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1.   Let X be a random variable with density function  
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a) Show that 
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E X = −  

b) Calculate: 

i) ( )Var X ; ii) 2( 0 | 4)P X X  ; iii) ( 2 | 0)P X X −  . 

 

2. Let Y be a continuous random variable with density function 
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 Consider the transformation Z Y=  

i) Write down the range of Z. Justify your answer. 

ii) Showing all of your working, calculate ( )g z , the probability density 

function of Z. 

iii) Show that ( ) 1g z dz
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3. One regular fair six-sided die is rolled repeatedly. Let T be the number of 

rolls until the first time the die shows a 2 and let S be the number of rolls 

until the first time the die shows a 6.  

This means that 
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but the two variables are 

not independent. 

i) Write down ( )E T  and ( )E S . 

ii) Calculate ( )P S T= . Justify your answer. 

iii) In your own words, clearly explain why ( | 1) 1 ( )E T S E T= = + . 

Note: You do not need to perform any calculation here. 

 

4.  Let W be an exponential random variable ~ exp( )W λ .  

That is, W has density function 
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 Consider the transformation 

1

γZ W=  where 0γ  . 

i) Write down the range of Z. Justify your answer. 

A random variable ( )~ ,T Weibull β η  if it has probability density function  
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ii) Showing all of your working, calculate ( )g z , the probability density 

function of Z. 

iii) Hence show that Z is Weibull distributed,  
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