University of Technology Sydney School of Mathematical and Physical Sciences

Probability and Random Variables (37161) – Tutorial/Laboratory 1 SOLUTIONS

1.

a) Let Ω_i be the sample space for the outcome of *i* rolls of the die so that $\Omega_1 = \{1, 2, 3, 4, 5, 6\}, \ \Omega_2 = \{11, 12, 13, 14, 15, 16, 21, ..., 65, 66\}$ etc.

i)
$$P = \frac{|\{2,4,6\}|}{|\Omega_1|} = \frac{1}{2}$$

ii)
$$P = \frac{|\{111,222,333,444,555,666\}|}{|\Omega_3|} = \frac{6}{6 \times 6 \times 6} = \frac{1}{36}.$$

iii)
$$P = \frac{|\{11,12,13,14,15,16,22,24,26,33,36,44,55,66\}|}{|\Omega_2|} = \frac{7}{18}.$$

iv)
$$P = \frac{|\{112,123,134,145,156,213,224,235,246,314,325,336,415,426,516\}|}{|\Omega_3|}$$

$$= \frac{15}{216} = \frac{5}{72}$$

2.

a) $\Omega = \{FFF, FFM, FMF, FMM, MFF, MFM, MMF, MMM\}.$

i)
$$P = \frac{\left|\{FFF, FFM, FMF, FMM\}\right|}{\left|\Omega\right|} = \frac{1}{2}$$

ii)
$$P = \frac{\left|\{MMM\}\right|}{\left|\Omega\right|} = \frac{1}{8}$$

iii)
$$P = \frac{\left|\{FFF, MMM\}\right|}{\left|\Omega\right|} = \frac{1}{4}$$

iv)
$$P = \frac{\left|\{FFF, FFM, MFF, MMM, MMF, FMM\}\right|}{\left|\Omega\right|} = \frac{3}{4}$$

b) The conditional sample space, knowing there is at least one son is $\Omega_s = \{FFM, FMF, FMM, MFF, MFM, MMF, MMM\}.$

i)
$$P = \frac{\left|\{MMM\}\right|}{\left|\Omega_{s}\right|} = \frac{1}{7}$$

ii)
$$P = \frac{\left|\{MMM, MMF, MFM, MFF\}\right|}{\left|\Omega_{s}\right|} = \frac{4}{7}$$

iii)
$$P = \frac{\left|\{MFF, FMF, FFM\}\right|}{\left|\Omega_{s}\right|} = \frac{3}{7}$$

3.

The probability that none of the events A, B or C occur is $\frac{17}{48}$.

a)

4.

$$(A \cap B) \subseteq A$$
 and $(A \cap B) \subseteq B$ so $P(A \cap B) \le P(A)$ and
 $P(A \cap B) \le P(B)$.
These give $P(A \cap B) \le \frac{9}{10}$ and $P(A \cap B) \le \frac{1}{5}$ hence the more
restrictive of these gives that $P(A \cap B) \le \frac{1}{5}$.
Also, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.
Here, this is $P(A \cup B) = \frac{9}{10} + \frac{1}{5} - P(A \cap B)$ however $P(A \cup B) \le 1$
since it is a probability. This gives $P(A \cap B) \ge \frac{9}{10} + \frac{1}{5} - 1 = \frac{1}{10}$.

b)

$$A \subseteq (A \cup B)$$
 and $B \subseteq (A \cup B)$ so $P(A) \le P(A \cup B)$ and
 $P(B) \le P(A \cup B)$. Here, this gives $\frac{9}{10} \le P(A \cup B)$
Similarly, $P(A \cup B)$ is a probability so cannot exceed 1.