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Markov Chains

Faculty of Science

• Recall the definition that a sequence of random variables,                     each with range S was 

a Markov Chain only if                                                                                                       

for all possible n and all possible                                . 

• In other words, when predicting         given the values of                           , for a Markov 

Chain, we only need to know the value of       .

• Viewing the sequence as observations through time, this is sometimes stated as “given the 

present value, the future results are independent of the past.”
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Markov Chains: Transition Probabilities

Faculty of Science

• For a Markov Chain,                     we define a transition probability to be the conditional 

probability that      takes the value j, given that         takes the value i.

• These probabilities are typically written with subscripts e.g.                                          .       

• If the transition probabilities do not depend upon n, then we say that the probabilities are 

stationary.   

• In this subject, we will only look at homogeneous Markov Chains, which are ones where all 

transition probabilities are stationary. 

• In such cases, there is no need to include dependence on n, i.e. we would simply write
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Transition Probabilities: Properties

Faculty of Science

• The transition probabilities have to be valid probabilities, i.e. for any system                 for all 

possible i and j.  

• Similarly, given that             , the next variable in the sequence has to take some value from S

with probability 1.

• This gives                                         or, alternatively                .

• Usually, for finite Markov Chains (i.e. those whose variables can only take one of a finite 

number of values), the transition probabilities are written in a transition matrix.
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Transition Matrices

Faculty of Science

• The transition matrix of a finite Markov Chain is defined as

• Note that since for all possible i and j,                 , the sum across each row must equal 1.

• The sum down each column, however, does not need to equal 1 (although it might.)
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Transition Matrices: Example

Faculty of Science

• Five children are playing Pass the Parcel. 

• Let the children be numbered 1, 2, 3, 4 and 5 and are                                                                        

seated sequentially in a circle (and with 5 next to 1.)

• At any given time, exactly one of the children has hold of the parcel. Each child can only 

receive it from the child numbered one lower (except 1, who receives it from 5) and can only 

pass it to the child numbered one higher (apart from 5 who gives it to 1.)



Transition Matrices: Example

Faculty of Science

• Let the number of the child holding the parcel                                                                        

after n seconds be      . Assuming each child                                                                                

does not change his/her behaviour depending                                                                        

on how the other children have acted, then the sequence of the parcel’s position each second 

forms a Markov Chain.

• Assume that Child 1 – Child 4 all behave the same but that Child 5 behaves differently. 

  nX



Transition Matrices: Example

Faculty of Science

• For Child 1 – Child 4, if he/she is holding                                                                                     

the parcel after n seconds, there is a 50%                                                                                  

chance that he/she will still be holding it after                                                                            

n +1 seconds and  a 50% chance that it be with the child numbered one higher.

• Child 5 holds the parcel a little longer each time. If he/she is holding it after n seconds, there 

is a 75% chance that he/she still has it after n +1 seconds  and a 25% chance that it is now 

with child 1.

• The transition matrix is therefore
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Transition Matrices

Faculty of Science

• How can the transition matrix be used to calculate the probabilities of possible future states?

• For each j, we have that                                                  . In other words, the probability that

child j has the parcel after n + 1 seconds is equal to the probability that child 1 has it after n

seconds multiplied by the probability that it is passed from 1 to j during the next second plus  

the probability that child 2 has it after n seconds multiplied by the probability that it is passed   

from 2 to j during the next second etc.

• Let                                               be a row vector of the probabilities that the parcel is in the 

hands of each child at time n, where                          .

• For transition matrix P, we have                  .
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Transition Matrices: Example

Faculty of Science

• Assume that that one child is selected at random to have the parcel after 0 seconds, with 

each child equally likely to be chosen. Here, we have                                                  .

• What is the probability distribution of the parcel’s position after 1 second?

•

• In other words, it is now more likely to be in the hands of child 5 than any other, which is 

expected, given that he/she holds it longer. 
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Transition Matrices: n-Step Transitions

Faculty of Science

• Calculation of the distribution of states more than one step into the future is similar.

• We know that                  , so                     and hence                                    .

• For the Pass the Parcel example, we have

• We call the matrix for calculating n steps into the future, the n-step transition matrix.
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State Diagrams

Faculty of Science

• When examining long-term behaviour of a Markov Chain, it can sometimes help to visualise 

the transitions between states on a state diagram.

• Each possible state is represented by a node on a                                                                    

graph and nodes are connected by directed,                                                                              

weighted arrows indicating the probabilities of                                                                            

moving from each state to each other (by                                                                             

convention, arrows corresponding to transitions                                                                              

with probability 0 are left out.)

• For example, the state diagram for the                                                                                       

Pass the Parcel example is:

0.25                         0.5

0.5                                          0.5

                               0.5

5                                            2

4                           3

1                         



Steady-State Distributions

Faculty of Science

• Consider now a Markov Chain which has been running for a long time.

• Many such systems settle down to give a steady-state or equilibrium distribution such that, 

as             , the probability of the system being in each state at any future time tends to some 

constant.

• That is                       .

• Let                                             . We find       by letting             in                   i.e. we solve

• is therefore found by finding the vector such that                    , subject to the fact that the 

sum of all probabilities in        must equal 1.
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Steady-State Distributions: Example

Faculty of Science

• For the Pass the Parcel example, we have

• To find       such that                   , let                                         and solve subject to
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Steady-State Distributions: Example

Faculty of Science

• This gives

• This can be  solved by                                        

• Ensuring that      

( )
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Steady-State Distributions: Eigenvectors

Faculty of Science

• Note that finding equilibrium distributions is equivalent to finding eigenvectors.

• Transposing             .     gives                      .

• Recall that v was an eigenvector of matrix A corresponding to the eigenvalue     if and only if 

Av v.  

• The steady-state distribution         can is therefore the transpose of the eigenvector of      

corresponding to the eigenvalue 1.

• Note in some cases, there can be more than one linearly independent eigenvector 

corresponding to 1 (if the characteristic equation det(A – I) = 0 has a repeated root of          .)
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Steady-State Distributions: Eigenvectors

Faculty of Science

• For a (correctly defined) transition matrix P           is always an eigenvalue of  

• This is because the rows of P each sum to 1,               .

• Once transposed, this guarantees that each of the columns of      sums to 1.

• Subtracting 1 from the elements down the leading diagonal ensures that det(     – I) = 0 since 

each column in      – I now sums to zero, ensuring that the determinant is zero.
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Steady-State Distributions: Eigenvectors

Faculty of Science

• Especially for high-dimensional matrices, finding eigenvectors (and hence the steady-state 

distributions)  is not a complex task, but it can be extremely time-consuming.

• If you have access to a mathematical package to solve for eigenvectors, this can be 

enormously beneficial, but you will need to remember to scale the eigenvector such that the 

elements all sum to 1.

• In many cases, though, a simple look at the state diagram will give some hints as to what the 

equilibrium distribution might be.



Steady-State Distributions: Examples

Faculty of Science

• For each of the following examples, assume that all possible transitions from a state are 

equally likely. For example, if there are 4 possible states to move to from your current position, 

assume that each of these happens with probability 1/4.

• If each system is left for a very long time (moves         ) what are the equilibrium probabilities 

of the systems being in each possible state? 

→

A                      B

C                      D

E                      F

G                      H

I                       J

K                      L

                     M



Steady-State Distributions: Examples

Faculty of Science

• The first two systems are easy to analyse. ABCD is completely symmetric, hence 

• Similarly, we can see that once the EFGH system lands in state G, it cannot leave hence 

eventually 

A                      B

C                      D

E                      F

G                      H

I                       J

K                      L

                     M

( )0.25 0.25 0.25 0.25eqΠ =

( )0 0 1 0eqΠ =



Steady-State Distributions: Examples

Faculty of Science

• The IJKLM system is much less intuitive, although the fact that I, J, K and L are all equally 

likely is perhaps obvious, as is the fact that M is a little more likely.

• In fact,                                              .

A                      B

C                      D

E                      F

G                      H

I                       J

K                      L

                     M

3 3 3 3 1

16 16 16 16 4
eqΠ
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Steady-State Distributions: Examples

Faculty of Science

• Consider the Markov chain with this state 

diagram.

• How many (linearly independent) 

equilibrium distributions does it have?

• How can we find these?

C                    D

A                    B

E                    F

I                   J

H                   

G                   
0.1

0.1

0.1

0.4

0.15

0.15

0.15                           0.15

                           0.15

                           0.6
0.25

1



Steady-State Distributions: Examples
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• We can write down the transition matrix.

C                    D

A                    B

E                    F

I                   J

H                   

G                   

0.25

1

0.1

0.1

0.1

0.4

0.15

0.15

0.15                           0.15

                           0.15

0.85 0.15 0 0 0 0 0 0 0 0

0 0.85 0.15 0 0 0 0 0 0 0

0.15 0 0.85 0 0 0 0 0 0 0

0 0.15 0 0.5 0 0.15 0.1 0.1 0 0

0 0 0 0 0.9 0.1 0 0 0 0

0 0 0 0 0.4 0 0 0 0.6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0.75 0.25

0 0 0 0 0 0 0 0 1 0
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Steady-State Distributions: Examples
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• Given the transition matrix, we can find 

solutions of the form

• Finding 10 dimensional eigenvectors 

is, of course, not a simple task.

• We can, though, make the problem 

easier by first analysing the state 

diagram and finding equilibrium 

distributions qualitatively.
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0 0.85 0.15 0 0 0 0 0 0 0
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0 0.15 0 0.5 0 0.15 0.1 0.1 0 0

0 0 0 0 0.9 0.1 0 0 0 0

0 0 0 0 0.4 0 0 0 0.6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0.75 0.25

0 0 0 0 0 0 0 0 1 0

A B C D E F G H I Jπ π π π π π π π π π
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Steady-State Distributions: Examples
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• Analysing the state diagram, we can see 

that there are four (linearly independent) 

equilibrium distributions

- Cycling around states A, B and C

or

- Stuck in state G

or

- Stuck in stage H

or

- Cycling around states I and J.

C                    D

A                    B

E                    F

I                   J

H                   

G                   
0.1

0.1

0.1

0.4

0.15

0.15
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Steady-State Distributions: Examples

Faculty of Science

• We can therefore look for quantitative 

solutions which satisfy:

- Cycling around states A, B and C

or

- Stuck in state G

or

- Stuck in stage H

or

- Cycling around states I and J.

C                    D

A                    B

E                    F

I                   J

H                   

G                   
0.1

0.1

0.1

0.4

0.15

0.15

0.15                           0.15

                           0.15

                           0.6
0.25

1



( )

0.85 0.15 0 0 0 0 0 0 0 0

0 0.85 0.15 0 0 0 0 0 0 0

0.15 0 0.85 0 0 0 0 0 0 0

0 0.15 0 0.5 0 0.15 0.1 0.1 0 0

0 0 0 0 0.9 0.1 0 0 0 0

0 0 0 0 0.4 0 0 0 0.6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0.75 0.25

0 0 0 0 0 0 0 0 1 0

A B C D E F G H I Jπ π π π π π π π π π
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 
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 

Steady-State Distributions: Examples

Faculty of Science

• Solving to find the solution 

corresponding to cycling around states 

A, B and C, we can set all probabilities 

to zero apart from
( )

                subject to 1.

A B C D E F G H I J

k

π π π π π π π π π π

π

=

=

,  and .A B Cπ π π



Steady-State Distributions: Examples
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• We can easily see that 

( )0 0 0 0 0 0 0

                subject to 1.

A B C

k

π π π

π

=

=

( )

0.85 0.15 0 0 0 0 0 0 0 0

0 0.85 0.15 0 0 0 0 0 0 0

0.15 0 0.85 0 0 0 0 0 0 0

0 0.15 0 0.5 0 0.15 0.1 0.1 0 0

0 0 0 0 0.9 0.1 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0.4 0 0 0 0.6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0.75 0.25

0 0 0 0 0 0 0 0 1 0

A B Cπ π π

 
 
 
 
 
 
 
 
 
 
 
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 
  
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0.85 0.15

0.15 0.85 0.15

0.15 0.85

0.5

1
solve to give  and 0.

3

A A C
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C B C

D D

A B C D

π π π

π π π π

π π π

π π

π π π π

= +

= + +

= +

=
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( )

0.85 0.15 0 0 0 0 0 0 0 0

0 0.85 0.15 0 0 0 0 0 0 0

0.15 0 0.85 0 0 0 0 0 0 0

0 0.15 0 0.5 0 0.15 0.1 0.1 0 0

0 0 0 0 0.9 0.1 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0.4 0 0 0 0.6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0.75 0.25

0 0 0 0 0 0 0 0 1 0

Gπ

 
 
 
 
 
 
 
 
 
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 
 
 
  
 

Steady-State Distributions: Examples
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• Solving to find the solution 

corresponding to being stuck in state 

G, we can set all probabilities to zero 

apart from

• Trivially, this gives

( )0 0 0 0 0 0 0 0 0

                subject to 1.

G

k

π

π

=

=

.Gπ

1.Gπ =



( )

0.85 0.15 0 0 0 0 0 0 0 0

0 0.85 0.15 0 0 0 0 0 0 0

0.15 0 0.85 0 0 0 0 0 0 0

0 0.15 0 0.5 0 0.15 0.1 0.1 0 0

0 0 0 0 0.9 0.1 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0.4 0 0 0 0.6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0.75 0.25

0 0 0 0 0 0 0 0 1 0

Hπ

 
 
 
 
 
 
 
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Steady-State Distributions: Examples
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• Solving to find the solution 

corresponding to being stuck in state 

H, we can set all probabilities to zero 

apart from

• Trivially, this gives

( )0 0 0 0 0 0 0 0 0

                subject to 1.

H

k

π

π

=

=

.Hπ

1.Hπ =



( )

0.85 0.15 0 0 0 0 0 0 0 0

0 0.85 0.15 0 0 0 0 0 0 0

0.15 0 0.85 0 0 0 0 0 0 0

0 0.15 0 0.5 0 0.15 0.1 0.1 0 0

0 0 0 0 0.9 0.1 0 0 0 0

0 0 0 0 0.4 0 0 0 0.6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0.75 0.25

0 0 0 0 0 0 0 0 1 0

A B C D E F G H I Jπ π π π π π π π π π

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Steady-State Distributions: Examples
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• Solving to find the solution 

corresponding to cycling around states 

I and J, we can set all probabilities to 

zero apart from
( )

                subject to 1.

A B C D E F G H I J

k

π π π π π π π π π π

π

=

=

 and .I Jπ π



Steady-State Distributions: Examples

Faculty of Science

• We can easily see that 

( )0 0 0 0 0 0 0 0

                subject to 1.

I J

k

π π

π

=

=

( )

0.85 0.15 0 0 0 0 0 0 0 0

0 0.85 0.15 0 0 0 0 0 0 0

0.15 0 0.85 0 0 0 0 0 0 0

0 0.15 0 0.5 0 0.15 0.1 0.1 0 0

0 0 0 0 0.9 0.1 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0.4 0 0 0 0.6 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0.75 0.25

0 0 0 0 0 0 0 0 1 0

I Jπ π

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

0.6 0.75

0.25

4 1
solve to give and .

5 5

I F I J

J I

I J

π π π π

π π

π π

= + +

=

= =



Steady-State Distributions: Examples
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• The equilibrium distributions are therefore 

given by:

- Cycling around states A, B and C

or

- Stuck in state G

or

- Stuck in stage H

or

- Cycling around states I and J.

C                    D

A                    B

E                    F

I                   J
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