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2. 
 

a)  A Bernoulli variable is equivalent to a binomial variable for just one trial 
(with the same probability parameter) hence the generating function of 

~ ( )T Bern p  is  
1

( ) ( ) (1 ) 1T

Tg z E z p pz p pz= = − + = − + . 

 

b)  We know that ( ) ( ( ))
iY X Tg z g g z= . 

Since ~ ( , )X Bin N p  then  ( ) ( ) (1 )
NX
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Likewise, each ~ ( )iT Bern p so ( ) 1
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Putting these together, we find 
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This gives 2 2( ) 1
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c)  i) The number of dice which are kept after one roll 
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know from the previous part that this means the number of 
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(This is to be expected, since each die (independently) is rolled for a 

second time with probability 
1

3
 and each of these is a winner with 

probability 
1

3
. Hence, we expect 

1

9
 of the 45 dice to be winners.) 

 
 

ii)  The variance of a 
1

45,
9

Bin
 
 
 

 variable is
1 1 40

45 1
9 9 9

 
  − = 

 
. 

 
 
 
 
 
 
 
 
 



3.  
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This is a geometric series, first term pz , common ratio (1 )p z− . Hence 
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 ii) Differentiating this gives  
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 ii) The expectation of ~ exp(0.1)iY  is
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That is, if ~ ( )X Geo p  and each ~ exp( )iY λ  then 
0

~ exp( )
X

i

i

W Y λp
=

= . 

 
In this case, the number of cards drawn until the first Spade ~ (0.25)Geo  and 

the time between each bus ~ exp(0.1)so the time he waits ~ exp(0.025) . 

 


