
Introduction to Real Analysis.

Tutorial One.

Manipulations with inf and sup .

Recall that inf(A) is the greatest lower bound of the set of real numbers
A and sup is the least upper bound of A.

(1) Suppose that ξ > 0 and S is a non empty set of real numbers
bounded above. Prove that

sup
x∈S

ξx = ξ sup
x∈S

x.

(2) Suppose that S is non empty, bounded above and that S0 ⊆ S.
(So S0 is contained in S. It might equal S.) Prove that supS0 ≤
supS.

(3) Suppose that S is non empty, bounded above and that ξ is any
real number. Prove that supx∈S(x+ ξ) = ξ + supx∈S x.

(4) The distance between a point ξ and a set S is defined to be
d(ξ, S) = infx∈S |ξ − x|.
(a) If ξ ∈ S prove that d(ξ, S) = 0.

(b) If S is bounded above and ξ = supS, prove that d(ξ, S) =
0. If S is bounded below, and ξ = inf S prove that d(ξ, S) =
0.

(c) If I is a closed interval, prove that d(ξ, I) = 0 implies that
ξ ∈ I. If I is open, prove that we can always find an ξ /∈ I
such that d(ξ, I) = 0.

Limits
Recall that a sequence {an}∞n=1 converges to a limit a as n→∞ is for
every ε > 0 we can find an N ∈ N such that for all n ≥ N , |an−a| < ε.

Use the definition of a limit to establish the following.

(5) lim
n→∞

n

2n+ 4
=

1

2
.

(6) lim
n→∞

2n+ 1

3n+ 2
=

2

3
.

(7) lim
n→∞

n

n2 + 1
= 0.

Use properties of limits to show that

(8) lim
n→∞

(
2n3 − 3n

5n3 + 4n2 − 2

)
=

2

5
.

(9) lim
n→∞

(
√
n2 + 4− n) = 0.



Introduction to Real Analysis.

Tutorial Two.

The starred problems are harder.

Understanding Limits.

(1) For what values of x does lim
n→∞

x+ xn

1 + xn
exist?

(2) Suppose that {yn}∞n=1 is a sequence of real numbers and yn → 0
as n → ∞. Let {xn}∞n=1 be another sequence of real numbers.
Suppose that for all n, |xn − l| ≤ yn. Prove that xn → l.

(3) Prove that the sequence
{(

1 + 1
n

)n}∞
n=1

converges. Note that

if a1, ..., an are positive, then (a1a2 · · · an)
1
n ≤ 1

n

∑n
k=1 ak. (You

will prove this later). Use your calculator to guess what the
limit is.

(4) (*) Let x > 0 and let N be the smallest natural number such
that N > x. Prove that

xn

n!
≤ xN−1

(N − 1)!

( x
N

)n−N+1

, n ≥ N.

Conclude that xn/n!→ 0 as n→∞. This result is essential for
proving the convergence of power series.

(5) (*) Let α be any positive rational number and let |x| < 1. Show
that there exists a natural number N such that

(1 + 1/N)α+1|x| ≤ 1.

Deduce that

|nα+1xn| ≤ |Nα+1xN |,

for n ≥ N. Hence show that nαxn → 0 as n→∞. This is also
important in establishing the convergence of certain kinds of
series.

Subsequences.

(6) Find a convergent subsequence of {sin
(
πn
2

)
}∞n=1.

(7) Suppose that {xn}∞n=1 is a bounded sequence and for any N ,
we can find n ≥ N , such that xn ≥ b. Show that xn has a
subsequence which converges to a limit l ≥ b.

(8) Find a convergent subsequence of
{

3n+(−2)n
3n−2n

}∞
n=1

.What can you

say about the limit in general?
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(9) It can be shown that n1/n → 1 as n → ∞. Suppose that we
know that the limit exists, but we do not know its value. Deter-
mine the limit by considering the behaviour of the subsequence
{(2n)

1
2n}.
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Tutorial Three.

lim sup and lim inf .

(1) Consider the sequence 1
2
, 1
3
, 2
3
, 1
4
, 2
4
, 3
4
, 1
5
, 2
5
, 3
5
, 4
5
, 1
6
, .... Determine

the lim sup and lim inf for this sequence.
(2) Let {xn}∞n=1 be a bounded sequence with limit superior given

by l. Let the limit inferior be L. Show that for any ε > 0 we
can find N > 0 such that for all n ≥ N , xn < l + ε. Formulate
and prove the corresponding statement for xn and L.

Cauchy Sequences.

(3) Suppose that |xn+1 − xn| ≤ rn where 0 < r < 1. Prove that
{xn}∞n=1 is a Cauchy sequence.

(4) We have a sequence defined by the recursive formula

xn+2 = (xn+1xn)1/2.

Suppose that 0 < a ≤ x1 ≤ x2 ≤ b. Prove that a ≤ xn ≤ b for
all n ≥ 0. Hence establish the inequality

|xn+1 − xn| ≤
b

a+ b
|xn − xn+1|.

Deduce that {xn}∞n=1 is a Cauchy sequence and hence converges.

(5) Let x1 = a, x2 = b. Set xn+2 = 1
2
(xn+1 +xn) for all n ≥ 0. Prove

that the sequence {xn}∞n=1 converges.

(6) How do calculators determine square roots? Most operations
for determining function values are encoded into the hardware.
Here is one algorithm. We let xn+1 = 1

2
(xn + a

xn
), x1 = x0 > 0,

for a > 0. Prove that the sequence is convergent and that its
limit is

√
a. Use this to obtain an approximation to the square

root of 2. Hint: Let yn = xn√
a

and determine yn−1
yn+1

. There are

perfect squares involved.

The Bolzano-Weierstrass Theorem.

(7) Show that every point in the interval [0, 1] is the limit of a sub-
sequence of the sequence defined in Question one.

(8) (*) Given a set S of real numbers, let Sξ = {x;x ∈ S, x 6= ξ}.
We say that ξ is a limit point (or cluster point) of S if there is
a sequence of points in Sξ which converges to ξ. We can state a
variation of the Bolzano-Weierstrass Theorem as follows. Every
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bounded set with an infinite number of elements contains at
least one limit point. Prove this.
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Tutorial Four.

Finite Sums.

(1) Evaluate the sum
∑N

k=1 k. Prove your result by induction.

(2) Find a formula for the sum
∑N

k=1 k
2. Prove your formula by

induction.

(3) Sums of the form
∑N

k=1 k
n can be shown to be given by polyno-

mials in N of degree n+ 1. Use this to determine a formula for∑N
k=1 k

3. You will need to solve a system of equations to find
the coefficients of the fourth degree polynomial.

Infinite Sums.

(4) Prove that the series
∞∑
n=1

1

2n2 + 3
is convergent.

(5) Determine which of the following series converge and which di-
verge.

(i)
∞∑
n=1

(n!)2

(2n)!
, (ii)

∞∑
n=1

(n!)2

(2n)!
xn, (iii)

∞∑
n=1

√
n+ 1−

√
n

n
,

(iv)
∞∑
n=1

nαxn, |x| < 1, α > 0, (v)
∞∑
n=1

xn

n!
, x ∈ R.

(6) Prove that
∞∑
n=1

1

(n+ 1)(n+ 3)(n+ 5)
=

23

480
. Hint: Use partial

fractions.

(7) Prove that
∞∑
n=1

3n− 2

n(n+ 1)(n+ 2)
= 1.

(8) (*) The series 1 − 1
2

+ 1
3
− 1

4
+ · · · is conditionally convergent.

Let the sum be s. Let SN =
∑N

n=1
(−1)n+1

n
. Now consider the

rearranged series 1− 1
2
− 1

4
+ 1

3
− 1

6
− 1

8
+ 1

5
− 1

10
− 1

12
− 1

7
· · · . Prove

that this series converges to 1
2
s. (Hint: Look at the partial sum

S3N for this new series). The moral is that you cannot rearrange
infinitely many terms in a conditionally convergent series and
expect to get the same result.
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Tutorial Five.

Functions and their Properties.

(1) Calculate the following limits.
(a) limx→2

x
x+3

(b )limx→∞(
√
x2 + 4− x)

(c) limx→0
sin(2x)
x

(d) limx→2
x−2
x2−4

(2) Prove Theorem 2.2 in the lecture notes.

(3) Prove that the function f(x) = x2 is continuous on any interval
an that sinx is uniformly continuous on R.

(4) Prove that every polynomial is continuous everywhere.

(5) A continuous function f is defined on an interval I and for every
rational number r ∈ I, it satisfies f(r) = r2. Prove that for all
x ∈ I, f(x) = x2

(6) Show that every polynomial of odd degree has at least one real
root.

(7) Let f be a continuous function on an interval [a, b], where
−∞ < a < b < ∞. Suppose that for every x ∈ I there ex-

ists a y ∈ I such that |f(y)| ≤ 1

2
|f(x)|. Prove that there exists

an ξ ∈ I such that f(ξ) = 0.

(8) Let f : [a, b] → [a, b] be continuous. Prove that f has a fixed
point. That is, there exists ξ ∈ [a, b] such that f(ξ) = ξ.

(9) Prove that if I is an interval and f is continuous on I, then
f(I) = {y ∈ R : f(x) = y, x ∈ I} is also an interval. So contin-
uous functions map intervals to intervals.

(10) Suppose that f is continuous on R and that limx→∞ f(x) =
limx→−∞ f(x) = 0. Show that f attains its maximum and min-
imum values on R.
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Tutorial Six.

The Derivative and its Applications.

(1) Calculate the derivative of f(x) = cos x from first principles.
Then determine it a second way, using the fact that d

dx
sinx =

cosx. (Hint: Use a trig identity).

(2) Let f(x) =

{
x, x > 1

x2, x ≤ 1
. Show that f is continuous every-

where, differentiable for x 6= 1, but not differentiable at x = 1.

(3) Let f(x) =

{
2x, x ≥ 1

x2 + 1, x < 1
. Show that f is differentiable at

x = 1 and f ′(1) = 2.

(4) Consider a polynomial P of degree n with the property that
P (ξ) = 0 and P ′(ξ) = 0. Prove that there is a polynomial Q of
degree n− 2 such that P (x) = (x− ξ)2Q(x).

(5) Use induction to prove that dn

dxn
(fg) =

∑n
k=0

(
n
k

)
dkf
dxk

dn−kg
dxn−k

.

(6) Suppose that f is such that
d

dx
(f(x2)) =

d

dx
(f(x))2. Prove that

f ′(1) = 0 or f(1) = 1.

(7) Use the inverse function Theorem to give another proof of the
fact that d

dx
ex = ex.

(8) Prove that if n > 1, f(x) = (x+1)1/n−x1/n decreases on [0,∞).
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Tutorial Seven.

Taylor Series.

(1) Prove that the Taylor series expansions about a = 0 for sinx,
cosx and ex converge for all x ∈ R.

(2) Obtain the Taylor series expansions of f(x) = sin x and g(x) =
cosx about the point a = π

2
. What do you notice about the

powers in the expansion?

(3) Derive a Taylor series expansion for f(x) = (1+x)α, where α is
not necessarily an integer. Prove that the series converges for
|x| < 1.

(4) Use the series in the previous question to obtain an approxima-

tion to
√

3/2.

(5) Find a Taylor series expansion for f(x) = x
(1+x2)2

and determine

its radius of convergence. Hint: There is an easy way to do this
and a hard way.

(6) Find a Taylor expansion for f(x) = ln(1 + x) and determine its
radius of convergence.

(7) Determine the interval of convergence for the series
∑∞

n=1
xn√
n

and
∑∞

n=1
x2

n2+1
.

(8) (*) Let f(x) =

{
e−1/x

2
, x 6= 0

0, x = 0
. Prove that f is infinitely dif-

ferentiable at 0 and f (n)(0) = 0 for all n. Hence the Taylor
series expansion of f around a = 0 equals f only at x = 0.

(9) Prove that the power series
∑∞

n=0 n
2xn is convergent for all

|x| < 1 and calculate the sum. Hint compare with the geomet-
ric series.

(10) Suppose that the power series y =
∑∞

n=0 anx
n is convergent ev-

erywhere and satisfies y′ = y. Prove that it must be the series
for the function y = a0e

x.
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Introduction to Real Analysis.

Tutorial Eight.

The Riemann Integral.

(1) Determine a formula for
∑n

k=1 k
4.

(2) Use a Riemann sum to compute the value of the integral∫ 1

0

(x4 + 3x2 + 2x)dx.

(3) Prove for any natural number n, that∫ b

a

xndx =

[
1

n+ 1
xn+1

]b
a

.

(4) Use a Riemann sum to show that for any positive rational num-
ber α that

lim
n→∞

1

nα+1
(1α + 2α + · · ·+ nα) =

1

1 + α
.

(5) Suppose that f and g are continuous on [a, b]. Prove the Cauchy-
Schwartz inequality(∫ b

a

f(x)g(x)dx

)2

≤
∫ b

a

(f(x))2dx

∫ b

a

(g(x))2dx.

Hint: Consider the integral
∫ b
a
(tf(x) + g(x))2dx. Note that this

is a quadratic in t and it is nonnegative. When is a quadratic
nonnegative?

(6) Let g be continuous on the interval [a, b] and suppose that

g(x) ≥ 0 for all x ∈ [a, b]. If
∫ b
a
g(x)dx = 0 prove that g is

identically equal to zero on [a, b].

(7) Suppose that f is twice differentiable on [a, b and that f ′′ is
continuous on [a, b]. Prove the formula∫ b

a

xf ′′(x)dx = bf ′(b)− f(b)− (af ′(a)− f(a)).

(8) (*) Let f be positive and continuous on [1,∞). Now suppose
that

F (x) =

∫ x

1

f(t)dt ≤ (f(x))2, x ≥ 1.

Prove that f(x) ≥ 1
2
(x − 1) for x ∈ [1,∞). Hint: Consider the

integral
∫ x
1

F ′(t)√
F (t)

dt.
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(9) Prove that the improper Riemann integral
∫∞
0

dx
1+x2

converges
and determine its value.

(10) Prove that the improper Riemann integral
∫ 1

0
dx√
x

exists and de-

termine its value.
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Introduction to Real Analysis.

Tutorial Nine.

The Riemann Integral Continued.

(1) (*) Let f be positive, continuous and decreasing on [1,∞).
Prove that the sequence

∆n =
n∑
k=1

f(k)−
∫ n

1

f(x)dx

is decreasing and bounded below by zero and so converges.

(2) Use the previous question to prove that if
∫∞
1
f(x)dx <∞, then

the series
∑∞

n=1 f(n) is convergent. Conversely if the integral
diverges, so does the infinite series.

(3) Prove that
∑∞

n=1
1
nα

converges if α > 1 and diverges otherwise.

(4) If f is continuous and increasing on [0,∞), prove that∫ n

0

f(x)dx ≤
n∑
k=1

f(k) ≤
∫ n+1

1

f(x)dx.

Show that n lnn−n ≤ ln(n!) ≤ (n+ 1) ln(n+ 1)−n. Conclude

that nn

n!
≤ en ≤ (n+1)n+1

n!
.

(5) Suppose that h is a positive continuous function on [0,∞). Let

H(x) = 1 +

∫ x

0

f(t)dt.

If h(x) ≥ H(x) show that for x > 0, h(x) ≥ ex.

Sequences of Functions.

(6) Prove that fn(x) = x+ 1/n converges uniformly to f(x) = x on
R. Prove that f 2

n → f 2 pointwise on R, but the convergence is
not uniform.

(7) Let fn(x) = x2n(1 + x2n)−1. Let f(x) = limn→∞ fn(x). Show
that f(x) = 0 for |x| < 1, f(1) = f(−1) = 1/2. and f(x) = 1
for |x| > 1. So that each fn is continuous, but f is not continu-
ous at x = 1 and x = −1.

(8) Show that the series
∑∞

n=1
cos(nx)
n4 is uniformly convergent on

[0,∞).

(9) Prove that the series
∑∞

n=1
xn

n2 is uniformly convergent on [0, 1].
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(10) Prove that fn(x) = nxe−nx
2 → 0 pointwise on R, but the con-

vergence is not uniform. Hint: Let x = 1/
√
n.

(11) Let f be continuously differentiable on [−π, π]. Show that
limn→∞

∫ π
−π f(x) sin(nπx)dx = 0. Hint: Integrate by parts.

(12) Let fn(x) =
x2

1 + e−xn
. Determine lim

n→∞

∫ 1

0

fn(x)dx.
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Tutorial Ten.

Review Problems.

(1) Let x0 = 1 and define the sequence xn+1 = xn + 1
xn
. This is

an example of a continued fraction. Prove that the sequence
converges and the limit is the so called golden ratio. (Look up
the golden ratio to see that you have the correct answer).

(2) Test the series
∑∞

n=1
n2

n4+1
for convergence using the integral

test.

(3) If f and g are continuous on I, a ∈ I, prove that

lim
x→a

(f ◦ g)(x) = f(g(a)).

(4) Prove that a Lipschitz continuous function on an interval [a, b]
is uniformly continuous on [a, b].

(5) If f is continuous and bounded on R, prove that it is uniformly
continuous on R.

(6) Calculate the Taylor series expansion of f(x) = cos2 x.

(7) (*) Let y′(x) = y(x)2 and suppose that y(0) = 1. By repeated
applications of the chain rule, determine the first few terms of
the Taylor series expansion of y.

(8) Consider the integral
∫ 1

0
x2dx. Find numbers A,B and C such

that ∫ 1

0

x2dx = Af(0) +Bf(1/2) + Cf(1)

where f(x) = x2. What happens if you apply this rule to f(x) =
x3?

(9) The Gamma function is defined by Γ(x) =
∫∞
0
tx−1e−tdt, x > 0.

Prove that Γ(x+ 1) = xΓ(x) and Γ(n+ 1) = n! for n a natural
number.

(10) (i) Show that for s > 1,

1

ns
=

1

Γ(s)

∫ ∞
0

xs−1e−nxdx.

(ii) Prove that for s > 1,
∞∑
n=1

1

ns
=

1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx.


