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Poisson Variables

Faculty of Science

• If we have a series of events which occur independently 

of each other in space or time, but at some known 

average rate, we have a Poisson variable.

• For example, if we assume that in a large building, a 

lightbulb needs replacing on average once per hour 

then (assuming bulbs don’t break with any pattern i.e. 

no power surge etc.) we would model the number N of 

bulbs needing replacement in a given hour by ~ (1).N Poi

Siméon-Denis Poisson 

(1781 – 1840)



Poisson Variables
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• The Poisson variable requires just one parameter – – the average rate at which the 

event occurs.

• As it is simply a count, the range of 

• The probability mass function of N is 
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Poisson Variables
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• We can verify that this is a valid probability mass function since

• The expectation of this is
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Poisson Variables: Example
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• Consider modelling the arrival of calls into a call centre.

• It is noted that the centre receives an average of 20 calls per                                                              

hour throughout its working day, with all calls arriving                                                             

independently of one another and no two periods (of equal                                                    

length) of the day more or less likely to receive calls than                                                                 

the other.

• The number of calls in a given hour therefore                 .

• For example, the probability that, during one hour, exactly 17 calls arrive is

~ (20)Poi
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Poisson Variables: How Do They Arise?
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• The Poisson variable arises from the limit case of a Binomial distribution.

• We can consider a Binomial distribution to be the sum of independent Bernoulli variables, 

each occurring with probability p.

• Breaking a time period (e.g. one day) into N periods of equal length, we can then regard (for 

sufficiently large N) the experiment  as being a series of N Bernoulli trials, i.e. whether or not 

a the event occurs during each tiny time period.



Poisson Variables: How Do They Arise?
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• We assume that since N is very large, the length of each period is sufficiently short that two 

such events cannot occur in any one period.

• Instead of taking                   , we can take                          for very large N.

• Note that the expectation of both variables is    .
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Poisson Variables: How Do They Arise?
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• Since 

•

• As

• Also

• Hence, we get the result that if 
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Merging of Poisson Variables
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• Consider now two independent Poisson variables,                                            .

• What is the distribution of                 ?

• We calculate the probability that           by summing all the ways this can happen i.e.

• For example, the event           is the union of the events

~ ( ) and ~ ( )X Poi λ Y Poi μ

Z X Y= +

Z k=

0

( ) ( ) ( )
k

j

P Z k P X j P Y k j
=

= = = = −

{ 0} { 3},{ 1} { 2},

{ 2} { 1} and { 3} { 0}

X Y X Y

X Y X Y

= = = =

= = = =
3Z =



Merging of Poisson Variables
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•

• Noting that                                                                                                 , we see that   

• Hence 
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Merging of Poisson Variables: Example
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• A website models the number of visitors it receives each hour by Poisson variables.

• It is noted that, independently, each hour an average of 10,000 visitors load the site without 

making a purchase and an average of 2,000 visitors load the site and do make a purchase.

• What is the distribution of the total number of visitors per hour?

• If                                                                                  , then ~ (10,000) and ~ (2,000) non purchase purchaseX Poi X Poi
−

~ (12,000)total non purchase purchaseX X X Poi
−
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Splitting of Poisson Variables
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• Let                    and assume that all events counted are classified as either Type 1 or Type 2 

such that each event independently is Type 1 with probability p.

• What is the distribution of       , the number of Type 1 events which occur?

• In order to calculate                 , we first calculate the conditional probability                                   

and then sum over all possible ways                  . (i.e.                                       assuming                  

• This makes the calculation simpler since, conditional on knowing 
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Splitting of Poisson Variables
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•

• That is, 

• So, for example, if a shop expects 12 customers per hour and 50% of these are male then 

(assuming each arrival is independent), the number of males arrive per hour              .
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Poisson Processes
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• As we can merge together or split independent Poisson variables, we can define a Poisson 

process,          with rate          for any time          such that:

- is a counting process  with               (i.e. has range                  ) with independent  

stationary increments i.e. the number of events counted in an interval of length T depends  

only on T and that any the number of events counted in any two disjoint intervals are 

independent.

- For any         , the probability that there are k events counted during an interval of   

length t is                  i.e.                        . 

( )X t λ t 0t 

( )X t (0) 0X = {0,1,2,3,...}

0t 

( )

!

λt ke λt

k

−

( ) ~ ( )X t Poi λt



Poisson Processes: Waiting Times
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• Let          be a Poisson process with rate   .

• Consider W, the time until the first event,

• Clearly, for         , the events                                    are identical, since having no events 

occur in a timestep of length t is equivalent to having to wait more than t for another event to 

occur.  

•
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Poisson Processes: Waiting Times

Faculty of Science

• hence the

cumulative density of W is

• Differentiating gives the probability density function                                .

• We say that W is an exponential random variable with rate          if it has density function 
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Exponential Distribution
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• It is easy to verify that        is a valid density function, since                                                          

.

• The expectation is obtained via integration by parts

• is perhaps intuitive, since if, for example, we expect 5 arrivals per hour, then the 

expected time until an additional arrival is 0.2 hours.
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Exponential Variables: No Memory Property
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• Let                     and consider two times             .

• What is                                  i.e. the chance that we need to wait a                                      

further b to see an arrival, given that we have already waited a?

• .

•

• This known as the no memory property. The distribution of future waiting times is 

independent of the times already waited.
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Relative Arrival Times

Faculty of Science

• Consider the case of two clumsy employees. Employee A has an                                         

average of     accidents per year and employee B has an average                                               

of     accidents per year.

• What is the probability that the next accident by either employee is by                                                      

employee A? (Assuming their accidents are all independent of each other.)

• Let        be the time until employee A’s next accident and let        be the time until employee 

B’s next one. We then want                     .
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Relative Arrival Times
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• We calculate                     by calculating the probability that, if                                                     

employee A’s first accident is at time t, employee B’s first accident                                                                 

happens after t and we integrate this over all possible          .

•

• If employee A’s first accident happens at time t, then the probability that employee B’s first 

accident happens after this is obtained by integrating the  probability density function of        

between 
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Relative Arrival Times
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•

• Hence. Integrating over all possible times for       , we obtain  

• Intuitively, this makes sense. If A is clumsier,           and hence 
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Multiple Approaches to Poisson Processes
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• Consider two independent Poisson processes modelling the arrival of customers into a shop.

• The average number of customers per hour who leave without making a purchase is    . the 

average number of customers who do subsequently make a purchase is     per hour.

• What is the chance that during the next two hours, exactly three customers enter the shop 

and all three make a purchase?

• There are two very different approaches to answering this question.

   μ

   λ



Multiple Approaches to Poisson Processes
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• Method One:

- Merge the Poisson processes to say that the total rate of customer arrivals is           per hour.

- The chance of exactly three arrivals during a two hour window is therefore                             .

- The probability that all of the next three customers to arrive make a purchase is               .

• Combining these two probabilities, the probability of exactly three customers arriving during 

the two hour window and all of those three making a purchase is

λ μ+

 
32( ) 2( )

3!

λ μe λ μ− + +

3

μ

λ μ

 
 

+ 

 
3 32( ) 2( ) 32( ) (2 )

3! 3!

λ μ λ μe λ μ μ e μ

λ μ

− + − ++  
= 

+ 



Multiple Approaches to Poisson Processes
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• Method Two:

- Keeping the Poisson processes separate, we note that the only way we get exactly three 

customers arriving during the two hour window and all three making a purchase is if the 

number of purchasing customers arriving during the two hour window is 3 and the number of 

non-purchasing customers arriving during the window is 0.

- The probability of three purchasing customers arriving in two hours is                 . 

- The probability of no non-purchasing customers arriving in two hours is                 .

• The chance of both of these occurring is therefore                                                        .
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