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Abstract. These are the lecture notes for the subject 35007 Real
Analysis, taught at the University of Technology, Sydney. They are
based on a number of sources, including notes by Gordon Mclel-
land. They are not for profit.
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1. Introductory Real Analysis

Let us review a few important ideas introduced in a typical first
course in analysis. Analysis is largely concerned with the behaviour of
functions, which we usually want to be continuous. However in order
to develop a useful theory of the behaviour of functions, we first need
to study sequences. An investigation of sequences and functions leads
to the major tools of elementary calculus, namely the derivative and
integral.

We begin with one of the most basic concepts in mathematics.

1.0.1. Sets. Particularly in the theory of measure, we are required to
manipulate sets. So here we review some elementary facts.

Definition 1.1. Let A and B be sets.

(i) The union of A and B is denoted A ∪B and is given by

A ∪B = {x : x ∈ A or B}.
The union of a collection of sets Ai, i ∈ N is defined inductively
and denoted ∪i∈NAi.

(ii) The intersection of A and B is denoted A ∩B and is given by

A ∩B = {x : x ∈ A and B}.
The intersection of a collection of sets Ai, i ∈ N is defined in-
ductively and denoted ∩i∈NAi.

(iii) The set difference of A and B is denoted A−B and is given by

A−B = {x ∈ A, x 6∈ B}.
(iii) We say that A is a subset of B and write A ⊂ B if every element

of A is contained in B. If A is contained in and may be equal
to B we write A ⊆ B.

Throughout these notes ∅ will denote the empty set. That is, the set
containing no elements.

Definition 1.2. Two sets A,B are said to be disjoint if A ∩B = ∅.

Unions complements and differences satisfy certain laws. The proof
of the next result is a simple exercise.

Proposition 1.3. Let A,B,C be sets. The following relations hold.

(i) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

(ii) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

(iii) (A ∪B)− C = (A− C) ∪ (B − C).

(iv) (A ∩B)− C = (A− C) ∩ (B − C).

The most important rules for sets are deMorgan’s laws.
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Definition 1.4. Let A ⊂ X. Then Ac = {x ∈ X : x 6∈ A}. We call Ac

the complement of A. We define Xc = ∅.

Theorem 1.5 (deMorgan). Let Ai, i ∈ N be a collection of sets. Then(
∞⋃
i=1

Ai

)c

=
∞⋂
i=1

Aci ,

(
∞⋂
i=1

Ai

)c

=
∞⋃
i=1

Aci .

Two other useful relationships are A − B = A ∩ Bc and A ⊆ B if
and only if Bc ⊆ Ac.

1.1. Countability. It is often important to distinguish between dif-
ferent kinds of infinite sets. For example, the rational numbers and the
real numbers are both infinite sets, but there is a sense in which the
real numbers is a bigger set than the rational numbers. To make this
precise we introduce the notion of countability.

Definition 1.6. A set X is countable if there is a one to one function
f : X → N. A countable set is also said to be denumerable. A set
which is not countable is said to be uncountable. If f is also onto then
we say that X is countably infinite.

Some authors prefer to use the term countable only when the set is
countably infinite. A finite set might then be termed finitely countable.
However this distinction is unimportant. There are equivalent formu-
lations which are useful in establishing the countability of certain sets.

Theorem 1.7. Let A be an infinite set. The following are equivalent.

(i) A is countable.

(ii) There exists a subset B of N and a function f : B → A which
is onto.

(iii) There exists a function g : A→ N that is one to one.

Proof. These are all straightforward. For example (iii) follows from the
fact that there is a one to one and onto function f : A → N, so f is
invertible. The others are exercises. �

An important fact about countable sets follows.

Theorem 1.8. Let Xi, i = 1, 2, 3, ... be countable sets. Then the union
X =

⋃∞
i=1 Xi is also countable.

Proof. We let Xi = {xi1, xi2, xi3, ....}. Let B = {2k3n : k, n ∈ N}. Now
define f : B → A by f(2k3n) = xnk . Then f maps B onto A, so A is
countable by Theorem 1.7. �

The proof of the next result is also an easy consequence of Theorem
1.7 and is an exercise.
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Theorem 1.9. Suppose that Xi, i = 1, ..., n, n < ∞. are countable
sets. Then X1 × · · · ×Xn is countable.

Example 1.1. The set {a, b, c, d} is countable. For example we might
have f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 4.

Example 1.2. The natural numbers are countable. Just take f(n) = n.

Example 1.3 (Cantor). The rational numbers Q are countable. Clearly
Q = Q+

⋃
Q−, where the superscripts denote the negative and non-

negative rationals respectively. So it is enough to show that the positive
rationals are countable. Define f : N × N → Q+ by f(m,n) = m/n.
Clearly f is onto, so by Theorem 1.7 the rationals are countable.

Example 1.4 (Cantor). The real numbers R are uncountable. A very
nice proof of this result uses the Baire Category Theorem and will be
presented later. Cantor presented at least two proofs of this result.
The second is the most famous and is known as his diagonal argument.
Suppose that we restrict attention to the interval [0, 1] and represent
every number in [0, 1] in binary, that is as a possibly infinite sequence
of zeroes and ones. We then make a list of all the elements in some
order. So for example if we create a list of sequences from the binary
expansion of the numbers in [0, 1], the list might look like this:

s1 = (0, 0, 0, 0, 0, 0, 0, .....)

s2 = (0, 1, 1, 1, 0, 0, 1, .....)

s3 = (1, 1, 1, 1, 0, 0, 0, .....)

s4 = (0, 0, 1, 1, 0, 1, 0, .....)

s5 = (0, 1, 1, 0, 0, 1, 1, .....)

...

We claim that no possible list can contain every possible sequence of
zeroes and ones. To show this we construct and element s0 which is
not in the given list. We do so by looking down the diagonal of the
array of numbers given above. That is, we look at the element sii and
choose element number i of s0 to not equal sii. So from the list here we
would define

s0 = (1, 0, 0, 0, 1, ....)

Notice the first element of s1 is 0, so we choose the first element of s0

to be 1. The second element of s2 is 1, so the second element of s0 is 0.
The third element of s3 is 1, so the third element of s0 is 0 and so on.

The sequence s0 is not in the above list. Suppose otherwise. Then
there is an integer N such that SN is in the above list and s0 = sN .
In particular the Nth term of the sequence s0 is the Nth term of the
sequence sN . But this is a contradiction, because we constructed s0 by
choosing s0N 6= sNN . So s0 is not in the above list. This is true for any
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possible countable list. So no countable list of sequences of zeroes and
ones can contain every sequence of zeroes and ones. Hence the interval
[0, 1] is not countable and hence R is not countable.

1.2. Sets, Real numbers. Analysis makes use of an axiom and prop-
erties of the real numbers. We start with the humble triangle inequality,
which is easily the most important inequality in mathematics.

Lemma 1.10. For any real numbers a, b, |a+ b| ≤ |a|+ |b|, where the

absolute value is defined by |x| =
√
x2 for x ∈ R.

Proof. This is elementary.

|a+ b|2 = (a+ b)2 = a2 + 2ab+ b2

≤ |a|2 + 2|ab|+ |b|2

= (|a|+ |b|)2.

We used the fact that ab ≤ |ab|. Now take square roots. �

A rigorous treatment of analysis must begin with the axiom which is
the foundation of the subject. If we consider sets of real numbers, then
we can ask various questions of them. For example, are they bounded?

Definition 1.11. A finite number u is an upper bound for a set A ⊆ R
if for every x ∈ A, x ≤ u. Similarly, l is a lower bound for A if for
every x ∈ A, x ≥ l.

Now suppose that A ⊂ R is non-empty and that there is an upper
bound? We can ask whether or not there is a least upper bound?

Definition 1.12. If ū is an upper bound of a set A ⊆ R with the
property that ū ≤ u, for all other upper bounds u, then ū is called the
least upper bound or supremum of A. We write ū = supA. Similarly, a
lower bound l̄ of a set A ⊂ R is the greatest lower bound or infimum,
if for every lower bound of A we have l̄ ≥ l. We write l̄ = inf A.

1.3. The Least Upper Bound Axiom. Consideration of elementary
examples would suggest that every non empty set, bounded above, does
indeed have a least upper bound. Indeed it is impossible to write down
a counter example. Many examples are straightforward. Take the set
[0, 1). The least upper bound is obviously 1. This is easy, but it turns
out that there is no way that one can prove that every nonempty set of
real numbers which is bounded above has a least upper bound. Instead
we make it an axiom.

Axiom 1: The Least Upper Bound Axiom: Every non empty
set of real numbers which is bounded above has a least upper bound.

Example 1.5. This example is important and uses ideas that we will
develop below. Let f : [0, 1] → R be a continuous function. Let
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P = {x0, x1, ..., xn} be a partition of [0, 1]. Let mi = maxx∈[xi−1,xi] f(x).
Define L(f,P) =

∑n
i=1mi(xi − xi−1). Then by our axiom,

I = sup
P
{L(f,P)} (1.1)

exists. The point is that we could not otherwise prove the existence of
this supremum. This number I is important in the construction of the
Riemann integral, as we will see.

Example 1.6. Does the set of rational numbers in A = [0, π] have a
least upper bound in A? Suppose that there is a rational number
0 < ε < π, then by the continuum property of the real numbers, there
is a rational number δ, with ε < δ < π. So this set has no least upper
bound contained in A. The least upper bound is obviously π. Note te
supremum does not have to be in the set itself

Example 1.7. Consider the set A = {x > 0, x ∈ Q, x2 ≤ 2}. Since
√

2
is irrational, the supremum of A(i.e.

√
2 )is not in A.

From this axiom all of analysis is derived. We start by proving that
non-empty sets bounded below have greatest lower bounds.

Theorem 1.13. A non-empty set of real numbers bounded below has
a greatest lower bound.

Proof. Suppose that A is nonempty and bounded below. Now consider
the set −A = {−x : x ∈ A}. This set is nonempty and bounded above:
If l is a lower bound of A, then −l is an upper bound of −A. To see
this, notice that if x ∈ A, then l ≤ x. So −l ≥ −x. Hence −l is an
upper bound. By Axiom 1, −A has a least upper bound ū. Then it
follows that l̄ = −ū is the greatest lower bound for A. �

An important result we use extensively follows.

Theorem 1.14. Assume that supA exists, where A ⊂ R. Then for
every ε > 0 we can find an x such that

supA− ε < x ≤ supA.

Proof. Suppose that for every x ∈ A, x ≤ supA − ε. Then supA − ε
is an upper bound for A, less than supA, which is a contradiction. So
there must be some x in A with x > supA− ε. Clearly x ≤ supA. �

The Archimedean Property This is an obvious fact, which nev-
ertheless is fundamental: Given any two positive real numbers x, y, we
can find a natural number n such that nx > y. Equivalently, there is
no largest natural number.
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1.4. Limits and Sequences. We now introduce the concept of a se-
quence. This is one of the most important concepts in the subject.
Indeed it is arguably the most important, because everything that fol-
lows depends on it.

Definition 1.15. A sequence in R is a function f : N→ R. We usually
write f(n) = xn and denote the sequence by {xn}∞n=1 or just {xn}.

Sequences are what analysis is made of. Many practical problems
have solutions which are given by constructing sequences which “con-
verge” to a solution. That is, which gets closer and closer to the solution
as n increases. We define convergence as follows.

Definition 1.16. A sequence of real numbers {xn}∞n=1 is said to be
convergent with limit x, if for every ε > 0 there exists N ∈ N such that
n ≥ N implies |xn − x| < ε. We write xn → x. A sequence which does
not converge is said to diverge.

Remark 1.17. Why does this definition matter? In the early days of
Calculus, there was a great deal of uncertainty about its scope, its
meaning and even its validity. Critics of the new mathematics pointed
out that much of it was incredibly vague. What exactly is a limit?
Saying that some quantity gets closer and closer to another quantity
as some other quantity approaches yet another value is just waffle. It
is difficult to do a calculation when you are trying to apply waffle.

Now we have a very precise definition of what a limit is. This says
that we can specify how far out in a sequence we need to go in order
to make the difference between the terms of the sequence and the limit
as small as we like. It also allows us to prove things, as we shall see.
From it, we will get a rigourous version of Calculus.

Example 1.8. Let an = 1
n
. Let ε > 0. We show that the limit is zero.

We require
∣∣ 1
n
− 0
∣∣ < ε. Clearly if we let N ∈ N with N > 1/ε, then for

all n ≥ N we have
∣∣ 1
n
− 0
∣∣ < 1

N
< ε. So the sequence converges to 0.

Example 1.9. Let an = n2−4
n2+4

. Then the sequence converges to 1. To
show this, let ε > 0. Then |an − 1| < ε implies∣∣∣∣n2 − 4

n2 + 4
− 1

∣∣∣∣ =

∣∣∣∣n2 − 4− (n2 + 4)

n2 + 4

∣∣∣∣
=

∣∣∣∣ 8

n2 + 4

∣∣∣∣ < ε.

Now n2 + 4 > n so that
8

n2 + 4
<

8

n
. Thus if N > 8

ε
and n ≥ N , then

|an − 1| < ε. So an → 1. It is important to notice that in these sorts
of proofs, we do not need to find the smallest possible value of N. Just
one that works.
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Remark 1.18. In these kinds of calculations, we are basically solving
an inequality. We we want |an − l| < ε for every n > N. So we have
to work out an integer value of N for which this is true. Thus we have
to solve an inequality. This might be difficult, but the idea is entirely
straight forward.

It is easy to establish some basic facts about convergent sequences.
From here on we will see just how essential the triangle inequality
is to analysis. The subject could not exist without it. In fact it is
so essential, that when we extend analysis from the real line to other
settings, we insist that the measure of distance that we use, must satisfy
the triangle inequality.

Theorem 1.19. The limit of a convergent sequence is unique.

Proof. Suppose that xn → x and xn → y. Then for all n

|x− y| = |x− xn + xn − y| ≤ |xn − x|+ |xn − y|.

Now let ε > 0. We can find N1, N2 such that if n ≥ N1, then |xn−x| < ε
2

and if n ≥ N2, then |xn − y| < ε
2
. So if N = maxN1, N2 (ie the

maximum of the two numbers N1, N2) then if n ≥ N , we have

|x− y| = |x− xn + xn − y| ≤ |xn − x|+ |xn − y|

<
ε

2
+
ε

2
= ε.

We can do this for any ε > 0. So for any number ε > 0 we have
|x − y| < ε. Since the absolute value is never negative, this is only
possible if |x − y| = 0. That is x = y. So the sequence has a unique
limit. �

This proof exemplifies several of the tricks that are used to prove
results in analysis. We added and subtracted the same quantity. We
used the triangle inequality. We used the fact that if a nonnegative
quantity is less than any positive number, it must be zero. These
methods are used over and over again.

Next we turn a very important property of convergent sequences.

Theorem 1.20. Every convergent sequence is bounded.

Proof. Let {xn}∞n=1 be a convergent sequence with limit x and choose
N such that n ≥ N implies |xn − x| < 1. Now let

M = max{|x1|, ..., |xN−1|, 1 + |x|}.

Clearly if 1 ≤ n ≤ N − 1 then |xn| ≤M. Conversely, if n ≥ N , Then

|xn| = |xn − x+ x| ≤ |xn − x|+ |x| < 1 + |x| ≤M.

So for all n, |xn| ≤M , and hence the sequence is bounded. �
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This means that a convergent sequence must have an upper and lower
bound. It cannot go off to infinity at some point then come back down
again. Notice also that we added and subtracted a quantity and used
the triangle inequality again. These are simple but powerful ideas.

Convergent sequences behave as you would expect under addition,
multiplication and division.

Theorem 1.21. Let a, b be constants and suppose that {xn} and {yn}
are convergent sequences, with limits x, y respectively. Then

(1) axn → ax.

(2) axn + byn → ax+ by.

(3) xnyn → xy.

(4) If yn is never zero and y 6= 0, then xn/yn → x/y.

Proof. The first result is trivial. Now let ε > 0. For (2) choose M such
that n ≥M implies |xn−x| < ε/(2|a|) and K such that n ≥ K implies
|yn − y| < ε(2|b|). Then let N = max{M,K}. Then for n ≥ N ,

|axn + byn − ax− by| ≤ |a||xn − x|+ |b||yn − y|
< |a|ε/(2|a|) + |b|ε/(2|b|) = ε.

For (3) we use the adding and subtracting trick. We will assume that
x 6= 0. First recall that convergent sequences are bounded. So choose
M > 0 such that |yn| ≤M for all n. Now we can find an N1 such that
if n ≥ N1 then |xn − x| < ε

2M
. Choose N2 such that n ≥ N2 implies

that |yn − y| < ε
2|x| . Let N = max{N1, N2}. Then for n ≥ N we can

now write

|xnyn − xy| = |xnyn − xyn + xyn − xy|
= |yn(xn − x) + x(yn − y)|
≤ |yn(xn − x)|+ |x||yn − y|
≤ |M ||xn − x|+ |x||yn − y|

< M
ε

2M
+ |x| ε

2|x|
= ε.

We used the fact that |M | = M . So xnyn → xy.
If x = 0 then xy = 0 so we have

|xnyn − 0| = |xnyn| ≤M |xn|.

Choose N such that n ≥ N implies |xn| ≤ ε
M
. Then n ≥ N implies

|xnyn| < M
ε

M
= ε.

So xnyn → 0.
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The proofs of the last result is an exercise. You will need to use the
addition and subtraction trick again. �

We also have the essential result that increasing bounded sequences
are convergent. This is in fact logically equivalent to the least upper
bound axiom. It is possible to take this result as an axiom and use
it to prove the existence of a least upper bound. Some books do this
instead. It does not really matter which way around that you do it.

Theorem 1.22. Every monotone increasing sequence which is bounded
above has a limit. Every monotone decreasing sequence bounded below
has a limit.

Proof. Let {xn}∞n=1 be a bounded, increasing sequence. Then for all n,
xn+1 ≥ xn. Consider the set A = {x1, x2, x3, ...}. This set is non-empty
and bounded above, so it has a least upper bound, which we denote
by x. Now pick ε > 0 and choose N ∈ N such that xN > x − ε. Since
x is the least upper bound we can do this, otherwise it would not be
the least upper bound. Since {xn}∞n=1 is increasing we have for n ≥ N ,
|xn−x| = x−xn < ε. Hence xn → x. The case of a decreasing sequence
is similar and is an exercise. �

One of the most useful results about limits is the so called Sandwich
or Squeeze Theorem. It says that if we have three sequences an, bn, cn
and bn lies between the other two and an, cn converge to the same value,
then bn must also converge to that value.

Theorem 1.23 (The Sandwich Theorem). Let an, bn, cn be real valued
sequences and suppose that an ≤ bn ≤ cn. Further suppose that an → l
and cn → l. Then bn → l.

Proof. This is an intuitively obvious result. The idea is that bn is
sandwiched between an and cn and so it has to converge to the same
limit as they do. To prove it, let ε > 0. Choose N1 ∈ N be such that
for n ≥ N1 we have |an − l| < ε. Similarly choose N2 ∈ N such that
n ≥ N2 we have |cn − l| < ε. Pick N = max{N1, N2}. Then for n ≥ N ,
an ≤ bn ≤ cn and an > l − ε and cn < l + ε. Hence for n ≥ N

l − ε < bn < l + ε.

But this is the same as |bn − l| < ε. Hence bn → l. �

Now we introduce the concept of a subsequence. Subsequences play
an essential role in analysis. It turns out that the behaviour of a se-
quence is determined by its subsequences.

Definition 1.24. Let {xn}∞n=1 be a sequence. A subsequence {xnK}∞K=1

is a sequence contained in {xn}∞n=1, where nK is an increasing sequence
of integers. So nK →∞ as K →∞.
Example 1.10. Let xn = (−1)n. Then let nK = 2K. Now x2K = (−1)2K .
So this subsequence is {1, 1, 1, 1, 1, 1.....}.
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Example 1.11. Let xn = 1
n2+1

. Let nK = 3K. Then x3K = 1
9K2+1

. So

the subsequence is { 1
10
, 1

37
, 1

82
, ...}.

The most important results about sequences on the real line stem
from the Bolzano-Weierstrass Theorem. To prove this, we need some
preliminaries.

Theorem 1.25. Every sequence has a monotone subsequence.

Proof. We sketch the proof. We suppose that the sequence is not con-
stant after some term xN . If xn = a for all n ≥ N , then the result is
trivial. So suppose this is not the case. The basic idea is to construct
the sequence. We pick the first element, say y1 = xn, then we move
along the sequence till we find another element xn1 which is larger then
xn and then take y2 = xn1 . Now move along the sequence till we come
to a larger element, make that the third element of the subsequence.
Continuing we construct a monotone increasing sequence. Similarly for
the case of a monotone decreasing sequence. �

Theorem 1.26 (Bolzano-Weierstrass). Every bounded sequence of real
numbers has a convergent subsequence.

Proof. A bounded sequence has a bounded monotone subsequence.
Bounded monotone sequences are convergent. So every bounded se-
quence has a convergent subsequence. �

The reason why this result is so important is that we often need
to deal with sequences of real numbers on bounded intervals and in
many proofs we pick a convergent subsequence to work with. Texts
on elementary real analysis will deal with this and we will see some
examples of this in practice.

Definition 1.27. A sequence of real numbers {xn}∞n=1 is said to be a
Cauchy sequence if for every ε > 0 we can find an N ∈ N such that
n,m ≥M implies |xn − xm| < ε.

The concept is named after Augustin-Louis Cauchy (1789-1857).
Cauchy was one of the founders of Analysis. He realised that the hand
waving proofs of earlier generations of mathematicians were not suffi-
cient and could lead to conclusions that were false, as often happened.
Euler established many important results, but some of the things that
he ‘proved’ are just not true.

Cauchy understood that if Calculus was to be made rigourous, then
the concepts of limits and convergence would have to be made precise.

Every Cauchy sequence is convergent. This fact underpins a lot of
what follows. Cauchy sequences and convergent sequences are basically
the same. The point is that Cauchy’s criterion gives us a different way
of determining convergence, which is particularly useful when we do
not have the limit available to us.
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Before proceeding, we show an easy result.
We have already seen that every convergent sequence is bounded.

The same is true for every Cauchy sequence. Before we state the propo-
sition, we need to introduce a variant of the triangle inequality.

Lemma 1.28. Let a, b ∈ R. Then |a− b| ≥ |a| − |b|.

Proof. We know that |c+d| ≤ |c|+ |d|. Take d = a− b and c = b. Then

|a| = |c+ d| ≤ |c|+ |d|
= |b|+ |a− b|.

Rearranging this gives the result. �

We can now prove the following.

Proposition 1.29. Every Cauchy sequence in R is bounded.

Proof. The proof is similar to the proof of the boundedness of conver-
gent sequences. Let {xn} be a Cauchy sequence. Since it is Cauchy, we
can find N ∈ N such that for all n,m ≥ N , |xn − xm| < 1. (As before,
there is nothing special about 1 here. We can take any positive finite
number). Take m = N. So |xn − xN | < 1. From Lemma 1.28 we have

|xn| − |xN | ≤ |xn − xN | < 1.

Now |xN | is a fixed finite number. So for n ≥ N we have

|xn| ≤ 1 + |xN | <∞.

Take A = max{|x1|, ...., |xN−1|}. Now let M = max{A, 1 + |xN |}.
Then |xn| ≤M , so the sequence is bounded. �

The next fact is very easy. The converse is a lot more difficult and
requires the Bolzano-Weierstrass Theorem.

Proposition 1.30. Every convergent sequence is a Cauchy sequence.

Proof. We pick N ∈ N such that n ≥ N implies |xn − x| < ε/2. Then
we have for n,m ≥ N

|xn − xm| = |xn − x+ x− xm| ≤ |xn − x|+ |xm − x| < ε/2 + ε/2 = ε,

so a convergent sequence is Cauchy. �

Proving the converse needs two more steps. We start with the fol-
lowing important fact.

Proposition 1.31. If a Cauchy sequence has a convergent subsequence
with limit x, then the Cauchy sequence converges to x.

Proof. To see this, suppose that {xn}∞n=1 is Cauchy and that there is a
subsequence {xnK}∞K=1 which converges to x. So that limK→∞ xnK = x.
We then choose N large enough to make |xn−xm| < ε/2 for all n,m ≥
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N and pick K large enough to make nK > N. Then by the triangle
inequality

|xn − x| = |xn − xnK + xnK − x|
≤ |xn − xnK |+ |xnK − x|
< ε/2 + ε/2 = ε.

So xn → x. �

We have seen that every Cauchy sequence is bounded. From this
and the Bolzano-Weierstrass Theorem we have our main result.

Theorem 1.32. Every Cauchy sequence is convergent.

Proof. Every Cauchy sequence is bounded. By the Bolzano-Weierstrass
Theorem, it follows that every Cauchy sequence has a convergent sub-
sequence. Consequently, every Cauchy sequence converges. �

Cauchy sequences are important because they allow us to establish
convergence without knowing what the limit is. In most cases, we
cannot compute the limit exactly, so we cannot prove convergence by
establishing that |xn − x| → 0 since x is unknown. We can however
often prove that |xn − xm| → 0 as n,m→∞.

It is important to understand that a sequence with the property that
|xn+k − xn| → 0, as n→∞, for fixed k, is not necessarily Cauchy. We
insist that |xn−xm| → 0 as both n,m→∞. For example, the harmonic
sequence

xn =
n∑
k=1

1

k
,

diverges. The proof of this result is quite ancient and is often attributed
to Nicolas Oresme (born between 1320-25, died 1382). However it may
well have been established in India even earlier. It is based on the
observation that

2N∑
k=N

1

k
=

1

N
+ · · ·+ 1

2N

≥ N × 1

2N
=

1

2

Similarly
∑4N

k=2N+1 ≥
1
2
,
∑8N

k=4N+1 ≥
1
2

etc. So that
∞∑
k=1

1

k
≥ 1 +

1

2
+

1

2
+

1

2
+ · · ·

and so xn →∞. However |xn+1 − xn| = 1
n
→ 0 as n→∞.

The use of convergent subsequences is one of the most common tech-
niques in analysis. Notice that we have also used the triangle inequality
extensively. These are the fundamental tools of Analysis and they are
used over an over again. When we extend Analysis to different settings,
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the first thing that we require is that we have a measure of the length
or size of some mathematical object for which the triangle inequality
holds. It is the most important inequality in mathematics.

1.5. Infinite Series and Convergence Tests. As the example of
the harmonic sequence shows, we can handle series by treating them
as sequences.

Definition 1.33. A series S =
∑∞

n=1 an is said to be convergent with

limit S if the sequence of partial sums {SN}∞N=1 with SN =
∑N

n=1 an
is convergent with limit S. If the series is not convergent, we say it
diverges.

The next result is obvious.

Theorem 1.34. If
∑∞

n=1 an and
∑∞

n=1 bn are convergent with sums S
and T respectively, then

∑∞
n=1(an+bn) = S+T. Further

∑∞
n=1 can = cS

for all c ∈ R.

Proof. This follows from previously established properties of sequences
applied to SN =

∑N
n=1 an and TN =

∑N
n=1 bn. �

Note it is not true that if
∑∞

n=1 an and
∑∞

n=1 bn both converge then∑∞
n=1 anbn is convergent. We require absolute convergence for this.

Definition 1.35. A series is said to be absolutely convergent if the se-
ries

∑∞
n=1 |an| converges. If

∑∞
n=1 an converges, but

∑∞
n=1 |an| diverges,

the series is said to be conditionally convergent.

Example 1.12. The harmonic series
∑∞

n=1
1
n

is divergent. However the

alternating series
∑∞

n=1
(−1)n+1

n
= ln 2. Hence this series is conditionally

convergent.

There are many simple but useful properties possessed by convergent
series.

Lemma 1.36. If
∑∞

n=1 an is convergent, then limn→∞an = 0.

Proof. We have Sn =
∑n

k=1 ak and {Sn}∞n=1 is convergent with limit S.
Then Sn+1 − Sn → 0 butSn+1 − Sn = an. �

Another useful fact is the following. The proof is an exercise.

Proposition 1.37. Let
∞∑
n=1

an be convergent. Then as, N,M → ∞,∑N
n=M+1 an → 0.

Let us see what is needed to guarantee that
∑∞

n=1 anbn converges.

Proposition 1.38. If
∑∞

n=1 an is convergent and
∑∞

n=1 bn is absolutely
convergent, then

∑∞
n=1 anbn is convergent.
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Proof. Consider the sequence SN =
∑N

n=1 anbn. Now
∑∞

n=1 an is con-
vergent, hence the sequence an → 0 and so is bounded. Suppose that
|an| ≤ K. Then if N > M

|SN − SM | = |
N∑

n=M+1

anbn| ≤
N∑

n=M+1

|anbn|

≤ K
N∑

n=M+1

|bn| → 0,

as N,M →∞ since
∑∞

n=1 |bn| is convergent. Thus {SN}∞N=1 is Cauchy
and hence it converges. �

1.5.1. Some Convergent Series. There are some famous examples of
series that converge and whose sums are known. The most important
series is probably the geometric series. If |r| < 1, then

a+ ar + ar2 + · · · = a

1− r
.

This is obtained from the geometric sum

Sn = a+ ar + · · ·+ arn,

as follows. Multiplying by r gives

rSn = ar + ar2 + · · ·+ arn+1.

So that

Sn − rSn = (1− r)Sn = a(1− rn+1)

hence

Sn =
a(1− rn+1)

1− r
.

If |r| < 1, then rn+1 → 0.
The geometric series has many uses. For example, letting r = −x2

gives

1

1 + x2
= 1− x2 + x4 − x6 + · · · ,

for |x| < 1. When we do calculus we will see that∫ x

0

dt

1 + t2
=

1

1 + x2

and integrating both sides gives

tan−1 x = x− x3

3
+
x5

5
− · · · .

This is an example of a Taylor series.
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Although most infinite series cannot be summed exactly, there are
many special cases and there is still much work done on ways of sum-
ming series, since they have many applications as we shall see.

Example 1.13. Let us prove convergence of one of the most famous
infinite sums in mathematics. We want to show that

S =
∞∑
n=1

1

n2
<∞.

We will onsider Sn =
∑∞

n=1
1
n2 . Then

Sn = 1 +
1

4
+

1

9
+

1

16
+ · · ·

< 1 +
1

2
+

1

2 · 3
+

1

3 · 4
+

1

n(n− 1)

= 1 + (1− 1

2
) + (

1

2
− 1

3
) + (

1

3
− 1

4
) + · · ·+ (

1

n− 1
− 1

n
)

= 2− 1

n
< 2.

So this series is convergent. In fact the exact value of the sum is known.

Many infinite sums can be evaluated explicitly. Here are three due
to Euler.

∞∑
n=1

1

n2
=
π2

6
, (1.2)

∞∑
n=1

1

n4
=
π4

90

and
∞∑
n=1

1

n6
=

π6

945
.

These are special cases of a more general result. We will establish
convergence for the last of these series shortly. The middle one you
can try yourself. The evaluation of infinite sums often requires special
techniques, but we will prove (1.2) later in the notes. Infinite series
arise in many areas and we will also see how they can be used to
evaluate integrals at the end of the notes.

The series
∑∞

n=1
1
nα

is convergent for all α > 1. It diverges for all
other values of α. We will prove this below when we have developed
some tools.

There are various tests for convergence. Most rely on the comparison
test. This is the most important test that we have.
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Theorem 1.39 (Comparison Test). Suppose that
∑∞

n=1 an and
∑∞

n=1 bn
are series of positive terms. If there is an N ∈ N such that n ≥ N
implies an ≤ bn and

∑∞
n=1 bn is convergent, then

∑∞
n=1 an is also con-

vergent. Conversely if
∑∞

n=1 an is divergent, then
∑∞

n=1 bn is also di-
vergent.

Proof. Let T =
∑∞

k=1 bk and Sn =
∑n

k=1 ak. Since the an are positive
SN is increasing. We show that it is bounded above.

Sn = a1 + a2 + · · ·+ aN−1 + aN + · · ·+ an

≤ a1 + · · ·+ aN−1 + bN + · · ·+ bn

= b1 + · · ·+ bN−1 + bN + · · ·+ bn

+ (a1 − b1) + · · ·+ (aN−1 − bN−1)

= Tn +
N−1∑
k=1

(ak − bk)

≤ T +
N−1∑
k=1

(ak − bk).

So {Sn}∞n=1 is increasing and bounded above and hence converges.
The proof of the second part is similar. �

Example 1.14. Consider the infinite sum
∑∞

n=1
1√
n
. Now the sum

∑∞
n=1

1
n

is divergent. We know that for n ≥ 1, n ≥
√
n. Hence 1√

n
≥ 1

n
. Thus

for each N
N∑
n=1

1√
n
≥

N∑
n=1

1

n
,

and since the sum on the right diverges, the sum on the left diverges
by the comparison test.

Example 1.15. We know that
∞∑
n=1

1

n2
<∞.

Now n6 ≥ n2 for n ≥ 1, Hence 1
n6 ≤ 1

n2 for all n ≥ 1. So
∞∑
n=1

1

n6
≤

∞∑
n=1

1

n2
<∞.

Since the series on the right converges, so does the series on the left.

A variant of this is the limit comparison test.

Theorem 1.40 (The Limit Comparison Test). Let
∑∞

n=1 an and
∑∞

n=1 bn
be series of strictly positive terms. Suppose that

lim
n→∞

an
bn

= l 6= 0.
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Then either both series converge or both series diverge.

Proof. We can assume that an → 0 and bn → 0, since the series will
diverge otherwise. Since an/bn → l, the sequence {an/bn} is bounded
by some number K. From which it follows that an ≤ Kbn. So that
if
∑∞

n=1 bn converges, then
∑∞

n=1 an converges by the comparison test.
Conversely, if

∑∞
n=1 an diverges, then so does

∑∞
n=1 bn.

Now we can find N ∈ N such that n ≥ N implies an >
1
2
lbn, so that

if
∑∞

n=1 an converges, then so does
∑∞

n=1 bn. The divergence of
∑∞

n=1 bn
implies the divergence of

∑∞
n=1 an. �

Example 1.16. We know that
∑∞

n=1
1
n2 < ∞. Now consider the series

∞∑
n=1

n+ 1

2n3 + n+ 3
. We apply the limit comparison test and compute

lim
n→∞

(
n+ 1

2n3 + n+ 3

)
/

(
1

n2

)
= 1/2 6= 0.

So the second series also converges by the limit comparison test.

The proof of the convergence of
∑∞

n=1
1
n2 uses a property that can

help to evaluate certain series.

Example 1.17. We will sum
∑∞

n=1
1

n(n+1)
using partial fractions.

∞∑
n=1

1

n(n+ 1)
=
∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+

1

4
− · · ·

= 1.

The terms successively cancel each other out. We can make this a little
more precise by looking at the partial sums.

SN =
N∑
n=1

(
1

n
− 1

n+ 1

)
= 1− 1

2
+

1

2
− · · · − 1

N
+

1

N
− 1

N + 1

= 1− 1

N + 1

Clearly SN → 1. So the sequence of partial sums converges to 1 and thus∑∞
n=1

1
n(n+1)

= 1. This is an example of a telescoping series. The term

comes from the fact that certain kinds of telescopes come in segments
that fit inside one another, so that a long telescope can be compacted
into a much smaller object.

A powerful convergence test follows.

Theorem 1.41 (The Ratio Test). Let
∑∞

n=1 an be a series of strictly

positive terms. Let lim
n→∞

an+1

an
= L. Then the series converges if L < 1

and diverges if L > 1. If L = 1 then the test is inconclusive.
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Proof. Suppose that L < 1. Pick r ∈ R such that L < r < 1. We can
choose n ∈ N such that n ≥ N implies∣∣∣∣an+1

an
− L

∣∣∣∣ < r − L

or
−(r − L) <

an+1

an
− L < r − L.

So an+1 < ran. Also an < ran−1 < r2an−2 < r3an−3 etc. Indeed
an < rkan−k. Now let k = n−N. Then

an ≤ rn−NaN =
(aN
rN

)
rn.

The series
∑∞

n=1

(
aN
rN

)
rn is a geometric series with common ratio r < 1

and so converges. By the comparison test
∑∞

n=1 an also converges.
For the case L > 1 the proof is similar, with the final inequalities

reversed and r > 1, giving a divergent geometric series. Finally, for the
series

∑∞
n=1

1
n
, L = 1 and the series diverges. For the series

∑∞
n=1

1
n2 ,

L = 1 and the series converges. So the series can diverge of converge
in this case, so the ratio test is inconclusive if L = 1. �

Remark 1.42. We can apply the ratio test to series of nonpositive terms.

We instead consider limn→∞

∣∣∣an+1

an

∣∣∣ = L and the conclusions are the

same as in the given result.

Example 1.18. The series
∑∞

n=1
n
en

is convergent. To see this let an =
n
en
. Then

an+1

an
=

n+1
en+1

n
en

=
1

e

(
1 +

1

n

)
→ 1

e
< 1.

So the series converges by the ratio test.

To state the nth root test, we introduce the idea of a limsup.

Definition 1.43. If {xn} is a bounded sequence, then the largest sub-
sequential limit l̄ is

l̄ = lim sup xn (1.3)

and the smallest subsequential limit s is

s = lim inf xn. (1.4)

Some authors also write lim
n→∞

supxn0 and lim
n→∞

inf xn.

Example 1.19. If xn = (−1)n, then lim supxn = 1 and lim inf xn = −1.

The convergence of a sequence can be given in terms of its lim sup
and lim inf . The proof of the next result is an exercise.

Proposition 1.44. A sequence {xn}∞n=1 converges if and only if

lim supxn = lim inf xn.
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We now give yet another convergence test.

Theorem 1.45 (The nth root test). Let
∑∞

n=1 an be a series and sup-
pose that

lim sup |an|1/n = L. (1.5)

If L < 1 the series converges. If L > 1 the series diverges. If L = 1
the series may converge or diverge.

Proof. This is another application of the comparison test. If L < 1,
then there is an r such that L < r < 1 and for n large enough |an| < rn.
Convergence follows from the comparison test with a geometric series.
The proof of the second case is similar. Finally, we can exhibit series
which converge when L = 1 and diverge when L = 1. (This is an
exercise). �

Remark 1.46. Since the sequences {an} that we are dealing with usually
converge, in practice we only need to compute limn→∞ an, since for a
convergent sequence the lim sup and lim inf both equal the limit.

Example 1.20. We apply the nth root test to the series
∞∑
n=1

(
2n

n!

)n
.

Here an =
(

2n

n!

)n
. So

(an)
1
n =

2n

n!
,

and limn→∞
2n

n!
= 0 < 1, so the series converges by the nth root test.

Note: The limit is from question 4 on Tutorial Two.

There are a number of other, lesser known tests for convergence
which can be very useful. In fact there are dozens. We present one
interesting test next. A search on Wikipedia will find many others.

Theorem 1.47 (Cauchy Condensation Test). Suppose that the se-
quence an is positive and non-increasing. Then the series

∑∞
n=1 an

converges, if and only if the series
∑∞

n=0 2na2n converges. Moreover we
have the estimate

∞∑
n=1

an ≤
∞∑
n=0

2na2n ≤ 2
∞∑
n=1

an.

Proof. Since the sequence is non-decreasing, we have a2 + a3 ≤ 2a2,
a4 + a5 + a6 + a7 ≤ 4a4 etc. So that

∞∑
n=1

an ≤ a1 + 2a2 + 4a4 + 8a8 + · · · =
∞∑
n=0

2na2n .
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Thus if
∑∞

n=0 2na2n converges, then so does
∑∞

n=1 an. Similarly a1+a2 ≤
2a2, a2 + a4 + a4 + a4 ≤ 2a2 + 2a3, etc. So that

∞∑
n=0

2na2n = a1 + 2a2 + 4a4 + · · · ≤ 2a1 + 2a2 + 2a3 + · · ·

= 2
∞∑
n=1

an.

So by the comparison test the series
∑∞

n=0 2na2n converges if
∑∞

n=1 an
converges. The estimate follows from the above. �

Example 1.21. We consider the convergence of
∑∞

n=1
1
np
. Now

∞∑
n=0

2na2n =
∞∑
n=0

2n
1

(2n)p
=
∞∑
n=0

1

2np−n
.

This is a geometric series that will converge for np−n > 1 and diverge
otherwise. Hence the original series converges for p > 1 and diverges
for p ≤ 1.

There is unfortunately no test that works for every single series.
Otherwise we would just use that one perfect test and would not bother
with anything else. Alas it is unlikely that such a test could ever exist,
because a sequence {an} can behave in all sorts of strange ways.

Finally we mention a test for alternating series. This is very easy to
use.

Theorem 1.48. Let {an}∞n=1 be a sequence of positive terms with,
an+1 ≤ an and an → 0. Then the series

∑∞
n=1(−1)n+1an is conver-

gent.

Proof. We will show that the sequence of partial sums is Cauchy. Let
ε > 0 and note that since an → 0 we can find an N ∈ N such that
an < ε for all n ≥ N. Next observe that since an is monotone decreasing,
an − an+1 ≥ 0. Consequently

am+1 − am+2 + am+3 − am+4 + · · ·+ (−1)n+1an ≤ am+1.

Now if Sn =
∑∞

k=1(−1)k+1ak, then pick n > m ≥ N.

|Sn − Sm| = |(a1 − a2 + a3 − · · ·+ (−1)n+1an)− (a1 − a2 + a3

− · · ·+ (−1)m+1am)|
= |am+1 − am+2 + am+3 − am+4 + · · ·+ (−1)n+1an|
≤ |am+1| < ε.

So {Sn}∞n=1 is Cauchy and so the series converges. �

Example 1.22. Let an = 1
n
. Then an+1 < an and an → 0. So the series∑∞

n=1(−1)n+1an is convergent. In fact it is conditionally convergent, as

we have seen before. It is not hard to prove that
∑∞

n=1
(−1)n+1

n
= ln 2.
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2. Continuous Functions and their Properties.

Continuous functions are familiar from elementary calculus. To de-
fine them properly we need to know what continuity actually means.
This will first be defined in terms of sequences. Then we will see some
other ways of defining continuity that turn out to be equivalent.

Recall that a function f : X ⊆ R→ Y ⊆ R takes elements of X and
returns a unique real number f(x). The set X is called the domain of f
and the set Y is called the range of f . The elementary functions such
as polynomials, exponentials, logarithms etc should be familiar to you.
We will investigate some of these in detail below.

2.1. Limits. It turns out that there are several different ways of defin-
ing continuity. These turn out to be equivalent. Which means that if a
function is continuous by one definition, it is continuous by the others.

To proceed, we must extend the definition of a limit to functions.
We will first define continuity in terms of sequences.

Definition 2.1. We define limit points and limits of functions as fol-
lows.

(1) A point x is a limit point of a set X ⊆ R if there is a sequence
{xn}∞n=1 ⊂ X such that xn → x. If there is no such sequence,
then x is an isolated point.

(2) Let X ⊆ R, f : X → R and x0 a limit point of X. Then L is
the limit of f as x→ x0 if and only if, given ε > 0, there exists
δ > 0 such that x ∈ X, |x− x0| < δ implies |f(x)− L| < ε.

Limits of functions satisfy the usual arithmetic properties.

Theorem 2.2. Let f, g : X → R be functions and c a constant. If
x0 is a limit point of X and limx→x0 f(x) = L and limx→x0 g(x) = M ,
then

lim
x→x0

cf(x) = cL (2.1)

lim
x→x0

(f(x) + g(x)) = L+M (2.2)

lim
x→x0

f(x)g(x) = LM (2.3)

lim
x→x0

f(x)/g(x) = L/M, (2.4)

provided M 6= 0 and g is nonzero.

Proofs of these results are exercises with the triangle inequality and
are left to the reader. We can define right and left limits for functions.

Definition 2.3. Let f : X → R, where X ⊆ R. We say that

lim
x→a+

f(x) = L,
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if for every ε > 0, there exists δ > 0 such that a < x < a + δ implies
|f(x)− L| < ε. Similarly we say

lim
x→a−

f(x) = L,

if for every ε > 0, there exists δ > 0 such that a − δ < x < a implies
|f(x)− L| < ε.

An easy result follows.

Proposition 2.4. Let f : X → R, where X ⊆ R. Then limx→a f(x) =
L if and only if limx→a+ f(x) = limx→a− f(x) = L.

The proof is an exercise. Finally we define the limit at infinity.

Definition 2.5. Let f : R→ R be a function. Then limx→∞ f(x) = L
if for every ε > 0 there exists an M > 0 such that x ≥ M implies
|f(x) − L| < ε. Similarly we say that limx→−∞ f(x) = L if for every
ε > 0 there exists M < 0 such that x ≤M implies |f(x)− L| < ε.

2.1.1. The composition of functions. Given two continuous functions,
f and g, there are many ways which we can combine them. One of the
most important is the composition process. The composition of f and
g is the new function

h(x) = (f ◦ g)(x)

= f(g(x)).

Example 2.1. Let f(x) = x2, g(x) = x3. Then (f ◦ g)(x) = f(g(x)) =
(x3)2 = x6.

Example 2.2. Let f(x) = sinx and let g(x) =
√
x2 + 1. Then

(g ◦ f)(x) = g(f(x)) =
√

sin2 x+ 1.

The composition of functions is an essential process. It turns out
that if both g and g are continuous, then the composition of the two
is also continuous. We will prove this later. Now we have to actually
define continuity.

2.2. The Definition of Continuity. Having established the essen-
tials about limits of functions, we introduce the crucial idea of conti-
nuity.

Definition 2.6. A function f : X → R is said to be continuous at x if
for any sequence {xn}∞n=1 ⊂ X which converges to x, we have

lim
n→∞

f(xn) = f(x).

This can be recast in the following form.

Definition 2.7. A function f : X → R is continuous at x ∈ X if
for any ε > 0, we can find a δx > 0 such that |x − y| < δx implies
|f(x)− f(y)| < ε.
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We write δx to emphasise the dependence on the point x. So for
each x we will require a different δ. If a function is continuous at every
point in its domain, we say that it is continuous. The two definitions
are clearly equivalent.

Theorem 2.8. The two definitions of continuity stated above are equiv-
alent.

Proof. First suppose that f satisfies Definition 2.7. Let {xn}∞n=1 be a
sequence in X with limit x. Pick ε > 0 and δ > 0 such that |x−x0| < δ
implies |f(x) − f(x0)| < ε. Since xn → x we may find an N ∈ N such
that n ≥ N implies |xn − x| < δ. Then |f(xn) − f(x)| < ε, but this
means that f(xn) → f(x), so f is continuous according to Definition
2.6.

Suppose that f does not satisfy Definition 2.7. Then we can find ε >
such that for every δ > 0 with |x−x0| < δ we have |f(x)−f(x0)|ε. Now
choose a sequence {xn}∞n=1 in X with limit x ∈ X. Then given δ > 0
we may find an N ∈ N such that |xn − x| < δ, but |f(xn)− f(x)| ≥ ε.
So {f(xn)}∞n=1 does not converge to f(x) and thus f is not continuous
by Definition 2.6. �

There are other notions of continuity. The most important requires
us to know what an open set is.

Definition 2.9. A set A of real numbers is open if for any a ∈ A we
can find an ε > 0 such that the set Bε(a) = {x ∈ R, |x − a| < ε} is
contained entirely in A.

Another way of seeing this is that A does not contain its boundary.
For example (0, 1) is an open set because it does not contain its end
points. The compliment Ac of an open set is closed. A set which
contains its boundary points is closed. So [0, 1] is closed.

Using the notion of an open set we can define continuity as follows.

Definition 2.10. A function f : X ⊆ R→ Y ⊆ R is continuous if for
every open set B ∈ Y , the inverse image f−1(B) = {x ∈ X : f(x) ∈ B}
is itself an open set.

This is equivalent to our previous two definitions, but we will not
prove it. It is important because it allows us to define continuity in
any settings where we have sets which can be seen as open in some
sense. This is the basis of a branch of mathematics called topology.

Another reason why having equivalent definitions for the same con-
cept is because it may be easier to use different definitions in different
settings. Here is an example of that. Proving that the composition of
continuous functions is also continuous is a little tricky using our first
two definitions. However using the definition of continuity in terms of
open sets makes it easy.
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Theorem 2.11. Suppose that g : X ⊆ R→ Y ⊆ R and f : Y → Z ⊆
R are both continuous. Then f ◦ g : X → Z is also continuous.

Proof. This is a matter of carefully working out what the inverses are
and where they are mapped to. Think about matrix inverses as a guide.
Suppose that A and B are invertible matrices of the same size. Then
(AB)−1 = B−1A−1, since ABB−1A−1 = AIA−1 = I. This suggests
that when we consider f ◦ g−1(A) we have to flip the order of f and g.

In fact it is easy to see that (f ◦g)−1(A) = g−1(f−1(A)). This is what
we need. The proof is now easy. We let A be an open set. Since f is
continuous, f−1(A) = B is an open set. However g is also continuous,
so g−1(B) is again an open set. Thus (f ◦ g)−1(A) = g−1(B) is open
and so f ◦ g is continuous. �

It is also possible to consider partial forms of continuity. The most
common forms are left and right continuity.

Definition 2.12. We say that f is right continuous at x0 if limx→x+0
f(x)

exists. If limx→x−0
f(x) exists, then we say that f is left continuous.

Example 2.3. The function f(x) =
√
x is continuous on (0,∞), left

continuous on [0,∞), but not continuous on R.

2.3. Uniform Continuity. The most important form of continuity
for the Riemann integral is uniform continuity.

Definition 2.13. A function f : X → R is said to be uniformly contin-
uous if given ε > 0 we can find a δ > 0 such that whenever |x− y| < δ
we have |f(x)− f(y)| < ε.

The point here is that unlike ordinary continuity, δ does not depend
on x or y. Only on how far apart they are. Uniform continuity implies
continuity, but the converse is false. Most functions on the real line are
not uniformly continuous, but they are on compact intervals. In order
to prove this we introduce an equivalent idea.

Definition 2.14. A function f : X ⊆ R→ R is sequentially uniformly
continuous if given xn, yn ∈ X, yn−xn → 0 implies f(yn)−f(xn)→ 0.

The proof of the following is straightforward and we omit it.

Theorem 2.15. A function f : X → R is sequentially uniformly con-
tinuous if and only if it is uniformly continuous.

Now we will prove a major result.

Theorem 2.16. A continuous function on a closed bounded interval
[a, b] is uniformly continuous.

Proof. Suppose that f is not uniformly continuous. It therefore cannot
be sequentially uniformly continuous. Choose r ≥ 0 such that for every
δ > 0 there exists x, y ∈ [a, b] such that |x−y| < δ and |f(x)−f(y)| > r.
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For each N ∈ N, choose xn, yn ∈ [a, b] such that

|xn − yn| <
1

n
, and |f(xn)− f(yn)| ≥ r.

By the Bolzano-Weierstrass Theorem, {xn}∞n=1 has a convergent sub-
sequence {xnK}∞K=1. Suppose that xnK → x. Since {xnK − ynK}∞K=1 is
a subsequence of {xn− yn}∞n=1 and xn− yn → 0, so xnK − ynK → 0. So
we have

ynK = xnK − (xnK − ynK )→ x− 0 = x.

But f is continuous on [a, b] and hence at x. So f(xnK ) → f(x). and
f(ynK ) → f(x) and so f(xnK ) − f(ynK ) → 0. But we have assumed
that

|f(xnK )− f(ynK )| ≥ r > 0, (2.5)

for all K > 0. We have a contradiction. So f is sequentially uniformly
continuous and hence uniformly continuous. �

The fact that continuous functions on closed and bounded intervals
are uniformly continuous is essential to many other results. For exam-
ple, the proof of Riemann’s theorem that every continuous function is
Riemann integrable requires it. So does the proof of the Fundamental
Theorem of Calculus.

Another widely used type of continuity is Lipschitz continuity.

Definition 2.17. A function f : X → R is Lipschitz continuous if
there exists a constant M such that

for every x, y ∈ X, |f(x)− f(y)| ≤M |x− y|.

Lipschitz continuous functions are obviously continuous and in fact
uniformly continuous.

2.4. Maxima, Minima and the Intermediate Value Property.
We now turn to another of the big results about continuous functions.
This is about maxima and minima.

Theorem 2.18. A continuous function on a closed, bounded interval
[a, b] is bounded. Moreover it attains its maximum and minimum values
on [a, b].

Proof. Suppose that f is unbounded. Then given n ∈ N, n is not a
bound for f and thus there exists xn ∈ [a, b] such that |f(xn)| > n.
However, we know that [a, b] is closed and bounded, and so the se-
quence {xn}∞n=1 has a convergent subsequence {xnK}∞K=1. Suppose that
xnK → x as K → ∞. By continuity of f , f(xnK ) → f(x). But this
is impossible, since f(xnK ) > nK for each K and nK → ∞, so the
sequence {f(xnK )}∞K=1 is not convergent, and hence f is not continu-
ous at x. This is a contradiction and we therefore conclude that f is
bounded.
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Now suppose that M = supx∈[a,b] f(x). For each n ∈ N choose xn ∈
[a, b] such that f(xn) > M − 1/n. Then f(xn) → M. {xn}∞n=1 is con-
tained in [a, b], so is bounded and hence has a convergent subsequence
{xnK}∞K=1. Suppose xnK → c ∈ [a, b]. By continuity, f(xnK ) → f(c).
But the sequence {f(xn)}∞n=1 is convergent, so the sequence {f(xnK )}∞K=1

has the same limit. Thus f(c) = M, so f reaches its maximum. The
case for the minimum is similar. �

We also need to mention the intermediate value property. This is
the result which tells us that we can solve certain equations.

Theorem 2.19. Suppose f : [a, b] → R is continuous on [a, b] and
f(a)f(b) < 0. Then there is a c ∈ [a, b] such that f(c) = 0.

Proof. Without loss of generality, we suppose that f(a) < 0, f(b) > 0.
Let A = {x ∈ [a, b] : f(x) < 0}. Then a ∈ A and so A is nonempty
and bounded above. It therefore has a least upper bound, which we
we call c. Choose xn such that c− 1/n < xn ≤ c. Then f(xn) < 0. By
continuity, f(c) = limn→∞ f(xn) ≤ 0. Now take yn = c+(b−c)/n. Then
yn → c and by continuity f(c) = limn→∞ f(yn) ≥ 0. Hence f(c) = 0.
The case f(a) > 0 and f(b) < 0 is similar. �

Corollary 2.20. Let f be continuous on [a, b]. Suppose that f(a) 6=
f(b) and that M lies between f(a) and f(b). Then there is a c ∈ [a, b]
such that f(c) = M.

Proof. Apply Theorem 2.19 to the function g(x) = f(x)−M. �

Definition 2.21. A function is said to be monotone increasing if for
each x ≥ y we have f(x) ≥ f(y). We say that f is monotone decreasing
if f(y) ≤ f(x).

An important question that arose at the end of the nineteenth cen-
tury was which functions are differentiable? Weierstrass had con-
structed a nowhere differentiable function, an event that was a con-
siderable shock to mathematicians. Lebesgue proved that every mono-
tone function is differentiable ‘almost everywhere’. As a first step we
can show that monotone functions are continuous except possibly on a
countable set of points.

Theorem 2.22. Suppose that f is monotone on (a, b). Then f is con-
tinuous except possibly on a countable set of points in (a, b).

Proof. Without loss of generality we can assume that f is increasing. If
f is decreasing we can just multiply by minus one to obtain an increas-
ing function. We can also assume that (a, b) is bounded. Otherwise we
can write it as a countable union of open, bounded subintervals and
the discontinuities of f will be a countable union of the discontinuities
on each subinterval. Now let x0 ∈ (a, b) and then by the least upper
bound axiom
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f(x−0 ) = sup{f(x) : a < x < x0}, (2.6)

and

f(x+
0 ) = inf{f(x) : x0 < x < b}, (2.7)

both exit and f(x−0 ) ≤ f(x+
0 ). The only way that f can be discontinuous

at x0 is if there is a jump at x0. We define the jump interval at x0 by
J(x0) = {y ∈ (f(x−0 ), f(x+

0 ))}. Clearly J(x0) ⊆ (a, b) and so it is
bounded. The jump intervals for f are also obviously disjoint. So for
every n ∈ N , there are only a finite number of jump intervals of length
greater then 1/n. Hence the set of points of discontinuity of f is a
countable union of finite sets and is therefore countable.

�

3. Differentiation and its Applications

Now we can begin to develop calculus. The notion of the derivative
should already be familiar from a first course in calculus. We will
develop the properties of the derivative systematically with an emphasis
on rigour. Naturally we begin with the definition.

3.1. The Derivative. The derivative is one of the two major tools of
calculus. It is the limit of the Newton quotient.

Definition 3.1. A function f : X → R, where X is open, is said to be
differentiable at x if

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (3.1)

exists. We say that f ′(x) is the derivative of f at x. We also write df
dx

for f ′.

An equivalent formulation is

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

. (3.2)

Derivatives are defined on open sets. So one talks about a function
being differentiable on an open interval (a, b) rather than on [a, b], be-
cause the limit in the definition is not necessarily defined at the end
points of an interval.
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Example 3.1. Let f(x) = xn. By the Binomial Theorem (x + h)n =
xn + nxn−1h+ n(n− 1)xn−2h2 + · · · . So

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

xn + nxn−1h+ n(n− 1)xn−2h2 + · · · − xn

h

= lim
h→0

(nxn−1 + hn(n− 1)xn−2 + · · · )

= nxn−1.

This familiar rule is the most important derivative in calculus.

In order to treat the exponential function, we need to introduce the
natural logarithm. We have not introduced the integral yet, however
we will assume here some familiarity with integration, since it makes
our discussion much easier at this point.

Example 3.2. We define the natural logarithm of y > 0 to be

ln y =

∫ y

1

1

t
dt. (3.3)

Then the exponential is the inverse of the natural logarithm. So that
ln(ey) = y. The Fundamental Theorem of Calculus (which we prove
later) shows that

d

dy
ln y =

1

y
, y > 0.

Example 3.3. Let f(x) = ex. Then it is not hard to show that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

ex+h − ex

h

= ex lim
h→0

eh − 1

h
.

In Tutorial Two we prove that limn→∞(1 + 1
n
)n = e. In fact it is also

true that limn→∞(1 + h
n
)n = eh. Now by the Binomial Theorem

1

h

((
1 +

h

n

)n
− 1

)
= 1 +

n∑
k=2

(
n

k

)
hk−1

nk
.

Using the ratio test one can prove that the series
∑n

k=2

(
n
k

)
hk−1

nk
is con-

vergent for all h. So let

g(h) = lim
n→∞

n∑
k=2

(
n

k

)
hk−2

nk
.
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Then we have

lim
h→0

eh − 1

h
= lim

h→0
lim
n→∞

(
1 +

n∑
k=2

(
n

k

)
hk−1

nk

)
= lim

h→0
(1 + hg(h)) = 1.

Thus f ′(x) = ex, so the exponential function is its own derivative.

Example 3.4. We compute the derivative of f(x) = sinx. To do this
we need the expansion formula for sine. We have

f ′(x) = lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ sinh cosx− sinx

h

= lim
h→0

(
sinx(cosh− 1)

h
+

sinh cosx

h

)
.

Now limh→0
sinh
h

= 1. (This is a well known result. It is also a tutorial

exercise). For small h, cosh ≈ 1. So we have cosh−1
h
≈ 0 for small h.

Indeed cosh−1
h
→ 0 as h→ 0. Thus f ′(x) = cos x.

The basic rules of differentiation are well known. We state them here
for convenience.

Theorem 3.2. Let c be constant and f, g be differentiable at x0. Then

(cf)′(x0) = cf ′(x0) (3.4)

(f + g)′(x0) = f ′(x0) + g′(x0) (3.5)

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0) (3.6)

Proof. Once more this an exercise manipulating limits. For example,
the product rule is proved as follows.

(fg)′(x0) = lim
x→x0

(fg)(x)− (fg)(x0)

x− x0

= lim
x→x0

[
f(x)g(x)− f(x)g(x0) + f(x)g(x0)− f(x0)g(x0)

x− x0

]
= lim

x→x0
f(x)

g(x)− g(x0)

x− x0

+ lim
x→x0

g(x0)
f(x)− f(x0)

x− x0

= f(x0)g′(x0) + f ′(x0)g(x0).

The remaining proofs are exercises. �

The next result is easy to prove and will be used in the proof of the
chain rule.

Theorem 3.3. If f is differentiable at a point x, then it is continuous
at x.
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Proof. We can write

f(x) = (x− x0)

(
f(x)− f(x0)

x− x0

)
+ f(x0) (3.7)

Since f is differentiable at x0, we have

lim
x→x0

f(x) = lim
x→x0

(
(x− x0)

(
f(x)− f(x0)

x− x0

)
+ f(x0)

)
= lim

x→x0
(x− x0) lim

x→x0

f(x)− f(x0)

x− x0

+ f(x0)

= 0× f ′(x0) + f(x0) = f(x0).

So f is continuous at x0. �

Again the converse of this result is false. The function f(x) = |x| is
continuous at zero, but is not differentiable there. Indeed Karl Weier-
strass (1815-1897) proved that there are functions which are continu-
ous everywhere, but differentiable nowhere. This discovery astonished
nineteenth century mathematicians and led to a deep investigation of
the properties of continuous functions.

The most important result is the chain rule. This is the result that
is used more often than any other in the whole of calculus. One cannot
understand calculus without understanding the chain rule. It tells us
how to differentiate functions of functions.

Theorem 3.4 (The Chain Rule). Suppose that g is differentiable at x
and f is differentiable at y = g(x). Then

(f ◦ g)′(x) = f ′(y)g′(x). (3.8)

Proof. Write k = g(x + h) − g(x). Since g is differentiable at x, it is
continuous there and so as h→ 0, k → 0. Now

f(g(x+ h))− f(g(x))

h
=
f(g(x+ h))− f(g(x))

g(x+ h)− g(x)

g(x+ h)− g(x)

h

=
f(y + k)− f(y)

k

g(x+ h)− g(x)

h
.

Suppose that at no value of h does k = 0. Then taking the limit as
h→ 0 gives the result. To take care of the case k = 0 we let

F (k) =

{
f(y+k)−f(y)

k
k 6= 0

f ′(y) k = 0.
(3.9)

By differentiability of f , as k → 0 F (k)→ f ′(y) and so F is continuous
at 0. Thus as h→ 0, F (k)→ f ′(y). So for k 6= 0

f(g(x+ h))− f(g(x))

h
= F (k)

g(x+ k)− g(x)

h
. (3.10)
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This also holds when k = 0 since both sides will be zero. Consequently

f(g(x+ h))− f(g(x))

h
→ f ′(y)g′(x) (3.11)

as h→ 0. �

Example 3.5. Let us compute the derivative of a reciprocal. We have
f(x) = 1/g(x) = h(g(x)), where h(u) = 1/u. Hence

d

dx
f(x) = g′(x)h′(u) = − g′(x)

(g(x))2
.

Example 3.6. The quotient rule is obtained by combining the chain rule
and the product rule:

d

dx

f(x)

g(x)
=
f ′(x)

g(x)
+ f(x)

d

dx

1

g(x)

=
f ′(x)

g(x)
− f(x)g′(x)

g(x)2

=
f ′(x)g(x)− f(x)g′(x)

g(x)2
.

Example 3.7. We compute the derivative of the inverse tangent function
f(x) = tan−1 x. This satisfies tan−1(tan y) = y, for y ∈

(
−π

2
, π

2

)
. Now

we first observe that tanx = sinx
cosx

. Thus by the quotient rule

d

dx
tanx =

sin2 x+ cos2 x

cos2 x
= sec2 x. (3.12)

Now by the definition of the inverse tangent

d

dx
tan−1(tanx) =

d

dx
x = 1. (3.13)

Put y = tanx. Then by the chain rule

d

dx
tan−1 y =

dy

dx

d

dy
tan−1 y = sec2 x

d

dy
tan−1 y = 1. (3.14)

Recall that 1 + tan2 x = sec2 x. So that

d

dy
tan−1 y =

1

sec2 x
=

1

1 + tan2 x

=
1

1 + y2
.

3.1.1. Partial Derivatives. If we are interested in functions of more
than one variable, then the derivative has an obvious extension. Sup-
pose that f : R2 → R. We fix one of the variables and define the partial
derivatives

∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
(3.15)
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and

∂f

∂y
(x, y) = lim

k→0

f(x, y + k)− f(x, y)

k
. (3.16)

To calculate these, we treat one of the variables as a constant and
differentiate the other variable. So for example if f(x, y) = x2y2, then
∂f
∂x

= 2xy2 and ∂f
∂y

= 2x2y.

We can also define higher order partial derivatives in the obvious
way. The most important fact is that the order of differentiation is
unimportant as long as f is continuous with continuous derivatives.
That is

∂2f

∂y∂x
=

∂

∂y

∂f

∂x
=

∂

∂x

∂f

∂y
=

∂2f

∂x∂y
. (3.17)

See if you can prove this. It is not difficult.

3.2. Maxima and Minima. The first application of differentiation
that we see is usually to the problem of obtaining maxima and minima.

Definition 3.5. A function f : X → R has a local maximum at c ∈ X
if there is a subset Y ⊆ X such that c ∈ Y and f(c) > f(x) for all
x ∈ Y. A point c is a local minimum for f if there is a subset Y ⊆ X
such that c ∈ Y and f(c) < f(x) for all x ∈ Y. If f has a local maximum
at c, then c is called a maximimiser. If f has a local minimum at c,
Then c is called a minimiser. In general c is called an extreme point.

Theorem 3.6. Let I be an open interval in R, f : I → R be differen-
tiable at c ∈ I. If f attains a local maximum or minimum at c, then
f ′(c) = 0.

Proof. There are two cases to consider, which turn out to be very simi-
lar. So we only prove the case for a local maximum. The proof proceeds
by contradiction, so we assume that c is a point where f attains a local
maximum and that f ′(c) > 0. Choose δ > 0 such that for x ∈ I and
0 < |x− c| < δ we have∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < f ′(c).

Pick an x > c with |x− c| < δ. Then we have

−f ′(c) < f(x)− f(c)

x− c
− f ′(c) < f ′(c).

Which implies

f(x)− f(c)

x− c
> 0

and hence f(x) > f(c), which is a contradiction. Thus f ′(c) ≤ 0.
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Suppose then that f ′(c) < 0. Pick a δ > 0 such that for x ∈ I and
0 < |x− c| < δ we have∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < −f ′(c).
Pick an x < c with |x− c| < δ. Then

f ′(c) <
f(x)− f(c)

x− c
− f ′(c) < −f ′(c).

Which implies

f(x)− f(c)

x− c
< 0,

and hence f(x) > f(c), since x − c < 0, which is a contradiction once
more. Thus f ′(c) = 0. The proof for a local minimum is essentially the
same. �

Remark 3.7. It is important to understand that this result holds on an
open interval, not a closed interval. For example, suppose that f(x) = x
on the interval [0, 1]. The maximum occurs at x = 1. However f ′ is not
defined at x = 1. This is because it is impossible to say what

lim
x→1+

f(x)− f(1)

x− 1
(3.18)

is equal to, since there is no information about how f behaves to the
right of x = 1. So this example does not violate the theorem.

3.3. Mean Value Theorems. A useful corollary of the previous re-
sult is called Rolle’s Theorem. It is named after Michel Rolle, (1652-
1719) a French mathematician. He actually invented Gaussian elim-
ination in Linear Algebra, well before Gauss. Rolle’s Theorem was
published in 1691, but was rediscovered a number of times before hav-
ing Rolle’s name attached to it.

Theorem 3.8 (Rolle’s Theorem). Let [a, b] be a closed interval in R
and suppose that f is continuous on [a, b] and differentiable on (a, b). If
f(a) = f(b) = 0 then then there is a point c ∈ (a, b) such that f ′(c) = 0.

Proof. Continuous functions attain their maximum and minimum val-
ues on closed bounded intervals. If c ∈ (a, b) is an extreme point, then
we already know that f ′(c) = 0. Suppose now that both the maximum
and minimum values occur at the end points. Then since f(a) = f(b),
it follows that f is constant and so f ′(x) = 0 for all x ∈ (a, b). �

This simple fact is surprisingly useful. The main applications of
Rolle’s Theorem are to prove the Mean Value Theorem and Taylor’s
Theorem, which are two of the most useful results in the whole of
analysis. We start with the Mean Value Theorem.
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Theorem 3.9 (Mean Value Theorem). Let [a, b] be a closed and bounded
interval on R and f : [a, b]→ R a continuous function which is differ-
entiable on (a, b). Then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. As we noted above, the proof is just an application of Rolle’s
Theorem. The key is to choose the right function. We let

g(x) = f(x)− f(a)−
(
f(b)− f(a)

b− a

)
(x− a).

Then g(a) = g(b) = 0 and

g′(x) = f ′(x)− f(b)− f(a)

b− a
.

By Rolle’s Theorem there is a c ∈ (a, b) with g′(c) = 0, which proves
the result. �

The MVT is one of the most powerful results in calculus. Let us
consider some simple applications. Later we will see it used to prove a
result about the behaviour of limits for sequences of derivatives. One
can also use it to prove the Fundamental Theorem of Calculus. It is
quite ubiquitous.

Corollary 3.10. If [a, b] is a closed and bounded interval in R and f
is continuous on [a, b] and differentiable on (a, b), then f is Lipschitz
continuous on [a, b].

Proof. For any x, y ∈ (a, b) the MVT gives, |f(x)−f(y)| ≤ |f ′(c)||x−y|
for some c ∈ (x, y). �

The following result is well known from high school calculus, but
usually is not given a rigourous proof.

Corollary 3.11. If f is continuous on [a, b] and differentiable on (a, b),
and f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

Proof. For any x, y ∈ (a, b), f(x) − f(y) = f ′(c)(x − y) = 0. Hence
f(x) = f(y) for all x, y and so f is constant on (a, b). By continuity it
is also constant on [a, b]. �

As a third application, we use it to prove uniqueness for the solution
of a simple differential equation.

Proposition 3.12. The equation y′ = ky, y(0) = y0 has a unique
solution.

Proof. We let y(x) = y0e
kx. Then this is clearly a solution of the

differential equation. To see this, just substitute the function into the
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equation. Now suppose that f is any solution of the equation. Consider
h(x) = f(x)e−kx. Then

h′(x) = f ′(x)e−kx − ke−kxf(x) = e−kx(f ′(x)− kf(x)) = 0.

Thus h is constant. Hence f(x) = Cekx. The condition that f(0) = y0

proves the result. �

There is a more general version of the MVT. It is due to Cauchy
and is often called the Cauchy Mean Value Theorem. We call it the
Generalised MVT.

Theorem 3.13 (Generalised Mean Value Theorem). Suppose that f
and g are continuous functions on [a, b], which are differentiable on
(a, b) and suppose that g′(x) 6= 0 for all x ∈ (a, b). Then there exists a
point c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
. (3.19)

Proof. This again relies upon Rolle’s Theorem. First, observe that if
g(b)−g(a) = 0, then the Mean Value Theorem tells us that there exists
a point c ∈ (a, b) such that g′(c) = 0. However we have assumed that
g′ is nonzero, so g(b)− g(a) 6= 0. Next introduce the function

h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

Then

h(a) = f(a)[g(b)− g(a)]− g(a)[f(b)− f(a)]

= f(a)g(b)− f(b)g(a) = h(b).

Rolle’s Theorem then tells us that there is a c ∈ (a, b) such that h′(c) =
0. Which means that

f ′(c)[g(b)− g(a)]− g′(c)[f(b)− f(a)] = 0. (3.20)

Rearranging gives the result. �

As an application of this result we prove L’Hôpital’s rule.

Theorem 3.14. Suppose that f and g are differentiable on (a, b) and
that g(x) 6= 0 and g′(x) 6= 0 for all x ∈ (a, b). Suppose further that
limx→a+ f(x) = limx→a+ g(x) = 0. Then,

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
, (3.21)

provided the right side exists.

Proof. Suppose that

lim
x→a+

f ′(x)

g′(x)
= L.
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Then given ε > 0 we can find δ > 0 such that if c ∈ (a, a+ δ) then∣∣∣∣f ′(c)g′(c)
− L

∣∣∣∣ < ε.

However, by the generalised MVT, if x ∈ (a, a+ δ) then∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ =

∣∣∣∣f(x)− f(a)

g(x)− g(a)
− L

∣∣∣∣ < ε.

�

The extension of this result to the case when

lim
x→a

f(x) = lim
x→a

g(x) =∞,

can also be established using the generalised MVT.

Remark 3.15. L’Hôpital’s rule was actually discovered by the Swiss
mathematician Johann Bernoulli, who taught Euler and worked for
L’Hôpital. L’Hôpital published the rule in his textbook on calculus,
and it became known by his name. Many results in mathematics are
not named after the people who originally discovered them.

3.4. Inverse Functions. We first state our definitions.

Definition 3.16. A function f : X → Y is said to be one to one if for
each y ∈ Y there is at most one x ∈ X such that f(x) = y. We also
say that such an f is a bijection. If f : X → Y is one to one then it
has an inverse function f−1 : Y → X which satisfies

f(f−1(f)) = f−1(f(x)) = x,

for all x ∈ X.

Suppose that f : X ⊆ R → R is strictly increasing (or decreasing).
Then f is clearly one to one, and hence it has an inverse. If f is
continuous, then the inverse function will also be continuous.

Theorem 3.17. Suppose that f : X ⊆ R → Y is a strictly increasing
(or decreasing) continuous function. Then the inverse function f−1

exists and is continuous and increasing (or decreasing) on f(X).

Proof. We only deal with the case when f is increasing. We show that
f−1 is increasing. Assume not. Then we can find y1, y2 ∈ Y with
y2 > y1 and f−1(y2) < f−1(y1). But f is increasing, so

f(f−1(y2)) < f(f−1(y1)),

so that y2 < y1 which is a contradiction.
To prove continuity, take y0 ∈ f(X). Then there exists x0 ∈ X with

f(x0) = y0. We suppose that y0 is not an endpoint, so x0 is not an
endpoint and we may find ε0 > 0 such that the interval

(f−1(y0)− ε0, f−1(y0) + ε0) ⊂ X.
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Pick ε < ε0. Then there exist y1, y2 ∈ f(X) such that f−1(y1) =
f−1(y0) − ε and f−1(y2) = f−1(y0) + ε. Because f is increasing y1 <
y0 < y2 and the inverse is increasing so for all y ∈ (y1, y2) we have the
inequality

f−1(y0)− ε < f−1(y) < f−1(y0) + ε.

Consequently, if δ = min{y2 − y0, y0 − y1}, then

|f−1(y0)− f−1(y)| < ε

whenever |y0 − y| < δ. So f−1 is continuous at y0.
We can also prove that if y0 is a left (or right) endpoint, then f−1 is

left (or right) continuous at y0. �

The most important result about inverse functions relates the deriv-
ative of f and that of f−1.

Theorem 3.18 (The Inverse Function Theorem). Suppose that f is
differentiable and one to one on an open interval I. If f ′(a) 6= 0,
a ∈ I, then f−1 exists and is differentiable at f(a) and(

f−1
)′

(f(a)) =
1

f ′(a)
.

Proof. Since f ′ is nonzero on I, it follows that f is either increasing or
decreasing on I, and hence f is invertible. The inverse is continuous.
Since f is decreasing or increasing, for x 6= a it follows that f(x) 6= f(a).
Now

lim
y→f(a)

f−1(y)− f−1(f(a))

y − f(a)
= lim

f(x)→f(a)

f−1(f(x))− f−1(f(a))

f(x)− f(a)

= lim
x→a

(
x− a

f(x)− f(a)

)−1

=
1

f ′(a)
.

�

3.5. Convex Functions. An interesting and important class of func-
tions for which we can establish some very general results about differ-
entiability are convex functions. We begin with the definition.

Definition 3.19. A function f : I → R is said to be convex on an
open interval I if for all x ∈ I and a > 0, b > 0 with a+ b = 1, we have

f(ax+ by) ≤ af(a) + bf(y).

If

f(ax+ by) ≥ af(a) + bf(y),

then f is said to be concave.
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An equivalent formulation of convexity is that for all x1, x2, x3 ∈ I
with x1 < x2 < x3 we have

f(x2)− f(x1)

x2 − x1

≤ f(x3)− f(x2)

x3 − x2

. (3.22)

Convex functions are automatically continuous. To prove this we
have a preliminary result.

Proposition 3.20. If f is convex on an open interval I ⊂ R, then the
left and right hand derivatives, defined respectively by,

f ′(x+) = lim
h→0+

f(x+ h)− f(x)

h
,

and

f ′(x−) = lim
h→0−

f(x+ h)− f(x)

h
,

both exist for each x ∈ I. Moreover, if x, y ∈ (a, b) and y > x, then

f ′(x−) ≤ f ′(x+) ≤ f(y)− f(x)

y − x
≤ f ′(y−) ≤ f ′(y+). (3.23)

Proof. We let 0 < h1 < h2, then observe that

f(x+ h1)− f(x1)

h1

≤ f(x+ h2)− f(x1)

h2

.

Hence

F (h) =
f(x+ h)− f(x1)

h
,

is an increasing function on some interval (0, δ) and hence limh→0+ F (h)
exists. Similarly for the second limit. The inequality follows from (3.22)
and is an easy exercise. �

Note, this result does not mean that f is differentiable at x. We have
not established equality of the limits and in fact, this may not hold.
However, it is a remarkable fact that convex functions are differentiable
except possibly on a countable set of points. We will prove this below.

An application of the mean value theorem allows us to establish the
following test for convexity.

Theorem 3.21. Suppose that f is differentiable on an open interval
I. Then f is convex on I if and only if f ′ increases on I.

Proof. Suppose that f ′ is increasing on I and pick three points x1 <
x2 < x3 ∈ I. Then by the mean value theorem there exists points
a, b ∈ I with b > a such that

f(x2)− f(x1)

x2 − x1

= f ′(a), (3.24)
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and

f(x3)− f(x2)

x3 − x2

= f ′(b). (3.25)

Now f ′ is increasing, hence f ′(a) ≥ f ′(b) and thus f is convex.
Conversely, suppose that f is convex. Then for points x1 < x2 <

x3 < x4 we have

f(x2)− f(x1)

x2 − x1

≤ f(x3)− f(x2)

x3 − x2

≤ f(x4)− f(x3)

x4 − x3

. (3.26)

Letting x2 → x+
1 and x2 → x−4 shows that f ′(x3) ≤ f ′(x4) and so f is

increasing. �

For twice differentiable functions we have a simple result.

Theorem 3.22. Let f be twice differentiable on an open interval I.
Then f is convex on I if and only if f ′′(x) ≥ 0 for all x ∈ I.

Now we prove continuity for convex functions.

Theorem 3.23. Suppose that f is convex on an open interval I. Then
f is continuous on I.

Proof. We let x ∈ I. Then

lim
h→0+

(f(x+ h)− f(x)) = lim
h→0+

(
f(x+ h)− f(x)

h

)
h = 0,

and

lim
h→0−

(f(x+ h)− f(x)) = lim
h→0−

(
f(x+ h)− f(x)

h

)
h = 0.

Thus both limits exist and are equal, so f is continuous at x. �

Actually, convex functions are not just continuous.

Proposition 3.24. Let f be a convex function on (a, b). Then f is
Lipschitz continuous on each closed bounded subinterval [c, d] of (a, b).

Proof. This follows from the inequality

f ′(c+) ≤ f ′(u+) ≤ f(v)− f(u)

v − u
≤ f ′(v−) ≤ f ′(d−), (3.27)

valid for c ≤ u ≤ v ≤ d. So that for all u, v,∈ [c, d] with M =
max{|f ′(c+), f ′(d−)|} we have

|f(u)− f(v)| ≤M |u− v|.
�

Indeed we can show something even stronger.

Theorem 3.25. A convex function f on an interval (a, b) is differ-
entiable except at most on a countable set of points. Moreover, the
derivative is an increasing function.
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Proof. We already know that the left and right derivatives at a point
exist. They are also increasing, and so they are continuous except at
most on a countable set of points, which we denote by D. Take a point
x ∈ (a, b) − D and let xn → x+ and apply the inequality (3.27). This
gives

f ′(x−) ≤ f ′(x+) ≤ f ′(x−)

so that f ′(x+) = f ′(x−) and hence f is differentiable at x. That f is
increasing also follows from (3.27). �

Lebesgue proved a deeper result about differentiability. Namely that
any monotone function is differentiable almost everywhere. This is an
extremely difficult result to prove. “Almost everywhere” has a specific
meaning and the proof of Lebesgue’s Theorem usually uses what are
known as Dini Derivatives.

We can define higher derivatives in the obvious way. So

d2f

dx2
=

d

dx

(
df

dx

)
,

or f ′′(x) = (f ′)′(x) etc.

Definition 3.26. A function f : X → R for which the nth derivative
f (n) exists for all n ∈ N is said to be infinitely differentiable, or smooth.
We write f ∈ C∞(X). (Pronounced C infinity on X). If f is n times
differentiable for finite n we write f ∈ Cn(X).

3.6. Power Series and Taylor Expansions. A power series about
a point x0 is an expression of the form

f(x) =
∞∑
n=0

an(x− x0)n.

Power series are one of the most important tools in Analysis. We will
see that many functions can be written as power series.

For example it turns out that the sine function can be expressed as

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

This is an example of a Taylor series, which will be the culmination of
this section.

By the ratio test a power series will converge if

lim
n→∞

∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣ = L < 1.

Upon rewriting this becomes

|x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1. (3.28)
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We can think of this as determining the values of x for which the series
converges.

Definition 3.27. Suppose that for the series
∑∞

n=0 an(x− x0)n

|x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1 (3.29)

for all |x− x0| < R. We call R the radius of convergence of the power
series. The interval of convergence if (x0 −R, x0 +R).

Note a power series with radius of convergence R may converge or
diverge when |x − x0| = R. One has to check convergence at the end
points individually.

Example 3.8. The series 1 + x + x2 + · · · =
∑∞

n=0 x
n is convergent

for all |x| < 1. Hence the radius of convergence is 1. The interval of
convergence is (−1, 1). Now we check the endpoints. At x = 1 we
have

∑∞
n=0 x

n = 1 + 1 + 1 + · · · = ∞ so the series diverges at the
right end point of the interval of convergence. At x = −1 we have∑∞

n=0 x
n = 1 − 1 + 1 − 1 + 1 − · · · and this also diverges. So the

geometric series diverges at the end points of the limit of convergence.

Remark 3.28. There is a different way of summing infinite series which
is useful for some problems. It is due to Abel. If f(x) =

∑∞
n=1 cnx

n

for x ∈ (a, b) and limx→b f(x) exists, we can define
∑∞

n=1 cnb
n = f(b).

Similarly for f(a). This is called the Abel sum.
In the geometric series example we would have

f(x) =
1

1− x
(3.30)

and f(−1) = 1
2
. So that we can interpret the divergent sum as

1− 1 + 1− 1 + 1− · · · = 1

2
.

That is
∑∞

n=1(−1)n+1 has Abel sum equal to 1/2. We have to be very
careful doing this and we will not say any more about.

For simplicity we will typically take x0 = 0 in what follows. All
results can be transferred to the more general case by making the re-
placement x→ x− x0

Power series have very nice properties. In particular they converge
absolutely within their radius of convergence.

Theorem 3.29. Let
∑∞

n=o anx
n be a power series with radius of con-

vergence R. Then the series converges absolutely for |x| < R and
diverges for |x| > R.

Proof. Let t ∈ (−R,R), then
∑∞

n=0 ant
n converges and the sequence

ant
n → 0 and is thus bounded. Let M be a bound. Now pick x with
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|x| < |t|, then

|anxn| = |antn|
∣∣∣x
t

∣∣∣n ≤Mrn

where r = |x/t| < 1. But
∑∞

n=0Mrn is a convergent geometric series,
and so

∑∞
n=0 |anxn| converges by the comparison test. The other result

is similar. �

Power series actually converge uniformly, a result we prove later. An
important fact is that we can differentiate power series term by term
and this does not change the radius of convergence.

Theorem 3.30. Let
∑∞

n=0 anx
n have radius of convergence R. Then

the power series
∑∞

n=1 nanx
n−1 has radius of convergence R.

Proof. Suppose that the series
∑∞

n=1 nanx
n−1 has radius of convergence

Rd < R. Choose r, s so that Rd < r < s < R. Clearly
∑∞

n=0 ans
n

converges which shows that ans
n → 0 and so is bounded by a constant

M . Then

|nanrn−1| = n|an|sn−1
(r
s

)n−1

≤ M

s
n
(r
s

)n−1

.

Now

lim
n→∞

(M/s)(n+ 1)(r/s)n

(M/s)n(r/s)n−1
=
r

s
< 1.

Thus the series
∑∞

n=1
M
s
n
(
r
s

)n−1
is convergent by the ratio test. Thus∑∞

n=1 nanr
n−1 is absolutely convergent, which is a contradiction since

r > Rd. Hence R ≤ Rd. Similarly we show that Rd > R leads to a
contradiction. (Exercise). Hence R = Rd. �

From this we can establish an important corollary.

Theorem 3.31. Let
∑∞

n=0 anx
n be a power series with radius of con-

vergence R > 0. Let f : (−R,R)→ R be defined by

f(x) =
∞∑
n=0

anx
n.

Then f is differentiable on (−R,R) and

f ′(x) =
∞∑
n=1

nanx
n−1.

To prove this result we actually need some more information about
the convergence of series. The key is that the series for f and f ′ both
converge uniformly. We will discuss uniform convergence later. So we
will defer our proof till then.
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The most commonly encountered power series are functions given by
Taylor series expansions. These are named after Brook Taylor (1685-
1731), an English mathematicians. They were known before Taylor.
The basic series expansions such as those for cosx and sinx were actu-
ally computed by Newton. However it was Taylor who determined the
general method for calculating them.

Definition 3.32. Let f be smooth in a neighbourhood X of a point
a. We let the Taylor series for f at a be given by

Tf (x) = f(a) + f ′(a)(x− a) + · · ·+ 1

n!
f (n)(a)(x− a)n + · · · .

If the series is convergent for all x ∈ X and |Tf (x)−f(x)| = 0 for all x ∈
X, we say that f is analytic at a. If we truncate the Taylor expansion
after n terms, the resulting expression is known as the nth Taylor

polynomial. The quantities
1

n!
f (n)(a) are called the Taylor coefficients.

Even if the Taylor series does not converge, smooth functions can be
approximated by Taylor polynomials.

Theorem 3.33 (Taylor’s Theorem). Let I be an open interval in R,
n ∈ N and f ∈ Cn+1(I). Let a ∈ I and x ∈ I, with x 6= a. Then there
is a point ξ between a and x such that

f(x) = f(a) + f ′(a)(x− a) +
1

2!
f ′′(a)(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

+
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1.

Proof. The proof uses Rolle’s Theorem and is conceptually similar to
the proof of the MVT. We define a function

F (t) = f(x)− f(t)− f ′(t)(x− t)− 1

2!
f ′(t)(x− t)2 − · · ·

− f (n)(t)

n!
(x− t)n. (3.31)

Plainly F (x) = 0. Since f ∈ C(n+1)(I) we see that F is differentiable.
Now

F ′(t) = −f ′(t)− f ′′(t)(x− t) + f ′(t)− f ′′′(t)

2!
(x− t)2 + 2

f ′′(t)

2!
(x− t)

− · · · − f (n+1)t

n!
(x− t)n + n

f (n)(t)

n!
(x− t)n−1

= −f
(n+1)

n!
(x− t)n.

Next we introduce the function

G(t) = F (t)−
(
x− t
x− a

)n+1

F (a).
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Obviously G(a) = 0 and G(x) = F (x) = 0. Then

G′(t) = F ′(t)

= −f
(n+1)(t)

n!
(x− t)n + (n+ 1)

(x− t)n

(x− a)n+1
F (a).

By Rolle’s Theorem there is a point ξ between x and a such that
G′(ξ) = 0. That is

f (n+1)(ξ)

n!
(x− ξ)n = (n+ 1)

(x− ξ)n

(x− a)n+1
F (a).

Rearranging we get

F (a) =
f (n+1)(ξ)

(n+ 1)!
(x− a)n+1.

If we substitute this into (3.31) we have Taylor’s Theorem.
�

Example 3.9. Let us take the function f(x) = ex. We let a = 0. So
we are expanding our function around zero.1 Now we have f ′(x) = ex,
f ′′(x) = ex. Indeed f (n)(x) = ex for all n. So f (n)(0) = 1. So by the
formula for the Taylor coefficients we have the Taylor expansion

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

=
∞∑
n=0

xn

n!
. (3.32)

This in fact converges for all x ∈ R. This is a tutorial exercise. This is
one of the most important of all Taylor series.

We can use the previous example to define the number e. There are
two equivalent definitions of e. Here we set

e = 1 + 1 +
1

2!
+

1

3!
+ · · · =

∞∑
n=0

1

n!
. (3.33)

This produces the same result as

e = lim
n→∞

(
1 +

1

n

)n
,

however it is often easier to use the infinite sum in calculations.
Using this new definition of e we can prove that e is an irrational

number. This proof is due to Joseph Fourier (1768-1830). Fourier was

1Series where we expand about zero are also called MacLaurin series. These are
named after the Scottish mathematician Colin MacLaurin (1698-1746).
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one of the most important mathematicians in history. An entire branch
of mathematics is named after him. This is called Fourier Analysis.2

Theorem 3.34. The number e defined by (3.33) is irrational.

Proof. We give a proof by contradiction. So we suppose that e is ra-
tional. This means that there are whole numbers a and b such that
e = a

b
. Since e is not an integer, b > 1. This means that

e =
a

b
=
∞∑
n=0

1

n!
.

Now suppose that N is an integer such that N > b. Then N !e is an
integer. This means that

N !e =
N∑
n=0

N !

n!
+

∞∑
n=N+1

N !

n!
.

Now n! divides N ! for all n ≤ N. Hence
∑N

n=0
N !
n!

is an integer. Thus

N !e−
N∑
n=0

N !

n!
=

∞∑
n=N+1

N !

n!
,

2In an indirect way we owe our understanding of Egyptian hieroglyphics to
Fourier. After Fourier visited Egypt with Napoleon in 1798, he brought back a
number of artefacts with Ancient Egyptian writing on them. Then one day back in
France, some visitors came to see him. They brought a young boy with them. The
boy was incredibly gifted and Fourier promised to ensure that he got the education
that he needed. The boy was also fascinated by the items from Egypt and asked
what the strange symbols on them meant? Fourier told him that nobody knew.
The secret to reading hieroglyphics had been lost for nearly fifteen hundred years.
So the boy, whose name was Jean-François Champollion, decided that he would
work out what they meant. He did. He became one of history’s greatest linguists
and became fluent in numerous languages. Using the Rossetta Stone, a large tablet
written in both Ancient Greek and Ancient Egyptian, he was able to crack the
language. He also used the insights of the English physicist Thomas Young, who
realised that hieroglyphics are largely phonetic, not pictographic. (e.g. A square
represents the sound ‘p’.) In 1822 Champollion began publishing his decipherment
of the Ancient Egyptian writing system. Today his decipherment is universally ac-
cepted. Fourier also redesigned the French postal system so that it actually worked
and discovered the greenhouse effect in his study of heat.
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is an integer. Now

∞∑
n=N+1

N !

n!
=

1

N + 1
+

1

(N + 1)(N + 2)
+

1

(N + 1)(N + 2)(N + 3)
+ · · ·

≤ 1

N + 1
+

1

(N + 1)2
+

1

(N + 1)3
+ · · ·

=

1
(N+1)

1− 1
N+1

=
1

N
< 1.

This is a contradiction since there are no whole number between 0 and
1. Thus e is not rational. �

Example 3.10. We now find the Taylor series about zero of sin x. We
let f(x) = sin x. Then f ′(x) = cosx. f ′′(x) = − sinx. f ′′′(x) = − cosx
and f (iv)(x) = sin x. Then the pattern repeats.

Now f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1 and f (iv)(0) = 0.
Hence the Taylor expansion about zero of the sine function is

sinx = x− x3

3!
+
x5

5!
− · · ·

=
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
. (3.34)

As with the Taylor series for ex, this converges for every x. The proof
of this is a tutorial exercise. Now try and establish the result

cosx = 1− x2

2!
+
x4

4!
− · · ·

=
∞∑
n=0

(−1)n
x2n

(2n)!
.

This converges for all x ∈ R.
Notice that sin x is an odd function and the series only involves odd

powers of x. Whereas the cosx is an even function and it only involves
even powers of x. This is true in general.

There is another form of Taylor series which is often used. We let h
be a real number and assume that f is n+ 1 times differentiable. Then
we can write

f(x+ h) = f(x) + f ′(x)h+
1

2!
f ′′(x)h2 + · · ·+ 1

n!
f (n)(x)hn

+
1

n!
f (n+1)(ξ)hn+1.
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Here ξ lies between x and x + h. This form is used extensively for
the construction of numerical methods for the solution of differential
equations.

3.6.1. Infinite Products. Just as we can have infinite sums, we can have
infinite products. We define

m∏
k=1

ak = a1 × a2 × · · · × am. (3.35)

An infinite produce is defined analogously to an infinite sum.
∞∏
k=1

ak = lim
m→∞

m∏
k=1

ak (3.36)

provided that the limit exists. There are some well known infinite
products for the elementary functions. Euler showed that

sin(z) = z
∞∏
n=1

(
1− z2

n2π2

)
(3.37)

cos(z) =
∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
. (3.38)

We will use the product formula for sin z to prove a famous result.

Theorem 3.35 (Euler).

∞∑
n=1

1

n2
=
π2

6
.

Proof. Summing this series was known as the Basel problem in the
eighteenth century because it was proposed in the Swiss city of Basel.
It was solved by Euler when he was seventeen. He reasoned as follows.
We have two expressions for sin z so they must be equal. Thus

sin z = z

∞∏
n=1

(
1− z2

n2π2

)
=
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
. (3.39)

Dividing by z gives
∞∏
n=1

(
1− z2

n2π2

)
=
∞∑
n=0

(−1)n
z2n

(2n+ 1)!
. (3.40)

In particular there are only even powers on both sides and the coeffi-
cients of each power of z on either side must match. If we expand the
left hand side we have

1−

(
∞∑
n=1

1

n2π2

)
z2 + · · · = 1− z2

6
+ · · · (3.41)
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Equating powers of z2 we get
∞∑
n=1

1

n2
=
π2

6
.

This is a brilliant piece of reasoning. �

4. The Riemann Integral

The other major tool in analysis is the integral. Although the Funda-
mental Theorem of Calculus was first stated by Newton and Leibnitz,
the first rigorous theory of integration was developed by Cauchy, and
extended by Riemann. We will develop the theory here.

We take an interval [a, b] and partition it as

P = {x0, x1, ..., xn},
where x0 = a, x0 < x1 < · · · < xn and xn = b.

Now let f be a bounded function on [a, b] then define

Mi = sup{f(x) : x ∈ [xi−1, xi)},
and

mi = inf{f(x) : x ∈ [xi−1, xi)}.
We then form the upper and lower Riemann sums

U(f,P) =
n∑
i=1

Mi(xi − xi−1), (4.1)

and

L(f,P) =
n∑
i=1

mi(xi − xi−1). (4.2)

The least upper bound axiom establishes that the upper and lower
integrals ∫ b

a

f = inf{U(f,P) : P a partition of [a, b]} (4.3)

and

∫ b

a

f = sup{U(f,P) : P a partition of [a, b]} (4.4)

both exist. We then say that f is Riemann integrable on [a, b] if∫ b
a
f =

∫ b
a
f. The Riemann integral is then equal to the upper (or lower)

integral.
It is easy to prove the following results.

Proposition 4.1. The Riemann integral has the following properties.
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(1) If c is a constant,
∫ b
a
cdx = c(b− a).

(2)
∣∣∣∫ ba f(x)dx

∣∣∣ ≤ ∫ ba |f(x)|dx.

The most important results about the Riemann integral are as fol-
lows.

Theorem 4.2 (Riemann’s Criterion). Let f be a bounded function on
the closed interval [a, b]. Then f is Riemann integrable on [a, b] if and
only if, given any ε > 0, there exists a partition P of [a, b] such that
U(f,P)− L(f,P) < ε.

From this one establishes the first major result.

Theorem 4.3. Every continuous function on a closed bounded interval
[a, b] is Riemann integrable.

Proof. The function f is continuous on [a, b] and so is bounded. Let
ε > 0. Since f is continuous it is uniformly continuous and so we
can choose δ > 0 such that x, y ∈ [a, b] with |x − y| < δ implies
|f(x)− f(y)| < ε/(b− a). Now choose N ∈ N such that N > (b− a)/δ.
For each i = 0, 1, ...N, let xi = a+(b−a)i/N. Then P = {x0, x1, ...xN}
is a partition of [a, b], with |xi − xi−1| < δ. By continuity, f attains
its maximum and minimum values on each closed subinterval [xi−1, xi].
Now let

f(ci) = inf{f(x) : x ∈ [xi−1, xi]}, (4.5)

f(di) = sup{f(x) : x ∈ [xi−1, xi]}. (4.6)

Obviously |di − ci| < δ and f(di) ≥ f(ci). By uniform continuity

f(di)− f(ci) <
ε

(b− a)
.

So we have

U(f,P)− L(f,P) =
N∑
i=1

f(di)(xi − xi−1)−
N∑
i=1

f(ci)(xi − xi−1)

=
N∑
i=1

(f(di)− f(ci))(xi − xi−1)

<
N∑
i=1

ε

b− a
(xi − xi−1)

=
ε

b− a

N∑
i=1

(xi − xi−1) = ε.

Thus by Riemann’s criterion, f is integrable on [a, b].
�
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4.1. Calculating Integrals By Riemann Sums. It is possible to
explicitly compute a surprisingly large class of integrals by evaluating
Riemann sums. For monotone functions, the construction of upper and
lower sums is straightforward. One simply picks sample points at the
ends of each subinterval. We restrict our attention to [0, 1]. We can
extend to the interval [a, b] by a linear change of variable.

Example 4.1. We integrate f(x) = x2 on [0, 1] Since f is increasing we
can take P = {0, 1/n, 2/n, ..., n/n} and note that

n∑
i=1

i2 =
1

6
n(n+ 1)(2n+ 1). (4.7)

Now we observe that

mi(f,P) = inf{x2 : x ∈ [
i− 1

n
,
i

n
)}

=
(i− 1)2

n2

Mi(f,P) = sup{x2 : x ∈ [
i− 1

n
,
i

n
)}

=
i2

n2
.

Then

L(f,P) =
n∑
i=1

(i− 1)2

n2

(
i

n
− (i− 1)

n

)

=
1

n3

n∑
i=1

(i− 1)2.

Also

U(f,P) =
n∑
i=1

i2

n2

(
i

n
− (i− 1)

n

)

=
1

n3

n∑
i=1

i2.

Using (4.7) we get

U(f,P)− L(f,P) =
1

6
n(n+ 1)(2n+ 1)

1

n3
− (n− 1)n(2n− 1)

6n3
=

1

n
.

By Riemann’s Criterion, f is Riemann integrable if for any ε > 0 we
can find a partition P such that U(f,P)−L(f,P) < ε. Clearly we can
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do this by taking n > 1/ε. So f is Riemann integrable. Further∫ 1

0

f(x)dx = sup{L(f,P),P a partition of [0, 1]}

= sup
n≥1

{
(n− 1)n(2n− 1)

6n3

}
= sup

n≥1

{
1

6n2
− 1

2n
+

1

3

}
=

1

3
.

Example 4.2. Let a 6= 0 and consider f(x) = eax on [0, 1]. The function
is monotone and we take the same partition as in the previous example.
Then

mk(f,P) = inf

{
eax : x ∈

[
k − 1

n
,
k

n

)}
= e(k−1)a/n (4.8)

Mk(f,P) = sup

{
eax : x ∈

[
k − 1

n
,
k

n

)}
= eka/n (4.9)

Then

L(f,P) =
n∑
k=1

mk(f,P)(xk − xk−1)

=
1

n
(1 + ea/n + · · ·+ e(n−1)a/n)

and

U(f,P) =
n∑
k=1

Mk(f,P)(xk − xk−1)

=
1

n
(ea/n + e2a/n + · · ·+ ean/n).

So

U(f,P)− L(f,P) =
ea − 1

n
.

This can be made smaller than ε by picking n > ε/(ea − 1). Thus by
Riemann’s Criterion, f is Riemann integrable on [0, 1]. We can explic-
itly evaluate the upper and lower sums by noticing that they are sums
of geometric progressions with common ratio ea. Hence

L(f,P) =
1

n
(1 + ea/n + · · ·+ e(n−1)a/n)

=
1

n

(1− ea)
(1− ea/n)

.
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So we have ∫ 1

0

eaxdx = sup
n

{
1

n

(1− ea)
(1− ea/n)

}
= lim

u→0

u(1− ea)
1− eau

=
1

a
(ea − 1),

where we put u = 1/n and used L’Hôpital’s rule to evaluate the limit.

We can actually prove that bounded monotone functions are Rie-
mann integrable.

Theorem 4.4. Suppose that f : [0, 1]→ R is monotone increasing and
f(1) is bounded. Then f is Riemann integrable on [0, 1].

Proof. With the previous partition of [0, 1] we have

U(f,P)− L(f,P) =
1

n
(f(1)− f(0)). (4.10)

Since f is monotone increasing, f(0) must be finite and f(1) is also
finite, we can make this smaller than any ε > 0 by suitable choice of n.
So f is Riemann integrable. �

4.2. The Fundamental Theorem of Calculus. It is possible to
evaluate many integrals by means of Riemann sums- in particular, we
can integrate any polynomial- but it is clearly a laborious procedure.
Fortunately we have a far more powerful means of doing integration.
The key is the following result, which is at the heart of modern science.

Theorem 4.5 (Fundamental Theorem of Calculus). If f is a continu-
ous function on [a, b], then for all x ∈ [a, b]

d

dx

∫ x

a

f(t)dt = f(x).

Proof. We define the function F (x) =
∫ x
a
f(t)dt. Since f is continuous,

it is bounded. Thus there is an M > 0 such that |f(t)| ≤ M for all
t ∈ [a, b]. Then

|F (x)− F (y)| =
∣∣∣∣∫ x

y

f(t)dt

∣∣∣∣
≤
∫ x

y

|f(t)|dt

≤M |x− y|.
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Consequently, F is Lipschitz continuous on [a, b] and hence continuous.
Now

F (x)− F (y)

x− y
− f(y) =

1

x− y
(F (x)− F (y)− (x− y)f(y))

=
1

x− y

∫ x

y

(f(t)− f(y))dt.

By uniform continuity of f , given ε > 0, we may find δ > 0 such that
|x − y| < δ implies |f(x) − f(y)| < ε. We choose such an ε and δ to
obtain ∣∣∣∣F (x)− F (y)

x− y
− f(y)

∣∣∣∣ ≤ 1

|x− y|

∫ x

y

|f(t)− f(y)|dt

<
1

|x− y|
ε(x− y) = ε

as x > y. Thus F is differentiable and F ′ = f. �

In other words, integration is essentially the inverse of differentia-
tion. From this we can establish the well known second form of the
fundamental theorem.

Corollary 4.6 (The Fundamental Theorem of Calculus II). Let f be
a Riemann integrable function on [a, b]. Then if F ′ = f on (a, b) the
integral is given by∫ b

a

f(x)dx = [F (x)]ba = F (b)− F (a). (4.11)

Proof. Suppose that G(x) =
∫ x
a
f(t)dt and F ′(x) = f(x). It follows that

G− F is a constant, since G′ = f. Hence G(b)− F (b) = G(a)− F (a).

But G(a) = 0. Hence G(b) =
∫ b
a
f(x)dx = F (b)− F (a). �

There is a mean value theorem for the Riemann integral which is
often useful.

Theorem 4.7 (Mean Value Theorem for Integrals). Suppose that f
and g are continuous on [a, b] and g(x) ≥ 0, for all x ∈ [a, b]. Then
there exists c ∈ [a, b] such that∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx. (4.12)

Proof. By continuity f is bounded. Suppose that for all t ∈ [a, b]
m ≤ f(t) ≤M. Then

m

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤M

∫ b

a

g(x)dx.
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Let F (t) = f(t)
∫ b
a
g(t)dt. By the Intermediate Value Theorem, there

is a c ∈ [a, b] such that

F (c) = f(c)

∫ b

a

g(t)dt =

∫ b

a

f(x)g(x)dx.

�

Notice that if g = 1 and F ′ = f then we have the existence of a
c ∈ [a, b] such that∫ b

a

f(x)dx = F (b)− F (a) = F ′(c)(b− a), (4.13)

which is the mean value theorem. Actually the mean value theorem
can be used to prove the fundamental theorem of calculus. This is an
exercise.

4.3. The Mean Value Theorem and the Fundamental Theorem
of Calculus. There is a different approach to proving the Fundamental
Theorem of Calculus that uses the MVT. We will not present the details
in full, but we will show how it works.

Suppose that F is continuous on [a, b] and F ′(x) = f(x) on (a, b). We
construct a partition of [a, b] by letting a = x0 < x1 < · · · < xn = b.
Now it is straightforward to see that

F (b)− F (a) = F (xn)− F (x0) = F (x1)− F (x0) + F (x2)− F (x1) + · · ·
+ F (xn)− F (xn−1).

The Mean Value Theorem tells us that

F (xi)− F (xi−1) = F ′(ci)(xi − xi−1)

for some ci between xi and xi−1. Thus
n∑
i=1

F ′(ci)(xi − xi−1) =
n∑
i=1

f(ci)(xi − xi−1) = F (b)− F (a). (4.14)

It can be shown that as the partition size maxi |xi−xi−1| → 0 we have
n∑
i=1

f(ci)(xi − xi−1)→
∫ b

a

f(x)dx,

as long as ci lies between xi and xi−1. In fact it does not matter what
choice we take for ci. Any value works. This means that∫ b

a

f(x)dx = F (b)− F (a).

It then follows that

d

dx

∫ x

a

f(t)dt =
d

dx
(F (x)− F (a)) = f(x). (4.15)
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Of course we need to actually prove that
∑n

i=1 f(ci)(xi − xi−1) →∫ b
a
f(x)dx and this is possible, but requires a fair bit of work. So

the Fundamental Theorem of Calculus can be deduced from the Mean
Value Theorem. However we have chosen a different path to prove the
Fundamental Theorem.

4.4. Integration Rules. Integration is intrinsically more difficult than
differentiation. Useful rules for evaluating integrals exist however. Inte-
gration by parts is simply the product rule of differentiation backwards.
Specifically

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

Integrating both sides gives the integration by parts rule∫ b

a

f(x)g′(x)dx = [f(x)g(x)]ba −
∫ b

a

f ′(x)g(x)dx. (4.16)

The most important technique for evaluating integrals is the use of
substitutions. This is the chain rule in reverse. The chain rule says
that (f ◦ g)′(x) = f ′(g(x))g′(x). Thus letting u = g(x) gives∫ b

a

f ′(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du. (4.17)

We can use integration by parts to show how Taylor’s Theorem fol-
lows from the Fundamental Theorem of Calculus. Assume that f is
continuously differentiable n+ 1 times. We know that

f(x)− f(a) =

∫ x

a

f ′(t)dt. (4.18)

We are going to integrate by parts. Notice however that instead of
using the obvious anti-derivative of 1, we are going to use t− x, which
is also an anti-derivative of 1. So that

f(x)− f(a) = [(t− x)f ′(t)]xa −
∫ x

a

(t− x)f ′(t)dt

= (x− a)f ′(a) +

∫ x

a

(x− t)f ′(t)dt

= (x− a)f ′(a) +
(x− a)2

2
f ′′(x) +

1

2

∫ x

a

(x− t)2f ′′(t)dt.

Repeating this n times gives

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2
f ′′(x) + · · ·

+
1

n!
(x− a)nf (n)(a) +

1

n!

∫ x

a

(x− t)nf (n)(t)dt.
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This gives us the useful form for the remainder in the Taylor series
expansion

Rn(a, x) =
1

n!

∫ x

a

(x− t)nf (n)(t)dt.

Using the mean value theorem for integrals we can show that this is
the same as the derivative form we found earlier.

4.5. Improper Riemann Integrals. It is often the case that we wish
to consider an integral of a function over a set where the function is
discontinuous.

Definition 4.8. Let f : [a, b] → R be continuous on (a, b], but f is
discontinuous at a. Then the improper Riemann integral of f over [a, b]
is define by ∫ b

a

f(x)dx = lim
X→a

∫ b

X

f(x)dx, (4.19)

provided the limit exists. Similarly, if the discontinuity is at x = b then∫ b

a

f(x)dx = lim
X→b

∫ X

a

f(x)dx, (4.20)

provided the limit exists.

Example 4.3. Consider f(x) = 1/
√
x on [0, 1]. Then f is continuous on

(0, 1] with a discontinuity at 0. Thus the improper Riemann integral
of f over [0, 1] is ∫ 1

0

f(x)dx = lim
X→0

∫ 1

X

dx√
x

= lim
X→0

2
√
x]1X

= lim
X→0

(2
√

1−
√
X) = 2.

For integrals on unbounded domains we can use the same idea.

Definition 4.9. The improper Riemann integral of f over R is defined
by ∫ ∞

−∞
f(x)dx = lim

R→∞

∫ 0

−R
f(x)dx+ lim

T→∞

∫ T

0

f(x)dx, (4.21)

provided the limits exist.
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Example 4.4. We calculate the integral I =

∫ ∞
0

1

x2 + 1
dx. We have by

definition ∫ ∞
0

1

x2 + 1
dx = lim

R→∞

∫ R

0

1

x2 + 1
dx

= lim
R→∞

[
tan−1 x

]R
0

= lim
R→∞

(
tan−1R− tan−1 0

)
=
π

2
.

To simplify notation we often write

lim
R→∞

[
tan−1 x

]R
0

=
[
tan−1 x

]∞
0
.

This is fine as long as we understand that the right hand side is to be
interpreted as being equal to the left hand side.

One has to be careful to distinguish between Definition 4.9 and the
Cauchy Principal value.

Definition 4.10. The quantity

pv

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx,

is known as the Cauchy Principal value of the integral, provided that
the limit exists.

Example 4.5. The improper Riemann integral
∫∞
−∞ xdx does not exist,

but

pv

∫ ∞
−∞

xdx = lim
R→∞

[
x2

2

]R
−R

=
1

2
(R2 −R2) = 0.

4.6. Double Integrals. If f : Ω = [a, b] × [c, d] → R is a continuous
function of two variables then we can define the double integral of f
over Ω as ∫

Ω

fdA =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx. (4.22)

This is called an iterated integral. In fact we can reverse the order
of integration and the result will be the same. This is called Fubini’s
Theorem. We have∫ b

a

(∫ d

c

f(x, y)dy

)
dx =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy (4.23)

As an exercise, show that∫ 2

0

∫ 4

0

(x2 + 3y)dxdy =

∫ 4

0

∫ 2

0

(x2 + 3y)dydx. (4.24)
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We will not have much more to say about double integrals, but we will
see an example where we can use a double integral to simplify a single
integral!
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5. Sequences of Functions

5.1. Pointwise and Uniform Convergence. The Riemann integral
is a powerful tool, but it has limitations. The most important relates
to the question of swapping integrals and limits. To see what this
involves, let us introduce the notion of convergence of a sequence of
functions.

Definition 5.1. We say that a sequence of functions {fn}∞n=1 converges
pointwise to a function f on a set X ⊆ R if limn→∞ fn(x) = f(x) for
all x ∈ X.

Example 5.1. Let fn(x) = n2x2

n2+1
and f(x) = x2. Then fn(x) → x2 for

all x ∈ R. To see this note that

fn(x) =
(n2 + 1− 1)x2

n2 + 1
= x2 − x2

n2 + 1
.

For each x ∈ R we have

lim
n→∞

x2

n2 + 1
= x2 lim

n→∞

1

n2 + 1
= 0.

Thus for each x, limn→∞ fn(x) = x2. So fn → f pointwise.

Given a sequence of pointwise convergent functions, we would like
to be able to conclude that

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

A common example is where we have a function defined as an infinite
sum

f =
∞∑
n=1

fn,

and we would like to determine
∫
f by term by term integration. So

that we would like ∫ b

a

f(x)dx =
∞∑
n=1

∫ b

a

fn(x)dx.

Unfortunately this is not in general true. Finding counterexamples
is not very hard. Consider the sequence

fn(x) = nxe−nx
2

. (5.1)
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Then on [0, 1], fn → 0 pointwise as n → ∞. To show convergence we
use L’Hôpital’s rule.

lim
n→∞

nx

enx2
= lim

n→∞

x

x2enx2

= lim
n→∞

1

xenx2
= 0,

for each x 6= 0. We differentiated with respect to n here. Hence∫ 1

0

lim
n→∞

fn(x)dx = 0.

However ∫ 1

0

nxe−nx
2

dx =
1− e−n

2
.

Hence

lim
n→∞

∫ 1

0

fn(x)dx =
1

2
6=
∫ 1

0

lim
n→∞

fn(x)dx.

So we cannot just take the limit inside the integral. Even for this
simple example it does not work. However there are cases where this is
possible. We will see that in order to safely swap limits and Riemann
integrals, we need what is known as uniform convergence.

Definition 5.2. A sequence of functions {fn}∞n=1 on a set X ⊆ R
converges uniformly to f on X if for any ε > 0 we can find N ∈ N such
that n ≥ N implies |fn(x)− f(x)| < ε for all x ∈ X.

Example 5.2. The sequence fn(x) = n2x2

n2+1
converges uniformly to f(x) =

x2 on the interval [−1, 1]. To see this we write

|fn(x)− f(x)| =
∣∣∣∣x2 − x2

n2 + 1
− x2

∣∣∣∣
= |x2|

∣∣∣∣ 1

n2 + 1

∣∣∣∣
≤ 1

n2 + 1
,

since |x| ≤ 1 on [−1, 1]. Now if n ≥ N >
√

1
ε
− 1, ε < 1, then for every

x ∈ [−1, 1] |fn(x) − f(x)| < ε. So fn → f uniformly. In fact fn → f
uniformly on any bounded interval [a, b].
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Example 5.3. Consider the sequence of functions fn(x) =
√
x2 + 1/n2.

For all x, fn(x)→ |x| uniformly. To see this, observe that√
x2 +

1

n2
− |x| =

(√
x2 +

1

n2
− |x|

)√
x2 + 1

n2 + |x|√
x2 + 1

n2 + |x|

=
1

n2
(√

x2 + 1
n2 + |x|

)
≤ 1

n
.

Thus for any ε > 0, if n ≥ N > 1
ε
, we have |fn(x)− |x|| < ε for all x.

The key point in these examples is that the same value of N works
for every value of x in the specified domain. That is what the word
uniform is referring to in the definition. For pointwise convergence, we
may need a different value of N for different values of x..

The first result is a trivial exercise.

Lemma 5.3. If fn → f uniformly on X, then fn → f pointwise.

The converse of this result is false. Pointwise convergent sequences
usually do not converge uniformly. The example (5.1) converges point-
wise but not uniformly. There is a result due to Egoroff that tells
us that a sequence of functions converging pointwise on a closed and
bounded interval [a, b], converges uniformly on [a, b] − E, where E is
a small set. However this is not enough to swap limits and Riemann
integrals. We do not discuss Egoroff’s Theorem in this subject. See
however Lebesgue Integration and Fourier Analysis, which is a higher
level subject.

Uniformly convergent sequences have nice properties. An important
one is that they preserve continuity. Pointwise convergence does not.
This is really the heart of the problem.

Theorem 5.4. If {fn}∞n=1 is a uniformly convergent sequence of con-
tinuous functions on X ⊆ R, with fn → f then f is continuous on
X.

Proof. Since fk is continuous at x ∈ X, given ε > 0, we may choose
δ > 0 such that for all y satisfying 0 < |x− y| < δ we have

|fk(x)− fk(y)| < ε/3.

By uniform convergence, we may choose N ∈ N such that k ≥ N
implies

|f(x)− fk(x)| < ε/3,
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for all x ∈ X. Consequently, given x ∈ X, then for all y ∈ X satisfying
0 < |x− y| < δ we have

|f(x)− f(y)| = |f(x)− fk(x) + fk(x)− fk(y) + fk(y)− f(y)|
≤ |f(x)− fk(x)|+ |fk(x)− fk(y)|+ |fk(y)− f(y)|
< ε/3 + ε/3 + ε/3 = ε.

Thus f is continuous at x. �

This result is not true for pointwise convergence. For example, the
pointwise convergent double sequence fn,j(x) = (cos(n!πx))2j does not
have a continuous limit on [0, 1]. In fact it converges to the Dirichlet
function

D(x) =

{
1 x ∈ Q ∩ [0, 1]

0 x 6∈ Q ∩ [0, 1].
(5.2)

To see this, observe that if x is rational, then x = p/q for some integers
p, q. Then for k > q it follows that πk!x = Nπ for some integer N.
Now cos2j(Nπ) = 1 for all j. Thus if x is rational, limj,k→∞ gk,j(x) = 1.
Suppose however that x is irrational. Then πk!x is never an integer
multiple of π and so −1 < cos(πk!x) < 1. Now if |r| < 1, r2j → 0 as
j →∞. So for x irrational, limj,k→∞ gk,j(x) = 0. Hence the limit of this
sequence of functions is a function that is 1 if x is rational and 0 if x is
irrational. This function is not Riemann integrable and it is not even
continuous, despite the fact that every function in the sequence is not
only continuous, but is analytic.

Uniform convergence is preserved under addition.

Proposition 5.5. If fn → f and gn → g uniformly, then afn + bgn →
af + bg uniformly, where a, b are constants.

Proof. Suppose that a, b 6= 0. fn, gn : X ⊆ R → R. Then given ε > 0
there exists N1 ∈ N such that

sup
x∈X
|fn(x)− f(x)| < ε/(2|a|)

and there exists N2 ∈ N such that

sup
x∈X
|gn(x)− g(x)| < ε/(2|b|).

Let N = maxN1, N2. Then for n ≥ N

sup
x∈X
|afn(x) + bgn(x)− af(x)− bg(x)| ≤ |a| sup

x∈X
|fn(x)− f(x)|

+ |b| sup
x∈X
|gn(x)− g(x)|

< ε/2 + ε/2 = ε.

�
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However, uniform convergence is not preserved under pointwise mul-
tiplication. That is, if fn → f uniformly on X ⊆ R and gn → g
uniformly on X, it is not in general true that fngn → fg uniformly on
X. The best we can say is the following.

Theorem 5.6. Suppose that fn → f uniformly on the closed and
bounded interval [a, b] and gn → g uniformly on [a, b]. Then fngn → fg
uniformly on [a, b].

Proof. Since fn → f uniformly, it converges pointwise on [a, b] and
hence each sequence {fn(x)}∞n=1 is bounded, for all x ∈ [a, b]. Conse-
quently f is also bounded. Similarly for {gn}∞n=1. Let

A = sup
x∈[a,b]

|f(x)|, B = sup
x∈[a,b],n≥1

|gn(x)|.

Choose an ε > 0. We can find N1 ∈ N such that n ≥ N1 implies
|fn(x)− f(x)| < ε/(2B) and an N2 ∈ N such that n ≥ N2 implies that
|gn(x)− g(x)| < ε/(2A). Then take N = max{N1, N2} and for n ≥ N

sup
x∈[a,b]

|fn(x)gn(x)− f(x)g(x)| = sup
x∈[a,b]

|fn(x)gn(x)− f(x)gn(x)

+ f(x)gn(x)− f(x)g(x)|
= sup

x∈[a,b]

|gn(x)||fn(x)− f(x)|

+ sup
x∈[a,b]

|f(x)||gn(x)− g(x)|

< ε/(2A) + ε/(2B) = ε.

�

5.2. The Weierstrass M-test. There are various tests for uniform
convergence. For series we have the following powerful result.

Theorem 5.7 (Weierstrass M-Test). Let {fn}∞n=1 be a sequence of func-
tions on X such that |fn(x)| ≤Mn all x ∈ X and

∑∞
n=1 Mn <∞. Then

the series
∑∞

n=1 fn(x) is uniformly convergent.

Proof. Let SN(x) =
∑∞

n=1 fn(x) and suppose that |fn(x)| ≤Mn. Then
for all N ≥M

|SN(x)− SM(x)| = |
N∑

n=M+1

fn(x)|

≤
N∑

n=M+1

|fn(x)|

≤
N∑

n=M+1

Mn → 0,

as N,M → ∞. So the series SN converges independently of x and
hence is uniformly convergent. �
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Example 5.4. The M test is generally easy to use. To illustrate, con-
sider the series

f(x) =
∞∑
n=1

cos(nx)

n2 + 1
. (5.3)

Letting fn(x) =
cos(nx)

n2 + 1
, we immediately see that

|fn(x)| ≤ 1

n2 + 1
, (5.4)

and by the comparison test
∑∞

n=1
1

n2+1
< ∞. Hence the series (5.3) is

uniformly convergent and so f is a continuous function.

As an application we prove a result about power series. We men-
tioned this previously, but deferred the proof.

Theorem 5.8. Let
∑∞

n=0 anx
n be a power series with radius of con-

vergence R. Let 0 < r < R. Then the series converges uniformly on
[−r, r].

Proof. Let
∑∞

n=0 anx
n be convergent for |x| < R. Then it is absolutely

convergent. Pick x = x0 > r and x0 < R and we have
∑∞

n=0 anx
n
0

is convergent, hence anx
n
0 → 0. So there is an M > 0 such that

|anxn0 | ≤M . Then

|anxn| ≤ |an|rn

= |anxn0 |
∣∣∣∣ rx0

∣∣∣∣n
≤M

∣∣∣∣ rx0

∣∣∣∣n .
Now

∑∞
n=0 M

∣∣∣ rx0 ∣∣∣n converges and hence the power series converges uni-

formly by the Weierstrass M test. �

It is important to note that this theorem does not say that a power
series converges uniformly on (−R,R). Indeed the series

∑∞
n=0 x

n con-
verges on (−1, 1) but the convergence is not uniform. It does converge
uniformly on [−r, r] for r < 1. The point is we cannot necessarily
extend the uniform convergence to the entire interval of convergence.

Another useful test is due to Dini.

Theorem 5.9 (Dini). Let {fn}∞n=1 be a sequence of continuous func-
tions on [a, b] which converges monotonically to a continuous function
f on [a, b]. Then fn → f uniformly on [a, b].

Proof. We can with no loss of generality suppose that f = 0 and that
fn(x) decreases monotonically to 0 for all x ∈ [a, b]. If this is not the
case then we can consider the functions gn = ±(fn − f) depending
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on whether fn increases or decreases. The sequence {gn} will then
decrease monotonically to 0.

Now set
Mn = sup{fn(x) : x ∈ [x, b]}.

Since fn decreases to 0, it follows that Mn is decreasing. We claim that
Mn → 0. This will be sufficient to establish that the convergence is
uniform, since then given ε > 0 we will be able to find N such that for
all n ≥ N Mn < ε and so for n ≥ N we will have

sup
x∈[a,b]

|fn(x)− f(x)| < ε. (5.5)

We proceed by contraction. Suppose otherwise. Then we can find
δ > 0 such that for every n, Mn > δ. Consequently for every n there is
a point xn such that f(xn) > δ. The sequence {xn} ∈ [a, b] is bounded,
so by the Bolzano-Weierstrass Theorem it contains a convergent sub-
sequence {xnk}∞k=1. Let xnk → α as k →∞. By assumption, fn(α)→ 0
as n → ∞. So there exists N > 0 such that for n ≥ N , we have
|fn(α)| < δ. But each fn is continuous, so that we can find ε > 0
such that |x − α| < ε implies |fn(x)| < δ for all n ≥ N. But this is
a contradiction, because we can choose N such that for all nk ≥ N ,
|xnk − α| < ε and fn(xnk) > δ. Thus our assumption must be false and
hence Mn → 0. �

5.3. Swapping Limits and Integrals. Uniform convergence allows
us to reverse the order of a limit and a Riemann integral. This is a
tremendously useful property of uniformly convergent sequences. Swap-
ping limits and integrals is a problem that arises frequently.

Theorem 5.10. If {fn}∞n=1 is a sequence of Riemann integrable func-
tions converging uniformly to f on [a, b], then f is Riemann integrable
on [a, b] and

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

Proof. If the functions fn are continuous then the proof is easy. By
uniform convergence we can choose N such that n ≥ N implies

|fn(x)− f(x)| < ε/(b− a).

As f is continuous by Theorem 5.4, we have for n ≥ N∣∣∣∣∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|fn(x)− f(x)| dx (5.6)

<

∫ b

a

ε

(b− a)
dx = ε. (5.7)

If the functions {fn} are not assumed to be continuous, then we have
to prove the limit is integrable. Each fn is bounded, so the limit f is
bounded. Pick ε > 0 and by uniform convergence we can choose N ∈ N
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such that for all x ∈ [a, b] n ≥ N implies |fn(x)− f(x)| < ε
3(b−a)

. Since

fN is integrable, by Riemann’s criterion we can choose a partition P
of [a, b] such that

U(fN ,P)− L(fN ,P) <
ε

3
.

LetMi = sup{f(x), x ∈ [xi−1, xi]} andNi = sup{g(x), x ∈ [xi−1, xi]}.
Notice that

U(f + g,P) ≤
n∑
i=1

Mi(xi − xi−1) +
n∑
i=1

Ni(xi − xi−1)

= U(f,P) + U(g,P).

A similar remark can be made for the lower sums.
Now supx∈[a,b] |fN(x)− f(x)| < ε

3(b−a)
, so we have

U(f,P)− L(f,P) = U(f + fN − fN ,P)− L(f + fN − fN ,P)

≤ U(fN ,P) + U(f − fN ,P)− L(fN ,P)

− L(f − fN ,P)

= U(fN ,P)− L(fN ,P) + U(f − fN ,P)

− L(f − fN ,P)

<
ε

3
+ 2

ε

3(b− a)
(b− a) = ε.

The inequalities used above can be verified by direct calculation. So
f is Riemann integrable. The rest of the proof is as in the continuous
case. �

This swapping of limits does not work for pointwise convergence with
the Riemann integral. The limit function may not even be Riemann
integrable, as is the case with the double sequence fn,k above. Unfortu-
nately when we have sequences of functions, they often do not converge
uniformly. This leads to the question of how can we modify the integral
in such a way as to be able to swap limits and integrals, even when we
do not have uniform convergence? This problem led to a new theory
of integration due to Henri Lebesgue.

Uniform convergence is equivalent to a sequence being uniformly
Cauchy.

Definition 5.11. A sequence fn : X ⊆ R→ R is uniformly Cauchy if
given ε > 0 there exists N ∈ N such that for all n,m ≥ N

sup
x∈I
|fn(x)− fm(x)| < ε.

The next result connects uniformly Cauchy and uniformly convergent
sequences.

Theorem 5.12. Every uniformly convergent sequence of functions is
uniformly Cauchy.
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Proof. Let {fn}∞n=1 be a uniformly convergent sequence of functions
defined on X ⊆ R and suppose it has limit f. Let ε > 0. Choose
N ∈ N such that x ∈ X,n ≥ N implies

|fn(x)− f(x)| < ε

2
.

Then if x ∈ X,m, n ≥ N implies

|fm(x)− fn(x)| = |fm(x)− f(x) + f(x)− fn(x)|
≤ |fm(x)− f(x)|+ |f(x)− fn(x)|

<
ε

2
+
ε

2
= ε.

So {fn}∞n=1 is uniformly Cauchy. �

The converse of this result is also true, but the proof is a little harder.

Theorem 5.13. Every uniformly Cauchy sequence of functions is uni-
formly convergent.

Proof. There are two parts. First we have to define the limit and
then we have to prove that the convergence is uniform. The first part
proceeds as follows.

Let {fn}∞n=1 be a uniformly Cauchy sequence on X ⊆ R. Let x0 ∈ X.
Then {fn(x0)}∞n=1 is a Cauchy sequence in R and hence it is convergent.
Let us denote the limit by f(x0). This process defines a limit function
for each x ∈ X. By construction, fn → f pointwise.

Now we prove that fn → f uniformly. Let ε > 0 and choose N ∈ N
such that for all x ∈ X, n,m ≥ N we have

|fm(x)− fn(x)| < ε

2
.

Now fm → f pointwise. So for all x ∈ X, n ≥ N

|f(x)− fn(x)| = lim
m→∞

|fm(x)− f(x)| < ε

2
.

Thus fn → f uniformly. �

5.4. Swapping Limits and Derivatives. Interchanging limits and
derivatives is actually harder than interchanging a limit and an integral.
Thus we can bound the difference between the nth term of the sequence
and the limit independently of x and so the convergence is uniform. So
uniform convergence is not enough to guarantee that the limit function
is differentiable.

Even if the limit is differentiable, it does not follow that f ′n → f ′.
Consider again the sequence from Example 5.3. There fn(x)→ f(x) =
|x| uniformly for all x, but although f ′n(0) exists for all n, f ′(0) does
not exist. Here is another example.
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Example 5.5. Let fn(x) =
x

1 + nx2
. Now fn → 0 for all x as n → ∞.

But

f ′n(x) =
(1− nx2)

(1 + nx2)2

and so f ′n(0)→ 1 6= 0 = f ′(0).

We actually require uniform convergence of the derivatives in order
to swap differentiation and limits. The relevant result follows.

Theorem 5.14. Let I be an open interval in R, f : I → R and let
{fn}∞n=1 be a sequence of differentiable functions on I which converges
uniformly to f on I. Let g : I → R and let the sequence of derivatives
{f ′n}∞n=1 converge uniformly to g on I. Then f is differentiable on I
and f ′(x) = g(x) for all x ∈ I.

Proof. Let ε > 0 and pick an N1 ∈ N such that

sup
x∈I
|fn(x)− f(x)| < ε

3
.

The sequence {f ′n}∞n=1 is uniformly Cauchy on I. So we can find N2 ∈ N
such that for all x ∈ I, n,m ≥ N2

|f ′m(x)− f ′n(x)| < ε

3
.

Now let N = maxN1, N2. The function fN is differentiable on I and
so at any point x0 ∈ I there exists δ > 0 such that for x ∈ I, 0 <
|x− x0| < δ we have∣∣∣∣fN(x)− fN(x0)

x− x0

− fN(x0)

∣∣∣∣ < ε

3
.

Now let x ∈ I, x 6= x0 and choose M ≥ N. fM − fN is differentiable
and so by the Mean Value Theorem we can find c between x and x0

such that

(fM − fN)(x)− (fM − fN)(x0)

x− x0

= (fM − fN)′(c).

which is the same as

(fM − fN)(x)− (fM − fN)(x0) = (fM − fN)′(c)(x− x0).

From this we deduce that

|fM(x)− fM(x0)− (fN(x)− fN(x0))| = |f ′M(c)− f ′N(c)||x− x0|

<
ε

3
|x− x0|,

where |f ′M(c)− f ′N(c)| < ε/3 by the fact that the sequence is uniformly
Cauchy and M,N ≥ N and c ∈ I. Taking limits as M → ∞ in (5.8)
we get

|f(x)− f(x0)− (fN(x)− fN(x0))| ≤ ε

3
|x− x0|,
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which leads to the inequality∣∣∣∣f(x)− f(x0)

x− x0

− fN(x)− fN(x0)

x− x0

∣∣∣∣ ≤ ε

3
.

Finally, we put this altogether and let x ∈ I, 0 < |x − x0| < δ, then
adding and subtracting appropriate terms, and using the triangle in-
equality, we can write∣∣∣∣f(x)− f(x0)

x− x0

− g(x0)

∣∣∣∣ ≤ ∣∣∣∣f(x)− f(x0)

x− x0

−
(
fN(x)− fN(x0)

x− x0

)∣∣∣∣
+

∣∣∣∣fN(x)− fN(x0)

x− x0

− f ′N(x0)

∣∣∣∣
+ |f ′N(x0)− g(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Hence f is differentiable at x0 and f ′(x0) = g(x0).
�

We conclude with a result due to Arzela from 1885. The proof is
quite difficult, so we will omit it. This is an early version of a more
general result proved by Lebesgue in 1900.

Theorem 5.15. Assume that {fn}∞n=1 is a uniformly bounded, point-
wise convergent sequence of functions on [a, b] and suppose that each
fn is Riemann-integrable on [a, b]. Suppose also that the limit function
f(x) := limn→∞ fn(x) is Riemann-integrable on [a, b]. Then,

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx =

∫ b

a

f(x)dx.

Lebesgue’s version uses a different integral and we do not have to
assume that the limit function is integrable. It will be automatically
be Lebesgue integrable, but this is well beyond the scope of our subject.
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5.5. The Weierstrass Approximation Theorem. One of the most
important results on uniform approximation of functions is due to
Weierstrass. This says that any continuous function on a closed and
bounded interval [a, b] can be approximated uniformly by a polynomial.
Equivalently, there is a sequence of polynomials converging uniformly
to f . This can be proved in a number of ways. We can use Fourier series
to establish the result, but Bernstein actually constructed a sequence
of polynomials which approximates any continuous function uniformly.
To present Bernstein’s proof, we require a preliminary lemma.

Lemma 5.16. For each fixed x, the following identities hold.
n∑
k=0

(
n

k

)
xk(1− x)n−k = 1 (5.8)

n∑
k=1

k

(
n

k

)
xk(1− x)n−k = nx (5.9)

n∑
k=1

k2

(
n

k

)
xk(1− x)n−k = n(n− 1)x2 + nx. (5.10)

Proof. For the first identity, observe that 1n = (x+(1−x))n and apply
the Binomial Theorem to both sides. For the second,

k

(
n

k

)
=

kn!

k!(n− k)!
=

n(n− 1)!

(k − 1)!(n− 1− (k − 1))!

= n

(
n− 1

k − 1

)
.

So that
n∑
k=1

k

(
n

k

)
xk(1− x)n−k =

n∑
k=1

n

(
n− 1

k − 1

)
xk(1− x)n−k

= n

n−1∑
j=0

(
n− 1

j

)
xj+1(1− x)n−1−j

= nx(x+ (1− x))n−1 = nx.

For the final identity, notice that k2 = k(k − 1) + k, so that
n∑
k=1

k2

(
n

k

)
xk(1− x)n−k =

n∑
k=1

(k(k − 1) + k)

(
n

k

)
xk(1− x)n−k

= nx+
n∑
k=1

k(k − 1)

(
n

k

)
xk(1− x)n−k.

Now

k(k − 1)

(
n

k

)
= n(n− 1)

(
n− 2

k − 2

)
,
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so that
n∑
k=1

k(k − 1)

(
n

k

)
xk(1− x)n−k =

n∑
k=1

n(n− 1)

(
n− 2

k − 2

)
xk(1− x)n−k

= n(n− 1)x2(x+ 1− x)n−2

= n(n− 1)x2.

This completes the proof.
�

Now we come to the final result in the subject. This is Weierstrass’
Theorem.

Theorem 5.17 (Weierstrass Approximation Theorem). Let f be a con-
tinuous function on a closed and bounded interval [a, b]. Then given any
ε > 0 there is a polynomial P with the property that

sup
x∈[a,b]

|f(x)− P (x)| < ε.

Proof. This is Bernstein’s proof. For simplicity we can restrict atten-
tion to the interval [0, 1], since [0, 1] can be mapped to [a, b] by the
function ϕ(t) = a(1 − t) + bt, where 0 ≤ t ≤ 1. It is not hard to show
that if Pn → g uniformly on [0, 1], then

Pn(ϕ(t))→ g

(
t− a
b− a

)
,

uniformly on [a, b].
Now let f be continuous on [0, 1] and define the polynomials

Pn(x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k. (5.11)

These are the Bernstein polynomials for f . We claim that Pn → f
uniformly on [0, 1]. That is, given ε > 0 we want to find an n ∈ N such
that n ≥ N implies supx∈[0,1] |Pn(x)− f(x)| < ε. Notice that

Pn(x)− f(x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

− f(x)
n∑
k=0

(
n

k

)
xk(1− x)n−k

=
n∑
k=0

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k. (5.12)

We want to use the uniform continuity of f to make this small. So let
ε > 0 and pick δ > 0 such that |x− y| < ε/2 implies

|f(x)− f(y)| < ε/2.
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We therefore want to consider values of k/n such that |x − k/n| < δ.
Since k, n are integers we need to use the integer part function [x] =
greatest integer ≤ x. We split the sum as

Pn(x)− f(x) =
∑

[x−k/n]<δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

+
∑

[x−k/n]≥δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k.

Using the fact that
∑n

k=0

(
n
k

)
xk(1− x)n−k = 1 and the continuity of f

we get ∣∣∣∣∣∣
∑

[x−k/n]<δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣ < ε

2
,

since |k/n− x| < δ. For the second sum∣∣∣∣∣∣
∑

[x−k/n]≥δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣
≤ 2 sup

x∈[0,1]

|f(x)|

∣∣∣∣∣∣
∑

[x−k/n]≥δ

(
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣ .
Now |x − k/n| ≥ δ, so that (x − k/n)2/δ2 ≥ 1. We can then produce
the estimate∑

[x−k/n]≥δ

(
n

k

)
xk(1− x)n−k ≤ 1

δ2

n∑
k=0

(
x− k

n

)2(
n

k

)
xk(1− x)n−k

=
1

δ2

n∑
k=0

(
x2 − 2xk

n
+
x2

k2

)(
n

k

)
xk(1− x)n−k

=
1

δ2

(
x2 − 2x

n
nx+

1

n2
(n(n− 1)x2 + nx)

)
=
x(1− x)

nδ2
≤ 1

4nδ2
,

since x(1− x) ≤ 1/4 if x ∈ [0, 1]. We thus arrive at∣∣∣∣∣∣
∑

[x−k/n]≥δ

[
f

(
k

n

)
− f(x)

](
n

k

)
xk(1− x)n−k

∣∣∣∣∣∣ ≤ 1

4nδ2
2A, (5.13)

where A = supx∈[0,1] |f(x)|. Hence we need to choose n ≥ 2εA/δ2. This
will guarantee that supx∈[0,1] |Pn(x)− f(x)| < ε. �
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Weierstrass’ Theorem was extended by Marshall Stone to algebras
of functions on more abstract spaces and the result is known as the
Stone-Weierstrass Theorem. It plays a central role in modern analysis.

Remark 5.18. A word of caution. Weierstrass’ Theorem does not mean
that the Taylor series of a function f will converge to f uniformly.
The Taylor series may not exist, since we only assume continuity, not
differentiability for f . Even when f is infinitely differentiable the Taylor
series may still not converge.

The point of this result is that polynomials are easy to evaluate and
work with. So for example, if we have a continuous function f on a
closed interval [a, b] and we want to integrate f over [a, b], then given
ε, we can find a polynomial P such that for all x ∈ [a, b] we have
|f(x)− P (x)| < ε. Hence∣∣∣∣∫ b

a

f(x)dx−
∫ b

a

P (x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)− P (x)|dx

<

∫ b

a

εdx = ε(b− a).

We can perform the last step because the approximation is uniform.
Thus the inequality holds for all x. So by choosing ε small enough and
the appropriate P we can approximate the integral of f on [a, b] to
high accuracy by integrating P , which is straightforward since it is a
polynomial.
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6. Methods of Integration

We have now developed a set of tools which will allow us to solve
a wide range a problems. To conclude we will present some methods
for the evaluation of definite integrals. There are numerous methods
devoted to evaluating integrals and it is an active area of research. The
theme here is that although the fundamental theorem of Calculus is the
most important result in the subject, there are many other methods
for computing integrals. We can only present a few techniques and
you will learn more in Complex Analysis. However the ones that we
will develop are extremely useful. We first introduce two important
functions.

6.1. The Beta and Gamma Functions. We begin with a brief dis-
cussion of two important functions. The Gamma function is defined
by

Γ(z) =

∫ ∞
0

tz−1e−tdt, z > −1. (6.1)

It was introduced by Euler. Note that Γ is the upper case Greek letter
gamma.

The Gamma function can be shown to satisfy the fundamental rela-
tion

Γ(z + 1) = zΓ(z).

This is just integration by parts. If z = 1 it is easy to see that Γ(1) = 1.
So that Γ(2) = Γ(1 + 1) = 1Γ(1) = 1. Then Γ(3) = 2Γ(2) = 2.1
Similarly Γ(4) = 3Γ(3) = 1.2.3 = 3!. In general Γ(n + 1) = n! for n
a positive integer. There are other values known in closed form. This
one requires the value of an extremely important integral that we have
not yet evaluated. We have that

Γ

(
1

2

)
=

∫ ∞
0

t−1/2e−tdt. (6.2)

Putting t = u2, dt = 2udu and

Γ

(
1

2

)
= 2

∫ ∞
0

1

u
e−u

2

udu

= 2

∫ ∞
0

e−u
2

du =
√
π.

It immediately follows that Γ
(

3
2

)
= 1

2
Γ
(

1
2

)
=
√
π

2
. The final integral in

this calculation is possibly the most famous and important in mathe-
matics. That is ∫ ∞

−∞
e−u

2

du =
√
π.

We will prove this in Example 6.5 below.
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The Gamma function has numerous useful properties. We will list
some without proof. The proofs can be found in any book on the
Gamma function. Some are on Wikipedia.

First, Euler proved the reflection formula, namely that if z is not
an integer, then

Γ(1− z)Γ(z) =
π

sin(πz)
. (6.3)

Thus from the recurrence formula we can extend Γ to certain negative
values by setting

Γ(z − n) = (−1)n−1 Γ(−z)Γ(1 + z)

Γ(n+ 1− z)
. (6.4)

So for example taking z = −1/2, we deduce that

Γ

(
−3

2

)
= (−1)0 Γ

(
1
2

)
Γ
(

3
2

)
Γ
(

5
2

) =
4
√
π

3
. (6.5)

Legendre proved the duplication formula

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z). (6.6)

Gauss generalised this to the multiplication formula
m∏
k=0

Γ

(
z +

k

m

)
= (2π)

m−1
2 m

1
2
−mzΓ(mz). (6.7)

There is also an important fact about the reciprocal. The reciprocal
of the Gamma function is differentiable at every point in the complex
plane and satisfies

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−z/n (6.8)

Here γ = limn→∞
(∑n

k=1
1
k
− lnn

)
≈ 0.577216 is Euler’s constant.

The Beta function has a close connection to the Gamma function.
It is defined by

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt, a, b > 0. (6.9)

It is far from obvious but this can be evaluated in terms of Gamma
functions. In fact

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (6.10)

The Wikipedia page on the Beta function contains a proof. Let us use
this to evaluate

I =

∫ 1

0

t−1/2(1− t)1/2dt. (6.11)
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Clearly I = B
(

1
2
, 3

2

)
. So

I =
Γ
(

1
2

)
Γ
(

3
2

)
Γ
(

1
2

+ 3
2

) =
π

2
.

Example 6.1. Calculate
∫ π

2

0

√
sinxdx. We turn this into a Beta function

by the substitution u = sin2 x. Clearly
√

sinx = u1/4 and

du = 2 sin x cosxdx.

Now cosx =
√

1− sin2 x = (1− u)1/2. From this we have∫ π
2

0

√
sinxdx =

∫ 1

0

u1/4

2u1/2(1− u)1/2
du

=
1

2

∫ 1

0

u−1/4(1− u)−1/2du

=
1

2
B

(
3

4
,
1

2

)
=

Γ
(

3
4

)
Γ
(

1
2

)
2Γ
(

5
4

) .

A similar substitution shows that∫ π
2

0

√
cosxdx =

Γ
(

3
4

)
Γ
(

1
2

)
2Γ
(

5
4

) .

So the two integrals are identical.

6.2. Simple Substitutions for Trig Integrals. To illustrate this
method we need the following identities.

sin
(π

2
− x
)

= sin
(π

2

)
cosx− cos

(π
2

)
sinx = cosx, (6.12)

cos
(π

2
− x
)

= cos
(π

2

)
cosx+ sin

(π
2

)
sinx = sinx. (6.13)

Now we are going to evaluate the integral I =

∫ π
2

0

dx

1 + tan4 x
. This

looks hideous. However from the definition of tanx and simple algebra
we have

I =

∫ π
2

0

dx

1 + tan4 x

=

∫ π
2

0

cos4 xdx

cos4 x+ sin4 x
.

One might think that this is not much better, but a simple substitution
is all we need. We put x = π

2
− u. Then du = −dx and we obtain

I = −
∫ 0

π
2

cos4
(
π
2
− u
)
du

cos4
(
π
2
− u
)

+ sin4
(
π
2
− u
)

=

∫ π
2

0

sin4 udu

cos4 u+ sin4 u
.
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Since u is a dummy variable we have

I =

∫ π
2

0

sin4 xdx

cos4 x+ sin4 x

and hence

2I = I + I =

∫ π
2

0

cos4 xdx

cos4 x+ sin4 x
+

∫ π
2

0

sin4 xdx

cos4 x+ sin4 x

=

∫ π
2

0

(cos4 x+ sin4 x)dx

cos4 x+ sin4 x
=

∫ π
2

0

dx =
π

2
.

Thus 2I = π
2

and so ∫ π
2

0

dx

1 + tan4 x
=
π

4
.

The moral is that you do not always need a complicated substitution
to crack an integral.

Example 6.2. Here we evaluate

I =

∫ π
2

−π
2

1

(1 + ex cos2 x)(cos4 x+ sin4 x)
dx. (6.14)

Though it looks like a monster, it can be tackled by fairly basic tech-
niques. It will require some trigonometry and a classical substitution.
We first make a very elementary substitution. We just let x = −u.
Then

I = −
∫ −π

2

π
2

1

(1 + e−u cos2 u)(cos4 u+ sin4 u)
du

=

∫ π
2

−π
2

eu cos2 u

(1 + eu cos2 u)(cos4 u+ sin4 u)
du.

So we add these two expressions for I together.

2I = I + I =

∫ π
2

−π
2

ex cos2 x

(1 + ex cos2 x)(cos4 x+ sin4 x)
dx

+

∫ π
2

−π
2

1

(1 + ex cos2 x)(cos4 x+ sin4 x)
dx

=

∫ π
2

−π
2

1 + ex cos2 x

(1 + ex cos2 x)(cos4 x+ sin4 x)
dx

=

∫ π
2

−π
2

1

(cos4 x+ sin4 x)
dx.
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Now we have to simplify this. Recall that cos2 x + sin2 x = 1 and
sin(2x) = 2 sinx cosx. Thus

1 = 12 = (cos2 x+ sin2 x)2 = cos4 x+ 2 sin2 x cos2 x+ sin4 x

= cos4 x+ sin4 x+
1

2
sin2(2x).

Consequently

cos4 x+sin4 x = 1−1

2
sin2(2x) =

(
1− 1√

2
sin(2x)

)(
1 +

1√
2

sin(2x)

)
.

Simple algebra then gives

1

cos4 x+ sin4 x
=

1(
1− 1√

2
sin(2x)

)(
1 + 1√

2
sin(2x)

)
=

1

2

[
1

1 + 1√
2

sin(2x)
+

1

1− 1√
2

sin(2x)

]
.

Thus

I =
1

4

∫ π
2

−π
2

[
1

1 + 1√
2

sin(2x)
+

1

1− 1√
2

sin(2x)

]
dx (6.15)

The evaluation of the indefinite integrals is carried out using an inverse

tan substitution. If we let x = tan−1
(
y
√
a2−b2−b
a

)
then for a > b∫

1

a+ b sin(2x)
dx =

1√
a2 − b2

∫
dy

y2 + 1
=

1√
a2 − b2

tan−1 y.

This is a tutorial exercise. From this∫
1

1 + 1√
2

sin(2x)
dx =

√
2 tan−1(

√
2 tanx+ 1), (6.16)

∫
1

1− 1√
2

sin(2x)
dx = −

√
2 tan−1(1−

√
2 tanx). (6.17)

Hence

I =
1

4

[√
2 tan−1(

√
2 tanx+ 1)−

√
2 tan−1(1−

√
2 tanx)

]π
2

−π
2

=
1

4

(√
2
π

2
+
√

2
π

2
−
(
−
√

2
π

2
−
√

2
π

2

))
=

π√
2
.
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6.2.1. Differentiation Under the Integral Sign. We begin by using a
very powerful method due originally to Leibniz. It is often called ‘Feyn-
man’s technique’, after the physicist Richard Feynman. However it was
being used by mathematicians for centuries before Feynman was born
and people who call it ‘Feynman’s technique’ should be beaten with
sticks and made to stop. It is however reasonable to call it ‘Fenyman’s
favourite technique’ because it probably was.3

The basic idea is the following. If we have the integral

F (t) =

∫ b

a

f(x, t)dx, (6.18)

then

F ′(t) =

∫ b

a

∂f

∂t
(x, t)dx. (6.19)

This of course needs justification. The result we need is Leibniz’s rule.
It is actually more general than (6.19).

Theorem 6.1 (Leibniz). Let

F (t) =

∫ u2(t)

u1(t)

f(x, t)dx, (6.20)

with a ≤ t ≤ b. Suppose that f is continuous in x and ∂f
∂t

exists and
is continuous for all x ∈ [α, β]. Suppose that α ≤ u1(t) ≤ u2(t) ≤
β, t ∈ [a, b] and that u1, u2 are differentiable with respect to t. Then
F ′(t) exists and

F ′(t) =

∫ u2(t)

u1(t)

f(x, t)dx+ f(u2(t), t)u′2(t)− f(u1(t), t)u′1(t). (6.21)

The proof is an exercise.

Example 6.3. Let 0 ≤ t ≤ 1 and define

F (t) =

∫ t

t2

1

x+ t+ 1
dx.

3Feynman said that he discovered the method in a 1924 Calculus textbook. Years
later, his colleagues often gave him integrals that they could not do, but Feynman
could using this method. Though he certainly never claimed to have invented it,
many of his colleagues presumed that he had and so named it after him. It is a
classic example of the fact that many results in mathematics are named after people
who did not discover them.
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Now f(x, t) = 1
x+t+1

. Thus ∂f
∂t

= −1
(x+t+1)2

. Obviously u2(t) = t and

u′2(t) = 1. Also u1(t) = t2, so u′1(t) = 2t. Hence

F ′(t) = −
∫ t

t2

1

(x+ t+ 1)2
dx+ f(t2, t)2t− f(t, t)

= −
∫ t

t2

1

(x+ t+ 1)2
dx+

2t

t2 + t+ 1
− 1

t+ t+ 1

= −
∫ t

t2

1

(x+ t+ 1)2
dx+

2t

t2 + t+ 1
− 1

2t+ 1
.

Let us now see how this helps us to actually evaluate an integral. This
is one of the most tools for integration that we have at our disposal.

Example 6.4. Evaluate the integral

∫ 1

0

x− 1

lnx
dx. The idea is to let

F (t) =

∫ 1

0

xt − 1

lnx
dx, t ≥ 0. (6.22)

Notice that F (0) = 0, u1(t) = 0 and u2(t) = 1. Because of the division
by lnx it is not obvious that the integral converges. However there is
no problem at x = 0 because 1/ ln 0 = 0. Now by L’Hôpital’s rule,

lim
x→0+

xt − 1

lnx
= lim

x→0+

txt−1

1
x

= lim
x→0+

txt = 0.

We therefore define f(x, t) = xt−1
lnx

, for x ∈ [0, 1) and f(0, t) = 0. With
this definition f is continuous on [0, 1]. Then we have a more precise
definition of F .

F (t) =

∫ 1

0

f(x, t)dx. (6.23)

We will use Leibniz’s rule to differentiate F with respect to t. Since
we are differentiating with respect to t, we treat x as fixed. Now
observe that xt = et lnx. So that d

dt

(
et lnx

)
= lnxet lnx = xt lnx. Clearly

d
dt

(
1

lnx

)
= 0. Hence

F ′(t) =

∫ 1

0

∂

∂t

xt − 1

lnx
dx

=

∫ 1

0

xt
lnx

lnx
dx =

[
xt+1

t+ 1

]1

0

=
1

t+ 1
.

Then integrating both sides we have F (t) = ln(t + 1) + C, C is a
constant of integration. Now F (0) = ln 1 + C = 0. However ln 1 = 0.
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Therefore C = 0. Hence

F (t) =

∫ 1

0

xt − 1

lnx
dx = ln(t+ 1). (6.24)

Thus ∫ 1

0

x− 1

lnx
dx = F (1) = ln 2.

This is the method of differentiation under the integral sign: Intro-
duce a parameter into the integral, differentiate to obtain an easier
problem, then integrate with respect to the integral to obtain the an-
swer.

We will now turn to the Gaussian integral. There are a number of
ways of calculating the Gaussian integral. Here we use one that relies
on several of the results that we have developed in these notes.

Example 6.5. We will now show that
∫∞
−∞ e

−x2dx =
√
π. Since the

integrand is even
∫∞
−∞ e

−x2dx = 2
∫∞

0
e−x

2
dx. Note that there are much

easier ways to calculate this integral. However this method is very
clever. We introduce the function

f(t) =

(∫ t

0

e−x
2

dx

)2

.

By the chain rule and the fundamental theorem of Calculus

f ′(t) = 2e−t
2

∫ t

0

e−x
2

dx

= 2

∫ t

0

e−(x2+t2)dx.

We now put x = yt so that

f ′(t) = 2t

∫ 1

0

e−(1+y2)t2dy.

We notice that

f ′(t) = 2t

∫ 1

0

e−(1+y2)t2dy = − d

dt

∫ 1

0

e−(1+y2)t2

1 + y2
dy.

Let

g(t) =

∫ 1

0

e−(1+y2)t2

1 + y2
dy,

so that f ′(t) = −g′(t) or f ′(t) + g′(t) = 0. Thus f(t) + g(t) = C, where
C is a constant. (If h′(t) = 0 for all t, h is a constant). To determine
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C, we evaluate f and g at any point and their sum must equal C. Now

f(0) =
(∫ 0

0
e−x

2
)2

= 0. Conversely

g(0) =

∫ 1

0

dy

1 + y2
=
[
tan−1 y

]1
0

=
π

4
.

Hence f(t) + g(t) = π
4

= C. Now by Arzela’s Theorem

lim
t→∞

g(t) = lim
t→∞

∫ 1

0

e−(1+x2)t2

1 + x2
dx

=

∫ 1

0

lim
t→∞

e−(1+x2)t2

1 + x2
dx

=

∫ 1

0

0dy = 0.

Similarly limt→∞ f(t) =
(∫∞

0
e−x

2
dx
)2

. However f(t) + g(t) is a con-

stant. Consequently

lim
t→∞

(f(t) + g(t)) =

(∫ ∞
0

e−x
2

dx

)2

+ 0 =
π

4
.

Hence upon taking the square root we have
∫∞

0
e−x

2
dx =

√
π

2
. A simple

change of variables gives the slightly more general result∫ ∞
−∞

e−ax
2

dx =

√
π√
a
, a > 0.

A variation on differentiating under the integral sign is to integrate
under the integral sign. We use this method to evaluate the famous
Dirichlet integral. Then we will use this to solve another problem.

Example 6.6. We show that

∫ ∞
0

sinx

x
dx =

π

2
. First notice that the

apparent singularity at x = 0 can be removed. Since limx→0
sinx
x

= 1

we can define the integrand to be f(x) = sinx
x
, x 6= 0 and f(0) = 1 and

we obtain a continuous function. Proving that the integral converges
requires some work, but we will omit it. The integral does indeed
converge. It arises in a lot areas, such as signal processing and there
are numerous ways of evaluating it. It can be evaluated using methods
from Complex Analysis, but here we use a trick that is used extensively.
We notice that for y > 0∫ ∞

0

e−xydy =

[
−1

x
e−xy

]∞
0

=
1

x
. (6.25)
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So that ∫ ∞
0

sinx

x
dx =

∫ ∞
0

sinx

∫ ∞
0

e−xydydx

=

∫ ∞
0

(∫ ∞
0

e−xy sinxdx

)
dy.

Here we reversed the order of integration. Now it is a tutorial exercise
to show that ∫ ∞

0

e−xy sinxdx =
1

1 + y2
. (6.26)

To do this use integration by parts twice and collect common terms on
one side of the expression.

Notice that we now have∫ ∞
0

sinx

x
dx =

∫ ∞
0

1

1 + y2
dy

=
[
tan−1 y

]∞
0

=
π

2
.

Since the integrand is even, we can conclude that∫ ∞
−∞

sinx

x
dx = π. (6.27)

Example 6.7. Let us now evaluate the integral

F (t) =

∫ ∞
0

e−xt
sinx

x
dx. (6.28)

We differentiate under the integral to obtain

F ′(t) =

∫ ∞
0

∂

∂t
e−xt

sinx

x
dx

=

∫ ∞
0

−xe−xt sinx
x

dx

= −
∫ ∞

0

e−xt sinxdx

= − 1

1 + t2

from the previous result. Integrating we have F (t) = − tan−1 t + C.
Here C is a constant of integration. Clearly F (0) = π

2
= C. Thus∫ ∞

0

e−xt
sinx

x
dx =

π

2
− tan−1 t. (6.29)

Example 6.8. We give a third example which involves a variant of the
idea. We will prove that

F (t) =

∫ ∞
0

e−x
2

cos(2xt)dx =

√
π

2
e−t

2

. (6.30)
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We make use of the fact that
∫∞

0
e−x

2
dx =

√
π

2
which we established in

Example 6.5.
Now we differentiate F and integrate by parts.

F ′(t) =

∫ ∞
0

∂

∂t
e−x

2

cos(2xt)dx

= −
∫ ∞

0

2xe−x
2

sin(2xt)dx

=
[
e−x

2

sin(2xt)
]∞

0
− 2t

∫ ∞
0

e−x
2

cos(2xt)dx

= −2tF (t).

This is a first order differential equation for F . It is separable. So we
have

dF

dt
= −2tF.

or
dF

F
= −2tdt.

Integrating both sides gives∫
dF

F
= lnF = −2

∫
tdt = −t2 + C. (6.31)

Note that there are constants of integration on both sides of (6.31).
However as they are just constants we can combine them into a single
constant that we call C.

Taking the exponential of both sides produces.

F (t) = eCe−t
2

= Ae−t
2

where A = eC . Now F (0) =
√
π

2
, hence∫ ∞

0

e−x
2

cos(2xt)dx =

√
π

2
e−t

2

. (6.32)

Example 6.9. As another illustration of this method, let’s do another
tricky looking integral. We will show that for a, b, t > 0,∫ ∞

0

e−xt
(

cos(ax)− cos(bx)

x

)
dx = ln

(
b2 + t2

a2 + t2

) 1
2

.

This is much easier than it looks. We begin by noting that by the
Fundamental Theorem of Calculus∫ b

a

sin(xy)dy =
cos(ax)− cos(bx)

x
. (6.33)
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Thus∫ ∞
0

e−xt
(

cos(ax)− cos(bx)

x

)
dx =

∫ ∞
0

e−xt
∫ b

a

sin(xy)dydx

=

∫ b

a

(∫ ∞
0

e−xt sin(xy)dx

)
dy

=

∫ b

a

y

y2 + t2
dy

=

[
1

2
ln(y2 + t2)

]b
a

= ln

(
b2 + t2

a2 + t2

) 1
2

.

We will do one more example before moving on to our final method.

Example 6.10. We will show that∫ ∞
0

e−pt
2 − e−qt2

t2
dt =

√
π(
√
q −√p), p, q > 0.

First notice that

e−pt
2 − e−qt2

t2
=

1

t2

(
1− pt2 +

1

2
p2t4 + · · · −

(
1− qt2 +

1

2
q2t4 − · · ·

))
= q − p+

1

2
(p2 − q2)t2 − · · ·

So we can define f(t) = e−pt
2−e−qt2

t2
, t 6= 0 and f(0) = q− p. This makes

the integrand continuous.

We know that
∫∞

0
e−at

2
dt =

√
π

2
√
a
. So∫ q

p

∫ ∞
0

e−at
2

dtda =

√
π

2

∫ q

p

da√
a

=
√
π[
√
a]qp =

√
π(
√
q −√p).

Now we reverse the order of integration to obtain∫ q

p

∫ ∞
0

e−at
2

dtda =

∫ ∞
0

∫ q

p

e−at
2

dadt

=

∫ ∞
0

[
−e
−at2

t2

]q
p

dt

=

∫ ∞
0

e−pt
2 − e−qt2

t2
dt =

√
π(
√
q −√p).
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6.3. Series Methods. We have seen that under certain circumstances
it is possible to reverse the order of an integral and a limit. We can use
this to evaluate integrals. The method is best illustrated by examples.
Note that there are special techniques for summing series. You will
learn some of them in Complex Analysis, Differential Equations and
Lebesque Integration and Fourier Analysis. We will simply state the
necessary results. One of which we have already seen.

Example 6.11. We will evaluate the integral I =

∫ 1

0

lnx

x+ 1
dx. We will

use the fact that for |x| < 1 we have

1

x+ 1
= 1− x+ x2 − x3 + x4 − · · · (6.34)

Now ln x is not bounded on [0, 1]. So we let fN(x) = lnx
∑N

n=1(−1)nxn →
lnx

(
1

x+1
− 1
)
. Each fN is Riemann integrable on [0, 1] and the se-

quence is uniformly bounded. Thus

lim
N→∞

∫ 1

0

fN(x)dx =

∫ 1

0

lim
N→∞

fN(x)dx

=

∫ 1

0

lnx

(
1

x+ 1
− 1

)
dx.

Thus ∫ 1

0

lnx

x+ 1
dx =

∫ 1

0

lnx+
∞∑
n=1

(−1)n
∫ 1

0

xn lnxdx. (6.35)

We will use the fact that limx→0+ x
a lnx = 0, a > 0. Now we integrate

by parts. ∫ 1

0

lnxdx = [x lnx− x]10 = −1

and ∫ 1

0

xn lnxdx =

[
xn+1 lnx

n+ 1

]1

0

−
∫ 1

0

xn

(n+ 1)
dx

= −
[

xn+1

(n+ 1)2

]1

0

= − 1

(n+ 1)2
.

Consequently∫ 1

0

lnx

x+ 1
dx = −1 +

∞∑
n=1

(−1)n+1

(n+ 1)2

= −
∞∑
n=0

(−1)n

(n+ 1)2
= −

∞∑
n=1

(−1)n+1

n2
.
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We have already seen that
∑∞

n=1
1
n2 = π2

6
. We will use this fact.

Notice that
∞∑
n=1

(−1)n+1

n2
= 1− 1

22
+

1

32
− 1

42
+ · · ·

=
∞∑
n=1

1

n2
− 2

(
1

22
+

1

42
+

1

62
+ · · ·

)
=
π2

6
− 2

22

(
1 +

1

22
+

1

32
+ · · ·

)
=
π2

6
− 1

2

π2

6
=
π2

12
.

Consequently

∫ 1

0

lnx

x+ 1
dx = −π

2

12
.

Example 6.12. Now let us use the same method to evaluate

I =

∫ ∞
0

xe−x

ex + 1
dx. (6.36)

To use a geometric series we write

1

ex + 1
=

1

ex(1 + e−x)
= e−x

(
1− e−x + e−2x − e−3x + · · ·

)
. (6.37)

This converges because |e−x| < 1 for x > 0. Hence

I =

∫ ∞
0

xe−2x

∞∑
n=0

(−1)ne−nxdx

=
∞∑
n=0

(−1)n
∫ ∞

0

xe−(n+2)xdx

=
∞∑
n=0

(−1)n
([

xe−(n+2)x

n+ 2

]∞
0

+
1

n+ 2

∫ ∞
0

e−(n+2)xdx

)

=
∞∑
n=0

(−1)n
[
− e
−(n+2)x

(n+ 2)2

]∞
0

=
∞∑
n=0

(−1)n
1

(n+ 2)2
=
∞∑
n=2

(−1)n
1

n2
= 1 +

∞∑
n=1

(−1)n

n2
= 1− π2

12
.

Example 6.13. From the integral

tan−1 x =

∫ x

0

dy

1 + y2

and the expansion

1

1 + y2
= 1− y2 + y4 − y6 + · · · , |y| < 1,
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we have the series

tan−1 x =

∫ x

0

(
1− y2 + y4 − y6 + · · ·

)
dy

= x− x3

3
+
x5

5
− y7

7
+ · · · , |x| < 1.

We have seen this before and the series converges uniformly within its
radius of convergence. Thus∫ 1

0

tan−1 x

x
dx =

∫ 1

0

(
1− x2

3
+
x4

5
− y6

7
+ · · ·

)
dx

=

[
x− x3

32
+
x5

52
− x7

7
+ · · ·

]1

0

=
∞∑
n=0

(−1)n

(2n+ 1)2
.

The sum of the infinite series is called Catalan’s constant and is denoted
by G. That is

G =
∞∑
n=0

(−1)n

(2n+ 1)2
.

An explicit value for G is not known, but one can show that

G = 0.915965594177219015054603514932384110774.....

It is not known if G is rational or irrational, but it is highly likely
that it is irrational and probably transcendental. Our integral can be
written ∫ 1

0

tan−1 x

x
dx = G.

Catalan’s constant arises in a surprising number of problems, particu-
larly in the evaluation of integrals. For example∫ ∞

1

lnx

x2 + 1
dx = G.

This is a tutorial exercise.

6.4. The End? For many problems, the methods we have developed
are sufficient to provide a solution. However analysis does not stop at
this point. There are areas where more sophisticated techniques are
needed. For example, do we really need uniform convergence to swap
a limit and an integral, or can we do better? The answer is that yes
we can, but it will require us to completely redefine what we mean by
integration.

At the start of the twentieth century the French mathematician Henri
Lebesgue invented a new integral that bears his name. Many of the
limitations of the Riemann integral are overcome with this new form of
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integration. See the subject Lebesgue Integration and Fourier Analysis
for the development of this new theory. Nevertheless, the Riemann
integral remains a major tool in mathematics.

The tools we have developed here underpin much of modern mathe-
matics. There are many directions that we can go in. We can extend
our results to higher dimensions, vector valued functions and complex
variables. We can also study analysis in more abstract settings. We
can study analysis on vector spaces, which provides the mathematical
underpinning for much of modern physics. Indeed Analysis is an active
field, with new discoveries being made all the time.


