
Real Analysis Tutorial 3 Solutions.
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a lot of repetition in the sequence. In fact every rational number in
(0, 1) occurs infinitely often. The terms are of the form n/m, where
m ≥ 2 is a positive integer and 1 ≤ n ≤ m− 1.

It is clear that the sequence is bounded below by zero and bounded
above by 1. So the lim inf of the sequence cannot be smaller than 0
and the lim sup cannot be larger than 1. An obvious subsequence is
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which converges to 1. So if we denote the sequence of xn we have

lim inf xn = 0,

lim supxn = 1.

Q2.
We do this by contradiction. Suppose the statement is false. Then

for some ε > 0 for each N we can find n > N such that xn ≥ l+ ε. The
Bolzano-Weierstrass Theorem says that every bounded sequence has a
convergent subsequence. Since we can find a subsequence between L
and λ + ε we can find a subsequence with limit l̄ ≥ λ + ε. But this
contradicts the definition of l.

For L, we can say that for any ε > 0 we can find an N such that for
any n > N we have xn > L− ε. The proof is basically the same. Just
replace l with L and reverse the inequality signs in the first proof.

The purpose of the next few questions is to introduce you to the idea
of iteration as a solution method. This idea is quite simple, but very
powerful. It is one of the most widely used techniques in analysis.

Q3. We have a sequence xn such that |xn+1−xn| ≤ rn, where 0 ≤ r ≤ 1.
Clearly

lim
n→∞

|xn+1 − xn| ≤ lim
n→∞

rn = 0.

However this does not mean that xn is a Cauchy sequence as the Har-
monic series example shows. However we can use our favourite adding
and subtracting trick. Let n > m. Then

|xn − xm| = |xn − xn−1 + xn−1 − xn−2 + xn−2 + · · ·xm+1 − xm|
≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|
≤ rn−1 + rn−2 + · · ·+ rm

= rm(1 + r + · · ·+ rn−m−1).
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This is a geometric progression and we have

rm(1 + r + · · ·+ rn−m−1) = rm
1− rm−n

1− r

=
rm − rn

1− r
→ 0,

as n,m → ∞. So the sequence is Cauchy. To make this a little more
precise, (though this is good enough), let ε > 0. Note that 0 < r < 1
so rm > rn if n > m. Thus∣∣∣∣rm − rn1− r

∣∣∣∣ ≤ 1

1− r
(rm + rn)

≤ 2rm

1− r
< ε,

provided that rm < 1−r
2
ε. Choose N such that m > N implies

rm <
1− r

2
ε.

Since rm → 0, this is obviously possible. Thus n,m ≥ N implies
|xn − xm| < ε so xn is a Cauchy sequence.

Q4. The sequence is defined by xn+2 = (xnxn+1)
1/2. First note that if

x1, x2 ≤ b then x3 ≤ (b2)1/2 = b. Then x4 ≤ (b2)1/2 = b etc. So that
xn ≤ b for all n. The proof that xn ≥ a is basically the same, but with
the inequality reversed.

Now to prove that we have a Cauchy sequence, we make it easier by
squaring both sides. Hence

x2n+2 = xnxn+1.

Subtract x2n+1 from both sides. Thus

x2n+1 − x2n+1 = xnxn+1 − x2n+1

= xn+1(xn − xn+1).

This implies that

xn+2 − xn+1 =
xn+1(xn − xn+1)

xn+2 + xn+1

since x2n+1 − x2n+1 = (xn+2 − xn+1)(xn+2 + xn+1). Thus

|xn+2 − xn+1| =
|xn+1|

|xn+2 + xn+1|
|xn − xn+1|.

Now a ≤ xn ≤ b. So

|xn+1|
|xn+2 + xn+1|

≤ b

a+ b
.

To see why this is, notice that |xn+1| ≤ b, so the largest value the
numerator can take is b. Hence the smallest value the denominator can
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take is a+ b, since the smallest value xn+2 can take is a. Hence we have
the inequality

|xn+2 − xn+1| ≤
b

a+ b
|xn+1 − xn|.

Or

|xn+1 − xn| ≤
b

a+ b
|xn − xn−1|.

Thus

|xn − xn−1| ≤
(

b

a+ b

)
|xn−1 − xn−2|.

Hence

|xn+1 − xn| ≤
(

b

a+ b

)2

|xn−1 − xn−2|.

Continuing we have

|xn+1 − xn| ≤
(

b

a+ b

)n−1

|x2 − x1|

= rn
|x2 − x1|

r
,

where r = b
a+b

< 1. Define the sequence x̃n = r
|x2−x1|xn. Then we have

|x̃n+1 − x̃n| ≤ rn,

so that x̃n is Cauchy by the previous question and hence convergent.
Since multiplying a convergent sequence by a constant produces an-
other convergent sequence, xn is convergent.

Q5.
Here we have xn+2 = 1

2
(xn+1+xn). We assume a 6= b. (What happens

if a = b?). This is similar to the previous two questions. The simple
observation is that

xn+2 − xn+1 =
1

2
(xn+1 + xn)− xn+1

=
1

2
(xn − xn+1).

Thus

|xn+2 − xn+1| =
1

2
|xn+1 − xn| =

(
1

2

)2

|xn − xn−1| · · ·

=
1

2n
|x2 − x1| =

|b− a|
2n

.

Now let x̃n = 1
|b−a|xn and then apply the result of Q3.

Q6
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First we assume the limit exists. Suppose limn→∞ xn+1 = limn→∞ xn =
x. Then we have

lim
n→∞

xn+1 = lim
n→∞

1

2
(xn +

a

xn
).

We have a > 0 and x0 > 0. Thus x = 1
2
(x+ a

x
) or x2 = a. Since x must

be positive, x =
√
a. Now we make the substitution yn =

xn√
a
. We will

show that limn→∞ yn = 1.
A little bit of algebra gives

yn+1 − 1 =
(yn − 1)2

2yn
,

yn+1 + 1 =
(yn + 1)2

2yn
.

(Just substitute yn into the sequence and rearrange the above expres-
sions). So that

yn+1 − 1

yn+1 + 1
=

(yn − 1)2

(yn + 1)2
.

Consequently

yn − 1

yn + 1
=

(yn−1 − 1)2

(yn−1 + 1)2
.

Which yields

yn+1 − 1

yn+1 + 1
=

(yn − 1)2

(yn + 1)2
=

(
yn−1 − 1

yn−1 + 1

)4

· · ·

=

(
y0 − 1

y0 + 1

)2n

.

Now if |y0− 1| < |y0 + 1|, which it will be with our conditions, we have(
y0 − 1

y0 + 1

)2n

→ 0,

as n→∞. Thus limn→∞
yn+1−1
yn+1+1

= 0, so yn → 1.

Now if we take a = 2, x0 = 1 we get x2 = 3
2
, x2 = 17/12, x3 =

577/408, etc. In fact x4 = 1.41421 and the first five decimal places are
correct. This is a very efficient method for computing square roots.

Q7.
It should be clear that every rational number in [0, 1] appears in

the sequence xn in Q1 infinitely often. Now we can approximate any
real number as a sequence of rationals. In fact we can define the real
numbers this way. To illustrate

√
2

2
= 0.707106...
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which can be approached by the sequence

7/10, 70/100, 707/1000, 7071/10000...

which is a subsequence of our sequence.
To make this more precise, let x ∈ (0, 1). We can find a term xn1 of

the sequence xn such that x−1 < xn1 < x+1. (Try this with x =
√
2
2

to
convince yourself that you can do this). Then we find an n2 > n1 such
that x− 1

2
< xn2 < x + 1

2
, an n3 > n2 such that x− 1

3
< xn3 < x + 1

3
,

etc. Clearly the subsequence xnk
→ x.

Q8
Let {xn} be a subsequence of S. Since {xn} is bounded it contains

a convergent subsequence by the Bolzano-Weierstrass Theorem. Let
this subsequence be xnk

and suppose that limk→∞ xnk
= ξ ∈ S. We can

think of xnk
as a sequence in its own right and so by definition ξ is a

limit point of S.


