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Continuous Random Variables
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• So far, we have only looked at discrete random variables. That is, variables which can only 

take a value from a (possibly finite, possibly infinite) sample space and not any values in 

between these.

• For example, if we want to know how long (in minutes) it will be until the next train arrives, 

assuming one train arrives every ten minutes, then our sample space for this is a 

continuous interval [0, 10) .

• As this interval contains an uncountable number of points, we cannot write down a 

probability mass function of the form ( ) ...P X k= =



Continuous Random Variables
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• In any case, the probability that the random variable takes any given value exactly is 

infinitesimally small. Even if we record that the train arrived after 7.5 minutes, in reality, it is 

exceptionally unlikely that it arrived at this time exactly and not, say, 

7.50000000010000103040000000007 minutes.

• Whatever degree of precision we use, the probability of getting an exact value is 

• Instead of a probability mass function, we define a probability density function for the 

continuous variable X to be                                                               

0.

( ) such that ( ) ( ) .
b

a

f x P a X b f x dx  = 



Probability Density Functions
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• The probability density function f(x) gives a relative measure of how likely the random variable 

is to take a value in a given region. It is not, though, itself a probability.

• We do still have some standard properties of a density function:

- since the probability of an event from somewhere in the sample space must be 1.

-

( ) 1f x dx

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( ) 0 or else it would be possible to have a region [ , ] such that  
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Probability Density Functions
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• Note, though, that we do not need             . 

• We do still require                       but the probability density function can exceed 1 on short 

intervals, provided the integral over that interval stays no greater than 1.

• An intuitive interpretation of the density function is that, for very small          , 

• In other words, for very small         , the probability that            (with a margin of error no more 

than     centred around a is approximately         .
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Expectation of Continuous Random Variables
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• We cannot, of course, calculate the expectation of a continuous random variable as we did for 

discrete variables, since the probability mass function                is not defined.

• Just as to calculate the probabilities, we integrated (rather than summing all outcomes for an 

event), we again can integrate to obtain equivalent values to                                     

• For continuous variables, we instead have, for continuous random variable X with density 

function f(x),

( )P X k=

( ) ( ).E X k P X k=  =

( ) ( ) .E X xf x dx


−

= 



Expectation of Continuous Random Variables
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• Similarly, 

• We can therefore calculate the variance of a continuous variable X with density function f(x) 

2

2 2 2( ) ( ) ( ) ( ) ( ) .Var X E X E X x f x dx xf x dx
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• Consider the random variable X with density function

• We can verify that this is a valid density function          

since
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• Visually, we can see that                 since from the 

graph we can observe that                     everywhere.

•
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• A Beta random variable                         has                                                                               

probability density function

• Depending on the choice of parameters, it can describe very different distributions, some 

with mode (highest probability density) at 0, at 1 or at any value in between.

Example: Beta Distribution
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~ ( , )Z Beta α β

1 1
( 1)!

(1 ) [0,1]
( 1)!( 1)!( )

0 otherwise

α β
α β

z z z
α βf z

− −
+ −

− 
− −= 



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• Beta random variables are commonly seen                                                                            

in Bayesian statistics (beyond the scope of                                                                              

37161) as they only take values between 0                                                                              

and 1 and so can be used to describe                                                                                      

uncertainties in probability values.

Example: Beta Distribution
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• In order to calculate                            , we can use the fact that 

•

Example: Beta Distribution
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•

• We now use the fact that                                                  to obtain

• Substituting this into gives 

Example: Beta Distribution
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Cumulative Density Functions

Faculty of Science

• For a continuous random variable with probability density function f(x) , the cumulative 

density function F(x) is defined as                .

• Just as a cumulative probability mass function for a discrete random variable is obtained by 

summing all probabilities up to and including a given value, the cumulative density function 

involves integrating all probability density up to and including a point.

• This gives                                              .

• Similarly, if we know  

( )P X x

( ) ( ) ( )
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Example: Uniform Random Variable
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• Maybe the simplest type of continuous 

random variable is the uniform variable.

• For                              then X takes a value 

between a and b such that X is equally 

likely to be any two intervals of equal width.

• That is 
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Example: Uniform Random Variable
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• We can see that this is a valid density 

function since

• The expectation of this is
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Example: Uniform Random Variable
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• The cumulative density function of                    

is therefore
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Pareto Distribution
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• A less commonly-seen variable is the Pareto variable.

• Named after the Italian economist Vilfredo Pareto, it is used to 

characterise strongly skewed data i.e. ones where small values 

are extremely likely and very large ones are extremely rare.

• Used in actuarial science and insurance modelling – for 

example, minor scrapes and car accidents are very common but 

low cost. Natural disasters (bushfires, earthquakes etc) are very 

rare but hugely costly.

• It also describes the size distribution of living organisms. For 

example, in the oceans, there are many billions of zooplankton 

for each fish and many billions of fish for each whale etc.

Vilfredo Pareto 

(1848-1923)



Pareto Distribution
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• If

• We can verify that this is a valid density

function, since
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Pareto Distribution
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• The expectation of

• Note, if 
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Normal Distribution
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• The most commonly seen variables used in statistics 

are Normal or Gaussian variables. 

• This is the classic “bell curve” shape.

• It is beyond the scope of 37161, but the Central Limit 

Theorem tells us that (for most situations) if we 

average variables drawn from any other distribution 

with finite variance, then the averages themselves will 

be realisations of a Normal variable. Karl Friedrich Gauss 

(1777 – 1855)
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• If

where z can take any real 

value, positive or negative.    

• This gives

2 2~ ( , ) then, for 0Z N μ σ σ 
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Normal Distribution
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• We will not use this distribution                                                                                            

a great deal in this subject, partly                                                                                         

because there is no tidy closed    

form solution of                 for 

almost all values of a and b. When                                                                                            

working with the Normal distribution,                                                                                       

numerical tables and/or computer 

packages are usually required. 

• Even verification that                                          is a non-trivial task and requires 

transformation of variables into polar co-ordinates.
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