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2.  
i) Player A wins if and only if:  
 

The first roll is a 5 or a 6 (probability 
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The first three rolls are not 5s or 6s, but the fourth is (probability 
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) or 

The first six rolls are not 5s or 6s, but the seventh is (probability 
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Hence ( )P A  is given by the infinite series 
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ii) This is a geometric series, first term 
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iii) 
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4. 

 
a) If ( ) 0P A , then  ( ) ( ) ( ) 0P A B P A P B   for all B, hence A and B 

are independent.  
 

Likewise, if ( ) 1P A ,  ( ) ( ) ( ) ( )P A B P B P A P B  for all B, hence A 

and B are independent.  
 

b)  ( ) ( )P A P A B , hence  ( ) ( ) ( ) ( ) ( )P A P B P A B P B P A B  . 

 


( ) ( ) ( )

( ) ( )

P A P B P A B

P A P A
 hence ( ) ( )P B P B A . 

c)  
 
i) A is independent of A, hence ( ) ( ) ( )P A A P A P A . 

Since A A A ,  

 2( ) ( )P A P A  hence   ( ) ( ) 1 0P A P A , so ( ) 0P A 0 or ( ) 1P A . 

 
 
ii) The only events which are independent of themselves are those 

which occur with probability 0 or probability 1. That is, we gain no 
information by observing the experiment (as we already knew that 
the event would either certainly happen or certainly not happen.) 
 


