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Conditional Expectation

« Consider rolling two regular fair six-sided dice and multiplying the
two numbers shown.

* Let X be the number shown on the first die and let Y be the
product of the number shown on the two dice.

 We have already seen that the expected value shown when
rolling one regular die is 3.5 so, as the numbers shown on the two
dice are independent E(Y)=3.5x3.5=12.25

 |f we have an observation of the value of X, how does this impact
our expectation of the value of Y?
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Conditional Expectation

« Clearly, if we have observed that X =1, then the
product Y is simply equal to 1 multiplied by the number
on the second die, so E(Y | X =1)=3.5.

« Similarly, if we have observed that X =2, then the
product Y is simply equal to 2 multiplied by the number
on the second die, SOE(Y | X =2)=7.
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Conditional Expectation

« We can obtain the expectation of Y from conditional
expectations by “averaging out” the conditional
expectations over the uncertainties in X.

* EQY)=E(Y | X=DP(X=D)+E(Y | X =2)P(X =2)+...+E(Y | X =6)P(X =6)
. E(Y):(3.5)%+(7)%+(10.5)%+(14)%+(17.5)%+(21)% =732 1525

« This generalises to the law of total expectation.
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Law of Total Expectation

- The law of total expectation gives that E(Y)=E(E(Y | X)) where X and Y are events

defined on the same sample space.
 Although the justification on the previous slides only shows that this is the case for

summing a finite number of discrete probability masses, it also holds more generally,

iIncluding for continuous distributions.
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Conditional Variance

* We can take a similar approach with expected variances.
« Consider Var(X)=E(X?*)-E(X)*.

« We know that this can be considered in terms of expectations of conditional expectations
.e. Var(X)=E(E(X?)|Y)-[EEX|Y)]

» We can now write this as Var(X) = E(E(X?)|Y)-[E(E(X |Y)] +E(E(X |Y)?)-E(E(X |Y)?)
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Law of Total Variance

» Gathering the terms Var(X)=E(E(X®)|Y)-[E(E(X |Y)]2 +E(E(X|Y))-EE(X]|Y)),
we obtain that Var (X) =| E(E(X?)|Y)-E(E(X IY)Z)]{E(E(X Y)") - [E(E(X IY)ﬂ

» This simplifies to Var (X) =[E(Var (X |Y))]+[Var(E(X |Y))].
 This is the law of total variance.

* As variances are always non-negative, this also gives that Var(X) >Var(E(X |Y)) .
Having some conditional information can neve increase our uncertainty about the value of
X.
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Example

« Consider a game whereby a player rolls 20 regular fair six-sided dice and observes how
many times the dice show a 6. He/she then selects that number of fair coins and flips

them. For example, if the 20 dice show four 6s, the player flips four coins.

* The player then flips this (uncertain) number of coins and scores one point for each coin

which lands Heads.

« What are the expectation and the variance of the player’s score?

. ¥
@ U Ts Faculty of Science



Example

« Let N be the number of 6s shown by the twenty dice. We know that this value would be

binomially distributed N ~ Bin(ZO,%) |

« Let X be the number of coins which land Heads. If we knew N (which we don't), then X
would also be binomially distributed X |N ~ Bin(N,%j

* We know that, for Y ~Bin(n,p), E(Y)=np and Var(Y) =np(1-p).

. ¥
@ U Ts Faculty of Science



Example

 Applying the law of total expectation to X |N ~ Bin (N,%)therefore gives us that
E(X)=E(E(X|N))= E(%Nj

* ASN ~ Bin(ZO,%} and hence E(N):2_60, we have that E(X)=g.

« Similarly, Var(X |N)=N (lj[l—lj = N
2 2 4

+ Var(x)=[EVar(x IN)]+ Var (E(x IN)] <€ § | +var )
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Example

. Var(X)=[E(Var(X [N))]+[Var(E(X [N))] = E(%) rvar (%)

N 1

= E(ZJJFZVar(N)
B33

 Later in this subject, we will see a method for working out the distribution of the sum of a

random number of random numbers which could be used to show that, in fact,

X ~ Bin(zo,é). Note that the result above is consistent with this.
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Example

 Consider the case of a walker lost in the woods. o

« He/she comes to a clearing in the woods.

* There are three paths:
- If he/she chooses Path 1 he/she will be home in 1 hr.
- If he/she chooses Path 2, he/she will have to turn back and will be back in the clearing in 2 hr.

- If he/she chooses Path 3, he/she will have to turn back and will be back in the clearing in 3hr.

- If each path is chosen with equal probability, what are E(T) and Var(T) if T is the time taken
for the walker to get home from the clearing? (Assume that the walker does not remember

which paths have previously been taken.)
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Example

« LetY be the number of the path chosen when in the clearing.

Path 1

1

« Path 1 takes the walker straight home in 1hr, so
E(T|Y =1)=1.

« Path 2 takes 2hr and the walker is again
in the clearing, so E(T |Y =2)=2+E(T).

« Path 3 takes 3hr and the walker is again
in the clearing, so E(T |Y =3)=3+E(T). (+2hr) (+3 hr)
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Example

* The law of total expectation tells us that

E(T)=E(E( [Y)) =23:E(T Y =Kk)P(Y =k)

1 1) _ . 1
:(ng(r Y :1)+(§jE(T % =2)+(§jE(T Y =3)

1 1

_ (gj(1)+(§j(2+ E(T)) +[%)(3 +E(T))

Path 2 Path 3
(+2 hr) (+3 hr)

« This gives E(T):2+§E(T) hence E(T) =6.




Example

 To calculate the variance of T, we need the law of total variance t Path 1

Var(T) = [E(Var (T [Y))]+[Var (E(T |Y))] (+1 hn)
- Taking Path 1 gives no uncertainty about T
(T is certainly 1) henceVar(T |Y =1) =0.
- Taking Path 2 only adds 2hr to the time but the

walker is again in the clearing hence Path 2 Path 3

Var(T |Y =2)=Var(T +2)=Var(T). (+2 hr) (+3 hr)
- Taking Path 3 only adds 3hr to the time but the walker is again in the clearing hence
Var(T |Y =3)=Var(T +3)=Var(T).
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Example

« Taking the expectation of these conditional variances, we

obtain E(Var (T |Y)):23:Var('l' Y =K)P(Y =k)

Path 1

1 1
:(ngar(T Y :1)+(§jVar(T Y =2)
+(%)Var(‘l’ Y =3)

= 1] 0 +(EJVar(T)+(E)Var(T)
(3 () 3 3 (+2 hr) (+3 hr)

=§Var(T)
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Example

» To calculate Vvar(E(T |Y)), we consider the three cases.

Path 1

« Weknowthat E(T|Y =1)=1
E(T|Y =2)=2+E(T)
E(T|Y =3)=3+E(T)

« Since E(T)=6 and each path is chosen with Path 2 Path 3

equal probability, we have a random variable (+2 hn) (+3 hr)

1
which takes the value 1, 8 or 9, all with probability 3"
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Example

1> + 8% + 92 _(1+8+9j2
3 3

* Var(E(T IY))=£

10 568
3 3

« The law of total variance therefore gives

Var(T)=[E(Var(T |Y))]+[Var (E(T |Y))]

2 38
=—Var(T )+—.
3 () 3

(+2 hr) (+3 hr)

« This gives Var(T) = 38.
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Distribution of a Function of a Random Variable

 We have already seen that, for the discrete case, obtaining the probability mass function

for a function of a discrete random variable is quite straightforward.

0.3 k=1
« For example, consider X with mass function P(X =k)=1:0.7 k=3 andthe
distribution of X* +1 . | 0 otherwise

« As X s discrete, X? +1 is also discrete.

- X can only take the values 1 and 3 hence X? +1can only take the values 2 and 10.
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Distribution of a Function of a Random Variable

(0.3 k=1
« P(X=k)=40.7 k=3
| 0 otherwise

(0.3 k =2
implies that P(X? +1=k)=:0.7 k=10
0 otherwise

\

* Note that, when the function transforming the variable is not 1-to-1, we sometimes have to

combine masses.

» For example P(Y =k) =+

0.3
0.3
0.4
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k=1
k=-1

3 implies that P(Y?* +1=k) =

otherwise

(0.6 k=2
0.4 k =10
\ 0 otherwise



Distribution of a Function of a Random Variable

» Consider now the continuous case. Let X be a continuous random variable with probability

X
— 0,10
density function f(x) =4 50 x<[0.10] :

| 0 otherwise

10 10 o 0
* |t is easy to verify that this is a valid density function since jf(x) dx = ji dx = | = =1
. - 50 100

0
* Note, though, that if we want the distribution of a function of X, say, X2 +1 , we cannot

simply obtain the density function of this by substituting into the density function of X.
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Distribution of a Function of a Random Variable

[ X
« For f(x)={50 x<[0,10]

| 0 otherwise

, itis clear that (X* +1)e[1, 101]

- Ifwelet Yy = X2 +1, we cannot simply write \/y —1= X and hence

-l y €[1, 101

fly)=4 50
0 otherwise

101 | 3 0L
« This is not even a valid density function since _[ -1 dy = i(y 1?2 | = 400 =1,
50 150 3
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Distribution of a Function of a Random Variable

* |f we consider integration by substitution, we have that, given a definite integral
y(b)

[ f(y)j—; dy

b b
| = jf(x) dx and a continuous differentiable function y(x) then | = jf(x) dx =
a a y(a)

« This gives that the density function of Y(X) is given by g(y) =f(x(y))x'(y) .
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Distribution of a Function of a Random Variable

X e [0,10]
* Returning to our earlier example with f(x) =< 50 ’

| 0 otherwise

and Y = X? +1, we have that

dX

1
2¥Y =1 dY

« This gives the density function of Y as g(y) =+

\/V —1= X and hence

) o

0 otherwise

1
o 101 . . . . .
* Note that g(y) =+ (100} yelt 101 integrates to 1 and hence is a valid density function.
0 otherwise
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Distribution of a Function of a Random Variable

» Consider now the (harder) case of working out the distribution of Y = X? +1 where X has
¢ xel-1
density function f(xX)=4 2 .

| 0 otherwise

« Unlike before, Y is no longer a 1-to-1 function, since X can take positive and negative

values and, for example, Y (0.1) =Y (-0.1)=1.01.

—\/9 -1 fX<0
\/9 -1 ifX=>0

« Here, we need to consider the piecewise inverse X ={
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Distribution of a Function of a Random Variable

 We now consider the cumulative density G(Y)=P(Y <y)=P(X?+1<vy)

=P(—/y-1< X <y -1)
—P(X <4y -1)-P(X < -y -1)

- Differentiating gives G’ =g(y)=f(\/y —1):—y(«/y ~1)—f (=Y —1);—y(—\/y -1)

y €[1,2]

3
a(y) =21}y ~1)- m or infull. g(y) 4(y 2«/7 I

0 otherwise




Distribution of a Function of a Random Variable

3(y - 1) y e[1.2] WLy cnz)
g(y) =+ 2\y -1 so g(y)=¢ 2
0 otherwise 0 otherwise
23y -1
* Note also that this is a valid density function, since I ); dy =1
1




