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Lecture 4



Probability Mass Functions

Faculty of Science

• In Lecture 3, we saw about defining the probability mass function of a discrete random 

variable.

• This was written as a list of all possible values of the random variable 

and the probability that the variable takes each of those values.

• For example, if we are rolling one regular fair six-sided die                                                                   

and defining the random variable X to be the number shown,                                                                                      

then the probability mass function of X is
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“Standard” Probability Distributions

Faculty of Science

• Many times our random variable of interest might be a “standard” type of variable.

• That is, whatever the context of the experiment from which it is obtained, there are a 

number of random variables which commonly arise and are well studied.

• For example, flipping a single fair coin once and seeing how many times (0 or 1) it lands 

Tails gives rise to exactly the same random variable as rolling a fair regular six-side die 

once and counting how many even numbers are obtained.



The Simplest Common Random Variable
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• Consider two independent random experiments. 

• Let X be the number of Hearts cards selected when picking 

one  card at random from a standard deck of 52 with all cards 

equally likely to be chosen.

• Let Y be the number of tickets ending in a 7 selected when one                                                                     

raffle ticket is selected at random from a bucket containing tickets                                                         

numbered with integers 1-100 with all tickets equally likely to be chosen.

• Clearly
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The Simplest Common Random Variable
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• Any random variable whose probability mass function can 

be written as

is known as a Bernoulli variable.           

• In this case, we write                     .

• This distribution has range         .

1 0

( ) 1  

0 otherwise

p k

P X k p k

− =


= = =



~ ( )X Bern p

{0,1}

Jacob Bernoulli 

(1655-1705) 



Bernoulli Distribution
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• The distribution depends on one parameter, p, which 

gives the probability of obtaining a 1, rather than a zero.

• For example, the number of Tails from a single fair coin 

flip                    or, when selecting one person at random,  

the number of selected people born on a Saturday

• The expectation and variance of                     can easily 

be calculated.
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The Simplest Common Random Variable
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• Similarly,                                                                                    

• This therefore gives                                                                     .

• These values are perhaps intuitive. If we expect half of our 

experiments to give a 1 then, on average, each experiment  

gives the value 0.5.

• The variance is zero if                       . This is because there is no 

variability between realisations of this experiment – we already 

knew the outcome would either certainly happen (1) or certainly 

not happen (0).
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Binomial Distribution
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• A generalisation of Bernoulli variables gives rise to another commonly seen variable.

• Adding the outcomes of n identical independent Bernoulli variables gives a Binomial variable.

• If                                                                       then                                                .

• Clearly                                               mean exactly the same thing.

• A binomial random variable requires two parameters: 

- n: The number of independent Bernoulli variables

- p: The probability of a 1 from each Bernoulli variable
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Binomial Distribution
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• Even before we obtain the probability mass function of                      , we can calculate its 

range, expectation and variance.

• Since each individual Bernoulli variable takes the value 0 or 1 and we are adding n 

independent outcomes of these, the range of a                variable is                   .

• We have already seen that that if

• Because, for any random variables A and B,                                      , we know that 

has expectation

• Similarly, if                       then                              .
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Binomial Distribution
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• Consider flipping a (possibly biased) coin which lands Heads on each flip with probability p. 

Let X be the total number of Heads obtained in 4 flips. What is the probability mass function of 

• since this only occurs if each independent 

flip is Tails, each of which happens independently with probability            .

•
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Binomial Distribution
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• Similarly,                                     since the outcome could arise from HHTT, HTHT, HTTH, 

TTHH, THTH or THHT – six different ways.

• We also have 
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Binomial Distribution: Combinations
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• To obtain the probability mass function of                      , we need to know how many ways X

can take each possible value. 

• For example, if we want to know the probability of flipping a (possibly biased) coin 10 times 

and getting 3 Heads, we need to know how many ways this could happen. For example, we 

could have HHHTTTTTTT, TTTTTTTHHH, TTTHHHTTTT etc. 

• In other words, we need to know how many ways we could write a string of 7 Tails and 3 

Heads.
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Binomial Distribution: Combinations
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• Call the three coins that land Heads                 . There are ten places in the string of possible 

outputs which could be      . Once this is placed, there are nine places in the string which could 

be      etc.

• The total number of strings containing                 is therefore                           .

• However, we are only counting the total number of Heads in that string, so 

are equivalent.

• For three Heads, there are                    orderings of these.

• Since each of the 720 orderings of the 10 outputs corresponds to each combination 6 times, 

we therefore have 720/6 = 120 combinations of three Heads and seven Tails.
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Binomial Distribution: Combinations
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• When looking for the number of ways that k outcomes can be ordered in a string of n trials, 

• As with the example on the previous slide, we have                                          .

• The probability of getting k Heads out of n flips of a coin which lands Heads with probability p

• For example, when flipping a fair coin 12 times, the probability of obtaining exactly 7 Heads is
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Binomial Distribution
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• For                      , calculation of                            directly from the probability mass function

is not a simple task and requires combinatorics beyond the 

scope of this subject.

• Similarly, even verifying that                           is not trivial.

• We have already seen, though, how these van be easily obtained via understanding that 

adding independent identical Bernoulli variables gives rise to a Binomial variable.
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Binomial Distribution: Example
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• In North-West Europe, it is observed that around 6% of the                                                                      

population has red hair.

• Selecting 5 people at random, what is the probability that                                                                   

exactly two of them have red hair?

• so

• What is the probability that three siblings all have red hair?

• This cannot be calculated by a binomial distribution, since the Bernoulli trials (i.e. does each 

sibling individually have red hair) are not independent, as hair colour is a genetic trait.
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Geometric Distribution
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• One other common random variable which can arise from independent Bernoulli trials is a 

Geometric variable.

• We write                     if X is the number of successive independent identical Bernoulli 

variables until the first 1 is obtained.

• For example, when flipping a fair coin repeatedly, the number of flips until the first Heads

• The range of                      is easily seen to be 
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Geometric Distribution

Faculty of Science

• When considering a number of independent                variables, we obtain the first 1 on the kth 

variable if and only if the first           are 0s and the kth is a 1.

• That is,                                                               

• We can verify that this is a valid probability mass function since

• This is a geometric series, first term p, common ratio 

• The infinite sum is therefore
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Geometric Distribution
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• We already saw last lecture (via a geometric 

series of geometric series) that the expectation                   

• This is again perhaps intuitive, since if, on average one trial out of every ten is a 1 then, on 

average, we would have to look at around ten outcomes before expecting to see a 1.

• Note, though, that a geometric variable arises only if the Bernoulli trials are independent. For 

example, if we are selecting a card from a deck without replacement, then the number of 

cards needed until the first King is drawn is not geometrically distributed.

• (Sampling without replacement gives rise to a hypergeometric distribution – beyond the scope 

of 37161.)
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