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Abstract. Duality exists in nature and physics but does not clearly exist in

mathematics. In this current study, we try to investigate the duality in math-
ematics. Firstly, we develop and derive a new formula for the Zeta function.

We prove that this formula has duality characteristics representing a new kind

of mathematics. Besides, we show that the Riemann hypothesis proof is di-
rectly related to this property. In the second part of this theoretical study, the

behavior of the energy or particle in both quantum and classical physics the-

ories is explained within the proposed mathematical model framework. The
presented model can give answers to several important physics questions that

were never answered, like, for instance, the reason for the collapsing of the

wave function when being measured. In addition to explaining the Quantum
entanglement phenomenon and its instantaneous communication, the double

slits experiment and all its mysteries as well as the Stern-Gerlach experiment

can be explained based on the model. Furthermore, regarding general relativ-
ity, the model can describe a mechanism of motion that achieves a uniform

acceleration as a default particle motion in the universe, and that may explain
its extension. Finally, this model presents a paradigm for gravity and provides

a deeper explanation to understand its force and causes.

1. Introduction

What is the Riemann hypothesis ? and what is its importance?

Zeta or Direichlet series form is,

(1.1)

∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · · s ∈ C,

It takes a function form in general as
∞∫
0

x−s
∑
f(x, n) dx [3][14]. This function

has been connected with many applied scientific fields and mathematics[7]. Its im-
portance starts to appear in the nineteenth century when the mathematicians tried
to find out the distribution of the prime numbers. Zeta series has the advantage
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that its product formula contains all the prime numbers.

(1.2)

∞∑
n=1

1

ns
=

[(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
...

]−1

=
∏

p(prime)

(
1− 1

ps

)−1

This is called Euler’s product formula. In 1859, Riemann, a German mathemati-
cian, could use this formula to derive a relationship that expresses the prime number
distribution function which is represented by the π(x) function,

(1.3) π(x) ∼
∫ x

2

dt

ln t

It determines the number of primes (less than or equal) x ∈ R.
Riemann converted the Zeta series into a function, and concluded that Zeta is a
polynomial function then calculated its roots (zeros). He conjuncted that all these
zeros have the values s = 1/2+ it, they have different imaginary numbers, but they
all have the same real value, which is <(s) = 1/2, he named them non-trivial zeros
1 . This is The Riemann hypothesis: (All non-trivial zeros of the Zeta function lie
on <(s) = 1/2) [see [3], [12]] Many mathematicians believe that this hypothesis
may reveals the secrete of the prime numbers. The hypothesis gained importance
with time by increasing the number of theories that depend on it as if it is true.
This pushed some institutions such as the Clay Institute to allocate a big prize to
prove (or disprove) it [6].

The zeros of the Zeta function appeared unexpectedly in the field of nuclear
physics by Montgomery (1973) [8] when he linked it to the random matrices, and
by Odlyzko who made a numerical study of the distribution of spacings between
zeros of the Riemann zeta function and proved that the zeros of the zeta function
behave like eigenvalues of random Hermitian matrices. Matrices of this type are
used in modeling energy levels in physics, [10].
The applications of random matrices have begun to appear in many fields of applied
physics, especially, with regard to atoms and molecules[11]. Thus the applied areas
of the Zeta function were expanded.

This research consists of two parts, Mathematics and Physics. As for mathemat-
ics part, it shall be started with deriving a new Zeta formula, which is the main
formula in the research. It is mainly defined in the strip region 0 < s < 1 and can
also extend to cover all s-domain. Follow that by testing it by deriving formulas for
Zeta that are already known. After that proving the Riemann Hypothesis. Finally
studying the Zeta function zeros.

The physics part shall concern Zeta function as a unification model for the Classic
and Quantum physics.
The points that would be discussed:

1The Zeta function has two types of zeros according to the definition region, for the region
<(s) /∈ ]0, 1[ it equals zero for the values s = −3,−5,−7, ... and can easily calculated. But for the
definition region 0 < s < 1, it has another zeros which are mentioned in the Riemann hypothesis

and non-trivial means they are hard to find. What we will see later, these zeros (non-trivial)
relate specifically to the Zeta as a function, while the other zeros (trivial one) relate to the Zeta
as a series, they are defined into two independent domains.
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• A new theory describes new matter-space-time dynamic picture.
• The proof of Plank ’s law and the concept of wave-particle duality.
• Achieving the Heisenbergs uncertainty principle.
• Explaining the superposition and states.
• Explaining The Entanglement phenomenon.
• Explaining The double slits experiment.
• Explaining The Stern-Gerlach experiment.
• Achieving The Lorentz invariant.
• The acceleration frame in the model and Einsteins general relativity.
• New perspective for the Force of Gravity .

2. PART1: Mathematics part

In this section, the new Zeta formula will be derived starting with the following
theory:

Theorem 2.1. For s ∈ C, the Dirichlet series form of zeta-function

(2.1) ζ(s) =
1

1s
+

1

2s
+

1

3s
+ · · ·+ 1

ks
+ · · · =

∞∑
n=1

1

ns

can be expressed as,

(2.2) ζ(s) =
2s−1

s− 1
+

∫ ∞
1
2

x−s 2

∞∑
m=1

cos 2πmx dx

Proof. The idea here is to start with zeta integral form for combination Γ(s)ζ(s),
then manipulating this integral by extract Γ(s) function from it in the right-hand-
side then canceling Γ(s) from both sides to get again ζ(s) in a new form. So we
have Gamma function

(2.3) Γ(s) =

∫ ∞
0

ts−1e−t dt

By Combing Gamma function with Zeta we get

(2.4) Γ(s)

∞∑
n=1

n−s =

∫ ∞
0

xs−1
∞∑
n=1

e−nx dx

or

(2.5) Γ(s)ζ(s) =

∫ ∞
0

xs−1

ex − 1
dx
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Now, we’re going to extract Gamma function from the right-hand-side.
We have
(2.6)

Γ(s)ζ(s) =

∫ ∞
0

xs−1

ex − 1
dx

=

∫ ∞
0

xs−1e−
x
2

e
x
2 − e− x2

dx

=

∫ ∞
0

xs−1e−
x
2

2 sinh x
2

dx

=

∫ ∞
0

xs−1e−
x
2

(
1

x
+ 2

∞∑
m=1

(−1)m

x2 + (2πm)2

)
dx

=

∫ ∞
0

xs−1e−
x
2
dx

x
+ 2

∫ ∞
0

xs−1e−
x
2

( ∞∑
m=1

(−1)mx

x2 + (2πm)2

)
dx

= 2s−1Γ(s− 1) + 2

∞∑
m=1

(−1)m
∫ ∞

0

xs−1e−
x
2

x

x2 + (2πm)2
dx

= 2s−1 Γ(s)

s− 1
+ 2

∞∑
m=1

(−1)m
∫ ∞

0

xs−1e−
x
2

(∫ ∞
0

e−xt cos 2πmt dt

)
dx

= 2s−1 Γ(s)

s− 1
+ 2

∞∑
m=1

(−1)m
∫ ∞

0

∫ ∞
0

xs−1e−x(t+ 1
2 ) cos 2πmt dt dx

By taking the integration with respect to x, we get

(2.7) Γ(s)ζ(s) = 2s−1 Γ(s)

s− 1
+ 2

∞∑
m=1

(−1)mΓ(s)

∫ ∞
0

(
t+

1

2

)−s
cos 2πmt dt

on sitting x = t+ 1
2 , we obtain

(2.8) Γ(s)ζ(s) = 2s−1 Γ(s)

s− 1
+ 2Γ(s)

∫ ∞
1
2

x−s
∞∑
m=1

(−1)m cos 2πm(x− 1

2
) dx

since for m = 1,2,3,. . .

(2.9)

∞∑
m=1

(−1)mcos2πm(x− 1

2
) =

∞∑
m=1

(−1)m cos (2πmx− πm)

=

∞∑
m=1

cos 2πmx

hence

(2.10) Γ(s)ζ(s) = 2s−1 Γ(s)

s− 1
+ 2Γ(s)

∫ ∞
1
2

x−s
∞∑
m=1

cos 2πmx dx

Remove Gamma from both sides, we obtain

(2.11) ζ(s) =
2s−1

s− 1
+

∫ ∞
1
2

x−s 2

∞∑
m=1

cos 2πmx dx
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�

Corollary 1. For s ∈ C we have

(2.12) ζ(s) =

∫ ∞
0

x−s 2

∞∑
m=1

cos 2πmx dx 0 < <(s) < 1

Proof. from the previous theorem 2.1 and by using Dirishlet kernel and Dirac delta
function relation, where

(2.13) Dm =
∞∑

m=−∞
ei2πmx = δ(x) = 1 + 2

∞∑
m=1

cos(2πmx)

or

(2.14) 2

∞∑
m=1

cos(2πmx) = δ(x)− 1 −1

2
< x <

1

2

For a long positive x, we get

(2.15) 2

∞∑
m=1

cos(2πmx) =

∞∑
n=1

δ(x− n)− 1n n− 1

2
< x < n+

1

2

Since, n starting from 1, hence for 0 < x < 1/2 the 2
∑

cos(2πmx) = −1. Then
the first term in 2.11 in the right-hand-side can be expressed as

(2.16)
2s−1

s− 1
=

∫ 1
2

0

x−s × (−1) dx =

∫ 1
2

0

x−s 2

∞∑
m=1

cos 2πmx dx <(s) < 1

Hence

(2.17) ζ(s) =

∫ ∞
0

x−s 2

∞∑
m=1

cos 2πmx dx 0 < <(s) < 1

�

In fact, the first term in the right-hand-side in 2.11 can be expressed by two ways,
one way as integral from 0 → 1/2, and that is the previous case, the other way as
integral from 1/2− →∞, and in this case, we get

(2.18)
2s−1

s− 1
=

∫ ∞
1/2

x−s × (1) dx <(s) > 1
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So ζ(s) can be written as

(2.19)

ζ(s) =

∫ ∞
1/2

x−s × (1) dx+

∫ ∞
1/2

x−s 2

∞∑
m=1

cos 2πmx dx

=

∫ ∞
1/2

x−s × (1) dx+

∫ ∞
1/2

x−s
∞∑
m=1

[δ(x− n)− 1n] dx

=

∫ ∞
1/2

x−s × (1) dx+

∫ ∞
1/2

x−s
∞∑
m=1

δ(x− n) dx−
∫ ∞

1/2

x−s × (1) dx

=

∫ ∞
1/2

x−s
∞∑
m=1

δ(x− n) dx

=

∞∑
m=1

n−s <(s) > 1

So, we get Zeta series again, so this function has double-faced, one for <(s) < 1,
or 0 < <(s) < 1, and the other for <(s) > 1, but the form 2.17 is also, in general,
boundedly convergent, term-by-term integration, so it can be taken over any finite
range to converge for all s-domain.
In the next section, we will test the new form to ensure that its main convergence
region is 0 < <(s) < 1.

3. The new Zeta formula testing

First, we will rewrite 2.17 as

(3.1) ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx−
∫ ∞

0

x−s × (1) dx

The approach in this test is by deriving some well-known Zeta function formulas
which are already defined for 0 < <(s) < 1
3.1. First test.
Deriving the equation,

(3.2) Γ(s)ζ(s) =

∫ ∞
0

xs−1

(
1

ex − 1
− 1

x

)
dx 0 < <(s) < 1

This function is defined for 0 < <(s) < 1 (see Titchmarsh [14] ch2).
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Proof. By multiplying ζ(s), the new form, with Γ(s), we get
(3.3)

Γ(s)ζ(s) =

∫ ∞
0

xs−1e−x
( ∞∑
n=1

∫ ∞
0

t−s δ(t− n) dt−
∫ ∞

0

t−s × (1) dt
)
dx

=

∫ ∞
0

xs−1
( ∞∑
n=1

∫ ∞
0

e−tx δ(t− n) dt−
∫ ∞

0

e−tx × (1) dt
)
dx (Laplace Transform L{1})

=

∫ ∞
0

xs−1

( ∞∑
n=1

e−xn

)
dx−

∫ ∞
0

xs−1 1

x
dx

=

∫ ∞
0

xs−1

(
1

ex − 1
− 1

x

)
dx 0 < <(s) < 1

�

3.2. Second test.
Deriving the Hardy’s equation 2.

(3.4)

π−
s
2 Γ(

s

2
)ζ(s) =

2ξ(s)

s(s− 1)
=

∫ ∞
0

xs−1

( ∞∑
n=−∞

e−πn
2x2

− 1− 1

x

)
dx 0 < <(s) < 1

Proof. First we need to define
(3.5)

Γ(
s

2
) = 2π

s
2

∫ ∞
0

xs−1e−πx
2

dx (by using x→ πx2 in Gamma integral)

By multiplying the new form of ζ(s) with Γ( s2 ), we get,
(3.6)

Γ(
s

2
)ζ(s) = 2π

s
2

∞∑
n=0

∫ ∞
0

xs−1e−πx
2

( ∞∑
n=1

∫ ∞
0

t−s δ(t− n) dt−
∫ ∞

0

t−s × (1) dt

)
dx

= 2π
s
2

∞∑
n=0

∫ ∞
0

xs−1

( ∞∑
n=1

∫ ∞
0

e−πt
2x2

δ(t− n) dt−
∫ ∞

0

e−πt
2x2

× (1) dt

)
dx

= 2π
s
2

∫ ∞
0

xs−1

( ∞∑
n=1

e−πn
2x2

)
dx− 2

∫ ∞
0

xs−1

(∫ ∞
0

e−πt
2x2

(1) dt

)
dx

By using the equality

(3.7) 2

∞∑
n=1

e−πn
2x2

=

∞∑
n=−∞

e−πn
2x2

− 1

And by setting xt = y in the second term in right-hand-side, hence
(3.8)

π−
s
2 Γ(

s

2
)ζ(s) =

∫ ∞
0

xs−1

( ∞∑
n=−∞

e−πn
2x2

− 1

)
dx− 2

∫ ∞
0

xs−1

(
1

x

∫ ∞
0

e−πy
2

dy

)
dx

2Hardy derived this formula when he was trying to prove the Riemann hypothesis, and proved
that there are an infinite number of zeros for Zeta on the vertical line s = 1

2
+ it [ Edwards [3]]
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Since the integral

(3.9)

∫ ∞
0

e−πy
2

dy =
1

2

Then
(3.10)

π−
s
2 Γ(

s

2
)ζ(s) =

2ξ(s)

s(s− 1)
=

∫ ∞
0

xs−1

( ∞∑
n=−∞

e−πn
2x2

− 1− 1

x

)
dx 0 < <(s) < 1

�
3.3. Third test. Calculating the (Euler’s constant).
This formula of ζ(s) can be used to calculate (Euler’s constant γ), since

ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx−
∫ ∞

0

x−s × (1) dx

=

∞∑
n=1

n−s −
∫ ∞

0

x−s dx

= −
∫ 1

0

x−s dx+

∞∑
n=1

n−s −
∫ ∞

1

x−s dx

=
1

s− 1
+ lim
N→∞

(
N∑
n=1

n−s −
∫ N

1

x−s dx

)

hence, to calculate (Euler’s constant γ), where s = 1, we obtain

γ = lim
s→1

(
ζ(s)− 1

s− 1

)
= lim
N→∞

(
N∑
n=1

n−1 −
∫ N

1

x−1 dx

)
= lim
N→∞

(
N∑
n=1

n−1 − lnN

)

This is one formula of many other formulas to calculate γ 3

3.4. Fourth test.

The Zeta functional equation

(3.11) ζ(1− s) = 2(2π)−s cos (
π

2
s)Γ(s)ζ(s)

It is a must to test the new ζ(s) formula by multiplying it with 2(2π)−s cos (π2 s)Γ(s)
to get ζ(1− s), and make sure it has the same structure.
To restrict this study for only the strip region, we will define the first part as a
Millen transform for cos 2πx, so

(3.12) 2(2π)−s cos (
π

2
s)Γ(s) = 2

∫ ∞
0

xs−1 cos 2πx dx 0 < <(s) < 1

3https://en.wikipedia.org/wiki/Euler-Mascheroni constant
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Then, we have
(3.13){

2(2π)−s cos (
π

2
s)Γ(s)

}
ζ(s) = 2

(∫ ∞
0

xs−1 cos 2πx dx

)( ∞∑
n=1

∫ ∞
0

u−s δ(u− n) du−
∫ ∞

0

u−s × (1) du

)
on setting x=uy, then,

2(2π)−s cos (
π

2
s)Γ(s)ζ(s) = 2

∞∑
n=1

∫ ∞
0

ys−1

(∫ ∞
0

cos (2πuy) δ(u− n) du

)
dy

− 2

∫ ∞
0

ys−1

(∫ ∞
0

cos (2πuy)× 1 du

)
dy

=

∫ ∞
0

ys−12

∞∑
n=1

cos (2πny) dy −
∫ ∞

0

ys−1

∫ ∞
−∞

e−i2πuy × 1 du dy (F.T)

=

∫ ∞
0

ys−1

(
2

∞∑
n=1

cos (2πny)

)
dy −

∫ ∞
0

ys−1 × δ(y) dy

This is an unexpected result because, it is supposed to be

(3.14) ζ(1− s) =

∞∑
n=1

∫ ∞
0

ys−1 δ(y − n) dy −
∫ ∞

0

ys−1 × (1) dy

In addition, the first integral in the right-hand-side has a kernel function similar
to the Zeta function itself,so how can we understand this ? We need to re-study
the main function 2.17 again by different way. In that way, we will consider the

summation of
∞∑
n=1

cos (2πnx) as a geometric series, it is one of the ways to study

this summation.
So, it can be calculated as

(3.15)

N∑
m=0

cos 2πmx = Re

(
N∑
m=0

ei2πmx

)
N∑
m=1

cos 2πmx = Re

(
N∑
m=0

ei2πmx

)
− 1

= Re

(
ei(N+1)2πx − 1

ei2πx − 1

)
− 1

= Re

(
ei(N+1)x

ei2πx − 1

)
+ Re

(
−ei2πx

ei2πx − 1

)
Then, for N →∞, the first term,

(3.16)

I1 = lim
N→∞

Re

(
ei(N+1)2πx

ei2πx − 1

)
= lim
N→∞

sin ((N + 1
2 )2πx)

2 sin (πx)

=
1

2
δ(x) for (x = n)
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the second integral

(3.17)

I2 = lim
N→∞

Re

(
−ei2πx

ei2πx − 1

)
= lim
N→∞

Re

(
ei

2πx
2

−2i sin (πx)

)

= − sin (πx)

2 sin (πx)
= −1

2
sinπx 6= 0 or (x 6= N) ≡ | cos 2πx| < 1

We notice that the first integral I1 = 1
2δ(x) in right-hand-side is defined only for

x = N (integer) otherwise it will be zero. On the other hand, the second integral
I2 = − 1

2 is defined for x 6= N. So I1 and I2 are defined into two different domains,
and if we define x = [x] + {x} in the interval [n, n+ 1), where [x] and {x} are the
integral and fractional parts of x respectively. Then the series could be expressed
as two independent functions,

(3.18) 2

∞∑
m=1

cos (2πmx) =


δ(x), (x = [x]) ≡ (cos 2πx = 1)

−1, (x = {x}) ≡ | cos 2πx| < 1

So, Zeta function can be re-written as
(3.19)

ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx+

∫ ∞
0

x−s

[
2

∞∑
m=1

cos (2πmx)

]
| cos 2πx|<1

dx

For the second integral in the right-hand-side, we have
(3.20)∫ ∞

0

x−s × (−1) dx =

∫ ∞
0

x−s

[
2

∞∑
m=1

cos (2πmx)

]
| cos 2πx|<1

dx

=

∫ ∞
0

x−s

( ∞∑
m=1

ei2πmx +

∞∑
m=1

e−i2πmx

)
︸ ︷︷ ︸

|ei2πx|<1

dx (by setting x→ 2πx)

= (2π)s−1

[∫ ∞
0

x−s
1

e−ix − 1
dx+

∫ ∞
0

x−s
1

eix − 1
dx

]
|x| < 1

on setting y = −ix in first integral , and u = ix in the second one, we get
(3.21)∫ ∞

0

x−s × (−1) dx = (2π)s−1

[
(−i)s−1

∫ −i∞
0

y−s
1

ey − 1
dy + (i)s−1

∫ i∞

0

u−s
1

eu − 1
du

]
= (2π)s−1

[
(−i)s−1

∫ −i∞
0

y−s
∞∑
n=1

e−ny dy + (i)s−1

∫ i∞

0

u−s
∞∑
n=1

e−nu du

]

= (2π)s−1
∞∑
n=1

ns−1

[
(−i)s−1

∫ −i∞
0

y−se−y dy + (i)s−1

∫ i∞

0

u−se−u du

]
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The integral in right-hand-side can be solved by selecting an appropriate contour,
and it would equal Γ(1− s) for 0 < <(s) < 1,4 then,
(3.22)∫ ∞

0

x−s × (−1) dx = (2π)s−1
[
(−i)s−1 + (i)s−1

]
Γ(1− s)

( ∞∑
n=1

ns−1

)

= 2(2π)s−1 sin (
π

2
s)Γ(1− s)

( ∞∑
n=1

ns−1

)
0 < <(s) < 1

This is the Zeta functional equation and this part 2(2π)s−1 sin (π2 s)Γ(1− s) can be
expressed as a Mellin transform of (cos 2πx) for 0 < <(s) < 1, and this term can
be written as
(3.23)∫ ∞

0

x−s × (−1) dx =

( ∞∑
m=1

ms−1

)
2

(∫ ∞
0

x−s cos (2πx) dx

)
0 < <(s) < 1

or by setting x→ mx, then

(3.24)

∫ ∞
0

x−s × (−1) dx = 2

∞∑
m=1

∫ ∞
0

x−s cos (2πmx) dx 0 < <(s) < 1

Then,

(3.25) ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx+ 2

∞∑
m=1

∫ ∞
0

x−s cos (2πmx) dx

Therefore, the condition of x = {x} in the integral can be achieved by making
the integration first then summation, but if the summation is taken first, then the
kernel should be expressed as (−1). It seems that the convergence in the strip
region is related to the term-wise function in Zeta. Now, back to the “Fourth test”.
For simplicity ζ(s) will be defined by two functions ζ(s)dis (discontinuous kernel)
and ζ(s)con (continuous kernel) for the kernels δ(x−n) and cos 2πmx respectively,
then

(3.26) ζ(s) = ζ(s)dis + ζ(s)con

where,
(3.27)

ζ(s)dis =

∞∑
n=1

∫ ∞
0

x−sδ(x−n) dx and ζ(s)con = 2

∞∑
m=1

∫ ∞
0

x−s cos 2πmx dx

Thus,
(3.28){

2(2π)−s cos (
πs

2
)Γ(s)

}
ζ(s) =

{
2(2π)s−1 cos (

πs

2
)Γ(s)

}(
ζ(s)dis + ζ(s)con

)

4
−i∞∫
0

x−se−x dx (or)
i∞∫
0

x−se−x dx =
∞∫
0

x−se−x dx = Γ(1− s) for 0 < <(s) < 1
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Hence for ζ(s)dis, we get
(3.29)

2(2π)−s cos (
πs

2
)Γ(s)ζ(s)dis = 2

(∫ ∞
0

xs−1 cos 2πx dx

)( ∞∑
n=1

∫ ∞
0

u−s δ(u− n) du

)

= 2

∞∑
n=1

∫ ∞
0

xs−1

 ∞∫
0

cos (2πux)δ(u− n) dt

 dx

= 2

∞∑
n=1

∫ ∞
0

xs−1 cos 2πnx dx

= ζ(1− s)con

and for ζ(s)con, we obtain
(3.30)

2(2π)−s cos (
πs

2
)Γ(s)ζ(s)con = 2

(∫ ∞
0

xs−1 cos 2πx dx

)(
2

∞∑
m=1

∫ ∞
0

u−s cos (2πmu) du

)

= 2

∞∑
m=1

∫ ∞
0

xs−1

2

∞∫
0

cos (2πux) cos (2πmu) du

 dx

= 2

∞∑
m=1

∫ ∞
0

xs−1

 ∞∫
0

[cos 2πu(x+m) + cos 2πu(x−m)] du

 dx

= 2

∞∑
m=1

∫ ∞
0

xs−1 1

2
× [δ(x+m) + δ(x−m)] dx

=

∞∑
m=1

∞∫
0

xs−1 δ(x−m) dx

= ζ(1− s)dis

hence
(3.31)

2(2π)−s cos (
πs

2
)Γ(s)ζ(s) = 2

∞∑
n=1

∫ ∞
0

xs−1 cos (2πnx) dx+

∞∑
m=1

∞∫
0

xs−1δ(x−m) dx

= ζ(1− s)con + ζ(1− s)dis
= ζ(1− s)

That is the expected result.
The Zeta function in this form will be named Zeta-cosine form, and their integrals
the Zeta integral-pair or the Zeta function-pair.

Remark 3.1.
First: What is the difference between this form of ζ(s) and the origin one in 2.17?
In fact, if we try to solve the integral of 2.17, in the complex domain it will be
solved for the condition | cos (2πx)| < 1 and exclude all poles which exist for all the
values of x = n.



ZETA MODEL AS A UNIFICATION MODEL FOR QUANTUM AND CLASSICAL PHYSICS13

Whereas in this formula, the poles are taken into account, and this is expressed by
the delta function at x = n, that is the first integration in the right-hand-side.
Remark 3.2.
Second: Both integrals represent ζ(s) independently. So, the poles carry the same
information as the other part of the function. In other words, the integral of ζ(s)
can be solved for the values | cos (2πx)| = 1 which represent the poles, and express
it, as same as, the solution of the integral for the | cos (2πx)| < 1.
Remark 3.3.
Third: The important remark here is that, there is a relation between the Zeta
function-pair where, each of them is the Fourier transform of the other.

3.5. The Zeta Self-Operator.

Zeta self-operator is defined as the operator which converts ζ(s) to its conjugate
ζ(1 − s) and vise versa, and “self” because it is part from the Zeta functional
equation 5. It will be denoted by S, it takes two shapes, either Ss or S1−s. Their
equations are

(3.32)
Ss = 2(2π)−s cos (

π

2
s)Γ(s) or

S1−s = 2(2π)s−1 sin (
π

2
s)Γ(1− s)

They take the integral forms

(3.33) Ss = 2

∫ ∞
0

xs−1 cos (2πx) dx (or) S1−s = 2

∫ ∞
0

x−s cos (2πx) dx

The important relations;

(3.34) ζ(1− s) = Ssζ(s)

And for ζ(s) = ζ(s)dis + ζ(s)con in 3.25, we have

(3.35) Ssζ(s)dis = ζ(1− s)con and Ssζ(s)con = ζ(1− s)dis

3.5.1. The self-operator as a Unitary operator.
The self-operator in general has a relation

(3.36) Ss S1−s = 1

And for s = 1
2 + it it will be a unitary operator, where;

(3.37)

(
2

∫ ∞
0

x−
1
2 +it cos (2πx) dx

)∗
= 2

∫ ∞
0

x−
1
2−it cos (2πx) dx

And

(3.38)

(
2

∫ ∞
0

x−
1
2 +it cos (2πx) dx

)−1

= 2

∫ ∞
0

x−
1
2−it cos (2πx) dx

Hence

(3.39) (S 1
2 +it)

∗ = (S 1
2 +it)

−1

5It can be also named the convert operator because it converts ζ(s)dis to ζ(s)con and vise
versa,



14 SAADELDIN MAMDOUH ABDELAZIZ (OCT 24, 2022)

In the case of unitary we will denote it by S symbol without subscribe.

4. Zeta function in the strip region

In this section we will start by proving that Zeta function in strip region is only
defined for <(s) = 1/2 for two functions: first for the Zeta-cosine function ,and
second in general for Zeta with conjugating function f(x).
Then, going more deeply in Zeta function to explore its properties. Finally deducing
a new formula Zeta-sine form which is used to prove the Riemann Hypothesis.

Theorem 4.1. For s ∈ C, we have
(4.1)

ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx+ 2

∞∑
m=1

∫ ∞
0

x−s cos (2πmx) dx 0 < <(s) < 1

is only defined for <(s) = 1
2

Proof. As a result of 3.31 we get

(4.2)

ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx+ 2

∞∑
m=1

∫ ∞
0

x−s cos (2πmx) dx

and

ζ(1− s) = 2

∞∑
n=1

∫ ∞
0

xs−1 cos (2πnx) dx+

∞∑
m=1

∫ ∞
0

xs−1 δ(x−m) dx

So, n and m are equivalent and therefore there is a term-wise equality between
both functions of Zeta. Then we can write

(4.3)

∞∑
r=1

:

∫ ∞
0

x−s δ(x− r) dx = 2

∫ ∞
0

x−s cos (2πrx) dx

for r = 1 we get

(4.4)

∫ ∞
0

x−s δ(x− 1) dx = 2

∫ ∞
0

x−s cos (2πx) dx

1−s = 2

∫ ∞
0

x−s cos (2πx) dx

The Left-hand-side will be equal 1 for any value of s. Whereas the right-hand-side
is solved as 2(2π)−s cos (πs2 )Γ(s) and this term is equal 1 only for <(s) = 1/2 �

Theorem 4.2. For s ∈ C,
(4.5)

ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx+ 2

∞∑
m=1

∫ ∞
0

x−s cos (2πmx) dx 0 < <(s) < 1

The combination

(4.6)

[∫ ∞
0

xs−1f(x) dx

]
ζ(s) = F(s)ζ(s)

is only defined for <(s) = 1
2 with condition f(0) = F(0). where F(x) and F(s) are

the Fourier and the Mellin transforms respectively.
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Proof. The approach here is to study the effect of the operators SsS1−s on the
combination F(s)ζ(s), that will be the key of the proof.
By conjugating ζ(s) with f(x) function in the form F(s), we get
(4.7)(∫ ∞

0

xs−1f(x) dx
)
ζ(s)

=

(∫ ∞
0

xs−1f(x) dx

)( ∞∑
n=1

∫ ∞
0

t−s δ(t− n) dt+ 2

∞∑
m=1

∫ ∞
0

t−s cos (2πmt)

)
dt

=

∫ ∞
0

xs−1
∞∑
n=1

∫ ∞
0

f(xt) δ(t− n) dt dx+

∫ ∞
0

xs−1 2

∞∑
m=1

∫ ∞
0

f(xt) cos (2πmt) dt dx

=

∫ ∞
0

xs−1

[ ∞∑
n=1

f(nx)

]
dx+

∫ ∞
0

xs−1 1

x

[ ∞∑
m=1

F(
m

x
)

]
dx

Now, we are going to study the effect of the term (SsS1−s) = 1 ( the double self-
operators, it will be considered as the identity operator) on F(s)ζ(s) and proves
that

(SsS1−s)F(s)ζ(s) =

∫ ∞
0

x−s
1

x

[ ∞∑
n=1

f(
n

x
)

]
dx+

∫ ∞
0

x−s

[ ∞∑
m=1

F(mx)

]
dx

We conclude that the identity operation makes a reciprocal process (x→ 1/x) for
the integrands of the function F(s)ζ(s). To prove that, we have

(SsS1−s)F(s)ζ(s) = [S1−sF(s)] [Ss ζ(s)]

(4.8)

Ss ζ(s) = ζ(1− s)

= 2

∞∑
n=1

∫ ∞
0

xs−1 cos (2πnx) dx+

∞∑
m=1

∫ ∞
0

xs−1 δ(x−m) dx

and

(4.9)

S1−s F(s) =

(
2

∫ ∞
0

x−s cos (2πx) dx

)(∫ ∞
0

us−1f(u) du

)
= 2

∫ ∞
0

x−s
∫ ∞

0

f(u) cos 2πux du dx

=

∫ ∞
0

x−sF(x) dx

Then
(4.10)
[S1−sF(s)] [Ss ζ(s)]

=

(∫ ∞
0

x−sF(x) dx

)(
2

∞∑
n=1

∫ ∞
0

ts−1 cos (2πnt) dt+

∞∑
m=1

∫ ∞
0

ts−1 δ(t−m) dt

)

=

∫ ∞
0

x−s
1

x

[ ∞∑
n=1

f(
n

x
)

]
dx+

∫ ∞
0

x−s

[ ∞∑
m=1

F(mx)

]
dx

Therefore x (and/or) 1/x are the same and exactly equivalent in the integral form
of F(s) ζ(s)
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Now, we are going proof the theory for f(x) = e−πx
2

, so we have

(4.11)

F(s) =

∫ ∞
0

xs−1e−πx
2

=
1

2
π

−s
2 Γ(

s

2
)

F(e−πu
2

) = 2

∫ ∞
0

e−πu
2

cos (2πux)du = e−πx
2

= f(x)

Hence
(4.12)

1

2
π−

s
2 Γ(

s

2
)ζ(s) =

∫ ∞
0

xs−1

( ∞∑
n=1

e−πn
2x2

)
dx+

∫ ∞
0

xs−1

( ∞∑
m=1

1

|x|
e−

πm2

x2

)
dx

By applying the identity operator, we get
(4.13)

(SsS1−s)

[
1

2
π−

s
2 Γ(

s

2
)ζ(s)

]
=

∫ ∞
0

x−s

( ∞∑
n=1

1

|x|
e−

πn2

x2

)
dx+

∫ ∞
0

x−s

( ∞∑
m=1

e−πm
2x2

)
dx

=

[
1

2
π−

1−s
2 Γ(

1− s
2

)ζ(1− s)
]

This is maybe confused by the symmetric relation.

(4.14)

[
1

2
π−

s
2 Γ(

s

2
)ζ(s)

]
=

[
1

2
π−

1−s
2 Γ(

1− s
2

)ζ(1− s)
]

But,

(4.15) (SsS1−s)

[
1

2
π−

s
2 Γ(

s

2
)ζ(s)

]
=

[
1

2
π−

1−s
2 Γ(

1− s
2

)ζ(1− s)
]

is an identity relation and in this case the variable s must be identically equal 1−s,
and that leads to <(s) = 1/2.
Another way:
The Poisson summation rule is

(4.16)

∞∑
n=−∞

e−πn
2x2

=
1

x

∞∑
m=−∞

e−
πm2

x2

Then,

(4.17) 1 + 2

∞∑
n=1

e−πn
2x2

=
1

x
2

∞∑
m=1

e−
πm2

x2 +
1

x

Substituting in 4.12, then
(4.18)

π−
s
2 Γ(

s

2
)ζ(s) =

∫ ∞
0

xs−1

(
2

∞∑
n=−∞

e−πn
2x2

− 1

)
dx+

∫ ∞
0

xs−1

(
2

x

∞∑
m=−∞

e−
πm2

x2 − 1

x

)
dx

Since, both integrals in the right-hand-side are equal, then we must have

(4.19)

∫ ∞
0

xs−1 dx =

∫ ∞
0

xs−1 1

x
dx

By setting y → 1/x in the right-hand-side integral, we get

(4.20)

∫ ∞
0

xs−1 dx =

∫ ∞
0

y−s dy
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therefore the only solution is <(s) = 1/2.
Or by calculating the integrals, we have

(4.21)

∫ ∞
0

xs−1 dx =

∫ ∞
0

xs−1 1

x
dx

or

(4.22)

lim
a→∞

∫ a

1
a

xs−1 dx =

∫ a

1
a

xs−2 dx

lim
a→∞

xs

s

∣∣∣a
1
a

=
xs−1

s− 1

∣∣∣a
1
a

lim
a→∞

as − a−s

s
=
as−1 − a−(s−1)

s− 1

s− 1

s
= lim
a→∞

∣∣∣∣as−1 − a−(s−1)

as − a−s

∣∣∣∣
By taking the largest power for both numerator and denominator in the region
0 < <(s) < 1, then

(4.23)
s− 1

s
= lim
a→∞

∣∣∣∣as−1 − a−(s−1)

as − a−s

∣∣∣∣ lim
a→∞

∣∣∣∣−a−(s−1)

as

∣∣∣∣ = − lim
a→∞

∣∣a−2s+1
∣∣

The value of the limit can’t be ∞ or 0 because s 6= 0 or 1, therefore, there is only
one solution which is −2s+ 1 = 0, or <(s) = 1

2 .
Another approach
For the general function we have the Poisson general summation formula [4]

(4.24)
1

2
f(0) +

∞∑
n=1

f(nx) =
1

2

F(0)

x
+

∞∑
m=1

1

x
F(

m

x
)

where

(4.25)

F(x) = 2

∫ ∞
0

cos 2πxt f(t) dt

f(x) = 2

∫ ∞
0

cos 2πxt F(t) dt

By applying the formula for the kernel functions in 4.7, we get
(4.26)

F(s)ζ(s) =

∫ ∞
0

xs−1

[ ∞∑
n=1

f(nx) +
1

2

∫ ∞
0

xs−1f(0) − 1

2

∫ ∞
0

xs−1f(0)

]
dx+

∫ ∞
0

xs−1

[
1

x

∞∑
m=1

F(
m

x
) +

1

2

∫ ∞
0

x−s
F(0)

x
− 1

2

∫ ∞
0

x−s
F(0)

x

]
dx

Then, we get the condition

(4.27)
1

2

∫ ∞
0

xs−1 f(0) dx =
1

2

∫ ∞
0

xs−1 F(0)

x
dx
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We get the same relation 4.21, as well as, another condition f(0) = F(0) 6 . In
this approach we will use this equality without solving it. According to the identity
operation for F(s)ζ(s) we have
(4.29)

(SsS1−s)

∫ ∞
0

x−s

[ ∞∑
n=1

f(nx)

]
dx =

∫ ∞
0

xs−1

[
1

x

∞∑
n=1

f(
n

x
)

]
dx

=

∫ ∞
0

xs−1

[ ∞∑
m=1

F(mx)

]
dx+

1

2

∫ ∞
0

xs−1

(
f(0)− F(0)

x

)
dx

=

∫ ∞
0

xs−1

[ ∞∑
m=1

F(mx)

]
dx

=

∫ ∞
0

x−s

[ ∞∑
m=1

1

x
F(

m

x
)

]
dx

Where, the integral
∫∞

0
xs−1

(
f(0)− F(0)

x

)
dx = 0 since 4.27.

By conjugate F(s)ζ(s) by only one S1−s operator, then
(4.30)(

2

∫ ∞
0

x−s cos 2πx dx

)(∫ ∞
0

us−1
∞∑
n=1

f(nu) du

)

=

∞∑
n=1

2

∫ ∞
0

x−s
∫ ∞

0

cos (2πux)f(nu) du dx (by substitution y =
x

n2
, then)

=

∞∑
n=1

2

∫ ∞
0

y−s n(−2s+2)

∫ ∞
0

cos (2πn2uy)f(nu) du dy (by substitution nu = v)

=

∞∑
n=1

2

∫ ∞
0

y−s n(−2s+1)

∫ ∞
0

cos (2πnyv) f(v) dv dy ( Fourier for Gaussian see 4.11)

=

∫ ∞
0

y−s
∞∑
n=1

n(−2s+1)F(ny) dy

=

∫ ∞
0

ws−1
∞∑
n=1

n(−2s+1) 1

w
F(

n

w
) dw

Since, ∫ ∞
0

us−1
∞∑
n=1

f(nu) du =

∫ ∞
0

us−1 1

u

∞∑
n=1

F(
n

u
) du

Hence, to achieve this equality, the only solution is <(s) = 1/2, where n(−2s+1) = 1,
and 2

∫∞
0
x−s cos 2πx dx = 1.

6this condition is equivalent to

(4.28)

∫ ∞
0
F(x) dx =

∫ ∞
0

f(x) dx
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Remark 4.3.
The important note here is that, this proof depends on both functions for Zeta. It is
the tied relation between them, this connection enforces both integrals to be defined
only in <(s) = 1/2. So we get this value because both side should be equal each
other, not because of solving the equation or taking into account the conditions of
convergence. So the source of the hardness of this problem was the trying to solve
it by one leg. Which means by one integral, and that is the difference between Zeta
function in this new form and all other forms.

�

Corollary 2. For s = 1/2 ± t in the ζ(s) the self-operator Ss is always equal 1
regardless the t value.

Proof. Since Zeta function is term-wise equality, then for the first term (n = m = 1)
we have ∫ ∞

0

x−1/2+it δ(x− 1) dx = 2

∫ ∞
0

x−1/2+it cos (2πx) dx

Since the right-hand-side is equal to S1/2+it and the left-hand-side will be solved

as (1)−1/2 (1)+it = 1 regardless the t value, this result should be the same for the
right-hand-side. �

4.1. The relation between Zeta function-pair domains.
In 3.25, we say that the x variable in the kernel functions is represented by two
ways x = [x] and x = {x} for the first and second integrals respectively, so these
variables represent the domains of Zeta in its integrals. We will prove that these
domains span two-dimensions space equivalent to a complex plane. In other words,
if [x] ≡ x, then {x} ≡ ix and vise versa, but this shape of equivalence is right only
for <(s) = 1/2.
To proof that,
We started the proof in theorem 2.1 by the equation

(4.31) ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1
∞∑
n=1

e−nx dx

At the end we get the function

(4.32) ζ(s) =
2s−1

s− 1
+

∫ ∞
1
2

x−s 2

∞∑
m=1

cos 2πmx dx

As mentioned before, this function can be re-written by two different ways,
First:

(4.33)

ζ(s) =

∫ ∞
1
2

x−s × (1) dx+

∞∑
n=1

∫ ∞
1
2

x−s δ(x− n) dx−
∫ ∞

1
2

x−s × (1) dx

=

∞∑
n=1

∫ ∞
1
2

x−s δ(x− n) dx or

=

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx



20 SAADELDIN MAMDOUH ABDELAZIZ (OCT 24, 2022)

Therefore, for <(s) = 1/2, we get
(4.34)

ζ(s) =

∞∑
n=1

∫ ∞
0

x−1/2−it δ(x− n) dx =
1√
π

∫ ∞
0

x−1/2+it
∞∑
n=1

e−nx dx (x = [x])

Second, as in the corollary 1, where

ζ(s) =

∫ ∞
0

x−s 2

∞∑
m=1

cos (2πmx) dx (x = {x})

by substituting x = (2π)(iy), then

ζ(s) = 2Re

∫ ∞
0

x−s
∞∑
m=1

ei2πmx dx (|x| < 1)

= 2s πs−1 sin (
πs

2
)

∫ i∞

0

y−s
∞∑
m=1

e−my dy

= 2s πs−1 sin (
πs

2
)

∫ ∞
0

y−s
∞∑
m=1

e−my dy (and for <(s) = 1/2)

=
1√
π

∫ ∞
0

y−
1
2−it

∞∑
m=1

e−my dy (x = {x} = 2πiy)

So we get the same form in 4.34.
Since Zeta-cosine consists of the two functions, therefor it is defined into their di-
mensions which are similar to the complex plane, so they are orthonormal.

4.2. The reciprocal x in the Zeta function.
It is obvious from the previous theory [4.2] that there is an equivalence between the
operation of the double self-operators and the reciprocal x in the 4.15 where 7

(4.35) (SsS1−s)ξ(s) = ξ(1− s)

In Zeta function we only have the relation with one self-operator Ssζ(s) = ζ(1− s).
In this section, we will try to simulate the operator process by reciprocal x in ζ(s)
to get ζ(1 − s). We will study ζ(s) for s ∈ <, and setting x → 1/x in ζ(s), and
noticing that ζ(k) → ζ(1 − k), k = 0, 1, 2, .... In addition this will give us a clue a
bout the meaning of the ζ(−k) values.
One of an interesting paper that gives an idea about the values of ζ(−k) is the
Minac paper [ see [9] ]. He devised a new method to calculate ζ(−k) using a trick.
The success of this method is one of the Zeta function puzzles, no explanation has
been provided yet for this method. This method shads some light on the meaning
of these values. It can be summarized as follows;
The Bernoulli’s polynomials is defined as [13]

(4.36)

Sm(n) = 0m + 1m + ...(n− 1)m =

n−1∑
k=0

km

=
Bm+1(n)−Bm+1

m+ 1

7 ξ(s)
s(s−1)

= 1
2
π−

s
2 Γ( s

2
)ζ(s).
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Now, if we replace the argument n in Sm(n) by a variable x and then the corre-
sponding function is integrated over the interval [0, 1], we get
(4.37)

1 + ...+ 1 = n− 1 x− 1 
∫ 1

0

(x− 1) dx = −1

2
= ζ(0)

1 + ...+ (n− 1) =
n(n− 1)

2
 

x(x− 1)

2
 
∫ 1

0

x(x− 1)

2
dx = − 1

12
= ζ(−1)

..............................

Sm(n) = 0m + 1m + ...(n− 1)m  Sm(x) 
∫ 1

0

Sm(x) dx = −Bm+1

m+ 1
= ζ(−m)

The puzzle here is how to explain this converting of n→ x then taking the integral
from 0→ 1 to get ζ(−k) values ?

For this study, we will take ζ(s)dis form, the limits of the integral will be from
1→∞, because delta function originally starting from n = 1, so we have

(4.38) ζ(s) =

∞∑
n=1

∫ ∞
1

x−s δ(x− n) dx n 6= 0

By solving this integral for (s = k), k = 0, 1, 2... in direct way, we get
∞∑
n=1

n−k, this

is the Zeta regular series which gives its regular values.
Now, by setting x→ 1

x , then

ζ(s) =

∞∑
n=1

∫ 1

0

xs−2δ(
1

x
− n) dx

To calculate δ( 1
x − n) we will use the rule of The Heaviside step function H(x).

H(g(x)) =

{
H(x− x1)−H(x− x2) + ...− (−)nH(x− xn), g′(x1) > 0

1− {H(x− x1)−H(x− x2) + ...− (−)nH(x− xn)}, g′(x1) < 0

where
g(x) = g0(x− x1)(x− x2)...(x− xn)

with x1 < x2 < ... < xn. Starting with Heaviside step function H( 1
x − n) for

g(x) = 1
x

H(
1

x
− n) = 1−H(x− 1

n
)

by differentiation entails

−1

x2
δ(

1

x
− n) = −δ(x− 1

n
)

δ(
1

x
− n) = x2δ(x− 1

n
)

hence

(4.39)

ζ(s) =

∞∑
n=1

∫ 1

0

xs−2 x2δ(x− 1

n
) dx

=

∞∑
n=1

∫ 1

0

xsδ(x− 1

n
) dx
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We need a trick here, we will consider δ(x− 1
n ) as a function f(x, n), as in general

case, so we have two operations: summation and integration, and in this case
δ(x − 1

n ) function will be as a switch between x and 1
n variable. We will take the

summation first, then

(4.40)

ζ(k) =

∫ 1

0

∞∑
n=1

xkδ(x− 1

n
) dx

=

∫ 1

0

∞∑
n=1

(
1

n

)k
δ(x− 1

n
) dx

= lim
N→∞

∫ 1

0

N∑
n=1

(
1

n

)k
δ(x− 1

n
) dx

Here is the idea, we will consider
(

1
n

)
as a fraction element 0 ≤ {un} < 1, so the

fraction starts from 0 to ∞, hence the counter n will change the staring count to
be from 0 → N − 1 ( N → ∞). ζ(k) in the left-hand-side is unknown because we
don’t know which value will be expressed, so we will write it as ζ(?), therefore

(4.41) ,

ζ(?) = lim
N→∞

∫ 1

0

N−1∑
un=0

(un)kδ(x− un) dx

= lim
N→∞

∫ 1

0

Sk(N) δ(x−N) dx

=

∫ 1

0

Sk(x) dx

= −Bk+1

k + 1
= ζ(?)

There is an important remark. In the last step, if k = 2 then, we have ζ(2), and

its corresponding value will be ζ(−1), but the last equation gives us −B2+1

2+1 which

is the value of ζ(−2), and that means k in the last equation should be shifted by 1
to be k − 1, in other words, we have to do this

(4.42) ,

ζ(?) = lim
N→∞

∫ 1

0

N−1∑
un=0

(un)k−1δ(x− un) dx

= lim
N→∞

∫ 1

0

Sk−1(N) δ(x−N) dx

=

∫ 1

0

Sk−1(x) dx

= −Bk
k

= ζ(1− k)

Therefore, two things should be modified when
(

1
n

)
is considered as a fraction:

First, shifting the counter to start from 0 instead 1 and secondly, k → k − 1.
So, we conclude that Zeta function reveals another type of a conjugate relation
similar to the conjugation of the complex number, which means for σ there is



ZETA MODEL AS A UNIFICATION MODEL FOR QUANTUM AND CLASSICAL PHYSICS23

σ̄ = 1−σ, or for s = σ+ it there is s̄ = σ̄− it, and the equivalence s ≡ s̄ is achieved
in Zeta function form

(4.43) F(s)ζ(s) =

∫ ∞
0

x−s
∞∑
n=1

f(nx) dx+

∫ ∞
0

x−s̄
∞∑
m=1

F(mu) du

But this equivalent is only in the strip region 0 < <(s) < 1.
Remark 4.4.
Here, we notice that (1− σ) is taken as one variable, which leads to the conclusion
that the point (σ = 1/2) is mostly a virtual point.

4.3. The flipping and the loop in the Zeta function.
We can summarize this part by the two equations
(4.44)

F(s)ζ(s) =

∫ ∞
0

1√
x
x+it

[ ∞∑
r=1

f(rx)

]
dx+

∫ ∞
0

1√
x
x+it

[ ∞∑
r=1

F
( r
x

)]
dx

SF(s)ζ(s) =

∫ ∞
0

1√
x
x−it

[ ∞∑
r=1

F(rx)

]
dx+

∫ ∞
0

1√
x
x−it

[ ∞∑
r=1

f
( r
x

)]
dx

The S operator makes two things, flipping the sign of the imaginary variable t and
transform each function to its Fourier form. This transform makes an exchange
among their variables.

Since, they are defined into two perpendicular domains similar to the complex
plane, then the effect of the operator on the Zeta function-pair will make them as
a moving in a closed path. This idea is illustrated in the Figure 1.
By applying the operator again we get the first form. So we get a complete loop
by S2 processes.
Maybe the proving of the previous theory is enough to prove the Riemann hypoth-
esis, since Zeta is defined only for <(s) = 1/2, then all zeros will be there. But in
the next section we will prove that there is a big zero for Zeta in <(s) = 1/2, that
requires a new form for Zeta.

4.4. Zeta-sine form.
In this part we’re going to study another form for ζ(s). It will be named the
Zeta-sine form which is opposite to Zeta-cosine form in 3.25. This form has an
advantage than the Zeta-cosine because it convergences clearly in the strip region.

Lemma 4.5. For s ∈ C we have

ζ(s) =
2s−1

s− 1
+

∫ ∞
1
2

x−s 2

∞∑
m=1

cos 2πmx dx

Proof that

ζ(s) = −s
∫ ∞

0

x−s−1

(
1

2
− 2

∞∑
m=1

sin 2πmx

2πm

)
dx 0 < <(s) < 1
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s
-
 = 1/2 - it

s = 1/2 + it

s
-
 = 1/2 - it

1
x

m=1

∞

Fm
x
1

x

n=1

∞

f n
x


∑n=1
∞
f(nx)

∑m=1
∞

F(mx)

s = 1/2 + it

Figure 1. The closed loop in Zeta function

Proof.
Since

ζ(s) =
2s−1

s− 1
+

∫ ∞
1
2

x−s 2

∞∑
m=1

cos 2πmx dx

ζ(s) =
2s−1

s− 1
+

(
x−s 2

∞∑
m=1

sin 2πmx

2πm

∣∣∣∞
1
2

+ s

∫ ∞
1
2

x−s−1 2

∞∑
m=1

sin 2πmx

2πm
dx

)

we have (see [1])

2

∞∑
m=1

sin 2πmx

2πm
=

1

2
− x 0 < x < 1
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The series is bounded, and equal to zero at x = 1
2 , hence

ζ(s) =
2s−1

s− 1
+ s

∫ ∞
1
2

x−s−1 2

∞∑
m=1

sin 2πmx

2πm
dx <(s) > 0

=
2s−1

s− 1
+

(
1

2

)−s+1

−
(

1

2

)−s+1

+ s

∫ ∞
1
2

x−s−1 2

∞∑
m=1

sin 2πmx

2πm
dx

=

(
2s−1

s− 1
+ 2s−1

)
− s

∫ ∞
1
2

x−s−1

(
1

2
− 2

∞∑
m=1

sin 2πmx

2πm

)
dx

=

(
s

s− 1
2s−1

)
− s

∫ ∞
1
2

x−s−1

(
1

2
− 2

∞∑
m=1

sin 2πmx

2πm

)
dx

Since,
(4.45)

−s
∫ 1

2

0

x−s−1

(
1

2
− 2

∞∑
m=1

sin 2πmx

2πm

)
dx = −s

∫ 1
2

0

x−s−1

(
1

2
−
[

1

2
− x
])

dx

=

(
s

s− 1
2s−1

)
<(s) < 1

Then the equation follow.
�

The kernel function is expressed as

2

∞∑
m=1

sin 2πmx

2πm
=

1

2
− x 0 < x < 1

The compact form of this summation, for a long x, has a periodic property (Figure
2 ), and the function in this case can be represented by two ways. First

(4.46) 2

∞∑
m=1

sin 2πmx

2πm
=

1

2
− (x− n) n < x < n+ 1

If we solve the integration for this form, we get

1 2 3 4

x

-1.0

-0.8

-0.6

-0.4

-0.2

y

-
1

2

-
n=1

30 sin(2 n x)

n

Figure 2. The real representation of the Zeta-sine kernel
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(4.47)

ζ(s) = −s
∫ ∞

0

x−s−1 x dx+ s

∞∑
n=1

n

∫ n+1

n

x−s−1 dx

= −s
∫ ∞

0

x−s−1 x dx+

∞∑
n=1

n

(
1

ns
− 1

(n+ 1)s

)
The second integral represents ζ(s) in its series form and converge, as usual, for
<(s) > 1. These terms in this representation are encoded by the periodic property
of the ramp function x. Whereas, the first integral “officially“ equal zero [10.5
Edwards [3]]. But in fact, this integral is the same as the integral corresponding to
the integral

∫∞
0
x−s (−1) dx in 3.1, it is the responsible term for conversion ζ(s) in

the strip region 0 < <(s) < 1.
Second: The other approach will encode this periodicity by using the unit step
function as an auxiliary function (figure 3) , taking the form

1 2 3 4

x

-1.0

-0.8

-0.6

-0.4

-0.2

y

-x +
n=1

4

H(x - n)

Figure 3. The approximate shape, here the periodicity is repre-
sented by using the unit step function.

(4.48)

ζ(s) = −s
∫ ∞

0

x−s−1

(
1

2
− 2

∞∑
m=1

sin 2πmx

2πm

)
dx 0 < <(s) < 1

= −s
∞∑
n=1

∫ ∞
0

x−s−1

(
1

2
−
[
(
1

2
− x) +H(x− n))

])
dx n ≤ x ≤ (n+ 1)

= −s
∫ ∞

0

x−s dx+ s

∞∑
n=1

∫ n+1

n

x−s−1H(x− n) dx

= −s
∫ ∞

0

x−s dx+ s

∞∑
n=1

∫ ∞
n

x−s−1 dx

= −s
∫ ∞

0

x−s dx+

∞∑
n=1

n−s

Again, the first integral “officially” equal zero, and the next integral is the ζ(s)
series.
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We notice that, Zeta-sine form, in either way, gives one series representation for
ζ(s) whereas, in its corresponding Zeta-cosine, both integrals express this series.
So, we claim that the approximation form of Zeta-sine is not complete or there is
a missing part ,and that what we are going to reveal.

4.4.1. A new representation for Zeta sine form.
The series

∑∞
m=1

sinmx
m has been studied many times under the name of the Gibbs

phenomenon [5], [2], [1]. All these studies defined this series as follows,
For the interval (0, 2π), we have

f(x) =

∞∑
m=1

sinmx

m
=

f(0) = f(2π) = 0, x = 0, 2π

f(x) =
1

2
(π − x) 0 < x < 2π

Or

(4.49) 2

∞∑
m=1

sin 2πmx

2πm
=


0, x = 0, 1

1

2
− x 0 < x < 1

By comparing the Zeta-sine function with Zeta-cosine, there is a missing part which
is corresponding to δ(x−n) function in 2

∑∞
m=1 cos 2πmx. To illustrate that, first:

We will derive
∑∞
m=1

sinmx
m as a power series under the condition |eix| < 1, hence

(4.50)

∞∑
m=1

sinmx

m
= Im

( ∞∑
m=1

eimx

m

)
= Im

(
− ln (1− eix)

)
= −Im

(
ln (−ei x2 )(ei

x
2 − e−i x2 )

)
= −Im

(
ln (−2i sin (

x

2
))(ei

x
2 )
)

= −Im
(

ln (2 sin (
x

2
)) + ln (e−

π
2 ei

x
2 )
)

= −Im
(

ln (2 sin (
x

2
)) + ln (e−

1
2 (π−x))

)
=

1

2
(π − x) |eix| < 1

now, if we want to derive
∑∞
m=1 cosmx from

∑∞
m=1

sinmx
m , since

(4.51)

∞∑
m=1

cosmx =
d

dx

∞∑
m=1

sinmx

m

=
d

dx
Im

( ∞∑
m=1

eimx

m

)

=
d

dx
Im
(
− ln (1− eix)

)
=

d

dx

(
1

2
(π − x)

)
= −1

2
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under the same condition |eix| < 1, we want to estimate
∑∞
m=1 cosmx, hence

(4.52)

∞∑
m=1

cosmx = Re

( ∞∑
m=1

eimx

)
= Re

(
eix

1− eix

)
= −1

2
|eix| < 1

That means the formula of
∑∞
m=1

sinmx
m = 1

2 (π − x) corresponds only to the term

(− 1
2 ) in the

∑∞
m=1 cosmx.

Second: If we estimate
∑∞
m=1

sinmx
m from

∑∞
m=1 cosmx but for all x values, as in

3.15, 3.16 and 3.17, we get

N∑
m=1

sinmx

m
=

∫ N∑
m=1

cosmx dx

=

∫
Re

(
ei(N+1)x

eix − 1

)
dx+

∫
Re

(
eix

eix − 1

)
dx

for (N →∞)

(4.53) lim
N→∞

N∑
m=1

sinmx

m
= lim
N→∞

∫
sin ((N + 1

2 )x)

2 sin 1
2x

dx+
1

2
(π − x)

The integral in the right-hand-side represents
∫
δ(x) and gives a unit step function

H(x), but precisely, it is not jumping between two points with nothing between
them, but it is a continuous function that is defined for a very narrow interval be-
cause as a result of “Riemann-Lebesgue lemma”8 the integral in 4.53 in right-hand-

side is vanished except at the points that the function
1

2 sin ( 1
2x)

is not continuous.

In other words, if we calculate the integral for −π < x < π, we get
(4.54)∫ π

−π

sin ((N + 1
2 )x)

sin ( 1
2x)

dx =

∫ −ε
−π

sin ((N + 1
2 )x)

sin ( 1
2x)

dx+

∫ +ε

−ε

sin ((N + 1
2 )x)

sin ( 1
2x)

dx+

∫ π

+ε

sin ((N + 1
2 )x)

sin ( 1
2x)

dx

Since the 1
sin ( 1

2x)
is continuous for all interval (−π, π) except at x = 0, hence, the

first and the third terms in the right-hand-side equal zero, then

(4.55)

∫ π

−π

sin ((N + 1
2 )x)

sin ( 1
2x)

dx =

∫ +ε

−ε

sin ((N + 1
2 )x)

sin ( 1
2x)

dx

It can be described as a function

(4.56) g(x) =
1

2ε
x −ε ≤ x ≤ +ε (ε << 1)

And for the function
(

1
2 − 2

∑∞
m=1

sin 2πmx
2πm

)
the g(x) function will be as a vertical

line 1n(x), and defined only for x = n as

(4.57) 1n(x− n)

{
1, x = n (n=1,2...),

0, x 6= n

8For f(x) is a Riemann integrable on [a, b], then

lim
N→∞

b∫
a

f(x) cos (Nx) dx = 0 , lim
N→∞

b∫
a

f(x) sin (Nx) dx = 0 , and lim
N→∞

b∫
a

f(x)eiNx dx = 0
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This result could be concluded by another way, by making integral by parts for
3.25 then we get,
(4.58)

ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx+ 2

∞∑
m=1

∫ ∞
0

x−s cos (2πmx) dx

=

∞∑
n=1

x−sH(x− n)
∣∣∣n+1

n
− s

∫ ∞
0

x−s−1 H(x− n) dx+ 2

∞∑
m=1

x−s
sin 2πmx

2πm

∣∣∣∞
0
− s

∫ ∞
0

x−s−1 sin 2πmx

2πm
dx

= −s

[ ∞∑
n=1

∫ ∞
0

x−s−1 H(x− n) dx+

∞∑
m=1

∫ ∞
0

x−s−1 sin 2πmx

πm
dx

]

Where, x−s sin 2πmx
2πm

∣∣∣∞
0

= 0 for 0 < <(s) < 1, and H(x − n) is the step function

defined as

(4.59) H(x− n) =

{
1, x ≤ n
0, x > n

By re-writing the function as

(4.60) ζ(s) = −s

[ ∞∑
n=1

∫ ∞
0

x−s
H(x− n)

x
dx+

∞∑
m=1

∫ ∞
0

x−s
sin 2πmx

πmx
dx

]
Then applying the self-operator Ss we get

(4.61)

Ss
ζ(s)

−s
=

∞∑
n=1

∫ ∞
0

xs−1

(
2

∫ ∞
0

cos (2πux)
H(u− n)

u
du

)
dx+

∞∑
m=1

∫ ∞
0

xs−1

(
2

∫ ∞
0

cos (2πux)
sin 2πmu

πmu
du

)
dx

The Fourier transform in the second integral

2

∫ ∞
0

cos (2πux)
sin 2πmu

πmu
du =

H(x−m)

m

According to the first integral, this result should equal H(x−m)
x which means, this

step function is only defined for x = m, and therefore it takes the same representa-
tion of 4.57.
This function is periodic as same as the ramp function x, but does not belong to
its domain. We will describe these domains as x−y plan and define Zeta as follows;

It is a periodic function, each period can be described as a cell, one cell for a
period, each cell consists of two functions in two different domains, from left-to-
right, in x− y plan , the ramp function x moves from n→ n+ 1 by a -ve slope, it
goes down gradually then goes up vertically on the 1n function at n+ 1 in the +ve
y-axis. We will consider that the y-axis is divided into periods as the same as x-axis
which is [n, n+1], and the function 1n is varying on the +ve y-axis from n to n+1.
So the complete period in each cell will be achieved in both x and y domains. Now,
because of these two functions are defined into two different domains, then each one
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of them should independently represents ζ(s) separately in its own domain. The
function will take the form

ζ(s) = −s
∫ ∞

0

x−s−1

(
1

2
− 2

∞∑
m=1

sin 2πmx

2πm

)
dx 0 < <(s) < 1

= −s
∞∑
n=1

∫ ∞
0

x−s−1[
1

2
− (

1

2
− (x− n)) dx+ s

∞∑
n=1

∫ ∞
0

y−s−1(1n − n) dy

Then
(4.62)

ζ(s) =

[
s

∞∑
n=1

n

∫ n+1

n

x−s−1 dx− s
∫ ∞

0

x−s−1 x dx

]

+

[
s

∫ ∞
0

y−s−1 1n dy − s
∞∑
n=1

n

∫ n+1

n

y−s−1 dy

]
In order to make a right comparison between the two functions, they should be
defined in the same domain, this can be achieved by make the substitution y = 1/x
in the next integral in the right-hand-side then
(4.63)

ζ(s) =

[ ∞∑
n=1

n

(
1

ns
− 1

(n+ 1)s

)
− s

∫ ∞
0

x−s−1 x dx

]
+

[
s

∫ ∞
0

xs−1 dx− s
∞∑
n=1

n

∫ 1
n

1
n+1

xs−1 dx

]

=

[ ∞∑
n=1

n

(
1

ns
− 1

(n+ 1)s

)]
+

[
−s
∫ ∞

0

x−s dx+ s

∫ ∞
0

xs−1 dx

]
−

[ ∞∑
n=1

n

(
1

ns
− 1

(n+ 1)s

)]
So ζ(s) equals zero for <(s) = 1/2, and this is the big zero for Riemann hypothesis,
that is the complete proof for the Riemann hypothesis.

Remark 4.6.
As we notice, the terms of the series cancel each other out in both functions re-
gardless the s value, these series represent the idea of the periodicity for the kernel
function. So we concluded that all the properties of Zeta function actually achieved
locally per period, it appears that this part directly relates to its definition in the
strip region 0 < <(s) < 1, considering that it can be extended globally to all
s-domain by the periodic property of the kernel.

Remark 4.7.
This equation actually says that there are no real zeros because the Zeta function-
pair does not share its definition domains, even if we have an equivalent relation to
compute Zeta.

5. Zeta function zeros

For the t values that make Zeta-series equal zero, they give another meaning in
the Zeta (as a function) because these values affect on Zeta in different way. As an
instance, the summation operation for

∑
δ(x− n) gets again

∑
δ(x− n) as it is in

a separated form.
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The interesting things is that the representation part of the periodic property
in the kernel is extracted in a form that takes exactly the Zeta-series, which is
∞∑
n=1

n

(
1

ns
− 1

(n+ 1)s

)
and that will be equal zero for these t values. The remain-

ing part of Zeta function, in this case, will be only in the variable x from 0 → ∞
as smooth continuous function.

6. The Conclustion

Zeta function in the strip region is a formula that describes a symmetric relation
between two sub-functions, this relation has two equivalent forms, and together
these forms describe a closed loop.

Appendix

6.1. Derivative ζ(2k) from ζ(s)con.
As we calculate ζ(s) for positive and negative s from ζ(s)dis, we can do the same
thing for the ζ(s)con, here we will deduce the ζ(2k) where,
(6.1)

ζ(s)con = 2

∞∑
m=1

∫ ∞
0

x−s cos (2πmx) dx

= 2(2π)s−1

∫ ∞
0

x−s
∞∑
m=1

cos (2πmx) dx

= 2(2π)s−1

∫ ∞
0

x−s
1

2

(
1

e−ix − 1
+

1

eix − 1

)
dx where |x| < 1

= (2π)s−1

[
(−1)s+1

∫ −∞
0

x−s

eix − 1
dx+

∫ ∞
0

x−s

eix − 1
dx

]
= (2π)s−1

[
(−1)s+1

∫ −∞
0

(i)s−1(ix)−s

eix − 1
d(ix) +

∫ ∞
0

(i)s−1(ix)−s

eix − 1
d(ix)

]
= (2π)s−1(i)s−1

[
(−1)s+1

∫ −∞
0

(ix)−s

eix − 1
d(ix) +

∫ ∞
0

(ix)−s

eix − 1
d(ix)

]
for s = 2k, (k = 1, 2, 3, ...), then
(6.2)

ζ(2k)con = (2π)2k−1(−1)k(−i)
(
−
∫ −∞

0

(ix)−2k

eix − 1
d(ix) +

∫ ∞
0

(ix)−2k

eix − 1
d(ix)

)
= (2π)2k−1(−1)k(−i)

(∫ 0

−∞

(ix)−2k

eix − 1
d(ix) +

∫ ∞
0

(ix)−2k

eix − 1
d(ix)

)
Since,
(6.3)

z

ez − 1
=

∞∑
m=0

Bmz
m

m!
|z| < 1 (this condition is achieved for (ix) in the right-hand-side)

hence,
(6.4)

ζ(2k)con = (2π)2k−1(−1)k(−i)
∞∑
m=0

Bm
m!

(∫ 0

−∞

(ix)m−2k

(ix)
d(ix) +

∫ ∞
0

(ix)m−2k

(ix)
d(ix)

)
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and for m = 2k, then

(6.5) ζ(2k)con = (2π)2k−1(−1)k(−i)B2k

2k!

(∫ 0

−∞

1

(ix)
d(ix) +

∫ ∞
0

1

(ix)
d(ix)

)
By computing the complex integral

(6.6)

∮
dz

z

For the path in (Figure 4), then we get

ir A
r

-ir E

iR

D

B

-iR

R

C

Figure 4. Path integral for case of (k is an odd number)

(6.7)

∮
dz

z
=

∫ R

r

d(iy)

iy
+

∫
BCD

d(Reiθ)

(Reiθ)
+

∫ −r
−R

d(iy)

iy
+

∫
EA

d(reiθ)

(reiθ)
= 0

hence for (R→∞) and (r → 0), we obtain

(6.8)

∫
BCD

d(Reiθ)

(Reiθ)
→ 0 and

∫
EA

d(reiθ)

(reiθ)
=

∫ π
2

−π2
idθ = iπ

then

(6.9)

∫ ∞
0

diy

iy
+

∫ 0

−∞

diy

iy
= −iπ

therefore

(6.10)

ζ(2k)con = (2π)s−1(−1)k(−i)B2k

2k!
(−iπ)

= (−1)k+1 (2π)2k

2(2k)!
B2k

PART2: Physics Part
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6.2. Introduction.
6.2.1. Between the Quantum and the Classical physics.
From our point of view, we see that the discontinuity and the continuity nature of
the energy is the core of the problem between the ”Quantum” and the ”Classical”
physics respectively.

Mathematically, Differential equations is the main player in the study of every-
thing continuous and smooth, that is perfectly compatible with classical physics.
Whereas, the Quantum mechanics lives more in the world of the Linear algebra
and Matrices. We can do the calculations, but we can not understand the whole
picture. In the end, these two worlds remain mathematically separated.

6.2.2. What is new in the Zeta function?
The Zeta function reveals the hidden relationship between the continuity and dis-
continuity in mathematics in an abstract way, explaining how can a function hold
these properties together to be continuous and discontinuous at the same time.
In fact, we dominate it to be a model can unify all the properties of matter in both
Classical and Quantum physics. As an instance, the Zeta function on one hand can
describe the properties of the space-time curvature and on the other hand, it can
describe the main properties of a particle in Quantum mechanics (QM), so it gives
a model for the Graviton particle.

We will start by introducing a new theory, and describe a new perspective for
the physics quantities, like the matter, the energy, the space and the time by defin-
ing the concepts of these quantities and try to express it in the model. This theory
is based on the Zeta function equation, and by this theory, we will understand
the behavior of the matter and energy, and their mechanism of the motion and
translation. According to this description, we will try to answer some unsolved
questions in physics which are still open like the entangled phenomenon and how
the connection happens instantaneously between their objects. then we will suggest
an explanation to the all outcomes of the double slits experiment and The Stern-
Gerlach experiment.
After that, we will start to discuss the idea of the time and the space in the new
model, and according to this we will proof that the Zeta function achieves the con-
dition of the Lorentz invariant, as well as, it gives an answer to the reason of the
negative sign of the time t in the relation (x2− t2). After that, explain how is Zeta
function can achieve the main conditions of the General Relativity theory. At the
end we will answer the question about a new perspective for the Gravity force and
its source.

7. A unification model for the Classical and the Quantum physics

The starting point will define matter and space-time concepts in the Zeta model
equation.

7.1. The matter-space and the space-time concepts in the Zeta model.
This model provides a picture for a dynamic matter-space-time.
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7.1.1. The idea of matter-space:
In the Zeta-cosine model. 9 we have

∞∑
n=1

n−s =

∞∑
n=1

∫ ∞
0

1√
x
x−it δ(x− n) dx−

∫ ∞
0

1√
x
x−it × (1) dx

or
∞∑
n=1

n−s =

∞∑
n=1

∫ ∞
0

1√
x
x−it δ(x− n) dx+ 2

∞∑
n=1

∫ ∞
0

1√
x
x−it cos (2πnx) dx

The left-hand-side represents the pure matter 10 which is split into space and matter
or space-matter structure in the right-hand-side 11. They are represented by the
variables n and x respectively.
They are always associate together, mathematically this idea is represented by the
term (nx) in the kernel functions, and that provides the idea of the totally merge
between them or the space-matter concept.
The idea of matter-space-time: The matter or the energy takes two shapes
locality (discontinuity) and non-locality (continuity) forms which are represented
in the right-hand-side by the kernel functions δ(x− n) and 1 function respectively.
They are a result for combining of an infinite number of waves

∑
cos (2πnx), we

will consider here the energy is represented by every single one of them,
this gathering happens in two ways; First: increases (rises) vertically at one point
( synchronized in phase) and that produces the δ(x−n) function, it will be a model
for a point of mass, The concept of time can be realized by the direction of the
increasing rate of this energy (not transmitted) which is the vertical direction, so
we will assume that the time axis is the vertical axis.
Second: Assembling waves but not in-phase, that is performed in another domain,
we will assume that domain defines the Space. In this space the matter takes an-
other equivalent shape. It is spreading and it takes a direction perpendicular to the
first one, and that achieves the idea of the orthogonality between the pure space
and the pure time, and their connection gives the idea of the spacetime as one
word12.
The anti-matter idea: The spreading matter in the space takes an opposite sign
relative to its equivalent in time direction, that may gives the meaning of the “anti”
or anti-matter. The coupling function f(x) with Zeta in this model is read in the
left-hand-side as a changing in space, whereas in the right-hand-side it takes its
massive form or as a particle that has an effective mass,

∑
f(nx).

The dynamics in the model:
This model also provides a self-dynamic picture, this is achieved by the self-operator

9All the equations are defined in the strip region, and s = 1/2± it even if we did not mention

that
10we mean by “pure” the rest mass
11space: is the boundless three-dimensional extent in which objects and events have relative

position and direction (https://en.wikipeida.org/wiki/Space), the source of that definition is :
physics and metaphysics theories of space and time- Jennifer trusted).

12So, the space in this context maybe defined as: Space: a place which the matter can exist
and transmit.,
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which is coupling with Zeta as an identity operator, and for ζ(s) we always had
ζ(1− s) this conjugation is generated by the operation

(7.1) Ssζ(s) = ζ(1− s)

so we always have this process, and in this process the matter in the delta function
is converted to the space and the matter in the space converted to a new delta
function.
It looks like a heartbeat. That gives also the concept of velocity (v) which repre-
sents the velocity change between the both forms of matter or the velocity of the
matter translation.
Noting that, the functions did not convert to the same pair between each other
but to a new similar pair, that is because these actions are doing simultaneously
for both functions, so it is not possible to make two different actions instantaneous
for the same function. that means this process produces a new couple of functions
and that gives the concept of the dynamic.
Therefore, the Zeta equation can provide a dynamic model for the matter, space
and time or the matter-space-time dynamic equation. So this is the whole picture
of that model for the new perspective.

7.2. The model perspective relative to the Quantum mechanics.
In this section we will review the most important principles of Quantum Mechanics
and know how the new model explains them.

7.2.1. The proof of Plank’s law and the concept of wave-particle duality.
Wave-particle duality is the concept in quantum mechanics that every particle
or quantum entity may be described as either a particle or a wave. 13

This concept is achieved clearly by the kernel functions in the model, where a
particle (as delta function) associates by a wave, and we can write

(7.2)

∫ ∞
0

1√
x
x−it δ(x− r) =

∫ ∞
0

1√
x
x−it 2 cos (2πrx) dx (r ∈ N)

Now, if the Delta function is explained as a localized energy shape E, this energy
is quantized and transmitted by quantum number r by the unitary operator (self-
operator) action. So we have E = hr, (h here will represent the minimum amount
of energy which is confined by delta function) assuming (h = 1). And this energy is
transmitted as two opposite direction plane waves 2 cos 2πrx = (e2iπrx + e−i2πrx),
that proofs the Plank’s law.
Additionally, by the paradigm which defines a mass m or a particle as a localized
energy shape, that also achieves the relation E = mc2, (c the speed of light) or
E = m for (c = 1).

Remark 7.1.
1- For the general function f(x) we get the equivalence

(7.3)

∫ ∞
0

1√
x
x−it f(rx) =

∫ ∞
0

1√
x
x−it

1

x
F
( r
x

)
dx (r ∈ N)

13https://en.wikipedia.org/wiki/Wave-particle duality
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so the rule of “every particle has an associated wave that is not general”. It maybe
takes another shape, we think the general perspective here, regardless the shape of
matter there are localized and non-localized (in general) forms represent it.
They continually exchange their domains and translated in the same time. Their
shapes and the transmission rules obey the Fourier transform rules.
2- For the Zeta-cosine model the particle translates as a wave and the wave trans-
lates as a particle. This is different in QM, there is no concept about the wave
translation as a particle

7.2.2. The Heisenbergs uncertainty principle.
Heisenbergs uncertainty principle states that: If the x-component of the momentum
of a particle is measured with an uncertainty ∆x , then its x-position cannot, at
the same time, be measured more accurately than ∆x = h/(2∆px).
In the model and in 7.2, if a localization energy in delta function represents a
particle, so the position of this particle will be determined accurately by the function
in the left-hand-side, whereas its momentum p = h

λ = hk, k is the wave number
and k = r, so the momentum can be determined accurately by the wave form in
the right-hand-side, but the measurement process will select only one of them, in
other words, if we are going to determine the position by the function in the left-
hand-side, the function in the right-hand-side will collapse in the same moment,
and vise versa, if the measuring probe caught the wave (the right-hand-side) and
determined its momentum, then the wave will collapse and in the same moment
the function in the left-hand-side will be collapsed as well, which means it will not
be located.
In mathematics point-of-view, The uncertainty principle is defined in the wikipedia
as follows; Mathematically ,in wave mechanics, the uncertainty relation between
position and momentum arises because the expressions of the wave-function in the
two corresponding orthonormal bases in Hilbert space are Fourier transform of on
another (i.e, position and momentum are conjugate variables)14

That is exactly what the model expresses mathematically.
Remark 7.2.
It seems that the uncertainty principle describing the idea of the locality and non-
locality states of the matter, and the conjugating quantities can be generalized in
that form.

7.2.3. The symmetric translating conditions between the model and QM:.
In the model, the s-domain is the domain that keeps the conditions of the symme-
tries in the translated process, where the energy takes two shapes, mathematically
represented as a function and its Fourier transform, the more localized function,
the more wideness is spreading. the particle (much more localized as a delta func-
tion) translated as a wave, likewise the wave translated as a particle, the movement
process takes a quantization shape not infinitesimal one as in QM. It seems like
the annihilation and creation process which described by Dirac. It is carried out
by a unitary operator that performs the transformation process. The equation can

14https://en.wikipedia.org/wiki/Uncertainty principle
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express one particle, in general it takes the shape of∫ ∞
0

1√
x
xit f(rx) dx =

∫ ∞
0

1√
x
xit

1

x
F(

r

x
) dx (one particle)

or for many particles (field)∫ ∞
0

1√
x
xit

N∑
n=1

f(nx) dx =

∫ ∞
0

1√
x
xit

N∑
m=1

1

x
F(

m

x
) dx (many particles as a filed)

For Classical point of view (macroscopic) we have N → ∞ and both summations
in the equation became integrals, then
(7.4)∫ ∞

0

1√
x
xit

(∫ ∞
0

f(ux) du

)
dx =

∫ ∞
0

1√
x
xit

(∫ ∞
0

1

x
F(

v

x
) dv

)
dx∫ ∞

0

1√
x
xit

1

x

(∫ ∞
0

f(w) dw

)
dx =

∫ ∞
0

1√
x
xit

(∫ ∞
0

F(y) dy

)
dx (w = ux) , (y =

v

x
)

then

∫ ∞
0

1√
x
xit

1

x
F(0) dx =

∫ ∞
0

1√
x
xit f(0) dx (f(0) = F(0))

The total amount of the transmitted energy is represented by the values of f(0),F(0).
This equation represents the initial value problem where the functions independent
on its path and that gives the Classical point of view. For this case the kernels
of the equation becomes like a particle that moves on a smooth path, and that
represents the spacetime curvature idea, this will be discussed again in details
later.

7.2.4. superposition and states.
One of the most strangest properties in Quantum mechanics is the superposition
and states idea. Because here we cross the line between two schools, the classical
deterministic school and probability school. In fact, the model can link both schools
together, that’s what would be explained in this section.
The probability idea:
To illustrate the probability idea we need to go to the Zeta picture 3.1 and write it
as

(7.5) ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx−
∞∑
n=1

∫ ∞
0

x−s × 1n dx

The function 1n in the right-hand-side, is periodic for (n) and it is constant for
all periods so we don’t need the summation in this term, but if we notice, we
made a probability adding to this term comparable to an algebraic adding to the
δ(x−n) terms in the corresponding integral , in other words, if we adding 1n as an
algebraic which means 1 + 1 + 1 + ...→∞ but what we did ? is 1 + 1 + 1 + ... = 1
it is a probability adding. so the probability in the equation is related to the
periodicity of the kernel function. this periodicity in the other integrals converted
to real terms representing states for each period, where (n) in δ(x − n) represents
the energy level (so the energy state) for the particle, so if we have, for instance,
δ(x−1)+ δ(x−2)+ δ(x−3) this system will be described either as 3 particles have
different energies or one particle that has three states of energy and we will read
it as δ(x − 1) or δ(x − 2) or δ(x − 3), and when we determine (measure) we will
get one of them and the system collapses because they are one function. this is the
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quantum mechanics point of view, for the classical point of view, these values of
energy are adding algebraically to give one particle with 6 units of energy (1+2+3)
and for huge numbers of particles N → ∞ we converted it to 7.4, so in summary,
in quantum mechanics the (+) means the probability (or), in Classic mechanics,
the (+) means an algebraic sign.
Also we can read the function by another way: as δ(x−n) represents a state n also
1n represents that state, and the previous equation can be written as

(7.6) ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx+

∞∑
n=1

∫ ∞
0

x−s

( ∞∑
m=1

cos 2πm

)
n

dx

In this form, the meaning for this form, for any state n the particle can take
any wave with frequency m by the probability cos (2πm), and the function can be
written as

(7.7) ζ(s) =

∫ ∞
0

x−s δ(x) dx+

∫ ∞
0

x−s

( ∞∑
m=1

cos 2πm

)
dx

δ(x) here is not denoted to n = 0, but it denoted to any value of x, and we know
x ∈ N, the kernel function in the second integral in this case will be considered as
the probability distribution function (PDF) for the particle, and in case of transla-
tion we get δ(x − n) → cos (2πmx) so the particle will transmit only by the wave
frequency that has the same value of its energy state, (n = m).
So, the big picture is, for every particle we have a corresponding field 7.6 (Dirac
Quantum Filed Theory), this particle when it translates, it will take one wave form
(wave-particle duality).

7.3. The Entanglement phenomenon.
We refer this phenomenon to a new term that will be named the connection term,
it describes the connection between the shapes of the matter, means its localized
and non-localized forms. This term can be extracted from the origin form of the
Zeta function. For Zeta-cosine we say

(7.8)

2

N∑
m=1

cos (2πmx) = lim
N→∞

sin ((N + 1
2 )2πx)

sin (πx)
− 1

= lim
N→∞

sin (2πNx) cos (πx) + cos (2πNx) sin (πx)

sin (πx)
− 1

= lim
N→∞

sin (2πNx)

tan (πx)
+ cos (2πNx) − 1

so we can right Zeta equation as
(7.9)

ζ(s) =

∞∑
n=1

∫ ∞
0

x−s δ(x− n) dx+

[
lim
N→∞

∫ ∞
0

x−s cos 2πNx dx

]
+

∞∑
m=1

∫ ∞
0

x−s cos 2πm dx

This term makes the internal connection between the states inside the function,
we define these states as entangled states. In addition, we think that the system
of the particles that influenced by each other are entangled and, mathematically,
they are belonged to the same s-domain. This term in case of measurement ( the
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wave collapse) 15 it will vanish.

(7.10)∫ ∞
0

x−s cos (2πNx) dx = Ns−1

∫ ∞
0

x−s cos (2πx) dx→ 0 as N →∞ <(s) = 1/2

According what do we measure, the action and its speed will be determined. We
think that the limit of the speed of light represents the limit of changing between
the localized and non-localized form for each particle. in other words, If the pro-
cess describes transferring energy from one place to another like annihilation and
creation process, we think the maximum speed of this process will be the speed of
light and all the associated properties for this process will also transfer by the same
velocity and that achieves the locality principle in the Classical perception.
So this changing process obey the speed of light law, but if there is another type of
process which depends on the strength of the connection not on the changing form
of energy, in this case the speed of action will depend directly on the strength of the
connection term, we think that this case is happing in the collapsing measurement
process. This term in case of Zeta-cosine function has an infinite energy, therefore
we can get an instantaneous action speed and that expresses the phenomenon
.
7.3.1. Connection term for general function.
We thing that this phenomenon is not happening in general, because the connection
term maybe change according the function which conjugates with Zeta. In this case
the connection term will be
(7.11)(

2

∫ ∞
0

x−s cos 2πNx dx

)(∫ ∞
0

us−1
∞∑
n=1

f(nu) du

)
=

∫ ∞
0

y−s F(Ny) dy

So, the strength of the connection will depend on the function F(Nx), as an in-

stance, for the function f(x) = e−πx
2

, we have F(e−πu
2

) = f(x) = e−πx
2

, therefore

F(Nx) = e−πN
2x2 → 0 as N → ∞, that means that system will not show any

instantaneous actions. So we conclude that these instantaneous type of actions do
not exist in general among system particles.

7.3.2. The double slits experiment.
In the model, the particle translates as a wave and the wave translates as a particle,
this is the concept of motion. This property can explain how the gun of the particle
which facing the double slits starts in a particle shape and ended on the screen with
a particle shape as well.
The slits here are a kind of a device that is sensitive to the waves, so at these slits,
the wave part will be affected by it causing changing in its path, they will be ap-
peared as two sources for the wave, but in fact these two waves are not independent
as shown in the behavior of regular waves, they still connected by their connection
filed ( by the connection term), so they will interfere with each other behind the

15We consider here the measurement process happens by solving the integrals of the equation.

Solving the integrals are equivalent to disappear (x) variable (the space variable), so all the
quantum phenomena will disappear and the function will only have the variable (n) and that

gives a numerical result.
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slits to construct the original wave again which will turn into a particle which fi-
nally falls on the screen. So, there are no destructive waves, but there are blank
regions where the waves did not interfere each other. The evidence for that, every
particle sent out is seen on the screen, so if there are destructive points at which
the particle does not interfere, in this case, it may or may not appear in the screen
and that was not observed in the experiment, therefore they are only constructive
points. They take many many paths according to the incident angle when the wave
meets the slits, these probabilities of paths perform the striped pattern.
When we detect or monitoring the particle this mostly causes the wave-wave inter-
action like the interaction of the self-operator with the particle wave form which
causes the re-localization of the particle. Mathematically, the monitoring device
will make a Fourier transform for the wave (or for the non-localized form) of the
particle, which leads to the immediately disappearance of the particle wave and
the return of the particle localized shape wherever the place of detection whether
it was before or after the slits.

7.3.3. The Stern-Gerlach experiment.
In this part we will try to explain the Stern-Gerlach experiment by the new Model.
This experiment demonstrated that the spatial orintation of angular momentum
is quantized 16 In fact Zeta model has a structure that can exhibit both Spin and
two stats ideas, that is the Zeta-sine form. This model has a condensing shape of
energy where the very high frequencies ripples in Zeta-cosine (figure 5) condensing
into two lines take the sawtooth shape (figure 6), and that gives more condensing
particle properties.
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Figure 5. The high ripples in the Zeta-cosine form.

In fact, this shape can be used to explain the spin property of matter. If we look
at the edges of the ramp function, it appears as very short waves in edges, if they
are in a rotational motion, this motion will generate a self-spin in the direction of
the ramp function. If the energy is moving in the positive x direction, the rotation
in one end starts with a large amplitude and then decreases by moving forward,
this generates a spin which is decreasing in the direction of the moving energy,

16https://en.wikipedia.org/wiki/Stern-Gerlach experiment
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Figure 6. The correspond condensing in the Zeta-sine form

therefore the direction of the increasing spin will be in the opposite direction of the
wave motion. As for the opposite side, the rotation starts with a small amplitude
and increases with the same direction of the energy movement so the spin direction
will be in the same direction of the energy movement. Thus, finally we have two
spins opposite in direction to each other, (see the figure 7).
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Figure 7. The generation of the spin in the matter

So, this model expresses the spin property, and that explains how particles can
be affected by magnetic field as shown in the experiment, but this property alone
cannot explain the spots up and down, this effect alone can cause spots take a
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vertical line shape parallel to the magnetic field direction, not two spots up and
down. The second part in the model can explain this quantization behavior, that
is the jumping process which represents the motion on the vertical line function. It
express two states for matter beside the spin. one state is up and the other is down
with these two properties it can be explain the output of the The Stern-Gerlach
experiment, one part of particle will be affected by the magnetic field taking the
action to be aligned with its North and South direction, the second stage the en-
ergy suddenly changes its position from up to down or down to up by changing its
orientation by assistance of the flipping property [section 4.3] . So the particle goes
into two-only paths as two spots are separated from each other.
All the next aspects of the experiment can be explained by the same way. The
particle has no memory and all its behavior is due to its self characteristics.

7.4. The model for the Classical mechanics perspective.
In this section we will again use our model to explain how this model can also
express the properties of matter and energy as they are known in the Classical
mechanics. We will also begin in the same way with a set of well-known principles
that characterize Classical physics.

7.5. The principle of the least action or stationary-action.
If we start by the correspondence principle of Bohr which explain how Quantum
systems reproduces Classical physics in the limit of large Quantum numbers 17 This
idea has been demonstrated by the model in [7.2.3] by the equation 7.4 . So in the
Classical mechanics; there is thinking that the smooth movement of energy is due to
their huge numbers that are difficult to observe the quantum behavior in practice.
This is one reason, but we think that the main reason for this smooth movement is
achieving by what we say the “principle of the least action or the stationary-action
principle” 18 We think that the Zeta model expresses also this property by its ze-
ros. Our perspective here about the source of the the Quantum behavior of the
energy is due to the unitary operator (self-operator) process, this process appears
by the Zeta kernel periodicity 19 as a quantum energy transfer, this periodicity
makes fluctuations in particle’s motion, at Zeta zeros these quantum fluctuations
will disappear and the movement will become smooth, putting the system in the
state of ”The least action”.

7.5.1. The Lorentz invariant.
We will assume here that the curvature/Graviton particle will be represented by
the lightness function in the model which is the Zeta-cosine or Zeta-sine forms. In
[7.1] we concluded that the direction of the time is in the vertical axis whereas the
space takes the horizontal axis direction.
In addition, the connection of the two functions gives the meaning of the space-
time (one word). The Zeta-cosine integral-pair that represent this idea has an

17Tipler, Paul: Liewellyn, Ralph (2008) Modern physics(5ed). W.H Freeman and company

pp. 1600161
18https://en.wikipedia.org/wiki/Stationary-action principle
19we mean here the periodicity of the whole summation function in Zeta kernel
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isometric relationship at <(s) = 1/2, so what the energy travels through the hor-
izontal axis x is the same as what it passes through vertical axis y which means
(space) x = t (time).
But, the model for the Zeta-sine form gives the shape of a right-angle triangle, in
this shape the space axis is no longer perpendicular to the time axis. The energy
moves through the ramp function x in the positive direction, then leaves the ramp
function to moves up on the vertical axis through the time t axis, but it appears
that the distance that the energy moves on the ramp function is not the same in
the vertical direction, so (x 6= t), and the actual distance that the energy moves is

equal to
√
x2 − t2 (figure 8). Thus, the function in this function shows the bend-

x t

x
2 - t2

Figure 8. The actual distance for local action of moving objects
in space-time

ing of the space on time. Now the self-operator expresses the annihilation-creation
and that transfers energy in one period, this takes place continuously in a certain
speed. Since this speed seems to be the fastest possible speed means the speed
of light. If we now “imagine” that this object is moving at speed near to the
annihilation-creation speed 20, in this case, the annihilation-creation will appear to
be slower, thus the energy would take a longer distance and a longer time to be
transmitted 21 (as in the figure) , and because the rate of the transmitted energy is
constant 22 such that the horizontal movement distance does not change. Therefore√
x2 − t2 =

√
(x1)2 − (t1)2 or x2 − t2 = (x1)2 − (t1)2 (figure 9), this achieves the

Lorentz invariant in spacetime. Then, the Lorentz invariant condition is achieved
for the new model and for any function conjugate with it. Also, this proves to
us that the relationship Zeta-cosine represents the state of the moving (massless)
particle at the speed of light where x = t. And we also conclude that Zeta-sine
function represents the state of matter (masses). So, equation Zeta-sine answers
the great mystery of the time sign in the relationship x2 − t2 = x12 − t12.

20Our perspective here, the initial frame is not stationary, but is moving by the maximum

speed of the annihilation-creation process, which is the speed of light.
21Some physical phenomena began to change and by the language of Special Relativity the

time began to slow down, and the transfer of energy takes longer, this is equivalent to increase

the medium resistance or increasing the mass.
22This amount of energy is controlled by the identity operator action.
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Figure 9. The affect in space-time of moving object by the speed
compared to the speed of light

7.5.2. The acceleration frame in the model and Einsteins general relativity.
The identity operator (self-operator) in this model responsible for moving and trans-
ferring of the matter. Its kernel is the function cos (2πx), this function describes
a uniform acceleration motion, which states that the normal motion of the matter
across the universe takes place with a uniform acceleration. This can explain the
reason for these accelerations of the bodies in the universe, and also may give an
explanation to the universe expansion phenomenon 23.
Therefore, the model describes an acceleration frames and achieves the Lorentz
invariant condition these are the main pillars on the Einstein’s General Relativity
theory.

7.5.3. The force of Gravity.
So we have mass that moves with an acceleration, which gives the concept of force.
For the Gravity what’s the source of this force? The gravity force can be under-
stood as the attraction force between the object and its path, in the Zeta-cosine
model, if delta function represents the mass object and the horizontal function “1”
represents the path of the motion, then we get a gravity system, this object con-
tinuously moves on a continuous path, the source of gravity in this perspective is
due to the internal connection between the function-pair of Zeta.
The Einstein’s conception about the gravity force was “b. Principle of Equiv-
alence. Inertia and gravity are phenomena identical in nature”. 24 this
definition of Einstein seems to be quite accurate, and here we will just add a more
deep description for this inertia. Suppose that the particle is represented in the
model by the masses particle (the kernel of Zeta-sine model), therefore, there is
a translation of the ramp function to the function (1), the force of the Gravity
will be understood as an attraction force between these functions. In the model,
this translation is appeared by the identity operator process, which make a push to
this triangle by continuous annihilation-creation processes, these processes do not
happen instantaneously , but it takes time to accomplish, as well as, the creation

23One theory about the explanation of the universe expansion is the the Dark matter hy-

pothesis. Zeta function model maybe give another answer to that question.
24Einstein’s 1918 paper: On the Foundations of the General Theory of Relativity

http://einsteinpapers.press.princeton.edu/vol7-trans/49
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process takes the opposite direction appears as a reaction for the annihilation one,
this achieves the concept of inertia. The fields here appear as potentials, these
potentials express the Gravity force, so for the Zeta-sine model, we have

(7.12)

ζ(s) =

[
−s
∫ ∞

0

x−s−1 x dx+ s

∫ ∞
0

y−s−1 × 1 dy

]
= s

[∫ ∞
0

x−1/2−it (−1) dx+

∫ ∞
0

y−1/2−it
(

1

y

)
dy

]
then the gravitational force can be determined by the potential derivative (the
negative sign indicates that they are opposite in direction), so

(7.13) F = −∇U = −∇
(

1

y
− 1

)
= − ∂

∂y

1

y
+

∂

∂x
1 =

1

y2

The force here proportional to the distance in y-axis, but both functions are iso-
metric, so it’s also proportional to the distance in x-axis, or , in another way, by
reciprocal the variables in the functions we get

(7.14) ζ(s) = s

[∫ ∞
0

x−1/2+it

(
− 1

x

)
dx+

∫ ∞
0

y−1/2+it (1) dy

]
Then

(7.15) F = −∇U = −∇
(
− 1

x
+ 1

)
= − ∂

∂x

1

x
+

∂

∂y
1 =

1

x2

Therefore
(
F ∝ 1

x2

)
either. This result agrees with the Newton’s Gravity law.

This method maybe predict a type of gravity for the light or radiations, this can
be derived by the same way from the Zeta-cosine model,

(7.16) ζ(s) =

[∫ ∞
0

x−s δ(x− n) dx−
∫ ∞

0

y−s × 1 dy

]
Therefore

(7.17) F = −∇U = −∇ (δ(x)− 1) = − ∂

∂x
δ(x) =

1

x

Here we considered the rule

(7.18)

∫ ∞
0

f(x) δ′(x− a) dx = −
∫ ∞

0

f ′(x) δ(x− a) dx

then

(7.19)

∫ ∞
0

x−s δ′(x− a) dx =

∫ ∞
0

x−s
(
s

1

x

)
δ(x− a) dx

The conclusion

Thus, the model has an ability to unify the theories of general and special rel-
ativity and quantum field theory in one framework, as well as, the possibility of
generating models for particles, all of these nominate it to be a key for the unification
forces or the Grand Unified theory which requires more effort and researches.



46 SAADELDIN MAMDOUH ABDELAZIZ (OCT 24, 2022)

References

1. Zygmund A, Trigonometric series, Cambridge University Press, 2002.
2. H. S. CARSLAW, Introduction to the theory of fourier’s series and integrals, MACMILLAN

AND CO., MARTIN’S STREET, LONDON, 1921.

3. H. M. Edwards, Riemann’s zeta function, A Series of Monographs and Texbooks, ACADEMIC
PRESS, New York University, 1974.

4. A. P. Guinand, On poisson’s summation formula, Annals of Mathematics 42 (1941), no. 3,

591–603.
5. AEdwin Hewitt & Robert E. Hewitt, The gibbs-wilbraham phenomenon, manuscript, 32 pages,

1979.
6. Clay. Mathematics. instituation, Novmber 2015, http://claymath.org/millennium-

problems/riemann-hypothesis.

7. K. Kirsten, Basic zeta functions and some applications in physics, (2010).
8. Madan Lal Mehta, Random matrices, 3rd ed., 2004.

9. Jan Minac, A remark on the values of the riemann zeta function, Expositiones Mathematicae

12 (1994).
10. A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, MATH.

COMP 48 (1987), 273–308.

11. Luigi Palese, Random matrix theory in molecular dynamics analysis, Biophysical Chemistry
196 (2014).

12. Brendan Rooney Peter Borwein, Stephen Choi and Andrea Weirathmueller, The riemann

hypothesis, Springer, August 2006.
13. Oren Patashnik Ronald L. Graham, Donald E. Knuth, Concrete matheatics, second edition,

ADDISON-WESLEY PUBLISHING COMPANY, 1994.
14. E. C. TITCHMARSH, Theory of the riemann zeta-function, CLARENDON PRESS. OX-

FORD, OXFORD, 1986.

Cairo-egypt

E-mail address: saad.abdelaziz@rocketmail.com, saad.e.mamdouh@gmail.com


