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Sums of Random Variables
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• Consider now two independent random variables which arise from flipping two fair 

coins a fixed number of times.

• If Coin A is flipped 5 times, the number of times it lands Tails is                          .

• If Coin B is flipped 10 times, the number of times it lands Tails is                            .

• What is the distribution of the total number of times either of the two coins land Tails,     

~ (5,0.5)AN Bin

~ (10,0.5)BN Bin

?A BN N+



Sums of Random Variables
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• Intuitively, we can conclude that                                      but proving this is less trivial.  

• We can perhaps justify this by appealing to the fact that a binomial variable can be 

considered as the sum of a number of independent identically distributed Bernoulli variables.

• We could evaluate the distribution of sums of random variables via convolutions, for example 
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Sums of Random Variables

Faculty of Science

•

• This is, however, not easy to work with and justifying that the above statement simplifies to 

requires knowing several identities regarding summing binomial coefficients.

• Adding more than two random variables is even messier. For example, for independent 

variables                      , the probability that                                      requires summing over 

possible ways this could happen.
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Generating Functions
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• Quite clearly, the convolution approach is not practical                                                                     

for any large sum of random variables.

• Instead, many such calculations can be more easily                                                                 

done with generating functions.

• These are transformations of the probability mass function or probability density function of 

the variable, such that some key properties of the variable can still be recovered.



Generating Functions
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• The generating function of a random variable X is defined 

as                       .

• If X is discrete,                                                .

• If X is continuous                                           .
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Generating Functions: Example
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• Consider rolling one regular fair six sided die.

• The probability mass function for this is

• The generating function is therefore 
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Expectation and Variance
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• If given the generating function of a variable, how do we obtain the expectation or variance of 

the underlying variable?

• We know that                                                  . Differentiating gives                                        .

• , so this is obtained by finding                                           .

• This gives                       In other words, the expectation of X can be recovered by 

differentiating its generating function            and evaluating when 
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Expectation and Variance
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• Similarly, differentiating a second time gives 

• Again, setting
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Generating Functions: Sums of Variables

Faculty of Science

• Returning now to the problem of summing random variables, let           be independent 

random variables both taking non-negative integer values.

• Let.

• Now, consider the generating function of Y,
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Generating Functions: Sums of Variables

Faculty of Science

•

• Since                  are independent, we can split the summation

• That is, for
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Generating Functions: Sums of Variables
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• The fact that we can calculate sums of independent random variable through multiplication of 

their generating functions is perhaps unsurprising, since                                                    .

• This also gives us simple and quick methods of verifying relationships we have already seen.

• Let                              be n independent Poisson variables.

• Each of these has generating function                                                               .

• We know                     hence                 so
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Generating Functions: Sums of Variables
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• We now know that if                   , its generating function is                       .

• So, for                          , we have                                                                                 .

• Each of                                         is the same function, equal to                        .

• The generating function of Y is therefore                                                 

• We therefore have that, if                      and each variable is independent, then

• This is equivalent to (but simpler in its derivation) what we previously saw regarding merging 

independent Poisson processes.
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Generating Functions: Bernoulli Variables
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• Let T be a Bernoulli variable                      

• It is easy to see directly from the probability mass function

that the generating function is  

~ ( ).T Bern p
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Generating Functions: Binomial Variables
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• Let S be a binomial variable                      

• Consider                        where                              are independent Bernoulli variables.

• As S is the sum of n independent Bernoulli variables, its generating function is the product of 

the n generating functions of these variables,                           .
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Generating Functions: Geometric Variables
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• Let                    be a Geometric random variable.

• The probability mass function is therefore

• This gives the generating function 

• This is a geometric series with first term zp and common ratio             .

• (Provided z is chosen such that                    ) this sums to give                                .
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Generating Functions: Exponential Variables

Faculty of Science

• Let                    be an exponential random variable.

• The probability density function is therefore

• This gives the generating function 

• In order to evaluate this, we need to combine            into a single exponential.

• Taking the exponential of the logarithm of                                               and hence
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Generating Functions: Exponential Variables
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•

•

•
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Sum of a Random Number of Random Variables
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• For many applications, we are interested in the sum of a number of random variables where 

the number of variables to be summed is itself random.

• For example, the total annual payouts for an insurance company varies according to two 

variables – the average size of a claim and the total number of individual claims.

• The total payout is the sum of each individual claim, summed over an uncertain number of 

claims.



Sum of a Random Number of Random Variables
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• Consider now the problem where N is a random variable taking non-negative integer values 

and                      are independent, identically distributed random variables.

• Let       be the sum of these variables i.e.                   .

• The generating function of

• If we knew the value of N, say          , this would be easy to evaluate. Since                     all 

have the same distribution, we would simply be multiplying k identical generating functions

1 2, ,..., NX X X

  NS
1

N

N k

k

S X
=

=

 is therefore ( ) ( ).N

N

S

N SS g z E z=

N k= 1 2, ,..., NX X X

( ) ( ) .
N i

k

S Xg z g z =  



Sum of a Random Number of Random Variables
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• We know by conditional expectation that\

• Here, this gives

• Now, the last term is itself a generating function applied to a generating function. In general, 

for any non-negative discrete variable Q,                                                 so we therefore have 

that                               .

• In other words, if we are adding N independent identically distributed variables                    

then the generating function of the sum is equal to the generating function of N evaluated 

when z equals the generating function of each of the      variables. 
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Example: Poisson Hen
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• Consider a hen which lays N eggs, where                   and each                                                     

egg hatches to produce one chicken with probability p,                                                             

independent of all other eggs.

• The number of chickens from each single egg is therefore                      .

• What is the distribution of the number of chickens hatching from all eggs,

• We already know that

• These therefore give 

• Since the generating function of                     , we can recognise this as a Poisson variable, 
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Example
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• Consider a car which drives past other vehicles at                                                                   

the instants of a Poisson process with rate parameter                                                                        

equal to 10 cars per minute.

• This gives that the number of cars passed in a                                                                               

minute                  and also that the time (in minutes)                                                                  

between successive cars passed

• What is the distribution of the time until the car next passes a blue car, assuming that each car 

passed is a blue car with probability 20%, independent of the colours of all other cars?

• For example, if the car passes a green car after 0.121 minutes, then a black car 0.207 

minutes after that then a blue car after a further 0.088 minutes, the time until the next blue car 

would be recorded as                                                minutes.
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Example
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• The total time until an additional blue car has been                                                                        

passed is equal to the sum of a random number of                                                                        

random numbers.

• We know that the time between passing successive                                                                     

cars                  but we also need to know the                                                                           

distribution of how many cars will be passed until                                                                           

passing the next blue car.

• If each car is blue with probability 20%, then we are counting how many independent identical

• We therefore have that the number of cars passed until passing a blue car 

~ exp(10)

(0.2) variables until the first 1 (or blue) is observed.Bern

~ (0.2).Geo



Example
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• Let       be the additional waiting time until the ith car                                                                   

is passed (e.g.      Is the time after the fourth car has                                                                   

been passed until the fifth car is passed.)

• In minutes, each

• The time until the next blue car is passed is therefore 

• Here, 

    iW
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• We sum this random number of random numbers via                                                                  

generating functions. 
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•

• As

• This is equivalent to (but simpler in its derivation) what we previously saw regarding splitting 

Poisson processes.
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