [a, b] at which h attains its maximum 
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(Theorem 4.16). By (12), x E (a, b), and Theorem 5.8 shows that hf(x) = 0. 
If h(t) < h(a) for some t E (a, b), the same argument applies if we choose 
for x a point on [a, b] where h attains its minimum. 

This theorem is often called a generalized mean value theorenz; the following 
special case is usually referred to as "the" mean value theorem: 

5.10 Theorem Iff is a real continuous function on [a, b] ~ ,hich isdzferentiable 
in (a, b), then there is a point x E (a, b) at  which 

f (b) -f(a) = (b - a)fl(x). 

Proof Take g(x) = x in Theorem 5.9. 

5.11 Theorem Suppose f is diJerenriable in (a, b). 

(a) Iff '(x) 2 0 for all x E (a, b), rlienf is ?nonotonically increasing. 

(b) If f'(x) = 0 for all x E (a, b), then f is constant. 

(c) Iff '(x) Ofor all x E (a, b), then f is monotonically decreasing. 

Proof All conclusions can be read off from the equation 

f ( ~ 2 )  -f (XI) = ( ~ 2  - x1)f '(XI, 

which is valid, for each pair of numbers x,, x2 in (a, b), for some x between 
x, and x, . 

THE CONTINUITY OF DERIVATIVES 

We have already seen [Example 5.6(b)] that a function f may have a derivative 
f '  which exists at  every point, but is discontinuous at some point. However, not 
every function is a derivative. In particular, derivatives which exist at every 
point of an interval have one important property in common with functions 
which are continuous on an interval: Intermediate values are assumed (compare 
Theorem 4.23). The precise statement follows. 

5.12 Theorem Suppose f is a real dzferentiable function on [a, b] and suppose 
f '(a) < j. < f '(b). Then there is a point x E (a, b) such that f '(x) = i. 

A similar result holds of course iff '(a) > f '(b). 

Proof Put g(t)  = f ( t )  - I t .  Then gl(a) < 0. so that g(tl) < g(a) for some 
t, E (a, b), and g'(b) > 0, so that g(t2) < g(b) for some t, E (a, b). Hence 
g attains its minimum on [a, b] (Theorem 4.16) at some point x such that 
a < x < b. By Theorem 5.8, gf(x) = 0. Hence ff (x)  = A. 



Corollary I f f  is dlfferentiable on [a, b ] ,  then f '  cannot have any simple dis- 
continuities on [a, b].  

But f '  may very well have discontinuities of the second kind. 

L'HOSPITAL'S RULE 

The following theorem is frequently useful in the evaluation of limits. 

5.13 Theorem Suppose f andg are real and dlfferentiable in (a ,  b),  andgr(x)  # 0 
for all x E (a,  b),  rr3here - oo a < b < + oo. Suppose 

If  
(14) f ( x )+O andg(x)+O a s x + a ,  
or if 

(15) g(x)  + + oo as x + a, 

then 

The analogous statement is of course also true if x + b, or if g(x)  + - co 
in (15). Let us note that we now use the limit concept in the extended sense of 
Definition 4.33. 

Proof We first consider the case in which - oo A < + co. Choose a 
real number q such that A < q, and then choose r such that A < r < q. 
By (13) there is a point c E (a,  b)  such that a < x < c implies 

If a < x < y < c, then Theorem 5.9 shows that there is a point t E ( x ,  y )  
such that 

Suppose (14) holds. Letting x + a in (18), we see that 
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Next, suppose (15) holds. Keeping y  fixed in (18), we can choose 
a point c, E (a,  y)  such that g(x )  > g(y)  and g(x )  > 0 if a < x  < c,. Multi- 
plying (18) by [g (x )  - g(y)l lg(x),  we obtain 

f (4 g(y)  f ( y )  r - r -  ( a < x < c , ) .  
g(x)  g(x> g (x )  

If we let x  -t a in (20). (15) shows that there is a point c,  E (a: c,) 
such that 

Summing up, (19) and (21) show that for any q, subject only to the 
condition A < q, there is a point c,  such that f ( x ) /g (x )  < q if a < x  < c,  . 

In the same manner, if -a < A < + co, and p is chosen so that 
p < A ,  we can find a point c ,  such that 

and (16) follows from these two statements. 

DERIVATIVES OF HIGHER ORDER 

5.14 Definition Iff has a derivative f '  on an  interval, and iff '  is itself differen- 
tiable, we denote the derivative o f f '  by f "  and call f "  the second derivative off. 
Continuing in this manner, we obtain functions 

f, f ' ,  f". f ' , ) ,  . . . ,  f @ ) ,  

each of which is the derivative of the preceding one. f  ("I is called the nth deriva- 
tive, or  the derivative of order n, off. 

In order for f'"' ( x )  to exist at  a point x ,  f ( " - ' )  ( I )  must exist in a neighbor- 
hood of x  (or in a one-sided neighborhood, if x  is an  endpoint of the interval 
on  which f is defined), and f ( " - ' )  must be differentiable at  x .  Since f ( " - ' )  must 
exist in a neighborhood of x ,  f'"-,) must be differentiable in that neighborhood. 

TAYLOR'S THEOREM 
- 

5.15 Theorem Suppose f is a  real function on [a, b ] ,  n  is a  positive integer, 
f ("- ' )  is conlinuous on [a, b] .  f ( " ) ( t )  exists for every I E (a,  b). Let a ,  P be distinct 
points of [a. b ] ,  and define 
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Then there exists a point x between cr and /3 such that 

For  n = 1, this is just the mean value theorem. In general, the theorem 
shows that f  can be approximated by a polynomial of degree n - 1, and that 
(24)  allows us to  estimate the error, if we know bounds on I f(")(x:lI.  

Proof Let M be the number defined by 

and put 

(26) ~ ( t )  = f  ( t )  - P ( t )  - M ( t  - a)" (a 5 t 5 b). 

We have to  show that n!M = f ( " ' ( x )  for some x between cr and p. By 
(23) and (26),  

Hence the proof will be complete if we can show that g(")(x)  = 0 for some 
x between a and p. 

Since p t k ) ( a )  = f  (k ) (a)  for k = 0, . . . . n - 1, we have 

(28) g(a) = g l ( a )  = . . .  =g(" - ' )  (a)  = 0. 

Our choice of M shows that g(P) = 0, so that g ' ( x l )  = 0 for some x ,  
between a and p, by the mean value theorem. Since g'(a)  = 0, we conclude 
similarly that gU(x,)  = 0 for some x 2  between r and x,. After n steps we 
arrive at the conclusion that g(")(x,) = 0 for some x ,  between r and xn-, ,  
that is, between x and b. 

DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS 

5.16 Remarks Definition 5.1 applies without any change to complex functions 
f defined on [a, b ] ,  and Theorems 5.2 and 5.3, as well as their proofs, remain 
valid. I f f ,  andf, are the real and imaginary parts off, that is, if 

for a < t  < b,  where f l ( t )  and f 2 ( t )  are real, then we clearly have 

(29) f ' (XI  =fl'(x> + i f ; (x ) ;  

also, f  is differentiable at  x if and only if both f l  and f2  are differentiable a t  x .  
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Passing to vector-valued functions in general, i.e., to functions f which 
map [a, b] into some Rk, we may still apply Definition 5.1 to define ff(x). The 
term 4( t )  in (1) is now, for each t, a point in Rk, and the limit in (2) is taken with 
respect to the norm of Rk. In other words, ff(x) is that point of Rk (if there is 
one) for which 

and f '  is again a function with values in Rk. 
Iff,, . . . , fk are the components of f ,  as defined in Theorem 4.10, then 

and f is differentiable at  a point x if and only if each of the functions f,, . . . , fk 

is differentiable at  x. 
Theorem 5.2 is true in this context as well, and so is Theorem 5.3(a) and 

(b), if fg is replaced by the inner product f - g (see Definition 4.3). 
When we turn to the mean value theorem, however, and to one of its 

consequences, namely, L'Hospital's rule, the situation changes. The next two 
examples will show that each of these results fails to be true for complex-valued 
functions. 

5.17 Example Define, for real x, 

(32) f (x) = eix = cos x + i sin x. 

(The last expression may be taken as the definition of the complex exponential 
e ix;  see Chap. 8 for a full discussion of these functions.) Then 

but 

so that 1 f '(x) 1 = 1 for all real x. 
Thus Theorem 5.10 fails to hold in this case. 

5.18 Example On the segment (0, l), define f (x) = x and 

(35) g(x) = x + x2eilx2. 

Since 1 ei'l = 1 for all real t, we see that 



Next, 

so that 

(38) 

Hence 

(39) 

and so 
f ' ( x )  lim - - - 0. 

x - 0  s ( x )  

By (36) and (40), L'Hospital's rule fails in this case. Note also that gl(x)  # 0 
on (0,  11, by (38). 

However, there is a consequence of the mean value theorem which, for 
purposes of applications, is almost as useful as Theorem 5.10, and which re- 
mains true for vector-valued functions: From Theorem 5.10 it follows that 

5.19 Theorem Suppose f is a continuous nlapping of [a. b ]  into R~ and f is 
diffkrentiablc in (u,  b).  Then t11~1.e exists x E (a,  b)  such that 

Proof' Put z = f(b) - f(a). and define 

Then cp is a real-valued continuous function on [a, b]  which is differentia- 
ble in (a ,  6). The mean value theorem shows therefore that 

for some x E (a,  b). On the other hand, 

The Schwarz inequality now gives 

Hence / z 1 (b - a)  ( f ' ( x :~  1 ,  which is the desired conclusion 

V. P. Havin translated the second edition of this book into Russian and added this 
proof to the original one. 



EXERCISES 

1. Let f  be defined for all real x ,  and suppose that 

I f ( x ) - f ( y ) I  I ( ~ - - Y ) ~  

for all real x  and y. Prove that f  is constant. 
2. Supposeff(x) > 0 in (a,  b). Prove that f  is strictly increasing in (a, b), and let g be 

its inverse function. Prove that g is differentiable, and that 

(a  < x  < b). 

3. Suppose g is a real function o n  R1, with bounded derivative (say lg'l < M). Fix 
E > 0,  and define f ( x )  = x  + ~ g ( x ) .  Prove that f  is one-to-one if E is small enough. 
(A set of admissible values of E can be determined which depends only on M.) 

4. If 

where Co , . . . , C, are real constants, prove that the equation 

has at  least one real root between 0 and 1. 
5. Suppose f  is defined and differentiable for every x  > 0,  and f'(x) + 0 as x + + m. 

Put g(x)  = f ( x  + 1 )  - f  (x ) .  Prove that g(x )  + 0 as x -t + co. 
6. Suppose 

(a )  f  is continuous for x  2 0,  
(b)  f'(x) exists for x  > 0,  

(c) f(O) = 0,  
(d) f ' is monotonically increasing. 
Put 

and prove that g is monotonically increasing. 
7. Suppose f  ' ( x ) ,  g l (x )  exist, g ' ( x )  f 0,  and f  ( x )  = g(x)  = 0. Prove that 

(This holds also for complex functions.) 
8. Suppose f' is continuous o n  [a, b] and E > 0. Prove that there exists 8 > 0 such 

that 



whenever 0 < 1 t  - x 1 < 6 ,  a < x 2 b, a < t  l b. (This could be expressed by 
saying that f  is uniformly differentiable on [a, b] iff '  is continuous on [a, b].) Does 
this hold for vector-valued functions too? 

9. Let f  be a continuous real function on R1, of which it is known that f ' (x )  exists 
for all x # 0 and that f ' (x )  -+ 3 as x -+ 0. Does it follow that f '(0) exists? 

10. Suppose f  and g are complex differentiable functions on (0, I ) ,  f  ( x )  -+ 0 ,  g(x)  -+ 0,  
f  ' ( x )  -+ A, g'(x) -+ Bas  x -+ 0,  where A and Bare  complex numbers, B # 0. Prove 
that 

Compare with Example 5.18. Hint: 

Apply Theorem 5.13 to  the real and imaginary parts of f ( x ) / x  and g(x) /x .  
11. Suppose f  is defined in a neighborhood of x ,  and supposef"(x) exists. Show that 

Iim f  ( x  + h)  + f  ( x  - h) - 2f ( X I  = 
h + O  h  = 

Show by an example that the limit may exist even if f " (x )  does not. 
Hint: Use Theorem 5.13. 

12, If f ( x )  = 1x1 ', compute f '(x), f " (x )  for all real x ,  and show that f(''(O) does not 
exist. 

13. Suppose a and c are real numbers, c > 0,  and f  is defined on [- 1, I ]  by 

j;' sin ( 1  x  I - ' )  (if x # 0),  
f (4 = 

(if x =0) .  

Prove the following statements: 
(a )  f  is continuous if and only if a > 0. 
(b) f f ( 0 )  exists if and only if a > 1 .  
( c )  f' is bounded if and only if a 2 1 -i c. 
( d )  f' is continuous if and only if a > 1 + c. 
( e )  f" (0)  exists if and only if a > 2 + c. 
( f )  f" is bounded if and only if a 2 2 + 2c. 
( g )  f" is continuous if and only if a > 2 + 2c. 

14. Let f  be a differentiable real function defined in (a, b). Prove that f  is convex if 
and only i f f '  is monotonically increasing. Assume next that f"(x) exists for 
every x E (a,  b), and prove that f  is convex if and only if f"(x) 2 0 for all x E (a, b). 

15. Suppose a E R', f  is a twice-differentiable real function on (a, a), and M , ,  M I ,  M2 
are the least upper bounds of If ( x )  1 ,  1 f  ' ( x )  1 , I f"(x) 1 ,  respectively, o n  (a,  =). 
Prove that 

M: <4MoMz. 



Hint: If h > 0, Taylor's theorem shows that 

for some 5 E (x ,  x + 2h). Hence 

To  show that M :  = 4M0 M 2  can actually happen, take a = - 1, define 

and show that Mo = 1, M I  = 4,  M 2  = 4.  
Does M :  1 4Mo M 2  hold for vector-valued functions too? 

16. Suppose f is twice-differentiable on (0, a), f "  is bounded on (0, a), and f ( x )  + 0 
a s x +  a.  Prove that f f ( x )  + O a s  x -+ z. 

Hint: Let a -+ cc in Exercise 15. 
17. Suppose f is a real, three times differentiable function on [-  1 ,  11, such that 

f ( - l )=O,  f(O)=O, f ( l ) = l ,  f ' ( O ) = O .  

Prove that f ( 3 ) ( ~ )  2 3 for some x E (- 1 ,  1 ) .  
Note that equality holds for &(x3 f .u2). 
Hint: Use Theorem 5.15, with a = 0 and P = + 1 ,  to  show that there exist 

s E (0, 1 )  and t E (- 1 , O )  such that 

f "'(s) + f '"( t)  = 6.  

18. Suppose f is a real function on [a, b] ,  n is a positive integer, and f ( " - ' )  exists for 
every t E [a, b] .  Let a, p, and P be as in Taylor's theorem (5.15). Define 

for t E [a, b] ,  t f p,  differentiate 

f ( t )  - f ( P )  = ( t  - P ) Q ( f )  

12 - 1 times at t = a ,  and derive the following version of Taylor's theorem: 

19. Suppose f is defined in (- 1 ,  1 )  and f '(0) exists. Suppose - 1 < a,  < P. < 1 ,  
a ,  -+ 0,  and P. + 0 as n + m. Define the difference quotients 



Prove the following statements: 
(a) If a, < 0 < p,, then lirn D, = f'(0). 
(b) If 0 < a, < p, and {/3,,/(Pn - a,)} is bounded, then lirn D, = f '(0). 
(c) I f f '  is continuous in (- 1, I), then lirn D, = f'(0). 

Give an example in which f'is differentiable in (- 1, 1) (but f '  is not contin- 
uous at  0) and in which a,, , P, tend to 0 in such a way that lim D, exists but is differ- 
ent from f'(0). 

20. Formulate and prove a n  inequality which follows from Taylor's theorem and 
which remains valid for vector-valued functions. 

21. Let E be a closed subset of R'. We saw in Exercise 22, Chap. 4, that there is a 
real continuous function f on  R' whose zero set is E. Is it possible, for each closed 
set E, to find such an f which is differentiable on R', or one which is t~ times 
differentiable, o r  even one which has derivatives of all orders on R1? 

22. Suppose f is a real function on (- E, E). Call x afixcdpoint o f f  if f(x) = x. 
(a) Iff is differentiable and f'(t) # 1 for every real t, prove that f has at  most one 
fixed point. 
(b) Show that the function f defined by 

has no fixed point, although 0 < f f ( t )  < 1 for all real t. 
(c) However, if there is a constant A < 1 such that If'(t) 1 I A for all real t ,  prove 
that a fixed point x o f f  exists, and that x = lirn x,, where X I  is an arbitrary real 
number and 

for t~ = 1, 2 ,  3, . . . . 
(d) Show that the process described in (c) can be visualized by the zig-zag path 

23. The function f defined by 

has three fixed points, say a ,  P, y, where 

For  arbitrarily chosen x l ,  define is,} by setting x,+ =f(x,). 
(a) If x l  < a ,  prove that x, + - m as n + co. 
(b) If a < x l  < y,  prove that s. + p as n + co. 

(c) If y < XI, prove that x, + + n as n + co. 
Thus P can be located by this method, but a and y cannot. 
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24. The process described in part (c) of Exercise 22 can of course also be applied to 
functions that map (0, m )  to  (0, co). 

Fix some a > 1, and put 

Both f and g have da as their only fixed point in (0, m). Try to explain, on the 
basis of properties off  and g ,  why the convergence in Exercise 16, Chap. 3 ,  is so 
much more rapid than it is in Exercise 17. (Compare f '  and g ' ,  draw the zig-zags 
suggested in Exercise 22.) 

D o  the same when 0 < a < 1. 
25. Suppose f is twice differentiable on [a, b], f (a )  < 0, f (b )  > 0, f '(x) 2 6 > 0,  and 

0 l f " ( x )  l M for all x E [a, b]. Let 5 be the unique point in (a, b) a t  which 

f ( 5 )  = 0. 
Complete the details in the following outline of Newrotz's merhod for com- 

puting 4. 
(a)  Choose .u, E (5 ,  b), and define {x,) by 

Interpret this geometrically, in terms of a tangent to the graph off. 
( b )  Prove that x, +, < x, and that 

lim x, = 4. 
n - r  

(c) Use Taylor's theorem to show that 

for some I ,  E (6 ,  x,). 
( d )  If A = M/26, deduce that 

(Compare with Exercises 16 and 18, Chap. 3.) 
( e )  Show that Newton's method amounts to finding a fixed point of the function 

g defined by 

How does g ' ( x )  behave for x near E? 
( f )  Put f ( x )  = x'I3 on (- co, m )  and try Newton's method. What happens? 



26. Suppose f  is differentiable on [a, b],  f ( a )  = 0, and there is a real number A such 
that 1 f ' (x )  I < A 1 f  ( x )  I o n  [a, b].  Prove that f  ( x )  = 0 for all x E [a, 61. Hint: Fix 
xo E [a, b],  let 

Mo = SUP f  ( x )  I , M I  = sup If'(x) I 
for a I x I xo . For any such x ,  

I f (x )  / I M l ( x o  - a)  l A(xo - a)Mo. 
Hence Mo = 0 if A(xo - a)  < 1 .  That is, f  = 0 o n  [a, xo] .  Proceed. 

27. Let 4 be a real function defined on a rectangle R in the plane, given by a I x 5 6 ,  
o: I y I P.  A solution of the initial-value problem 

y' = 4 ( x ,  y), y(a) = c (o: I c 5 p )  
is, by definition, a differentiable function f  on [a, b] such that f ( a )  = c, a I f ( x )  I P ,  
and 

f  ' ( X I  = 4(x ,  f  ( X I )  (a  5 x I b). 

Prove that such a problem has at  most one solution if there is a constant A such 
that 

/ ~ ( - Y , Y z ) - ~ ( x , Y I ) ~  I A ~ Y Z - Y I )  
whenever (.u, y,)  E R and ( x ,  y2 )  E R. 

Hint: Apply Exercise 26 to the difference of two solutions. Note that this 
uniqueness theorem does not hold for the initial-value problem 

which has two solutions: f ( x )  = 0 and f ( x )  = x2/4. Find all other solutions. 
28. Formulate and prove an analogous uniqueness theorem for systems of differential 

equations of the form 

Noie that this can be rewritten in the form 

where y = (y , ,  . . . , y,) ranges over a k-cell, + is the mapping of a (k + 1)-cell 
into the Euclidean k-space whose components are the functions +,, . . . , 4,, and c 
is the vector (c , ,  . . . , c,). Use Exercise 26, for vector-valued functions. 

29. Specialize Exercise 28 by considering the system 

wheref, g,, . . . , gk are continuous real functions on [a, b] ,  and derive a uniqueness 
theorem for solutions of the equation 

subject t o  initial conditions 



THE RIEMANN-STIELTJES INTEGRAL 

The present chapter is based on a definition of the Riemann integral which 
depends very explicitly on the order structure of the real line. Accordingly, 
we begin by discussing integration of real-valued functions on intervals. Ex- 
tensions to complex- and vector-valued functions on intervals follow in later 
sections. Integration over sets other than intervals is discussed in Chaps. 10 
and 11. 

DEFINITION AND EXISTENCE OF THE INTEGRAL 

6.1 Definition Let [a, b] be a given interval. By a partition P of [a, b] we 
mean a finite set of points x,, x,, . . . , x,, where 

We write 

AX. = X .  - X .  ( i = l ,  . . . ,  n). 
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Now suppose f is a bounded real function defined on [a, b] .  Corresponding to 
each partition P of [a, b ]  we put 

and finally 

where the inf and the sup are taken over all partitions P of [a, b] .  The left 
members of (1) and (2) are called the upper and lower Riemann integrals of f  
over [a, b ] ,  respectively. 

If the upper and lower integrals are equal, we say that f is Riemann- 
integrable on [a, b ] ,  we write f E d (that is, 5? denotes the set of Riemann- 
integrable functions), and we denote the common value of (1) and (2) by 

This is the Riemann integral off  over [a, b ] .  Since f is bounded, there 
exist two numbers, m and M, such that 

Hence, for every P, 

m(b  - a )  I L ( P . f )  I U(P,  f) I M ( b  - a),  

so that the numbers L(P, f) and U(P,  f )  form a bounded set. This shows that 
the upper and lower integrals are defined for every bounded function f. The 
question of their equality, and hence the question of the integrability o f f ,  is a 
more delicate one. Instead of investigating it separately for the Riemann integral, 
we shall immediately consider a more general situation. 
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6.2 Definition Let a be a monotonically increasing function on [a, b] (since 
a(a) and a(b) are finite, it follows that ci is bounded on [a, b]). Corresponding to 
each partition P of [a, b], we write 

It  is clear that Aci, 2 0. For any real function f which is bounded on [a, b] 
we put 

where Mi, mi have the same meaning as in Definition 6.1, and we define 

(5) Job / dci = inf U(P,S, ci), 

the inf and sup again being taken over all partitions. 
If the left members of (5) and (6) are equal, we denote their common 

value by 

or sometimes by 

(8) 

This is the Riemann-Stielijes integral (or simply the Stielij'es integral) of 
f with respect to ci, over [a, b]. 

If (7) exists, i.e., if (5) and (6) are equal, we say that f is integrable with 
respect to a, in the Riemann sense, and write f E B(ci). 

By taking ~ ( x )  = x, the Riemann integral is seen to be a special case of 
the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the 
general case ci need not even be continuous. 

A few words should be said about the notation. We prefer (7) to (8), since 
the letter x which appears in (8) adds nothing to the content of (7). I t  is im- 
material which letter we use to represent the so-called "variable of integration." 
For instance, (8) is the same as 



The integral depends onf ,  a, a and b, but not on the variable of integration, 
which may as well be omitted. 

The role played by the variable of integration is quite analogous to that 
of the index of summation: The two symbols 

mean the same thing, since each means c ,  + c ,  + . . . + cn . 
Of course, no harm is done by inserting the variable of integration, and 

in many cases it is actually convenient to do so. 
We shall now investigate the existence of the integral (7). Without saying 

so every time, f will be assumed real and bounded, and a monotonically increas- 

ing on [a, b ] ;  and, when there can be no misunderstanding, we shall write j in 
b 

place of L. 
6.3 Definition We say that the partition P* is a refinement of P if P * 2 P 
(that is, if every point of P is a point of P *). Given two partitions, PI  and P ,  , 
we say that P* is their common refinement if P* = P I  u P ,  . 

6.4 Theorem If P* is a refinement of P ,  then 

(9 )  
and 
(10) 

Proof To prove (9), suppose first that P* contains just one point more 
than P .  Let this extra point be x*, and suppose xi.- ,  < x* < x i ,  where 
x i - ,  and xi are two consecutive points of P .  Put 

w, = inf f ( x )  ( x i - l  I x I x*), 

w,  = inf f ( x )  (x* I x I xi) .  

Clearly w1 2 m i  and w, 2 m i ,  where, as before, 

m i  = i n f f ( x )  (x i -1  2 x I xi). 
Hence 

If P* contains k points more than P,  we repeat this reasoning k 
times, and arrive at (9) .  The proof of (10) is analogous. 
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- b 

6.5 Theorem l a b f  da l f da. 
- 

Proof Let P* be the common refinement of two partitions PI  and P,.  
By Theorem 6.4, 

L(P, , f ,  a )  l L(P*, f ,  a )  5 U(P*,.L a )  5 U P , ,  f, a). 

Hence 

( 1  1 )  L(P,  ,A a)  l U(P2 3 f, a). 

If P,  is fixed and the sup is taken over all P I ,  (11) gives 

The theorem follows by taking the inf over all P ,  in (12). 

6.6 Theorem f E 9 ( a )  on [a, b] if and only if for ecerj E > 0 there exists a 
partition P such that 

(13) U(P9.L a )  - L ( P , A  a) < &. 

Proof For every P we have 

Thus (13) implies 

Hence, if (13) can be satisfied for every E > 0, we have 

that is, f E g ( a ) .  
Conversely, suppose f E g ( o ) ,  and let E > 0 be given. Then there 

exist partitions PI and P ,  such that 
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We choose P to be the common refinement of Pl and P, . Then Theorem 
6.4, together with (14) and (15), shows that 

E 
u ( P , / , ~ )  < u(P,, / ,  a)  < J / d a  + T < L ( P , , / , ~ )  + E I L ( P , / , ~ )  + E ,  

so that (13) holds for this partition P. 

Theorem 6.6 furnishes a convenient criterion for integrability. Before we 
apply it, we state some closely related facts. 

6.7 Theorem 
(a)  If (13) holds for some P and some E ,  then (13) holds (with the same E )  

for every refinement of P.  
(b)  If (13) holds for P = { x ,  , . . . , x,) and if si , t i  are arbitrary points in 

x i ] ,  then 

( c )  u f  E B ( a )  and the hypotheses of (b) hold, then 

Proof Theorem 6.4 implies (a).  Under the assumptions made in (b),  
both f ( s i )  and f ( t i )  lie in [ m i ,  M i ] ,  so that f ( s i )  - f ( t i ) )  I M i  - m i .  Thus 

which proves (b).  The obvious inequalities 

L ( P , L  a)  5 I f  (ti) Aai I U(P, f ,a)  
and 

L ( P , f ,  a)  I j f  da I U ( P , f ,  a)  
prove (c). 

6.8 Theorem I f f  is continzrous on [a, b ]  then f E B(a)  on [a, b] .  

Proof Let E > 0 be given. Choose q > 0 so that 

Since f is uniformly continuous on [a, b] (Theorem 4.19), there exists a 
6 > 0 such that 
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i f x ~ [ a , b ] ,  t ~ [ a , b ] , a n d  I x - t i  < 6 .  
If P is any partition of [a, b ]  such that Ax ,  < 6  for all i, then (16) 

implies that 
(17) M i - m i < q  ( i - 1 ,  ..., n)  

and therefore 

By Theorem 6.6, f E W(a). 

6.9 Theorem I f f  is monotonic on [a, b ] ,  and i f  a is continuous on [a, b] ,  then 
f E W(a). ( W e  still assume, of course, that a is monotonic.) 

Proof Let E > 0 be given. For any positive integer n ,  choose a partition 
such that 

Ami = 
a(b) - ( i =  1, ..., n). 

n 

This is possible since a is continuous (Theorem 4.23). 
We suppose that f is monotonically increasing (the proof is analogous 

in the other case). Then 

M i = f ( x i ) ,  m i = f ( x i - &  ( i = 1 ,  ..., n), 
so that 

if n is taken large enough. By Theorem 6.6, f E W(a). 

6.10 Theorem Suppose f is bounded on [a, b ] ,  f has only finitely many points 
of discontinuity on [a, b ] ,  and a is continuous at every point at which f is discon- 
tinuous. Then f E %?(a). 

Proof Let E > 0 be given. Put M = sup I f ( x )  1 ,  let E be the set of points 
at which f is discontinuous. Since E is finite and a is continuous at every 
point of E, we can cover E by finitely many disjoint intervals [ u j ,  v j ]  c 
[a,  b ]  such that the sum of the corresponding differences a(vj) - a(uj) is 
less than E .  Furthermore, we can place these intervals in such a way that 
every point of E n (a,  b )  lies in the interior of some [ u j ,  uj]. 
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Remove the segments ( u j ,  o j )  from [a, b] .  The remaining set K is 
compact. Hence f  is uniformly continuous on K, and there exists 6  > 0  
suchthat  I f ( s ) - f ( t ) l  < E i f s E K ,  ~ E K ,  1s - t i  < 6 .  

Now form a partition P = {x, ,  x,, . . . , x,) of [a, b] ,  as follows: 
Each 1rj occurs in P. Each vj occurs in P. N o  point of any segment ( u j ,  v j )  
occurs in P. If  x i - ,  is not one of the u j ,  then Axi < 6. 

Note that M i  - m i  5 2M for every i, and that Mi - m i  5 E unless 
x i - ,  is one of the u j .  Hence, as in the proof of Theorem 6.8, 

Since E is arbitrary, Theorem 6.6 shows that f  E B((w). 
Note: Iff and r have a common point of discontinuity, then f  need not 

be in 9 ( r ) .  Exercise 3 shows this. 

6.11 Theorem Suppose f  E a(@) on [a, b] ,  m 5 f 5 M ,  4 is continuous on 
[m, MI, and h(x)  = 4 ( f  ( x ) )  on [a, b].  Then 11 E B ( r )  on [a, b] .  

Proof Choose E > 0. Since 4 is uniformly continuous on [m,  MI, there 
exists 6 >O such that 6 < E and l$(s)  - 4 ( t ) l  < E if I S -  tl 5 6  and 
s, t  E [rn, MI .  

S i n c e f ~  .2(r) ,  there is a partition P = {x, ,  x, ,  . . . , x,) of [a, b] such 
that 

Let M i ,  mi have the same meaning as in Definition 6.1, and let M*, m* 
be the analogous numbers for 11. Divide the numbers 1, . . . , n into two 
classes: i~ A if M i  - m i  < 6, i~ B if M i  - m i  2 6. 

For i E A ,  our choice of 6 shows that M* - m* I E. 
For ~ E B ,  ~ * - m * < 2 K ,  where K = s u p l d ( t ) l ,  m I t I M .  By 

( I S ) ,  we have 

so that xi ., Axi < 6. It follows that 

U(P. 11, (w) - L(P, 11, a )  = x (M* - m*) Aai + x (M* - m*) A(wi 
i a  A i c B  

Since c was arbitrary, Theorem 6.6 implies that h E B((w). 
Remark: This theorem suggests the question: Just what functions are 

Riemann-integrable? The answer is given by Theorem 11.33(b). 
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6.12 Theorem 
(a)  Iffi E 8 ( a )  arid fi E 8 ( a )  on [a ,  b ] ,  then 

cf E %?(@)for every constarit c, and 

b 
Ja c fda  = cJab f d a .  

J
a

b 

f l  d a d  l) f2  da. 

(c)  I f . f  E %?(a) on [a, b ]  and i f  a < c < b, then f E 8 ( a )  on [a, c]  and on 
[c, bl, and 

c f d a  + J b  f da = l) f drr. 1. C 

( d )  I f f  E 8 ( a )  on [a, b]  and i f  ( f  ( x )  1 < M on [a, b ] ,  then 

I Jab/ da) 5 M[a(b) - o(a)l. 

( e )  I f f  E B ( a l )  and f E B ( a Z ) ,  then f E 9 ( a 1  + a2)  and 

i f f  E B ( a )  aild c is a positive constant, then f E 8 ( c a )  and 

b jab / d(ca) = cJa f da. 

Proof I f f  = fl  + f2  and P is any partition of [a, b ] ,  we have 

I f f ,  E &'(a) and f ,  E B(rr), let E > 0 be given. There are partitions Pj 
(j = 1, 2) such that 



These inequalities persist if P, and P,  are replaced by their common 
refinement P. Then (20) implies 

U ( p ,  f ,  a )  - L(P, f ,  n )  < 28, 

which proves that f E B(cr). 
With this same P we have 

hence (20) implies 

Since E was arbitrary, we conclude that 

(21) Sfdcr < S f i  dr + S f 2  dm. 

If we replace f l  and f2 in (21) by - f ,  and - f2 ,  the inequality is 
reversed, and the equality is proved. 

The proofs of the other assertions of Theorem 6.12 are so similar 
that we omit the details. In part (c)  the point is that (by passing to refine- 
ments) we may restrict ourselves to  partitions which contain the point c, 
in approximating S f d u .  

6.13 Theorem I f f  E d(cr) atid g E 2 ( x )  on [a, b ] ,  then 
(0) fg E W(cr): 

Proof If we take $ ( t )  = t ', Theorem 6.1 1 shows that f E B ( r )  i f f€  .@(a). 
The identity 

completes the proof of (a).  
If we take $ ( t )  = I t 1 ,  Theorem 6.1 1 shows similarly that If E 9?(z). 

Choose c = + 1 ,  so that 
c S f d r 2 0 .  

Then 
I Sfd.1 = c S f d u = S c f d u ~ S  J f l  du, 

since c f l  I fI 

6.14 Definition The unit step functioti I is defined by 



6.15 Theorem If a < s < b, f is bounded on [a, b] ,  f is continuous at s, and 
u (x )  = Z(X - s), then 

Proof Consider partitions P = { x ,  , x,, x ,  , x,), where xo  = a, and 
x ,  = s < x ,  < x ,  = b. Then 

Since f is continuous at s, we see that M ,  and m, converge to f ( s )  as 
X 2  +S. 

6.16 Theorem Suppose c,, 2 0 for 1, 2,  3,  . . . , Zc, converges, {s,) is a sequence 
of  distinct points in (a ,  b) ,  and 

Let f be continuous on [a, b] .  Then 

Proof The comparison test shows that the series (22) converges for 
every x .  Its sum a(x )  is evidently monotonic, and a(a) = 0, a(b) = En.  
(This is the type of function that occurred in Remark 4.31 .) 

Let E > 0 be given, and choose N so that 

Put 

By Theorems 6.12 and 6.15, 
N 

(24) Jabfdul  = i =  1 1 cnf(sn). 

Since u,(b) - u2(a) < E ,  



where M = sup I f ( x )  1 .  Since a = a, + a,, it follows from (24) and (25) 
that 

N 

f  dci - 1 cn f  (sn) < ME. 

If we let N + co, we obtain (23). 

6.17 Theorem Assume a increases monotonically and u' E 9 on [a, b].  Let f 
be a bounded real function on [a, b] .  

Then f  E &(a) if and only i f fa '  E 9 .  In that case 

(27) labfdci = ~ ~ f ( x ) a l ( x )  a dx. 

Proof Let E > 0 be given and apply Theorem 6.6 to ci': There is a par- 
tition P = {x , ,  . . . , x,,) of [a, b] such that 

(28) U(P, ci') - L(P, a') < E .  

The mean value theorem furnishes points t i  E [ x i - , ,  x i ]  such that 

Aai = cif(ti) Axi 

for i =  1, ..., n. I f s i ~  [x i - , ,  x i ] ,  then 

by (28) and Theorem 6.7(b). Put M = sup If ( x )  1 . Since 

it follows from (29) that 

I n  particular, 

1 f  ( s i )  Axi 5 U(P, fx ')  + M E,  
i =  1 

for all choices of si E x i ] ,  SO that 

u ( P ,  f ,  ci) 5 U(P, fa') + ME. 

The same argument leads from (30) to 

U(P, fx ')  5 U(P, f ,  c i )  + M E.  
Thus 

(31) 1 U ( P , f ,  c i )  - U(P, fci') 1 5 ME. 
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Now note that (28) remains true if P is replaced by any refinement. 
Hence (31) also remains true. We conclude that 

But E is arbitrary. Hence 

for any bounded f .  The equality of the lower integrals follows from (30) 
in exactly the same way. The theorem follows. 

6.18 Remark The two preceding theorems illustrate the generality and 
flexibility which are inherent in the Stieltjes process of integration. If o! is a pure 
step function [this is the name often given to functions of the form (22)] ,  the 
integral reduces to a finite or infinite series. If a  has an integrable derivative. 
the integral reduces to an ordinary Riemann integral. This makes it possible 
in many cases to study series and integrals simultaneously, rather than separately. 

To illustrate this point, consider a physical example. The moment of 
inertia of a straight wire of unit length, about an axis through an endpoint, at 
right angles to the wire, is 

where m(x)  is the mass contained in the interval [0 ,  x ] .  If  the wire is regarded 
as having a continuous density p, that is, if ml(x )  = p(x), then (33) turns into 

(34) f 1 x 2  o p(x) dx .  

On the other hand, if the wire is composed of masses m i  concentrated at 
points x i ,  (33) becomes 

Thus (33) contains (34) and (35) as special cases, but it contains much 
more; for instance, the case in which m is continuous but not everywhere 
differentiable. 

6.19 Theorem (change o f  variable) Suppose cp is a strictly increasing continuous 
function that maps an interval [ A ,  B]  onto [a,  b ] .  Suppose u is monotonically 
increasing on [a, b ]  and f E 9 ( a )  on [a,  b ] .  Define /3 and g on [A ,  B] by 
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Then g E W(P) and 

(37) 

Proof To each partition P = {x , ,  . . . , x,) of [a, b ]  corresponds a partition 
Q = { y o ,  . . . , y,) of [A,  B ] ,  so that x i  = cp(yi). All partitions of [A,  B ]  
are obtained in this way. Since the values taken by f on x i ]  are 
exactly the same as those taken by g on [y i - , ,  yil, we see that 

(38) u ( Q ,  s? PI = U ( P , f ,  a),  L(Q,  g, P )  = L ( P , f ,  a). 

Since f E g ( u ) ,  P can be chosen so that both U(P, f ,  u)  and L(P , f ,  a )  
are close to f du. Hence (38), combined with Theorem 6.6, shows that 
g E 9 ( P )  and that (37) holds. This completes the proof. 

Let us note the following special case: 
Take a(x)  = x .  Then P = cp. Assume cp' E W on [A ,  B].  If Theorem 

6.17 is applied to the left side of (37), we obtain 

lb  f (4 dx  = I B f  (cp(y))cpt(y) dy. 
'(I - A  

INTEGRATION AND DIFFERENTIATION 

We still confine ourselves to real functions in this section. We shall show that 
integration and differentiation are, in a certain sense, inverse operations. 

6.20 Theorem Let f E 2 on [a, b].  For a I x 5 b, put 

F(x )  = l X  f ( t )  dt. 
'(I 

Then F is continuous on [a, b ] ;  furthermore, i f f  is continuous at a point .yo of 
[a, b ] ,  then F is difSerentiable at xo  , and 

Proof Since f E W ,  f is bounded. Suppose I f ( t ) l  5 M for a t 5 b. 
I f a < x < y l b ,  then 

by Theorem 6.12(c) and (d) .  Given E > 0, we see that 



provided that 1 y - x (  < EIM. This proves continuity (and, in fact, 
uniform continuity) of F. 

Now suppose f is continuous at x,. Given E > 0, choose 6 > 0 such 
that 

I f ( t )  - f(xo)I < E 

if ( t - x ,  1 < 6 ,  and a 5 t 2 b. Hence, if 

x , - 6 < s 1 x , 1 t < x , + 6  and a < s < t < b ,  

we have, by Theorem 6.12(d), 

It follows that F f ( x 0 )  = f ( xo) .  

F( t  - F ( s )  - f(x,) = -- I I - S  / ~ t : s ~ ~ r f ~ u ~ - f ~ . o , l d u  

6.21 The fundamental theorem of calculus I f f  E 92 on [a, b] and if there is 
a drfferentiable function F on [a, b]  such that F' = f ,  then 

< & .  

Proof Let E > 0 be given. Choose a partition P = {x,, . . . , x,) of [a, b] 
so that U(P ,  f )  - L(P, f )  < E .  The mean value theorem furnishes points 
t i  E x i ]  such that 

for i = 1 , .  . . ,  n. Thus 

It  now follows from Theorem 6.7(c) that 

Since this holds for every E > 0, the proof is complete. 

6.22 Theorem (integration by parts) Suppose F and G are drfferentiable func- 
tions on [a, b] ,  F' = f E 92, and G' = g E 92. Then 

Proof Put H(x)  = F(x)G(x)  and apply Theorem 6.21 to H and its deriv- 
ative. Note that H' E 92, by Theorem 6.13. 





hence Theorem 6.12(b) implies 

If y = 0, (40) is trivial. If y # 0, division of (43) by 1 y 1 gives (40). 

RECTIFIABLE CURVES 

We conclude this chapter with a topic of geometric interest which provides an 
application of some of the preceding theory. The case k = 2 (i.e., the case of 
plane curves) is of considerable importance in the study of analytic functions 
of a complex variable. 

6.26 Definition A continuous mapping y of an interval [a, b] into Rk is called 
a curve in R k.  To emphasize the parameter interval [a, b] ,  we may also say that 
y is a curve on [a, b] .  

If y is one-to-one, y is called an arc. 
If y(a) = y(b), y is said to be a closed curae. 

It should be noted that we define a curve to be a mapping, not a point set. 
Of course, with each curve y in R~ there is associated a subset of R k,  namely 
the range of y ,  but different curves may have the same rar,ge. 

We associate to each partition P = {x,, . . . , x,} of [a, b] and to each 
curve y on [a, b] the number 

The ith term in this sum is the distance (in R k)  between the points y(xi- ,)  and 
y(x,). Hence A(P, y )  is the length of a polygonal path with vertices at y(x,), 
y(x,), . . . , y(x,), in this order. As our partition becomes finer and finer, this 
polygon approaches the range of y more and more closely. This makes it seem 
reasonable to define the length of y as 

where the supremum is taken over all partitions of [a, b] .  
If A(y) < co, we say that y is rectifiable. 
In certain cases, A(y) is given by a Riemann integral. We shall prove this 

for continuozrsly differentiable curves, i.e., for curves y whose derivative y' is 
continuous. 





138 PRINCIPLES OF MATHEMATICAL ANALYSIS 

EXERCISES 

1. Suppose a increases on [a, b], a 2 xo  b, a is continuous at x o ,  f(xo) = 1, and 
f (x) = 0 if x # xo. Prove that f E %(a) and that f da = 0. 

2. Suppose f 2 0, f is continuous on [a, b], and f(x) dx  = 0. Prove that f(x) = 0 
J a b  

for all x E [a, b]. (Compare this with Exercise 1.) 
3. Define three functions PI, P z ,  P3 as follows: P,(x) = 0 if x < 0, F,(x) = 1 if x > 0 

for j = 1, 2, 3; and F1(0) = 0, Pz(0) = 1, P3(0) = +. Let f be a bounded function on 

[- 1, 11. 
(a) Prove that f G .g(P,) if and only if f(0-t) = f (0) and that then 

(6) State and prove a similar result for p Z .  
(c) Prove that f E 2%?(P3) if and only iff is continuous at  0. 
(d) Iff  is continuous at 0 prove that 

4. Iff ( x )  = 0 for all irrational x, f(x) = 1 for all rational x, prove that f @ 9' on[a, b] 
for any a < b .  

5. Suppose f is a bounded real function on [a, b], and f E 9' on [a, b]. Does it 
follow that f E W? Does the answer change if we assume that f E W? 

6.  Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function 
on [0, 11 which is continuous at every point outside P. Prove that f E 9 on [0, 11. 
Hit~t: P can be covered by finitely many segments whose total length can be made 
as small as desired. Proceed as in Theorem 6.10. 

7. Suppose f is a real function on (0, 11 and f E 9 on [c, 11 for every c > 0. Define 

lo1 /(XI dx = lim Jcl /(XI dx 
C'O 

if this limit exists (and is finite). 
(a) Iff G .9 on [0, 11, show that this definition of the integral agrees with the old 
one. 
(6) Construct a function f such that the above limit exists, although it fails to exist 
with / f 1 in place off. 

8. Suppose f 6 9 on [a, b] for every b > a where a is fixed. Define 

if this limit exists (and is finite). In that case, we say that the integral on the left 
cotrceryes. If it also converges after f has been replaced by I f  1, it is said to con- 
verge absolutely. 
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11. Let a be a fixed increasing function on [a, b] .  For u E W(a),  define 

Supposef, g, h E 2 ( a ) ,  and prove the triangle inequality 

I f  - h 2  I I f  -gI2 + ig - hI2  

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37. 
12. With the notations of Exercise 1 1 ,  suppose f  E 2 ( a )  and E > 0. Prove that 

there exists a continuous function g on [a, b]  such that 11 f  - g l 2  < E .  

Hitrt: Let P = { xo  , . . . , x,) be a suitable partition of [a, b] ,  define 

i fx , - ,  I t I x i .  
13. Define 

(a)  Prove that If ( x )  I < l / x  if x  > 0. 
Hint: Put t 2  = u and integrate by parts, to show that f ( x )  is equal to 

cos ( x 2 )  cos [ ( x  + 1 ) 2 ]  ( X +  cos u 
-- 

2x 2(x -4- 1 )  - Ix2  
Replace cos u by - 1. 
(b) Prove that 

2xf (x)  = cos ( x Z)  - cos [ ( x  + + r ( x )  

where / r(x)  I < cix and c is a constant. 
( c )  Find the upper and lower limits of xf (x) ,  as x  -+ co. 

( d )  Does lomsin ( t 2)  dt converge? 

14. Deal similarly with 

f  ( x )  = J sin (et)  dt. 

Show that 

and that 

ex f ( x )  = cos (ex)  - e-' cos (ex+') + r(x) ,  

where (r(x)I < Ce-", for some constant C. 
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( c )  A set consisting of vectors x, ,  . . . , x,  (we shall use the notation 
{x , ,  . . . , x,} for such a set) is said to be independent if the relation 
c,x ,  + . . . + ckxk = 0 implies that c ,  = . . . = c, = 0. Otherwise {x , ,  . . . , xk]  
is said to be dependent. 

Observe that no independent set contains the null vector. 
(d) If a vector space X contains an independent set of r vectors but con- 
tains no independent set of r + 1 vectors, we say that X has dimension r, 
and write: dim X = r. 

The set consisting of 0 alone is a vector space; its dimension is 0. 
(e) An independent subset of a vector space X which spans X is called 
a basis of X. 

Observe that if B = ( x , ,  . . . , x,} is a basis of X, then every x E X 
has a unique representation of the form x = Ccjx j .  Such a representation 
exists since B spans X, and it is unique since B is independent. The 
numbers c,, . . . , cr are called the coordinates of x with respect to the 
basis B. 

The most familiar example of a basis is the set ( e l ,  . . . , en}, where 
e, is the vector in Rn whose jth coordinate is 1 and whose other coordinates 
are all 0. If x E Rn, x = ( x , ,  . . . , x,), then x = Cxje j .  We shall call 

{e l ,  . . . , en} 

the standard basis of R". 

9.2 Theorem Let r be a positive integer. If a vector space X is spanned by a 
set of r vectors, then dim X < r. 

Proof If this is false, there is a vector space X which contains an inde- 
pendent set Q = {y , ,  . . . , yr+ ,] and which is spanned by a set So consisting 
of r vectors. 

Suppose 0 < i < r ,  and suppose a set S i  has been constructed which 
spans X and which consists of all y, with 1 < j _< i plus a certain collection 
of r - i members of S o .  say x, ,  . . . , x , - ~ .  (In other words, Si  is obtained 
from So by replacing i of its elements by members of Q, without altering 
the span.) Since S i  spans X, y i + ,  is in the span of S i ;  hence there are 
scalars a,, . . ., ai+, ,  b, ,  . . . , b r - i ,  with a ,+,  = 1, such that 

i +  1 r - i  

If all b,'s were 0, the independence of Q would force all aj's to be 0, a 
contradiction. It follows that some x,  E S i  is a linear combination of the 
other members of Ti = Si  u {y,,,). Remove this x,  from Ti  and call the 
remaining set Si+ ,. Then Si+ , spans the same set as T i ,  namely X, so 
that S i + ,  has the properties postulated for Si  with i + 1 in place of i. 





{x , ,  . . . , x,} is a basis of X,  then every x E X has a unique representation of the 
form 

n 

X = z c i x i ,  
i =  1 

and the linearity of A allows us to  compute A x  from the vectors Ax , ,  . . . , Ax,  
and the coordinates c,, . . . , c, by the formula 

Linear transformations of X into X are often called linear operators on X. 
If A is a linear operator on X which (i) is one-to-one and (ii) maps X onto 
X. we say that A is inr?ertible. In this case we can define an operator A-' on X 
by requiring that A- ' ( A x )  = x for all x E X. I t  is trivial to  verify that we then 
also have A ( A - ' x )  = x ,  for all x E X, and that A-' is linear. 

An important fact about linear operators on finite-dimensional vector 
spaces is that each of the above conditions (i) and (ii) implies the other: 

9.5 Theorem A linear operator A on a jinite-dimensional vector space X is 
one-to-one if and only if the range of A is all of X. 

Proof Let { x , ,  . . . , x,? be a basis of X. The linearity of A shows that 
its range &'(A) is the span of the set Q = { A x , ,  . . . , Ax,}. We therefore 
infer from Theorem 9.3(a) that .d(A)  = X if and only if Q is independent. 
We have to  prove that this happens if and only if A is one-to-one. 

Suppose A is one-to-one and I c ,  Ax ,  = 0. Then A(Ic , x , )  = 0, hence 
I c , x ,  = 0, hence c ,  = . . . = c, = 0, and we conclude that Q is independent. 

Conversely, suppose Q is independent and A ( I c i x , )  =O. Then 
I c ,  A x ,  = 0. hence c ,  = . . . = c, = 0,  and we conclude: A x  = 0 only if 
x = 0. I f  now Ax  = Ay, then A(x - y) = A x  - Ay  = 0, so that x - y = 0, 
and this says that A is one-to-one. 

9.6 Definitions 

(a )  Let L ( X ,  Y )  be the set of all linear transformations of the vector space 
X into the vector space Y. Instead of L ( X ,  X ) ,  we shall simply write L ( X ) .  
If A,,  A ,  E L ( X ,  Y )  and if c,: c, are scalars, define c ,  A ,  + c, A ,  by 

( c ,A ,  + c,  A,)x = c,A,x + c, A,x ( x  E X ) .  

I t  is then clear that c l A ,  + c,  A ,  E L ( X ,  Y ) .  
(b )  If X, Y, Z are vector spaces, and if A E L ( X .  Y )  and B E  L(Y,  Z ) ,  we 
define their product B A  to  be the composition of A and B :  

(BA)x  = B(Ax)  ( x  E X).  

Then B A  E L ( X ,  2 ) .  





and it is easily verified that IA - B (  has the other properties of a metric 
(Definition 2.15). 
( c )  Finally, (c) follows from 

l(BA)xl = lB(Ax)l I IIBII lAxl 5 IIBI IlAl 1x1. 
Since we now have metrics in the spaces L(R", Rm), the concepts of open 

set, continuity, etc., make sense for these spaces. Our next theorem utilizes 
these concepts. 

9.8 Theorem Let R be the set of all invertible linear operators on R". 

(a) If A E R, B E L(R"), and 

then B E R. 
(b) R is an open subset of L(R"), and the mapping A + A - ' is continuous 

on R. 
(This mapping is also obviously a 1 - 1 mapping of R onto R, 

which is its own inverse.) 

Proof 

(a) Put ( I A - '  I = 1/z. put B - A = b. Then 13 < a. For every x E R", 

so that 

( 1 )  ( z - b ) I x i ~ I B x /  ( x E R " ) .  

Since cc - f l  > 0,  ( I )  shows that Bx # 0 if x # 0. Hence B is 1 - 1. 
By Theorem 9.5, B E  R. This holds for all B with ( B  -- A(I < r .  Thus 
we have (a)  and the fact that R is open. 

(b) Next, replace x by B-'y  in ( 1 ) .  The resulting inequality 

shows that l(B-'(1 < ( r  - b)- ' .  The identity 

combined with Theorem 9.7(c), implies therefore that 

This establishes the continuity assertion made in (b), since 13 + 0 as B + A. 
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9.9 Matrices Suppose {x,, . . . , xn)  and {y,, . . . , ym} are bases of vector spaces 
X and Y, respectively. Then every A E L(X, Y) determines a set of numbers 
a i j  such that 

It is convenient to visualize these numbers in a rectangular array of m rows 
and n columns, called an m by n matrix: 

Observe that the coordinates a , j  of the vector Axj (with respect to the basis 
{y,, . . . , ym)) appear in the jth column of [ A ] .  The vectors Axj are therefore 
sometimes called the column vectors of [ A ] .  With this terminology, the range 
of A is spanned by the column vectors of [ A ] .  

If x = X c j x j ,  the linearity of A, combined with (3), shows that 

Thus the coordinates of Ax are X j a i j c j .  Note that in (3) the summation 
ranges over the first subscript of a i j ,  but that we sum over the second subscript 
when computing coordinates. 

Suppose next that an m by n matrix is given, with real entries a i j .  If A is 
then defined by (4), it is clear that A E L(X, Y) and that [ A ]  is the given matrix. 
Thus there is a natural 1-1 correspondence between L(X, Y) and the set of all 
real m by n matrices. We emphasize, though, that [ A ]  depends not only on A 
but also on the choice of bases in X and Y. The same A may give rise to many 
different matrices if we change bases, and vice versa. We shall not pursue this 
observation any further, since we shall usually work with fixed bases. (Some 
remarks on this may be found in Sec. 9.37.) 

If Z is a third vector space, with basis {z,, . . . , z,), if A is given by (3), 
and if 

then A E L(X, Y), B E L(Y, Z), BA E L(X, Z),  and since 









9.14 Example We have defined derivatives of functions carrying Rn to Rm to 
be linear transformations of Rn into Rm. What is the derivative of such a linear 
transformation? The answer is very simple. 

I f  A E L(Rn, Rm) and if x E R", then 

(19) Af (x )  = A. 
Note that x appears on the left side of (19), but not on the right. Both 

sides of (19) are members of L(Rn, Rm), whereas Ax E Rm. 
The proof of (19) is a triviality, since 

(20) A(x + h) - A x  =Ah ,  

by the linearity of A. With f ( x )  = Ax, the numerator in (14) is thus 0 for every 
h E Rn. In (17), r(h) = 0. 

We now extend the chain rule (Theorem 5.5) to the present situation. 

9.15 Theorem Suppose E is an open set in Rn, f maps E into Rm, f is dzfferentiable 
at x ,  E E, g maps an open set containing f ( E )  into Rk, and g is dzfferentiable at 
f (x,). Then the mapping F of E into Rk dejined by 

F(x) = g(f ( x ) )  
is dzfferentiable at x,  , and 

On the right side of (21), we have the product of two linear transforma- 
tions, as defined in Sec. 9.6. 

Proof Put yo = f (x,), A = f '(x,), B = g'(y,), and define 

~ ( h )  = f ( x ,  + h) - f (x,) - Ah, 

for all h E Rn and k E Rm for which f ( x ,  + h) and g(y, + k )  are defined. 
Then 

(22) Iu(h)I = ~ ( h ) I h l ?  Iv(k)l =q(k)IkI ,  

where ~ ( h )  + 0 as h + 0 and q(k) + 0 as k + 0. 
Given h, put k = f ( x ,  + h) - f (x,). Then 

(23) Ikl = / A h  + u ( h ) I ~  [IIAII + @ ) : I  lhl, 
and 

F(x0 + h) - F(x0) - BAh = g(yo + k )  - g(yo) - BAh 

= B(k - Ah) + ~ ( k )  

= Bu(h) + v(k). 



Hence (22) and (23) imply, for h # 0, that 

Let h + 0. Then ~ ( h )  -+ 0. Also, k -+ 0, by (23), so that q(k) -+ 0. 
It follows that F'(xo) = BA, which is what (21) asserts. 

9.16 Partial derivatives We again consider a function f that maps an open 
set E c Rn into Rm. Let {el, . . . , en} and {u,, . . . , urn} be the standard bases of 
Rn and Rm. The components off are the real functions f,, . . . , fm defined by 

or, equivalently, by f,(x) = f(x) ui, 1 I i I m. 
F o r x ~ E ,  1 I i I m ,  1 I j I n , w e d e f i n e  

(Djf,)(x) = lim fi(x + tej> -fi(x> 
9 

t-0 t 

provided the limit exists. Writing f,(x,, . . . , x,) in place of f,(x), we see that 
Djf, is the derivative of f i  with respect to xi,  keeping the other variables fixed. 
The notation 

is therefore often used in place of Djf,, and Dj  f i  is called a partial derivative. 
In many cases where the existence of a derivative is sufficient when dealing 

with functions of one variable, continuity or at least boundedness of the partial 
derivatives is needed for functions of several variables. For example, the 
functions f and g described in Exercise 7, Chap. 4, are not continuous, although 
their partial derivatives exist at every point of R'. Even for continuous functions. 
the existence of all partial derivatives does not imply differentiability in the sense 
of Definition 9.1 1 ; see Exercises 6 and 14, and Theorem 9.21. 

However. if f is known to be differentiable at a point x, then its partial 
derivatives exist at x, and they determine the linear transformation fl(x) 
completely : 

9.17 Theorem Suppose f maps an open set E c Rn into Rm, andf is dzfferentiable 
at a point x E E. Then the partial derivatives (Dj fi)(x) exist, and 

f '(x)ej = 1 (Dj fi)(x)ui (1 I j l n). 
i =  1 



Here, as in Sec. 9.16, {el, . . . , en) and {u,, . . . , urn) are the standard bases 
of Rn and Rm. 

Proof Fix j. Since f is differentiable at x, 

f (x + tej) - f (x) = f '(x)(tej) + r(tej) 

where 1 r(tej) l/t -t 0 as t -t 0. The linearity of f '(x) shows therefore that 

f (x + tej) - f (x) 
lim = f '(x)ej . 
1-0 t 

If we now represent f in terms of its components, as in (24) then (28) 
becomes 

" fi(x + tej) -fi(x) lim C ui = f '(x)ej . 
1-0 i =  1 t 

It follows that each quotient in this sum has a limit, as t + 0 (see Theorem 
4.10), so that each (Dj fi)(x) exists, and then (27) follows from (29). 

Here are some consequences of Theorem 9.17 : 
Let [f '(x)] be the matrix that represents f '(x) with respect to our standard 

bases, as in Sec. 9.9. 

Then fl(x)ej is the jth column vector of [fl(x)], and (27) shows therefore 
that the number (Djfi)(x) occupies the spot in the ith row and jth column of 
[f '(x)]. Thus 

If h = Xhjej is any vector in Rn, then (27) implies that 

9.18 Example Let y be a differentiable mapping of the segment (a, b) c R' 
into an open set E c Rn, in other words, y is a differentiable curve in E. Let f 
be a real-valued differentiable function with domain E. Thus f is a differentiable 
mapping of E into R'. Define 

The chain rule asserts then that 
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The limit in (39) is usually called the directional derivative off at x ,  in the 
direction of the unit vector u, and may be denoted by (D ,  f ) ( x ) .  

Iff and x are fixed, but u varies, then (39) shows that (D ,  f ) ( x )  attains its 
maximum when u is a positive scalar multiple of ( V f ) ( x ) .  [The case ( V f ) ( x )  = 0 
should be excluded here.] 

If u = Zui e , ,  then (39) shows that ( D ,  f ) ( x )  can be expressed in terms of 
the partial derivatives off at x by the formula 

Some of these ideas will play a role in the following theorem. 

9.19 Theorem Suppose f maps a convex open set E c Rn into Rm, f is differen- 
tiable in E, and there is a real number M such that 

Ilf  '(x)ll M 

for every x E E. Then 

( f ( b )  - f(a)I < M l b  - al 

for all a E E, b E E. 

Proof Fix a E E, b E E. Define 

y(t) = ( 1  - t)a + t b  

for all t E R1 such that y(t) E E. Since E is convex, y(t) E E if 0 I t I 1 .  
Put 

g(t> = f ( ~ ( t ) ) .  

Then 

g'(t) = f ' (y(t))yl(t) = f ' ( ~ ( t ) ) ( b  - a), 

so that 

Ig'(t:lI l llff(y(t))lIIb-a1 l M l b - a 1  

for all t E [0, 11 .  By Theorem 5.19, 

Ig(l)  - g(O)I M l b  - al. 

But g(0) = f(a) and g(1) = f (b). This completes the proof. 

Corollary If, iiz addition, f l ( x )  = 0 for all x E E, then f is constant. 

Proof To prove this, note that the hypotheses of the theorem hold now 
with M = 0. 
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9.20 Definition A differentiable mapping f of an open set E c RVnto  Rm is 
said to be continuously diferentiable in E if f '  is a continuous mapping of E 
into L(R" Rm). 

More explicitly, it is required that to every x E E and to every e > 0 
corresponds a 6 > 0 such that 

Ilff(y) - f '(XI I 1  < E 

i f y ~ E a n d  I x - y I < d .  
If this is so, we also say that f is a %'-mapping, or  that f E %'(E). 

9.21 Theorem Suppose f maps an open set E c RVnto Rm. Then f E %'(E) if 
and only ifthe partial derivatives Djf;. exist and are continuous on E for 1 5 i 5 m, 
1 I j l n .  

Proof Assume first that f E %'(E). By (27), 

for all i, , j ,  and for all x E E. Hence 

(Djfi)(y) - (Djf,>(x> = {[f '(Y) - f '(x)Iej) . ui 
and since 1 ui ( = 1 e j  I = 1, it follows that 

Hence D j  f i  is continuous. 
For the converse, it suffices to consider the case m = 1. (Why?) 

Fix x E E and E > 0. Since E is open, there is an open ball S c E, with 
center at x and radius r, and the continuity of the functions Djf shows 
that r can be chosen so that 

Suppose h = C h j e j ,  I h I < r ,  putv,  = O , a n d v k = h l e l  + a * . +  hkek, 
for 1 5 k 5 n .  Then 

Since I v, / < r for 1 5 k < n and since S is convex, the segments with end 
points x + vj- , and x + vj lie in S. Since v j  = vj- + hj e j  , the mean 
value theorem (5.10) shows that the jth summand in (42) is equal to 
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for some O j  E (0, l ) ,  and this differs from hj(Dj f ) ( x )  by less than I hj  I &In, 
using (41). By (42), it follows that 

for all h such that 1 hl < r. 
This says that f is differentiable at x and that f f ( x )  is the linear 

function which assigns the number Zhj(Dj f ) ( x )  to the vector h = Zhje j .  
The matrix [ f  ' ( x ) ]  consists of the row (D l  f ) (x ) ,  . . . , (D,  f ) ( x ) ;  and since 
D 1 f ,  . . . , D, f are continuous functions on E, the concluding remarks of 
Sec. 9.9 show that f E %"(E). 

T H E  CONTRACTION PRINCIPLE 

We now interrupt our discussion of differentiation to insert a fixed point 
theorem that is valid in arbitrary complete metric spaces. It will be used in the 
proof of the inverse function theorem. 

9.22 Definition Let X be a metric space, with metric d. If cp maps X into X 
and if there is a number c < 1 such that 

(43) d(cp(x), cp(y)) 5 c d(x, Y )  

for all x,  y E X, then cp is said to be a contraction of X into X. 

9.23 Theorem If X is a complete metric space, and ifcp is a contraction of X 
into X, then there exists one and only one x E X such that cp(x) = x. 

In other words, cp has a unique fixed point. The uniqueness is a triviality, 
for if cp(x) = x and cp(y) = y, then (43) gives d(x, y)  I c d(x, y), which can only 
happen when d(x, y) = 0. 

The existence of a fixed point of cp is the essential part of the theorem. 
The proof actually furnishes a constructive method for locating the fixed point. 

Proof Pick x ,  E X arbitrarily, and define {x,) recursively, by setting 

Choose c < 1 so that (43) holds. For n 2 1 we then have 

Hence induction gives 
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If n < m ,  it follows that 

Thus {x,) is a Cauchy sequence. Since Xis  complete, lim x ,  = x for some 
X E  X. 

Since cp is a contraction, cp is continuous (in fact, uniformly con- 
tinuous) on X. Hence 

~ ( x )  = lim cp(xn) = lim x,+, = x .  
n+m n - m  

THE INVERSE FUNCTION THEOREM 

The inverse function theorem states, roughly speaking, that a continuously 
differentiable mapping f is invertible in a neighborhood of any point x at which 
the linear transformation f ' ( x )  is invertible : 

9.24 Theorem Si~ppose f is a +?'-mapping of an open set E c Rn into Rn,  f f ( a )  
is invertible for some a E E. and b = f (a). Then 

( a )  there exist open sets U and V in R" such that a E U,  b E V, f is one-to- 
one on U. and f ( U )  = V ;  

( b )  i f  g is the inrerse o f f  [which exists, by ( a ) ] ,  deJned in V by 

g(f ( x ) )  = x ( x  E U ) :  

then g E W f ( V ) .  

Writing the equation y = f ( x )  in component form, we arrive at the follow- 
ing interpretation of the conclusion of the theorem: The system of n equations 

can be solved for x , ,  . . . , x ,  in terms of p,, . . . , p,. if we restrict x and y to small 
enough neighborhoods of a and b;  the solutions are unique and continuously 
differentiable. 

Proof 

( a )  Put f l ( a )  = A, and choose i. so that 
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Since f '  is continuous at a, there is an open ball U c E,  with center at a, 
such that 

(47) f ( x ) - A  ( x E U ) .  
We associate to each y E Rn a function cp, defined by 

(48) c p ( x ) = x + A - ' ( y - f ( x ) )  ( x E E ) .  
Note that f ( x )  = y i fand only i f x  is ajixedpoint of cp. 

Since cpf(x) = I - A - ' f l ( x )  = A- '(A - f ' ( x ) ) ,  (46) and (47) imply 
that 

(49) Ilcp'(x>ll < 3 ( X  E U) .  
Hence 

(50) I cp(xl> - ~ ( ~ 2 1  I 5 : 1 x1 - x2 I ( X I ,  x2 E U ) ,  
by Theorem 9.19. It follows that cp has at most one fixed point in U ,  so 
that f ( x )  = y for at most one x E U. 

Thtrsf is 1 - 1 in U. 

Next, put V = f ( U ) ,  and pick yo E V. Then yo = f ( x o )  for some 
xo E U. Let B be an open ball with center at x ,  and radius r > 0 ,  so small 
that its closure B lies in U. We will show that y E Vwhenever I y  - yo I < 1.r. 
This proves, of course, that V is open. 

Fix y. 1 y - yo I < 1-r. With cp as in (48), 

r 
/ c p ( x 0 ) - x 0 /  = I A - ' ( Y - ~ , : I ~  < I J A - ' I l r = - .  

2 

If x E B, it therefore follows from (50) that 

hence cp(x) E B. Note that (50) holds if x1 E Ii. x2  E B. 
Thus cp is a contraction of B into B. Being a closed subset of R". 

B is complete. Theorem 9.23 implies therefore that cp has a fixed point 
x E B. For this x ,  f ( x )  = y. Thus y E f (B)  c f ( U )  = V. 

This proves part (a )  of the theorem. 

(b) Pick y E V,  y + k E V. Then there exist x E U, x + h E U,  so that 
y = f ( x ) ,  y + k = f ( x  + h). With cp as in (48), 

B y  (50), I h - A-'kl  5 $ ( h i .  Hence I A - ' ~ I  2 $ \ h i ,  and 



By (46), (47), and Theorem 9.8, fl(x) has an inverse, say T. Since 

g(y + k) - g(y) - T k  = h - T k  = -T[f(x + h) - f(x) - f'(x)h], 

(5 1) implies 

As k -+ 0, (51) shows that h -+ 0. The right side of the last inequality 
thus tends to 0. Hence the same is true of the left. We have thus proved 
that g'(y) = T. But T was chosen to be the inverse off  '(x) = f '(g(y)). Thus 

Finally, note that g is a continuous mapping of V onto U (since g 
is differentiable), that f '  is a continuous mapping of U into the set R of 
all invertible elements of L(Rn), and that inversion is a continuous mapping 
of R onto R, by Theorem 9.8. If we combine these facts with (52), we see 
that g E %"(V). 

This completes the proof. 

Remark. The full force of the assumption that f E g'(E) was only used 
in the last paragraph of the preceding proof. Everything else, down to Eq. (52), 
was derived from the existence of f1(x) for x E E, the invertibility of f'(a), and 
the continuity o f f '  at just the point a. In this connection, we refer to the article 
by A. Nijenhuis in Amer. Math. Monthly, vol. 81, 1974, pp. 969-980. 

The following is an immediate consequence of part (a) of the inverse 
function theorem. 

9.25 Theorem Iff is a V'-mapping of an open set E c Rn into Rn and iffl(x) 
is invertible for every x E E, then f ( W) is an open subset of Rn for every open set 
W c  E. 

In other words, f is an open mapping of E into R". 

The hypotheses made in this theorem ensure that each point x E E has a 
neighborhood in which f is 1-1. This may be expressed by saying that f is 
locally one-to-one in E. But f need not be 1-1 in E under these circumstances. 
For an example, see Exercise 17. 

THE IMPLICIT FUNCTION THEOREM 

Iff is a continuously differentiable real function in the plane, then the equation 
f(x, y) = 0 can be solved for y in terms of x in a neighborhood of any point 



(a, b) at which f (a, b) = 0 and df/dy # 0. Likewise, one can solve for x in terms 
of y near (a, b) if df/dx # 0 at (a, b). For a simple example which illustrates 
the need for assuming dfldy # 0, consider f ( x ,  y) = x Z + yZ - 1 .  

The preceding very informal statement is the simplest case (the case 
m = n = 1 of Theorem 9.28) of the so-called "implicit function theorem." Its 
proof makes stronguse of the fact that continuously differentiable transformations 
behave locally very much like their derivatives. Accordingly, we first prove 
Theorem 9.27, the linear version of Theorem 9.28. 

9.26 Notation If x = (x , ,  . . . , x,) E Rn and y = (y , ,  . . . , y,) E Rm, let us write 
( x ,  y) for the point (or vector) 

In what follows, the first entry in ( x ,  y) or in a similar symbol will always be a 
vector in Rn, the second will be a vector in Rm. 

Every A E L(Rn+", Rn) can be split into two linear transformations A, and 
A,, defined by 

(53) A, h = A(h, 0), A, k = A(0, k )  

for any h E Rn, k E Rm. Then A, E L(Rn), A, E L(Rm, Rn), and 

The linear version of the implicit function theorem is now almost obvious. 

9.27 Theorem If A E L(Rn+", Rn) and $A,  is invertible, then there corresponds 
to every k E Rm a unique h E Rn such that A(h, k )  = 0. 

This h can be computed from k by the formula 

Proof By (54), A(h, k )  = 0 if and only if 

which is the same as ( 5 5 )  when A, is invertible. 

The conclusion of Theorem 9.27 is, in other words, that the equation 
A(h, k )  = 0 can be solved (uniquely) for h if k is given, and that the solution h 
is a linear function of k .  Those who have some acquaintance with linear algebra 
will recognize this as a very familiar statement about systems of linear equations. 

9.28 Theorem Let f be a V'-mapping of an open set E c Rn+'" into Rn, such 
that f (a ,  b) = 0 for some point (a, b) E E. 

Put A = f l (a ,  b)  and assume that A, is invertible. 



Then there exist open sets U c Rn+" and W c Rm, with (a, b) E U and 
b E W, having the following property: 

T o  every y E W corresponds a unique x such that 

(56) (x, y) E U and f (x, y) = 0. 

I f  this x is defined to be g(y), then g is a %"-mapping of W into Rn, g(b) = a, 

and 

The function g is "implicitly" defined by (57). Hence the name of the 
theorem. 

The equation f(x,  y) = 0 can be written as a system of n equations in 
n + m variables : 

f i ( ~ 1 ,  .... xn, Y l ,  . . . .  Y,,) = 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. ... .... fn(xl. X,, y l ,  y,) = 0. 

The assumption that A, is invertible means that the n by n matrix 

evaluated at (a, b) defines an invertible linear operator in R n;  in other words, 
its column vectors should be independent, or, equivalently, its determinant 
should be +O. (See Theorem 9.36.) If, furthermore, (59) holds when x = a and 
y = b, then the conclusion of the theorem is that (59) can be solved for x , ,  . . . .  x ,  
in terms of y,, . . . .  y,, for every y near b, and that these solutions are continu- 
ously differentiable functions of y. 

Proof Define F by 

Then F is a %?'-mapping of E into Rn+". We claim that Ff(a, b) is an 
invertible element of L(Rn +") : 

Since f (a, b) = 0, we have 

f (a + h, b + k) = A(h, k) + r(h, k), 

where r is the remainder that occurs in the definition of f f (a ,  b). Since 

F(a + h, b + k) -F(a, b) = (f(a + h ,  b + k), k) 
= (A@, k), k) + (r(h, k), 0) 



it follows that F1(a, b) is the linear operator on Rn+" that maps (h, k) to 
(A(h, k), k). If this image vector is 0, then A(h, k) = 0 and k = 0, hence 
A(h, 0) = 0, and Theorem 9.27 implies that h = 0. It follows that F1(a, b) 
is 1-1 ; hence it is invertible (Theorem 9.5). 

The inverse function theorem can therefore be applied to F. It shows 
that there exist open sets U and V in Rn+", with (a, b) E U, (0, b) E I/, such 
that F is a 1-1 mapping of U onto I/. 

We let W be the set of all y E Rm such that (0, y) E I/. Note that 
b~ W. 

It  is clear that W is open since V is open. 
If y E W, then (0, y) = F(x, y) for some (x, y) E U. By (60), f (x, y) = 0 

for this x. 
Suppose, with the same y, that (x', y) E U and f(xl, y) = 0. Then 

W', Y) = (f (x', Y), Y) = (f (x, Y), Y) = F(x, Y). 

Since F is 1-1 in U, it follows that x' = x. 
This proves the first part of the theorem. 

For the second part, define g(y), for y E W, so that (g(y), y) E U and 
(57) holds. Then 

(61) F(~(Y)> Y) = (0, Y) (Y E W). 

If G is the mapping of V onto U that inverts F, then G E W', by the inverse 
function theorem, and (61) gives 

Since G E %', (62) shows that g E W'. 
Finally, to compute gl(b), put (g(y), y) = @(y). Then 

(63) @'(Y)k = (g1(y)k, k) (Y E W, k E R"). 

By (57), f (@(y)) = 0 in W. The chain rule shows therefore that 

When y = b, then @(y) = (a, b), and f '(@(y)) = A. Thus 

It now follows from (64), (63), and (54), that 

for every k E Rm. Thus 





In terms of partial derivatives, the conclusion is that 

D , g , = $  D 2 g 1  = + D 3 g l  = -A 
D 1 g 2  = -4 D 2 g 2  = 0 D 3 g 2  = & 

at  the point (3, 2,7).  

THE RANK THEOREM 

Although this theorem is not as important as the inverse function theorem or 
the implicit function theorem, we include it as another interesting illustration 
of the general principle that the local behavior of a continuously differentiable 
mapping F near a point x is similar to that of the linear transformation F1(x). 

Before stating it, we need a few more facts about linear transformations. 

9.30 Definitions Suppose X and Y are vector spaces, and A E L ( X ,  Y ) ,  as in 
Definition 9.6. The null space of A,  N ( A ) ,  is the set of all x E X at which Ax = 0. 
I t  is clear that N ( A )  is a vector space in X.  

Likewise, the range of A, %!(A), is a vector space in Y. 
The rank of A is defined to be the dimension of 9 ( A ) .  
For example, the invertible elements of L(Rn)  are precisely those whose 

rank is n. This follows from Theorem 9.5. 
If A E L ( X ,  Y )  and A has rank 0, then Ax = 0 for all x E A, henceN(A) = X.  

In this connection, see Exercise 25. 

9.31 Projections Let X be a vector space. An operator P E L ( X )  is said to be 
a projection in X if P 2 = P. 

More explicitly, the requirement is that P(Px)  = Px for every x E X. In  
other words, P fixes every vector in its range 9 ( P ) .  

Here are some elementary properties of projections: 

(a)  If P  is a projection in X,  then every x  E X has a unique representation 
of the form 

where x ,  E 9 ( P ) ,  x2  E N ( P ) .  
To obtain the representation, put x ,  = Px,  x ,  = x - x , .  Then 

Px ,  = Px - P x ,  = Px - P2x = 0. As regards the uniqueness, apply P to 
the equation x = x ,  + x ,  . Since x ,  E 9 ( P ) ,  P x l  = x ,  ; since Px ,  = 0, it 
follows that x ,  = Px.  
(b) If X is a finite-dimensional vector space and if X ,  is a vector space in 
X,  then there is a projection P in X with 9 ( P )  = X , .  



If X,  contains only 0 ,  this is trivial: put P x  = 0  for all x E X. 
Assume dim X ,  = k > 0. By Theorem 9 .3 ,  X has then a basis 

{u, ,  . . . , u,) such that {u,, . . . , u,) is a basis of X,. Define 

for arbitrary scalars c,, . . . , c,. 
Then P x  = x  for every x E X I ,  and XI  = 2 ( P ) .  
Note that (u,, , , . . . , u,) is a basis of N ( P ) .  Note also that there are 

infinitely many projections in X,  with range X, ,  if 0 < dim X ,  < dim X. 

9.32 Theorem Suppose m ,  n ,  r are nonnegatioe integers, m 2 r ,  n 2 r, F is a 
%'-mapping of an open set E c Rn into Rm,  and F1(x)  has rank r for every x  E E. 

Fix a E E, put A = F f ( a ) ,  let Y ,  be the range of A ,  and let P be a projection 
in Rm whose range is Y,. Let Y2 be the null space of P .  

Then there are open sets U and V in Rn, with a  E U,  U c E, and there is a 
1-1 %'-mapping H of V onto U (whose inzjerse is also of class g') such that 

where cp  is a %'-mapping of the open set A ( V )  c Y,  into Y2 . 

After the proof we shall give a more geometric description of the informa- 
tion that (66)  contains. 

Proof If r = 0, Theorem 9. I9 shows that F(x)  is constant in a neighbor- 
hood U of a ,  and (66)  holds trivially, with V = U,  H ( x )  = x, cp(0) = F(a). 

From now on we assume r > 0. Since dim Y ,  = r, Y ,  has a basis 
{y , ,  . . . , yr). Choose z i  E Rn so that A z ,  = yi (1 I i I r ) ,  and define a linear 
mapping S of Y ,  into Rn by setting 

for all scalars c,, . . . , c,. 
Then A S y ,  = A z ,  = y, for 1 < i 5 r. Thus 

Define a mapping G of E into Rn by setting 

Since F1(a)  = A ,  differentiation of (69)  shows that G 1 ( a )  = I, the identity 
operator on Rn. By the inverse function theorem, there are open sets U 
and V in Rn, with a  E U. such that G is a 1 - 1  mapping of U onto V whose 
inverse H i s  also of class %'. Moreover, by shrinking U and V, if necessary, 
we can arrange it so that V is convex and H ' ( x )  is invertible for every x  E V. 



Note that ASPA = A,  since PA = A  and (68) holds. Therefore (69) 
gives 

(70) AG(x) = PF(x) ( x  E E). 

In particular, (70) holds for x E U.  If we replace x by H(x) ,  we obtain 

(71) PF(H(x)) = Ax ( x  E V ) .  
Define 

(72) $(x)  = F(H(x)) - AX ( X  E V ) .  

Since PA = A,  (71) implies that P$(x) = 0 for all x E I/. Thus $ is a 
%'-mapping of V into Y, . 

Since V is open, it is clear that A(V) is an open subset of its range 
&?(A) = Yl . 

To complete the proof, i.e., to go from (72) to (66), we have to show 
that there is a %'-mapping 50 of A(V) into Y,  which satisfies 

As a step toward (73), we will first prove that 

if x ,  E V, x ,  E V, Ax l  = AX,. 
Put @(x) = F(H(x)), for x E I/. Since H'(x)  has rank n for every 

x E V,  and F1(x) has rank r for every x E U, it follows that 

(75) rank @'(x) = rank Ff(H(x))H'(x) = r ( x  E V ) .  

Fix x E V. Let M be the range of @'(x). Then M c Rm. dim M = r. 

BY (7 11, 

(76) P@'(x) = A. 

Thus P maps M onto &?(A) = Y,. Since M and Y,  have the same di- 
mension, it follows that P (restricted to M )  is 1-1. 

Suppose now that Ah = 0. Then P@'(x)h = 0, by (76). But 
@'(x)h E M, and P is 1- 1  on M. Hence O1(x)h = 0. A look at (72) shows 
now that we have proved the following: 

If x E V and Ah = 0, then $'(x)h = 0. 
We can now prove (74). Suppose x ,  E V,  x ,  E V. A x ,  = Ax,. Put 

h = x ,  - x ,  and define 

The convexity of V shows that x 1  + t h  E V for these t .  Hence 



so that g(1) = g(0). But g(1) = $ ( x 2 )  and g(0) = $ ( x , ) .  This proves (74) .  
By (74) ,  $ (x)  depends only on A x ,  for x E V. Hence (73)  defines cp 

unambiguously in A ( V ) .  I t  only remains to be proved that cp E g'. 
Fix yo E A ( V ) ,  fix x ,  E V SO that A x ,  = y o .  Since V is open, yo has 

a neighborhood Win  Y, such that the vector 

(79)  x = x ,  + S(Y - Yo) 

lies in V for all y  E W. By (68) ,  

A X =  A X ,  + y - y o  = y .  

Thus (73)  and (79)  give 

This formula shows that cp E g' in W, hence in A ( V ) ,  since yo was chosen 
arbitrarily in A ( V ) .  

The proof is now complete. 

Here is what the theorem tells us about the geometry of the mapping F. 
If y  E F ( U )  then y  = F(H(x) )  for some x  E V, and (66)  shows that P y  = Ax.  

Therefore 

This shows that y  is determined by its projection P y ,  and that P ,  restricted 
to  F ( U ) ,  is a 1-1 mapping of F ( U )  onto A ( V ) .  Thus F ( U )  is an "r-dimensional 
surface" with precisely one point "over" each point of A ( V ) .  We may also 
regard F ( U )  as the graph of cp. 

If @ ( x )  = F(H(x) ) ,  as in the proof, then (66)  shows that the level sets of @ 
(these are the sets on which @ attains a given value) are precisely the level sets of 
A  in V. These are "flat" since they are intersections with V of translates of the 
vector space A'(A). Note that dim M ( A )  = n  - r (Exercise 25). 

The level sets of F  in U  are the images under H  of the flat level sets of @ 
in V. They are thus "(n - r)-dimensional surfaces" in U .  

DETERMINANTS 

Determinants are numbers associated to  square matrices, and hence to  the 
operators represented by such matrices. They are 0  if and only if the corre- 
sponding operator fails to be invertible. They can therefore be used to decide 
whether the hypotheses of some of the preceding theorems are satisfied. They 
will play an even more important role in Chap. 10. 
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9.33 Definition If ( j , ,  . . . , j,) is an ordered n-tuple of integers, define 

where sgn x = 1 if x > 0, sgn x = - 1 if x < 0, sgn x = 0 if x = 0. Then 
s( j , ,  . . . , j,) = 1 ,  - 1 ,  or 0,  and it changes sign if any two of the j 's are inter- 
changed. 

Let [ A ]  be the matrix of a linear operator A  on Rn, relative to the standard 
basis { e l ,  . . . , en), with entries a(i, j )  in the ith row and jth column. The deter- 
minant of [ A ]  is defined to be the number 

The sum in (83) extends over all ordered n-tuples of integers ( j , ,  . . . , jn) with 
1 I j , I n .  

The column vectors x j  of [ A ]  are 

(84) x j  = a(i, j)ei ( 1  < j 2 n). 
i =  1 

It will be convenient to think of det [ A ]  as a function of the column vectors 
of [ A ] .  If we write 

det ( x , ,  . . . , x,) = det [ A ] ,  

det is now a real function on the set of all ordered n-tuples of vectors in R". 

9.34 Theorem 

(a)  I f  I is the identity operator on Rn, then 

det [I] =de t  ( e l ,  ..., en) = 1. 

(b)  det is a linear function of each of the column vectors x j ,  i f the  others are 
held fixed. 

( c )  I f  [ A l l  is obtained from [ A ]  by interchanging two colttmns, then 
det [ A ] ,  = -det [ A ] .  

( d )  I f  [ A ]  has two equal columns, then det [ A ]  = 0. 

Proof If A  = I, then a(i, i) = 1 and a(i, j )  = 0 for i # j. Hence 

det [I] = s ( l ,  2, ..., n)  = 1, 

which proves (a).  By (82), s(j , ,  . . . , jn) = 0 if any two of the,j's are equal. 
Each of the remaining n !  products in (83) contains exactly one factor 
from each column. This proves (b). Part (c)  is an immediate consequence 
of the fact that s(j , ,  . . . , j,) changes sign if any two of the j 's are inter- 
changed, and ( d )  is a corollary of (c). 



9.35 Theorem If [ A ]  and [ B ]  are t~ by n matrices, then 

det ( [ B J [ A ] )  = det [ B ]  det [A] .  

Proof If x , ,  . . . , x, are the columns of [ A ] ,  define 

(85) AB(x l ,  . . . , x,,) = AB[A ] = det ([B:l[A]).  

The columns of [ B ] [ A ]  are the vectors Bx,, . . . , Bx,. Thus 

(86) AB(x l ,  . . . , x,) = det (Bx, ,  . . . , Bx,). 

By (86) and Theorem 9.34, A, also has properties 9.34 (b) to (d) .  By (b) 
and (84), 

AJAI  - A, (T a ( i  l ) e i .  x 2 ,  . . . . x,) = a(i, 1) AB(ei. x,. . . . . x,). 

Repeating this process with x , ,  . . . , x,, we obtain 

the sum being extended over all ordered n-tuples (i,, . . . , in) with 
1 5 i, 5 n. By ( c )  and ( d ) ,  

(88) AB(ej, ,  . . . , ein) = t(il, . . . , in) AB(el,  . . . , e,,), 

where t = 1.0, or - 1 ,  and since [B:I[I] = [ B ] ,  (85) shows that 

(89) AB(el, . . . . en) = det [B] .  

Substituting (89) and (88) into (87)  we obtain 

det ( [ B ] [ A  1) = { 1 a(i, , 1 )  . . . a(i, , n)t(i,, . . . , in))  det [ B ] ,  

for all n by n matrices [ A ]  and [B].  Taking B = I .  we see that the above 
sum in braces is det [ A ] .  This proves the theorem. 

9.36 Theorem A linear operator A on R" is invertible if and only ifdet [A]  # 0. 

Proof I f  A is invertible. Theorem 9.35 shows that 

det [ A ]  det [ A - ' 1  = det [AA-'1 = det [ I ]  = 1, 

so that det [ A ]  # 0. 

If A is not invertible, the columns x , ,  . . . , x ,  of [ A ]  are dependent 
(Theorem 9.5); hence there is one, say, x k ,  such that 

for certain scalars c j .  By 9.34 (b)  and (d ) ,  x, can be replaced by x, + cj  xj 
without altering the determinant, if j # k. Repeating, we see that x, can 
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be replaced by the left side of ( g o ) ,  i.e., by 0, without altering the deter- 
minant. But a matrix which has 0 for one column has determinant 0. 
Hence det [A] = 0. 

9.37 Remark Suppose {el ,  . . . , en) and {u,, . . . , u,) are bases in Rn. 
Every linear operator A on Rn determines matrices [ A ]  and [A],,  with entries 
aij and u i j ,  given by 

If u j  = Bej = Zb i j e i ,  then Auj is equal to 

and also to 
.Bej = A x bkj ek = x (7 aik bkj) ei . 

k i 

Thus Zbik ork j  = Za, bkj , or 

(91) [BI[Al,  = PIPI. 
Since B is invertible, det [B]  # 0.  Hence (91), combined with Theorem 9.35, 
shows that 

(92) det [ A ] ,  = det [A] .  

The determinant of the matrix of a linear operator does therefore not 
depend on the basis which is used to construct the matrix. It is thus meaningful 
to speak of the determinant of a linear operator, without having any basis in mind. 

9.38 Jacobians Iff  maps an open set E c Rn into Rn, and iff is differen- 
tiable at a point x E E, the determinant of the linear operator f l ( x )  is called 
the Jacobian o f f  at x. In symbols, 

(93) J,(x) = det f ' (x).  

We shall also use the notation 

for J f (x ) ,  if (y , ,  . . . , yn) = f (x , ,  . . . , x,). 
In terms of Jacobians, the crucial hypothesis in the inverse function 

theorem is that Jf(a)  # 0 (compare Theorem 9.36). If the implicit function 
theorem is stated in terms of the functions (59), the assumption made there on 
A amounts to 



DERIVATIVES O F  HIGHER ORDER 

9.39 Definition Suppose f is a real function defined in an open set E c Rn, 
with partial derivatives D 1 f ,  . . . , Dnf.  If the functions Dj  f are themselves 
differentiable, then the second-order partial derivatives off are defined by 

D i j f = D i D j f  ( i , j = l ,  ..., n). 

If all these functions Dij  f are continuous in E, we say that f is of class %'" in E, 
or that f E %"'(E). 

A mapping f of E into Rm is said to be of class %"' if each component o f f  
is of class $7". 

It can happen that Dij  f # Dji  f at some point, although both derivatives 
exist (see Exercise 27). However, we shall see below that Dij  f = Dji  f whenever 
these derivatives are continuous. 

For simplicity (and without loss of generality) we state our next two 
theorems for real functions of two variables. The first one is a mean value 
theorem. 

9.40 Theorem Suppose f is defined in an open set E c R2,  and Dl f and D2, f 
exist at every point of E. Suppose Q c E is a closed rectangle with sides parallel 
to the coordinate axes, having (a,  b) and (a  + h, b + k )  as opposite vertices 
(h  # 0, k # 0). Put 

Then there is a point ( x ,  y )  in the interior of Q such that 

(95) A ( f ,  Q) = hk(D21f )(x,  Y).  

Note the analogy between (95) and Theorem 5.10; the area of Q is hk. 

Proof Put u(t)  = f ( t ,  b + k )  - f ( t ,  b). Two applications of Theorem 5.10 
show that there is an x between a and a + h, and that there is a y between 
b and b + k, such that 

9.41 Theorem Suppose f is dejined in an open set E c R2,  suppose that D l f ,  
D2,f, and D2 f exist at every point of E, and D2, f is continuous at some point 
(a, b) E E. 



Then D l ,  f exists at (a,  b )  and 

Corollary D 2 ,  f = D l ,  f if f E %"'(E). 

Proof Put A = ( D 2 , f ) ( a ,  b). Choose E > 0. If Q is a rectangle as in 
Theorem 9.40, and if h and k are sufficiently small, we have 

for all ( x ,  y) E Q. Thus 

by (95). Fix h, and let k -+ 0. Since D2 f exists in E, the last inequality 
implies that 

Since E was arbitrary, and since (97) holds for all sufficiently small 
h # 0, it follows that ( D l ,  f ) ( a ,  b )  = A. This gives (96). 

DIFFERENTIATION OF INTEGRALS 

Suppose cp is a function of two variables which can be integrated with respect 
to one and which can be differentiated with respect to the other. Under what 
conditions will the result be the same if these two limit processes are carried out 
in the opposite order? To state the question more precisely: Under what 
conditions on cp can one prove that the equation 

is true? (A counter example is furnished by Exercise 28.) 
It will be convenient to use the notation 

Thus cpr is. for each t ,  a function of one variable. 

9.42 Theorem Suppose 

(a )  cp(x, t )  is defined for a I x I b,  c I t 5 d ;  
(b )  u is an increasing function on [a, b ] ;  
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( c )  q' E %?(a) for every t E [c, dl ; 
( d )  c < s < d ,  and to every E > 0 corresponds n 6 > 0 such that 

1 ( 0 2  q ) (x ,  t )  - (D2 q ) (x .  $1 I < E 

Jor all x E [a, b ]  and for all t E ( S  - 6 ,  s + 6).  

Dejine 

b 

( 1  00) f ( t )  = J q ( x ,  t )  da(x) ( C  t d) .  
a 

Therz ( D ,  q)" E %?(r), f ' ( s )  exists, and 

Note that ( c )  simply asserts the existence of the integrals (100) for all 
t E [c, dl. Note also that ( d )  certainly holds whenever D, q is continuous on the 
rectangle on which q is defined. 

Proof Consider the difference quotients 

for 0 < t - sl < 6. By  Theorem 5.10 there corresponds to each ( x ,  t )  a 
number u between s and t such that 

*(x, t )  = ( 0 2  (P)(x, u). 

Hence ( d )  implies that 

(102) $ ( x .  t )  - (D2q) (x . s ) I  < E (cr 5 x 5 b, 0 < It - s1 < 6). 

Note that 

f ( t )  - f ( s )  = t )  d@). 
t - s  

By (102), IC/' + (0, q)', uniformly on [a, b ] ,  as t -+ s. Since each 
IC/' E 9?(r), the desired conclusion follows from (103) and Theorem 7.16. 

9.43 Example One can of course prove analogues of Theorem 9.42 with 
(-  co, co) in place of [a, b ] .  Instead of doing this, let us simply look at an 
example. Define 

f ( t )  = Jm e-" cos ( x t )  dx  
- m 



and 
m 

(105) g(t) = - [ xe-12 sin (xt) dx, . - m  

for - m < t < co. Both integrals exist (they converge absolutely) since the 
absolute values of the integrands are at  most exp (- x2) and 1x1 exp (- x2), 
respectively. 

Note that g is obtained from f by differentiating the integrand with respect 
to t. We claim that f is differentiable and that 

T o  prove this, let us first examine the difference quotients of the cosine: 
if /3 > 0, then 

(107) 
cos (cx + p) - cos cx . 

P 
+ sln cx = 1 /zi8(sin x - sin t)  dt. 

P . .  
Since (sill x - sin t < It - s r ,  the right side of (107) is at  most /3/2 in absolute 
value; the case /3 < 0 is handled similarly. Thus 

for all /3 (if the left side is interpreted to be 0 when = 0). 
Now fix t, and fix / I  # 0. .4pply (108) with u = xt, /3 = xh; it follows from 

(104) and (105) that 

When h -, 0, we thus obtain (106). 
Let us go a step further: An integration by parts. applied to (104), shows 

that 
sin (xt) 

f ( t )  = 2 xe-x2 - dx . - - m t 

Thus tf(t) = - 2g(t), and (106) implies now that f satisfies the differential 
equation 

(1 10) 2f '(t) + tf(t) = 0. 
/ - If we solve this differential equation and use the fact that f(0) = ,, rr (see Sec. 

8.21), we find that 

f ( t )  = ,,/i exp (- 
The integral (104) is thus explicitly determined. 
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EXERCISES 

1. If S is a nonempty subset of a vector space X, prove (as asserted in Sec. 9.1) that 
the span of S is a vector space. 

2. Prove (as asserted in Sec. 9.6) that BA is linear if A and Bare linear transformations. 
Prove also that A-  is linear and invertible. 

3. Assume A E L(X, Y) and Ax = 0 only when x = 0. Prove that A is then 1-1. 

4. Prove (as asserted in Sec. 9.30) that null spaces and ranges of linear transforma- 
tions are vector spaces. 

5. Prove that to every A E L(R", R1) corresponds a unique y E R" such that Ax = x y. 

Prove also that A = 1 y l .  
Hint: Under certain conditions, equality holds in the Schwarz inequality. 

6. If f ( O , 0 ) = 0  and 

prove that (D,f)(x, y) and (D,f)( .v ,  y) exist at every point of R Z,  although f is 
not continuous at (0, 0). 

7. Suppose that f is a real-valued function defined in an open set E c Rn, and that 
the partial derivatives Dl  f, . . . , D,fare bounded in E. Prove tha t f i s  continuous 
in E. 

Hint: Proceed as in the proof of Theorem 9.21. 

8. Suppose that f is a diflerentiable real function in an open set E c Rn, and that f 
has a local maximum at a point x E E. Prove that f'(x) = 0. 

9. If f is a differentiable mapping of a connected open set E c R" into Rm, and if 
ff(x) = 0 for every x E E, prove that f is constant in E. 

10. I f f  is a real function defined in a convex open set E c R", such that (D,f)(x) = 0 
for every x E E, prove that f (x)  depends only on .uz, . . . , x,, . 

Show that the convexity of E can be replaced by a weaker condition, but 
that some condition is required. For example, if n = 2 and E is shaped like a 
horseshoe, the statement may be false. 

1 I. Iff and g are differentiable real functions in Rn, prove that 

and that T(l If) = - f-'Tf wherever f *  0. 

12. Fix two real numbers a and b, 0 < a < b. Define a mapping f = (l;,f2 ,f3) of R Z  
into R 3 by 

f,(s, t)  -- (b  + a cos s) cos t 

.f2(s, t )  = (b + a cos S) sin t 

f3(x, t)  = a sin s. 



Describe the range K of f. (It is a certain compact subset of R3.) 
(a) Show that there are exactly 4 points p E K such that 

Find these points. 
(b) Determine the set of all q E K such that 

(c) Show that one of the points p found in part (a) corresponds to a local maxi- 
mum off , ,  one corresponds to a local minimum, and that the other two are 
neither (they are so-called "saddle points"). 

Which of the points q found in part (h)  correspond to maxima or minima? 
(d) Let h be an irrational real number, and define g(t) = f(t, At). Prove that g is a 
1-1 mapping of R' onto a dense subset of K. Prove that 

I gl(t) 1 = a 2  + h2(b + a cos t)2. 

13. Suppose f is a differentiable mapping of RL into R3 such that I f ( t ) l=  1 for every t. 
Prove that f'(t).f(t) = 0. 

Interpret this result geometrically. 

14. Define f (0,O) = 0 and 

(a) Prove that Dl j and  D2 ja re  bounded functions in R2. (Hence f is continuous.) 
(b) Let u be any unit vector in R2. Show that the directional derivative (D, f)(O, 0) 
exists, and that its absolute value is at most 1. 
(c) Let y be a differentiable mapping of R' Into R2 (in other words, y is a differ- 
entiable curve in R2), with y(0) = (0, 0) and y1(0)1 > 0. Put g( t )  = f(y(t)) and 
prove that g is differentiable for every t E R'. 

If y E V', prove that g E %". 
(d)  In spite of this, prove that f is not differentiable at (0,O). 

Hint: Formula (40) fails. 

15. Define f (0, 0) = 0, and put 

i f  (x, Y )  f (0, 0). 
(a) Prove, for all (x, y) E R2, that 

Conclude that f is continuous. 





(b) Let S be the set of all (x, y) E R 2 at whichf(x, y) = 0. Find those points of 
S that have no neighborhoods in which the equationf(x, y) = 0 can be solved for 
y in terms of x (or for x in terms of y). Describe S as precisely as you can. 

22. Give a similar discussion for 

f (x, y) = 2x3 + 6xy2 - 3x2 + 3y2. 

23. Define f in R 3 by 

Show that f(0, 1, -1) - 0, (Dl f)(O, 1 ,  -1) #0 ,  and that there exists therefore a 
differentiable function g in some neighborhood of (I,  -1) in R2, such that 
g(l ,  -1) = 0 and 

Find (Dlg)(l, - 1) and (D2g)(l, - 1). 
24. For (x, y) # (0, 01, define f = (f1,fz) by 

Compute the rank of f'(x, y), and find the range o f f .  
25. Suppose A E L(Rn, Rm), let r be the rank of A. 

(a) Define S as in the proof of Theorem 9.32. Show that SA is a projection in Rn 
whose null space is N ( A )  and whose range is W(S). Hint: By (68), SASA = SA.  
(b) Use (a) to show that 

dim N ( A )  t dim &!(A) = n. 

26. Show that the existence (and even the continuity) of DI2  f does not imply the 
existence of Dl  f. For example, let f(x, y) = g(x), whereg is nowhere differentiable. 

27. Put f (0,O) = 0, and 

if (x, y) # (0,O). Prove that 
(a) f, Dl f, D2 f are continuous in R 2;  
(b) Dl, f and DZl f exist at  every point of R2, and are continuous except at (0, 0); 
( c )  (D12f)(0, 0) = 1, and (Dllf)(O, 0) = -1. 

28. For t 2 0, put 

(0 5 x 9';) 
+ 2%'; ( d t  5 x 5 2%';) 

(otherwise), 

and put ~ ( x ,  t )  = -v(x, I t i)  if t <0 .  



Show that p, is continuous on RZ, and 

( D z  p,)(x, 0 )  = 0  

for all x .  Define 

" 1 

f ( t )  = J - d x ,  t )  dx.  

Show that f ( t )  = t  if It 1 < a. Hence 

29. Let E be an open set in Rn. The classes W ( E )  and '%"'(E) are defined in the text. 
By induction, W k ) ( E )  can be defined as follows, for all positive integers k :  T o  say 
that f  E V a ) ( E )  means that the partial derivatives D , f ,  . . . , D. f  belong to %?(k-')(E). 

Assume f  E W k ) ( E ) .  and show (by repeated application of Theorem 9.41) 
that the kth-order derivative 

is unchanged if the subscripts i,, . . . , ik are permuted. 
For instance, if , 1 2 3 ,  then 

for every f E W4). 

30. Let f E W m ) ( E ) ,  where E is an open subset of Rn. Fix a E E, and suppose x E R" 
is so close to 0 that the points 

lie in E whenever 0  2 t  < 1. Define 

h(t)  = f  ( ~ ( t ) )  

for all t  E R' for which p(t) E E. 
( a )  For 1 _< k I m, show (by repeated application of the chain rule) that 

hck'( t )  = C ( D i ,  ... ikf) (p( t ) )  xi ,  ... x i , .  

The sum extends over all ordered k-tuples (i,, . . . , i k )  in which each i ,  is one of the 
integers 1, . . . , n.  
( 6 )  By Taylor's theorem (5.15), 

for some t E (0 ,  1). Use this to prove Taylor's theorem in n variables by showing 
that the formula 



represents f(a + x) as the sum of its so-called "Taylor polynomial of degree 
m - 1," plus a remainder that satisfies 

r (XI lim - = 0. 
x-0 I x m - l  

Each of the inner sums extends over all ordered k-tuples (il, . . . , i,), as in 
part ( a ) ;  as usual, the zero-order derivative o f f  is simply f, so that the constant 
term of the Taylor polynomial off  a t  a is f(a). 
(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as written in 
part (b). For  instance, 0 1 1 3  occurs three times, as 0113, D131, 0 3 1 1 .  The sum o f  
the corresponding three terms can be written in the form 

Prove (by calculating how often each derivative occurs) that the Taylor polynomial 
in (b) can be written in the form 

C (D:' . . . D:"f?(a) ,. , . . x , $ .  
s,! . . .  s.! 

Here the summation extends over all ordered n-tuples (sl, . . . , s,) such that each 
si is a nonnegative integer, and s, + . . . + s. I m - 1 . 

31. Suppose f E % " 3 )  in some neighborhood of a point a E RZ, the gradient o f f  is 0 
at a ,  but not all second-order derivatives o f f  are 0 at a. Show how one can then 
determine from the Taylor polynomial off  a t  a (of degree 2) whether f has a local 
maximum, or a local minimum, or neither, at the point a .  

Extend this to  R" in place of R2. 
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