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Probability Mass Functions

* In Lecture 3, we saw about defining the probability mass function of a discrete random
variable.

« This was written as a list of all possible values of the random variable

and the probability that the variable takes each of those values. 1/6 k=1
1/6 k=2
« For example, if we are rolling one regular fair six-sided die 1/6 k=3
and defining the random variable X to be the number shown, p(X =k)={1/6 k=4
then the probability mass function of X is 1/6 k=5
1/6 k=6

| 0 otherwise
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“Standard” Probability Distributions

« Many times our random variable of interest might be a “standard” type of variable.

« That is, whatever the context of the experiment from which it is obtained, there are a
number of random variables which commonly arise and are well studied.

« For example, flipping a single fair coin once and seeing how many times (0 or 1) it lands
Tails gives rise to exactly the same random variable as rolling a fair regular six-side die
once and counting how many even numbers are obtained.

v
@ U Ts Faculty of Science



The Simplest Common Random Variable

« Consider two independent random experiments.

q' K3 ‘\“1/ | 72258
| g
« Let X be the number of Hearts cards selected when picking ,B / / w
one card at random from a standard deck of 52 with all cards | ol 248
equally likely to be chosen. _ 1 // 7 5w
 Let Y be the number of tickets ending in a 7 selected when one e “3\““

raffle ticket is selected at random from a bucket containing tickets
numbered with integers 1-100 with all tickets equally likely to be chosen.

(0.75 k=0 (0.9 k=0
e Clearly P(X =k)=40.25 k=1 andP(Y =k)=:0.1 k=1
| 0 otherwise | 0 otherwise
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The Simplest Common Random Variable

« Any random variable whose probability mass function can

(1-p k=0
be written as P(X =k)=< p k=1
| 0 otherwise

IS known as a Bernoulli variable.

* |n this case, we write X ~Bern(p) .

Jacob Bernoulli
(1655-1705)
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« This distribution has range {0,1} .



Bernoulli Distribution

« The distribution depends on one parameter, p, which
gives the probability of obtaining a 1, rather than a zero.

* For example, the number of Tails from a single fair coin
flip ~ Bern(0.5) or, when selecting one person at random,
the number of selected people born on a Saturday ~ Bern (—j

* The expectation and variance of X ~Bern(p) can easily
be calculated.

Jacob Bernoulli
(1655-1705)

+ E(X)=) kxp(X =k) =[0x(1-p)]+[1xp] =p
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The Simplest Common Random Variable

+ Similarly, E(X?)=Yk*xp(X =k) =[0*x(1-p)|+|¥xp|=p
» This therefore gives Var(X)=E(X*)-E(X)*=p-p°=pl-p) -

« These values are perhaps intuitive. If we expect half of our
experiments to give a 1 then, on average, each experiment
gives the value 0.5.

 The variance is zero if P=00rp =1, This is because there is no
variability between realisations of this experiment — we already

knew the outcome would either certainly happen (1) or certainly
not happen (0). (1655-1705)
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Binomial Distribution

« A generalisation of Bernoulli variables gives rise to another commonly seen variable.
« Adding the outcomes of n identical independent Bernoulli variables gives a Binomial variable.
- If X, ~Bern(p), X, ~Bern(p),...,X, ~Bern(p) then [ X, + X, +...+ X, |~ Bin(n,p) .

 Clearly Y ~Bern(p) and Y ~Bin(1, p) mean exactly the same thing.
« A binomial random variable requires two parameters:
- n: The number of independent Bernoulli variables

- p: The probability of a 1 from each Bernoulli variable
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Binomial Distribution

« Even before we obtain the probability mass function of X ~Bin(n,p), we can calculate its
range, expectation and variance.

« Since each individual Bernoulli variable takes the value 0 or 1 and we are adding n
independent outcomes of these, the range of a Bin(n,p) variable is {0,12,...,n}.

« We have already seen that that if X, ~Bern(p) then E(X,) = p.
« Because, for any random variables A and B, E(A+B)=E(A)+ E(B) , we know that
[X,+ X, +...+ X, | ~Bin(n,p) has expectation E(X,)+E(X,)+...+E(X )=p+p+..+p=np

« Similarly, if X ~Bin(n,p) then Var(X)=np(1-p).
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Binomial Distribution

« Consider flipping a (possibly biased) coin which lands Heads on each flip with probability p.
Let X be the total number of Heads obtained in 4 flips. What is the probability mass function of

X ~Bin(4,p)?

¢« P(X=0)=1-p)xA-p)xA-p)x@A-p)=@-p)* since this only occurs if each independent
flip is Tails, each of which happens independently with probability (1-p) .

(P(TTTH)+ [@A-p)x@A-p)x(A-p)xp+
. JPOTHT)+ _ J@=-p)xA=-p)xpx(1-p)+ _
) P(x_l)_<P('|'HTT)+ |@-p)xpxa-pxa-p) PP

PHTTT)+ [ px(A-p)x(1-p)x(1-p)
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Binomial Distribution

* Similarly, P(X =2)=6p*(1-p)® since the outcome could arise from HHTT, HTHT, HTTH,
TTHH, THTH or THHT - six different ways.

« We also have P(X =3)=4p*(1-p) and P(X =4) = p*.

[ 1-p) k=0
4p(1-p)® k=1
. P(X=k)={8P =P k=2
4p°(1-p) k=3
p’ k=4
0 otherwise
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Binomial Distribution: Combinations

« To obtain the probability mass function of X ~Bin(n,p), we need to know how many ways X
can take each possible value.

« For example, if we want to know the probability of flipping a (possibly biased) coin 10 times
and getting 3 Heads, we need to know how many ways this could happen. For example, we
could have HHHTTTTTTT, TTTTTTTHHH, TTTHHHTTTT etc.

 |n other words, we need to know how many ways we could write a string of 7 Tails and 3
Heads.
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Binomial Distribution: Combinations

» Call the three coins that land Heads H,,H,,H, . There are ten places in the string of possible
outputs which could be H, . Once this is placed, there are nine places in the string which could
be H, etc.

* The total number of strings containing H,,H,,H, Is therefore 10x9x8 =720 .

« However, we are only counting the total number of Heads in that string, so
[TTTTTTHH,H, and TTTTTTTH,H,H, are equivalent.

» For three Heads, there are 3x2x1=6 orderings of these.

« Since each of the 720 orderings of the 10 outputs corresponds to each combination 6 times,
we therefore have 720/6 = 120 combinations of three Heads and seven Tails.
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Binomial Distribution: Combinations

When looking for the number of ways that k outcomes can be ordered in a string of n trials,

n

|
we have N C = n ways, where n!'=n(n-1)(n-2)...2x1
K (n —k)'k!

o0, = 10! _
713!

10
As with the example on the previous slide, we have ( 3 ] = 120

The probabillity of getting k Heads out of n flips of a coin which lands Heads with probability p

is therefore P(X =k) = (Ej p“(1—p)"*.

For example, when flipping a fair coin 12 times, the probability of obtaining exactly 7 Heads is

P(X =7)=|"" |0.57(0.5)° = 792x(0.5)"? ~0.193
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Binomial Distribution

« For X ~Bin(n,p), calculation of E(X) or Var(X) directly from the probability mass function

|
P(X =k)= ( nk')lkl p“(1-p)" ™ is not a simple task and requires combinatorics beyond the
n—k)k!

scope of this subject.

+ Similarly, even verifying that > P(X =k)=1is not trivial.
k=0

« We have already seen, though, how these van be easily obtained via understanding that
adding independent identical Bernoulli variables gives rise to a Binomial variable.
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Binomial Distribution: Example

* In North-West Europe, it is observed that around 6% of the :‘ A b
population has red hair.

« Selecting 5 people at random, what is the probability that
exactly two of them have red hair?

5
+ X ~Bin(5,0.06) S0 P(X =2)= (Zj(0.06)2(0.94)3 ~0.0299

« What is the probability that three siblings all have red hair?

« This cannot be calculated by a binomial distribution, since the Bernoulli trials (i.e. does each
sibling individually have red hair) are not independent, as hair colour is a genetic trait.
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Geometric Distribution

* One other common random variable which can arise from independent Bernoulli trials is a
Geometric variable.

« We write X ~Geo(p)if X is the number of successive independent identical Bernoulli
variables until the first 1 is obtained.

« For example, when flipping a fair coin repeatedly, the number of flips until the first Heads

~Geo(0.5).
 The range of X ~Geo(p) is easily seento be {1,2,3,...}.
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Geometric Distribution

* When considering a number of independent Bern(p) variables, we obtain the first 1 on the kth
variable if and only if the first (k —1) are Os and the kth is a 1.

1-p)'p k=123,..

 Thatis, P(X =k) = .
0 otherwise

« We can verify that this is a valid probability mass function since

>P(X=K)=Y@-P)'p =p+(1-p)p+(1-p)p+(A-pFp+(-p)p+

* This is a geometric series, first term p, common ratio (1—-p).

e . P
* The infinite sum is therefore E P(X =k)= =1.
P 1-(1-p)
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How Many Draws?

G t - D - t . b t' « In general, the probability that a total of k > 1 cards are
k-1
e O I I l e rl C I S rl u I O n drawn before the first King is selected is i(Ej , since
13113
we need the first k —1 cards to be non-Kings, and the kth

to be a King.
k-1
l E k=123,...
* We therefore have P(X =k)=113\13

0 otherwise

« We already saw last lecture (via a geometric
series of geometric series) that the expectation

. 1 * The expectation of this is therefore
fX~G E(X)=—. 1 1(12 1712Y 1 (12 12’
0 eo(p) is E(X) . ]) [ ]Hsu )]

E(X)=(1x—]+(2x—[—)]+[3x—(— x_(_
13 13(13 13(13 13013

« This is again perhaps intuitive, since if, on average one trial out of every ten is a 1 then, on
average, we would have to look at around ten outcomes before expecting to see a 1.

* Note, though, that a geometric variable arises only if the Bernoulli trials are independent. For
example, if we are selecting a card from a deck without replacement, then the number of
cards needed until the first King is drawn is not geometrically distributed.

« (Sampling without replacement gives rise to a hypergeometric distribution — beyond the scope
of 37161.
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